
Simplifying and Streamlining Large-Scale Materials Image Processing with Wizard-
Driven and Scalable Deep Learning 
 
Benjamin Provencher1, Nicolas Piché1 and Mike Marsh2*

 

 
1. Object Research Systems. Montreal, Canada. 
2. Object Research Systems. Denver, USA. 
*Corresponding author: mmarsh@theobjects.com 

 
Image methods and imaging throughput--especially in 3D and 4D--continue to evolve and elucidate rich 
details about materials samples at an ever increasing pace. The full potential for quantitative analysis of 
those materials, however, is often limited by the speed with which imaging scientists can process the 
data. For different studies, those bottlenecks can occur both for image analyst time and compute time. 
To address these rate limitations of image processing, we present an improved Deep Learning engine 
with a user-guided wizard that simplifies and accelerates user interaction and is parallelized for high-
throughput computation on both typical laboratory computer hardware and high-performance compute 
(HPC) systems. Deep Learning tasks here include, but are not limited to, the fully automatic and 
parameter-free operations of image denoising and image segmentation. 
 
Deep Learning is the machine learning approach of supervised learning implemented on deep neural 
networks (convolutional neural networks for image applications). We previously described our Deep 
Learning solution [1] integrated into the Dragonfly software platform, a feature-rich image processing 
and image visualization platform that is free for non-commercial use. 
 
We enhance Deep Learning user productivity by presenting the user with a wizard which initially 
prompts the user to manually paint features of interest; minimal initial training data is required so the 
user is advised to spend no more than 5 minutes on this task, painting on the order of 50,000 labeled 
pixels. Dragonfly then trains four or more models (with no user parameters), and presents the user with 
multiple automatic segmentations. The user then chooses which segmentation performed the best, and is 
prompted to manually paint the areas of that prediction that are accurate, and to correct select areas that 
are inaccurate. At the end of this stage, much more training data is now available, e.g. for a full slice of a 
1000 x 1000 pixel image, we now have 1 million pixels. At each stage, the training data are further 
inflated by established data augmentation techniques. This boostrapping approach allows the user to go 
from no training data to extensive training data with minimal user interaction, thereby greatly 
accelerating the otherwise labor-intensive practice of preparing training data. 
 
The two stages of the Deep Learning life cycle are training, where an untrained neural network model is 
provided examples in order to learn the required image transformation, and inference, where a trained 
model is used to transform previously unseen images. Both stages benefit from graphical processing unit 
(GPU) acceleration, but training is the more compute intensive operation. We now make it possible for 
both stages to benefit from distributed execution on otherwise idle GPUs to achieve the same results in 
shorter time. 
 
For a user who wishes to distribute her training or inference jobs, she may connect to a remote 
QueueManager, and add her tasks to the growing queue. The QueueManager maintains a first-in first-

402
doi:10.1017/S1431927619002745

Microsc. Microanal. 25 (Suppl 2), 2019
© Microscopy Society of America 2019

https://doi.org/10.1017/S1431927619002745 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927619002745


out list of processing jobs. Other Dragonfly-enabled computers can, at any time, register with the 
QueueManager as available to take jobs, thereby taking on the role of ComputeNodes. Each of those 
nodes can abort a job at any time, and no progress is lost. The QueueManager will re-assign the 
remainder of the task to another available ComputeNode. All three roles (primary Dragonfly client, 
QueueMaster, and ComputeNode) run on both Windows and Linux. Communication between 
QueueManager and ComputeNodes is implemented with the huey python framework [2]. 
 
The role of ComputeNode can be filled by any Dragonfly-enabled computer with a CUDA-capable 
GPU. There is no restriction that the ComputeNodes must have the same hardware; this permits the 
QueueMaster to manage a heterogeneous compute network. In a typical research laboratory, any 
computer that is not being used can be enabled as a ComputeNode. This model is akin to the 
SETI@Home [3] solution of distributed computing. Alternatively, the user can configure his own HPC 
cluster to perform as a network of ComputeNodes. If the user requires greater computer performance, 
but doesn’t have local resources, Dragonfly can be spawned elastically on Amazon cloud instances to 
serve as ComputeNodes at a price of less than $1.50 per node per hour, and those prices continue to fall. 
 
When used for distributed training, a user is empowered to select multiple neural networks of different 
topology and different training parameters to train in parallel, which can more quickly lead to an optimal 
trained model. When ComputeNodes terminate a job before completion, no work is lost; the remainder 
of training epochs are captured as a new task on the QueueManager. When a user is performing 
inference, the entire operation is parallelized for a near linear speedup, sublinearity arising only due to 
model and data transfer between QueueMaster and ComputeNodes. 
 
These enhancements take the arcane operation of Deep Learning and make it accessible in a user-
friendly solution that is easy to adopt and deploy at large scale for large data pipelines. The enhanced 
productivity realized with these improvements help fully quantitative image analysis keep pace with the 
volume of images generated by emerging high-throughput imaging techniques. 
 
References: 
 
[1] R Makovetsky et al., Microscopy and Microanalysis 24 (S1) (2018), p. 532. 
[2] C Liefer, GitHub, https://github.com/coleifer/huey. 
[3] E Korpela et al., Computing in Science & Engineering 3 (2001), p. 78. 

Microsc. Microanal. 25 (Suppl 2), 2019 403

https://doi.org/10.1017/S1431927619002745 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927619002745

