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It is generally believed that the temperature and the velocity fields are highly coupled in
compressible wall-bounded turbulence. In the present study, we employ a linear model, i.e.
the two-dimensional spectral linear stochastic estimation (SLSE), to study this coupling
from the perspective of the multi-scale energy-containing eddies. Particular attention is
paid to the relevant statistical characteristics of the temperature field. The connections of
the two fields are found to be varied with the wall-normal position in the boundary layer.
In a nutshell, their entanglement is strongest in the near-wall region, and only the extreme
thermal events cannot be captured by SLSE. In the logarithmic region, only the scales that
correspond to the attached eddies and the very large-scale motions (VLSMs) are firmly
coupled. The near-wall footprints of the former are organized in an additive manner and
fulfil the predictions of the celebrated attached-eddy model. In the outer region, the two
fields are linearly coupled only at the scales corresponding to VLSMs. These findings are
demonstrated to be insensitive to the Mach number effects and ascribed to the similarity
between the momentum and the heat transfer in compressible wall turbulence. It is also
shown that it is the Reynolds number rather than Mach number that acts as a key similarity
parameter in constructing their coupling. The framework built in the present study may
pave a way for investigating the multi-physics coupling in turbulence, and reinforcing our
analysing and modelling capability to the interrelated problems.
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1. Introduction

Multi-physics coupling is the typical aspect of turbulence, whereby different physical
quantities interact with each other at broadband length scales. In incompressible
turbulence, the coupling between the pressure and the velocity fields leads to the complex
picture of the scale interactions (Tsuji, Marusic & Johansson 2016; Cho, Hwang & Choi
2018; Lee & Moser 2019). As for the wall-bounded turbulence with heat transfer, the
most noteworthy one is the coupling between the temperature and the velocity fields.
The existing studies reveal the two fields in many similarities, but differences as well
(Antonia, Abe & Kawamura 2009; Pirozzoli & Bernardini 2011; Li et al. 2019; Cheng &
Fu 2022b). A deep understanding about this process is of great practical significance. All
in all, one persistent pursuit of high-speed aerodynamics is suppressing wall friction with
controlled wall heat flux. Uncovering their intricate entanglement may allow us to develop
the sophisticated flow control strategies.

As early as the 1960s, Morkovin (1962) derived the well-known strong Reynolds
analogy (SRA) for the zero pressure-gradient compressible turbulent boundary layers with
adiabatic wall condition. This original SRA takes the form of√

T ′2/T̄

(γ − 1)M2
√

u′2/ū
= 1, (1.1)

where γ , M denote the specific heat ratio and the local mean Mach number. Additionally,
T ′, u′ represent the temperature and the streamwise velocity fluctuations, respectively, and
T̄ , ū represent their mean counterparts. SRA is deduced based on some assumptions that
are too ideal, thus, it has been discovered to have severe limitations in subsequent studies
and several variants have been proposed by taking the wall heat flux into consideration
(Cebeci & Smith 1976; Gaviglio 1987; Rubesin 1990; Huang, Coleman & Bradshaw 1995;
Zhang et al. 2014). However, it undoubtedly underlines the fact that the temperature field
is highly coupled with the velocity field in compressible wall turbulence. This crucial
topic has also been inspected from the view of the coherent structures and the multi-scale
eddies in follow-up works. For example, Pirozzoli & Bernardini (2011) reported that the
temperature field in the inner layer of a supersonic turbulent boundary layer also exhibits
a clear streaky pattern, qualitatively similar to that of the streamwise velocity fluctuations,
whereas their similarities become less apparent in the outer region. This observation
indicates that the coupling between the two fields is not set in stone in physical space.
Its variation is also reflected by the correlations between u′ and T ′ (denoted as Ru′T ′) at
different wall-normal heights in a boundary layer. Specifically, for compressible turbulent
channel flows, Ru′T ′ reaches its maximum value in the near-wall region, and gradually
diminishes as the wall-normal position increases (Coleman, Kim & Moser 1995; Brun
et al. 2008; Gerolymos & Vallet 2014) (the reader can also refer to figure 2(c) of the present
work). Yu & Xu (2021) inspected the one-dimensional linear coherence spectra of u′ and
T ′ in hypersonic turbulent channel flows, and found their coupling is scale-dependent and
only strong at large scales. Though these pioneering studies shed light on some essential
features of their coupling, some meaningful details are still unknown, e.g. its relationship
with the energy-containing motions and the turbulence intensity that results from this
coupling, etc. The motivations of the current study are to clarify them, and reinforce our
analysing and modelling capability of the u–T coupling in compressible wall turbulence
(Fu et al. 2021; Fu, Bose & Moin 2022).

One piece of information is noteworthy regarding the relationship between the
energy-containing motions and the u–T coupling, which is one of the concerns
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Coupling between velocity and temperature fields

raised above. Pirozzoli & Bernardini (2011) recognized that the T ′ motions populating the
logarithmic and the outer regions in supersonic boundary layers would exert footprints
on the near-wall region just like the u′ motions (Del Álamo & Jiménez 2003; Abe,
Kawamura & Choi 2004a; Hutchins & Marusic 2007), though they are much weaker
than the u′ counterparts. It is noted that the footprints of the T ′ in the near-wall
region are also reported to be existing in the incompressible turbulent channel flows
with a passive temperature (Abe, Kawamura & Matsuo 2004b). The similarity between
u′ and T ′ suggests that the thermodynamic variable T can also be categorized as a
wall-attached quantity, and described by the celebrated attached eddy model (AEM).
As is known to all, AEM is a conceptual model which illustrates the energy-containing
motions residing in the logarithmic region in incompressible wall turbulence (Townsend
1976; Perry & Chong 1982). It conjectures that the logarithmic region is occupied by
an array of self-similar energy-containing motions (or eddies) with their roots attached
to the near-wall region. A growing body of evidence, which supports the theoretical
predictions made with the AEM in incompressible wall-bounded turbulence, has emerged
over the last two decades (Del Álamo et al. 2006; Lozano-Durán, Flores & Jiménez 2012;
Hwang 2015; Hwang & Sung 2018; Lozano-Durán & Bae 2019; Cheng et al. 2020b;
Hu, Yang & Zheng 2020). The reader can refer to Marusic & Monty (2019) for more
details. Hence, investigating the u–T coupling from the standpoint of AEM can not only
clarify the energy-containing motions which are responsible for the coupling, but also
broaden the applicability of AEM. Nearly all the previous studies on AEM treat u′,
rather than T ′, as the underpinning of the attached eddy. Additionally, the well-established
analytical technologies developed in the AEM study (Baars, Hutchins & Marusic 2016;
Baars & Marusic 2020; Cheng & Fu 2022a; Cheng, Shyy & Fu 2022) can also be
generalized to cast light on the scale interactions engaging with the T ′ motions in more
complicated compressible wall turbulence. Some studies that have just been published on
the temperature field in supersonic wall turbulence suggest that this research perspective
is plausible. Yu et al. (2022) employed the proper orthogonal decomposition (POD)
to identify the self-similar structures of the temperature fluctuations in a compressible
channel flow. The statistical characteristics of some decomposed modes fulfil the AEM
predictions. Yuan et al. (2022) adopted the three-dimensional clustering methodology to
extract the wall-attached temperature structures in supersonic turbulent boundary layers.
The conditional statistics of these structures are also consistent with the AEM descriptions.
The authors of the present study also used the linear coherence spectrum to evaluate
the geometrical characteristics of the self-similar T ′ structures in subsonic/supersonic
channel flows (Cheng & Fu 2022b). The streamwise/wall-normal aspect ratio of them is
approximately 15.5, which resembles that of the u′ structures in incompressible boundary
layers (Baars, Hutchins & Marusic 2017). These previous studies demonstrate that it is
sensible to envision the temperature motions in the logarithmic region of compressible
wall turbulence as underpinnings of the attached eddies. Are they accountable for the
u–T coupling? How do they impose influences on the near-wall small-scale flow? These
questions still need to be answered.

The methodology employed in the present study is the linear model, i.e. the
two-dimensional (2-D) spectral linear stochastic estimation (SLSE). In the 1970s, Adrian
(1979) proposed that the prediction of the fluctuating velocity signals ui at yp (the predicted
wall-normal position) from the measurements of the state-vector u at ym (the measured
wall-normal position) can be obtained by Taylor-series expansion. It can be cast as

uip( yp, t) = Aij( ym, yp)ujm( ym, t)+ Bijk( ym, yp)ujm( ym, t)ukm( ym, t)+ · · · , (1.2)

964 A15-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

35
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.356


C. Cheng and L. Fu

where Aij and Bijk are the second- and third-order two-point correlation tensors,
respectively. The subscripts m and p stand for the measured and predicted physical
quantities, and i, j, k denote the components of the state-vector u. For the linear
stochastic estimation (LSE), only the first term on the right-hand side of (1.2) is taken
into consideration. Over the years, the spectral version of LSE, namely SLSE, has been
exploited as a potent tool to study the multi-scale structures in incompressible flows, such
as the spectral contents of the attached eddies (Baars & Marusic 2020), the geometrical
characteristics of the wall-attached structures (Baars et al. 2017; Baidya et al. 2019), the
streamwise inclination angle of the attached eddies (Deshpande, Monty & Marusic 2019;
Cheng et al. 2022), the prediction of the logarithmic-layer turbulence based on the wall
quantities (Encinar & Jiménez 2019), and the inner–outer interactions in boundary layers
(Baars et al. 2016; Cheng & Fu 2022a). In the present work, we will manipulate the
2-D SLSE to investigate the coupling between the velocity and the temperature fields,
as well as the scale interactions in compressible channel flows. We will be dedicated to
the related statistical characteristics of the temperature fluctuations and their consistency
with the AEM, as they have not been thoroughly clarified as the velocity fluctuations in
compressible wall-bounded turbulence.

The remainder of this paper is organized as follows. In § 2, the direct numerical
simulation (DNS) data and the SLSE are described. In § 3, we present the general
turbulence statistics and the flow structures associated with the u–T coupling. The results
of the linear-model-based study are provided for the near-wall, the logarithmic and the
outer regions in § 4, separately, in the condition of ym = yp and ym /= yp. In § 5, some
discussions are given, such as the Mach number effects on the results, and the relationship
between the current results and the SRA. Concluding remarks are given in § 6.

2. The DNS database and linear model

2.1. The DNS database
In the present study, we carry out three simulations of supersonic channel flows at a
bulk Mach number Mb = Ub/Cw = 1.5 (Ub is the bulk velocity and Cw is the speed of
sound at wall temperature) and Reb = ρbUbh/μw = 3000, 9400 and 20 020 (ρb denotes
the bulk density, h the channel half-height and μw the dynamic viscosity at the wall).
A series of DNSs at a bulk Mach number Mb = 0.8, and Reb = 3000, Reb = 7667 and
Reb = 17 000 are also conducted. All these cases are performed in a computational
domain of 4πh × 2πh × 2h in the streamwise (x), spanwise (z) and wall-normal (y)
directions, respectively. Previous studies have verified that these set-ups of dimensions
can capture most of the large-scale motions in the outer region of the boundary layer
(Agostini & Leschziner 2014, 2019). Details of the parameter settings of the formed
database are listed in table 1. The maximum number of grid points is in excess of one
billion. The details of the DNS and validations of the cases Ma15Re9K, Ma15Re20K,
Ma08Re8K and Ma08Re17K are provided by Cheng & Fu (2022b). A brief description
of the computational set-ups and the data validations of the remaining cases are given in
Appendix A.

Both the Reynolds- (denoted as φ̄) and the Favre-averaged (denoted as φ̃ = ¯ρφ/ρ̄)
statistics are used in the present study. The corresponding fluctuating components are
represented as φ′ and φ′′, respectively. Hereafter, we use the superscript + to represent
the normalization with ρw, the friction velocity (denoted as uτ , where uτ = √

τw/ρw,
τw is the mean wall-shear stress), the friction temperature (denoted as Tτ , where Tτ =
Qw/ρwcpuτ , with Qw and cp the mean heat flux on the wall and the specific heat at constant
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Case Mb Reb Reτ Re∗
τ �x+ �z+ �y+

min �y+
max Tuτ /h

Ma15Re3K 1.5 3000 220 148 10.8 6.9 0.33 8.2 19.5
Ma15Re9K 1.5 9400 594 395 7.3 3.7 0.5 5.9 30.2
Ma15Re20K 1.5 20020 1150 780 9.3 4.7 0.49 6.9 13.1
Ma08Re3K 0.8 3000 192 168 8.9 4.5 0.43 4.5 39.5
Ma08Re8K 0.8 7667 436 382 10.8 6.9 0.44 5.4 15.3
Ma08Re17K 0.8 17000 882 778 10.8 6.5 0.63 6.4 20.4

Table 1. Parameter settings of the compressible DNS database. Here, Mb denotes the bulk Mach number, and
Reb, Reτ and Re∗

τ denote the bulk Reynolds number, friction Reynolds number and semi-local friction Reynolds
number, respectively. Additionally, �x+ and �z+ denote the streamwise and spanwise grid resolutions in
viscous units, respectively, �y+

min and �y+
max denote the finest and coarsest resolution in the wall-normal

direction, respectively, and Tuτ /h indicates the total eddy turnover time used to accumulate statistics.

pressure, respectively) and the viscous length scale (denoted as δν , where δν = νw/uτ ,
with νw = μw/ρw). We also use the superscript ∗ to represent the normalization with
the semi-local wall units, i.e. u∗

τ = √
τw/ρ̄ and δ∗ν = ν( y)/u∗

τ . Hence, the relationship
between the semi-local friction Reynolds number and the friction Reynolds number is
Re∗
τ = Reτ

√
(ρc/ρ̄w)/(μc/μ̄w). The subscript c refers to the quantities evaluated at the

channel centre. It is noted that the cases of Ma08Re3K, Ma08Re8K and Ma08Re17K
share similar Re∗

τ with the cases of Ma15Re3K, Ma15Re9K and Ma15Re20K, respectively.
In the present study, we mainly adopt the supersonic cases (Mb = 1.5) to investigate the
u–T coupling in compressible wall turbulence, whereas the subsonic cases (Mb = 0.8)
primarily aid in elucidating the Mach number effects on the statistics in § 5.1. In addition,
Gerolymos & Vallet (2014), Griffin, Fu & Moin (2021) and Bai, Griffin & Fu (2022)
pointed out that the semi-local scalings, Re∗

τ and y∗, can reasonably clarify the Reynolds
number effects on the statistics involving the thermodynamic and the velocity variables in
compressible channel flows. Hence, we adopt them more frequently than Reτ and y+ in
the present study.

2.2. Linear model: spectral linear stochastic estimation
The LSE (1.2) can be modified by conducting the estimation in the spectral domain (i.e. the
spectral linear stochastic estimation), as the spectral characteristics of the signals can be
preserved, and eliminates the contamination from the correlations between the orthogonal
spectral modes (Tinney et al. 2006; Gupta et al. 2021). The DNS instantaneous fields
at a given wall-normal height can be decomposed into Fourier coefficients along the
streamwise and the spanwise directions by leveraging the homogeneity along these two
directions. In the present study, we intend to study the physical characteristics of the
temperature field associated with the velocity field in compressible wall turbulence; thus,
SLSE is employed here and can be considered as a physics-based scale decomposition
methodology for the temperature field. It takes the form of

T ′
p( ym, yp) = F−1

x,z {HT(λx, λz; ym, yp)Fx,z[u′′
d( ym)]}, (2.1)

where u′′
d denotes the density-weighted streamwise velocity fluctuation (

√
ρu′′) at ym

(Patel et al. 2015). Very recently, Huang, Duan & Choudhari (2022) reported that the
statistical characteristics of ρu′′u′′/τw in compressible boundary layers resemble those of

u′2+
in incompressible wall turbulence. This motives us to adopt u′′

d rather than u′′ or u′
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to represent the velocity streaks in compressible flows, in line with numerous previous
studies (Patel et al. 2015; Sciacovelli, Cinnella & Gloerfelt 2017; Hirai, Pecnik & Kawai
2021; Huang et al. 2022) (we have verified that the results presented below are not changed
even if u′′ or u′ is employed). Here, Fx,z and F−1

x,z denote the 2-D fast Fourier transform (2-D
FFT) and the inverse 2-D FFT in the streamwise and the spanwise directions, respectively.
Additionally, HT is the transfer kernel, which evaluates the correlation between û′′

d( ym) and
T̂ ′( yp) at streamwise length scale λx and spanwise length scale λz, and can be calculated
as

HT(λx, λz; ym, yp) = 〈T̂ ′(λx, λz; yp) ˘̂u′′
d(λx, λz; ym)〉

〈û′′
d(λx, λz; ym) ˘̂u′′

d(λx, λz; ym)〉
, (2.2)

where 〈·〉 represents the ensemble averaging, T̂ ′ and û′′
d are the Fourier coefficients of T ′

and u′′
d , respectively, and ˘̂u′′

d is the complex conjugate of û′′
d . In this sense, T ′

p( ym, yp)

in (2.1) is the component of T ′( yp) that is linearly correlated with the u′′
d( ym) at ym,

whereas T ′
np = T ′ − T ′

p is the uncorrelated component (in fact, this treatment involves one
hypothesis, i.e. there is no nonlinear scale interaction between T ′

np and T ′
p. We will show

that whether this assumption is true or not has no effect on the results exhibited below).
To further gauge the coherence between T ′( yp) and u′′

d( ym), following Baars et al. (2016),
a 2-D linear coherence spectrum (LCS) is also introduced here, and can be cast as

γ 2
c (λx, λz; ym, yp) = |〈T̂ ′(λx, λz; yp) ˘̂u′′

d(λx, λz; ym)〉|2
〈|T̂ ′(λx, λz; yp)|2〉〈|û′′

d(λx, λz; ym)|2〉
, (2.3)

where |·| is the modulus, and γ 2
c evaluates the square of the scale-specific correlation

between T ′( yp) and u′′
d( ym) with 0 ≤ γ 2

c ≤ 1 (Bendat & Piersol 2011). To be specific,
γ 2

c = 1 suggests a perfectly linear correlation between the velocity and the temperature
signals at a wavelength pair (λx, λz), whereas γ 2

c = 0 implies a purely uncorrelated
relationship.

According to Pirozzoli & Bernardini (2011), the temperature fluctuation in compressible
wall turbulence can be envisioned as a wall-attached variable, similar to the streamwise
velocity fluctuation. Thus, we employ two additional transfer kernels HL, Hw, and one
LCS to shed light on the wall coherence of T ′

np and T ′
p. If yp is in the logarithmic or outer

region, their footprints on the near-wall region can be predicted by

T ′
ψ,L( yp, yi) = F−1

x,z {HL(λx, λz; yp, yi)Fx,z[T ′
ψ( yp)]}, (2.4)

where yi is the wall-normal height of the near-wall position (set as �ymin listed in table 1)
and T ′

ψ can be T ′
np or T ′

p. The transfer kernel HL can be expressed by

HL(λx, λz; yp, yi) =
〈T̂ ′(λx, λz; yi)

˘̂T ′
ψ(λx, λz; yp)〉

〈T̂ ′
ψ(λx, λz; yp)

˘̂T ′
ψ(λx, λz; yp)〉

. (2.5)

The wall-coherent component of T ′
ψ can also be estimated by

T ′
ψ,w( yi, yp) = F−1

x,z {Hw(λx, λz; yi, yp)Fx,z[T ′( yi)]}, (2.6)

with

Hw(λx, λz; yi, yp) =
〈T̂ ′
ψ(λx, λz; yp)

˘̂T ′(λx, λz; yi)〉
〈T̂ ′(λx, λz; yi)

˘̂T ′(λx, λz; yi)〉
. (2.7)
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T ′
p (ym, yp)

T ′
np (ym, yp)

T ′
p,L (yp, yi)

T ′
p,w (yi, yp)

T ′
np,w (yi, yp)

T ′
np,L (yp, yi)

u′
d
′ (ym)

HT HL

Hw WAC

FP

WAC

FPHL

Hw

Figure 1. A sketch map of the linear-model-based study of the u–T coupling and the temperature field
in compressible wall turbulence. The abbreviations ‘FP’ and ‘WAC’ in the figure stand for footprint and
wall-attached component, respectively. The wall-normal position in blue is the locus of the corresponding
predicted variable.

Correspondingly, a wall-based LCS can also be defined as

γ 2
w(λx, λz; yi, yp) =

|〈T̂ ′(λx, λz; yi)
˘̂T ′
ψ(λx, λz; yp)〉|2

〈|T̂ ′(λx, λz; yi)|2〉〈|T̂ ′
ψ(λx, λz; yp)|2〉

, (2.8)

which manifests as a figure of merit for the wall coherence of T ′
ψ .

Figure 1 is a sketch map of the linear-model-based study of the u–T coupling in
compressible wall turbulence. To sum up, three wall-normal positions involved in the
present study are:

(1) ym – the wall-normal locus of the measured density-weighted streamwise velocity
fluctuation;

(2) yp – the wall-normal locus of the predicted temperature fluctuation;
(3) yi – a near-wall location, and is set as �ymin listed in table 1 for each case.

The physical variables involved in the present study are:

(1) u′′
d( ym) – the density-weighted streamwise velocity fluctuation (

√
ρu′′) at ym;

(2) T ′( yp) – the temperature fluctuation at yp;
(3) T ′( yi) – the temperature fluctuation at a near-wall position yi;
(4) T ′

p( ym, yp) – the component of T ′( yp) that is linearly correlated with u′′
d( ym), which

is calculated by an HT -based estimation according to (2.1) and (2.2);
(5) T ′

np( yp) – the component of T ′( yp) that is not linearly correlated with u′′
d( ym),

namely T ′
np( yp) = T ′( yp)− T ′

p( ym, yp);
(6) T ′

ψ,L( yp, yi) – the footprint of T ′
ψ on the near-wall location yi (yi = �ymin), which

is calculated by an HL−based estimation according to (2.4) and (2.5), where T ′
ψ can

be T ′
p or T ′

np;
(7) T ′

ψ,w( yi, yp) – the wall-attached component of T ′
ψ , which is calculated by an

Hw−based estimation according to (2.6) and (2.7).

Moreover, the three transfer kernels involved in the present study are:
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(1) HT – it gauges the correlation between û′′
d( ym) and T̂ ′( yp) at length scales λx and λz;

(2) HL – it gauges the correlation between T̂ ′
ψ( yp) and T̂ ′( yi) at length scales λx and λz

for the estimation of T ′
ψ,L( yp, yi);

(3) Hw – it gauges the correlation between T̂ ′
ψ( yp) and T̂ ′( yi) at length scales λx and λz

for the estimation of T ′
ψ,w( yi, yp);

The two LCSs involved in the present study are:

(1) γ 2
c – it evaluates the square of the scale-specific correlation between T ′( yp) and

u′′
d( ym) with 0 ≤ γ 2

c ≤ 1;
(2) γ 2

w – it evaluates the square of the scale-specific correlation between T ′( yi) and
T ′
ψ( yp) with 0 ≤ γ 2

w ≤ 1.

The proposed framework here aids in studying the statistical characteristics of the
temperature fluctuation, particularly its coherence with the streamwise velocity fluctuation,
and the consequent scale interactions with the near-wall turbulence. Similar numerical
frameworks have been adopted by the authors to investigate the attached eddies in
incompressible channel flows in previous studies (Cheng & Fu 2022a; Cheng et al.
2022; Cheng & Fu 2023). It bears emphasizing that the two fields are also entwined
with each other along the time dimension. Hence, the temporal frequency can also
be invoked in the SLSE presented above, which can further provide the frequency
structure of the multi-physics coupling (Tinney et al. 2006). However, a reliable temporal
analysis demands a large number of time-resolved DNS samples, which is far beyond our
capacity. Accordingly, we only conduct spatial analyses and do not consider the frequency
characteristics of the coupling at the present stage.

3. General turbulence statistics and flow structures

We start by providing an overview of the general turbulence statistics and flow structures
related to the temperature field and the u–T coupling in supersonic cases. Figure 2(a)
displays the variations of the temperature fluctuation intensities as functions of the

wall-normal height y/h for all the supersonic cases. The peak of T ′2+
grows in magnitude

as the Reynolds number increases and its wall-normal location moves closer to the wall
concurrently. If the profiles are plotted with the abscissa in semi-local coordinates y∗,

the maxima of T ′2+
in various cases are roughly positioned at an identical wall-normal

position y∗ ≈ 10, as shown in figure 2(b). Similar behaviours have been reported for the
streamwise velocity fluctuation in incompressible (Marusic, Baars & Hutchins 2017; Smits
et al. 2021) and compressible (Modesti & Pirozzoli 2016; Yao & Hussain 2020) wall
turbulence. This scenario indicates the similarity between the momentum and the heat
transfer in the vicinity of the wall. The magnitude increase of the normalized fluctuation
intensity of a wall-attached variable in the near-wall region is typically attributed to the
amplification of the inner–outer interactions as the Reynolds number rises (Marusic et al.
2017; Cheng et al. 2020a; Smits et al. 2021). If this is true, it hints at the fact that the
temperature fluctuation in compressible flow can also be treated as an attached variable.
This claim will be verified in §§ 4 and 5.1.
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Figure 2. (a,b) Variations of T ′2+
(solid lines) and T ′2

p
+
( ym = yp) (dashed lines) as functions of the

wall-normal height (a) y/h and (b) y∗ for all the supersonic cases; (c) correlation coefficients Ru′′
dT ′ as functions

of y∗ for all the supersonic cases, and the counterparts from incompressible channel flows at similar Reτ (Abe
et al. 2004b; Abe & Antonia 2009) are exhibited by dashed lines for comparison.

Figure 2(c) shows the variations of the correlation coefficients between T ′ and u′′
d for all

the supersonic cases. The definition of the correlation coefficient takes the form of

Ru′′
dT ′ = 〈u′′

dT ′〉
u′′

d,rmsT
′
rms
, (3.1)

where the subscript ‘rms’ denotes the root mean square of the corresponding variable. It
can be observed that regardless of the Reynolds number magnitude, there is a positive
correlation between T ′ and u′′

d throughout the whole channel. The magnitude of Ru′′
dT ′ is

approximately equal to unity in the range of y∗ < 10, and decreases monotonously as y∗
increases. In the logarithmic region, the decreasing trend of Ru′′

dT ′ is gradual; nevertheless,
it accelerates in the outer region, particularly for the case Ma15Re20K. These results
are consistent with some previous studies of turbulent channel flows at disparate Mach
numbers and Reynolds numbers (Huang et al. 1995; Foysi, Sarkar & Friedrich 2004; Brun
et al. 2008). The correlations between these two fields at similar Reτ are slightly higher
for the compressible flows than those of the incompressible flows in the near-wall region,
and lower in the outer region (see dashed lines in figure 2c). It may indicate that the
compressibility enhances the similarity between the two fields in the vicinity of the wall,
and diminishes it in the outer region.
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Figure 3. (a,c,e) Top view of the instantaneous density-weighted streamwise velocity fluctuation field u
′′+
d at

(a) y∗ ≈ 10, (c) y ≈ 0.15h and (e) y ≈ 0.85h for the case Ma15Re20K; (b,d, f ) top view of the instantaneous
temperature fluctuation field T

′+ at (b) y∗ ≈ 10, (d) y ≈ 0.15h and ( f ) y ≈ 0.85h for the case Ma15Re20K.

To characterize vividly the relationship between the velocity and the temperature
structures, figure 3 shows the top view of the instantaneous u

′′+
d and T

′+ fields of the
case Ma15Re20K at three selected wall-normal positions. Other cases share similar
characteristics and are not shown here for brevity. For the near-wall position y∗ ≈
10, where Ru′′

dT ′ ≈ 1, the velocity and temperature streaks share virtually identical
morphological characteristics and the occurrences of the corresponding extreme events are
roughly synchronous. For the logarithmic region y ≈ 0.15h with Ru′′

dT ′ ≈ 0.67, the length
scales of the velocity streaks become larger, whereas the temperature fluctuations display
the mushroom shapes and are more isotropic than their near-wall counterparts. However, it
is still effortless to observe the strong links between the low-speed velocity streaks and the
negative temperature fluctuations. When the observation wall-normal position is moved
to the channel centre y ≈ 0.85h with Ru′′

dT ′ ≈ 0.26, in contrast to the velocity fluctuations
shown in figure 3(e), the temperature fluctuations are characterized by spotted extreme
events without discernible streaky shapes. The shapes of T ′ structures are more isotropic.
It underscores the fact that the coupling between the two fields is rather weak in the outer
region. The above inspections, which are conducted at various wall-normal planes, are
consistent with the variation tendency of Ru′′

dT ′ as seen in figure 2(c). It is interesting to note
that Pirozzoli & Bernardini (2011) also reported comparable findings on the temperature
streaks for a supersonic boundary layer with adiabatic wall condition at a similar Reτ .

964 A15-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

35
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.356


Coupling between velocity and temperature fields

0.3(a) (b)

(c) (d )

(e) ( f )

ud
′′

T ′

0.2

0.1k xE
ψ
ψ

/〈ψ
2
〉

0

0.2

0.1

k xE
ψ
ψ

/〈ψ
2
〉

0.3

0.2

0.1

0

k xE
ψ
ψ

/〈ψ
2
〉

0

0.6

0.4

0.2k zE
ψ
ψ

/〈ψ
2
〉

0

0.4

0.3

0.2

0.1

k zE
ψ
ψ

/〈ψ
2
〉

0

0.4

0.2

k zE
ψ
ψ

/〈ψ
2
〉

0

101 102 103

λx
∗ λz

∗
101 102 103104

10–2 10–1 100 10–2 10–1 100101

10–2 10–1 100

λx/h λz/h
10–2 10–1 100101

Figure 4. (a,c,e) Premultiplied streamwise spectra of u′′
d and T ′ at (a) y∗ ≈ 10, (c) y ≈ 0.15h and (e) y ≈ 0.85h

for the case Ma15Re20K; (b,d, f ) premultiplied spanwise spectra of u′′
d and T ′ at (b) y∗ ≈ 10, (d) y ≈ 0.15h and

( f ) y ≈ 0.85h for the case Ma15Re20K. These spectra are normalized by the energy ofψ at a given wall-normal
height.

Finally, it is instructive to compare the premultiplied spectra of u′′
d and T ′ at different

wall-normal positions (denoted as kEψψ , where ψ can be u′′
d or T ′), which are exhibited

in figure 4. The specific spectral peak at a given wall-normal position may not be identical
for each case, considering their distinct Reynolds numbers. We only show the results of
the case Ma15Re20K here due to its relatively sufficient scale separation. To facilitate
comparison, these spectra are normalized by the energy ofψ at a given wall-normal height.
The premultiplied spectra of u′′

d and T ′, whether the streamwise or the spanwise spectra,
almost overlap with one another in the buffer layer. Moreover, their peaks are located at
λ∗x ≈ 1000 and λ∗z ≈ 100, which are consistent with the well-documented spectral scale
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characteristics of the near-wall turbulence in incompressible flow (Kline et al. 1967; Kim,
Moin & Moser 1987; Hwang 2013). When the observation wall-normal location is moved
to the logarithmic layer, their disparities start to stand out. It can be seen that the typical
streamwise length scales of velocity streaks are longer than those of the temperature,
but their spanwise length scales are nearly identical, i.e. λz ≈ 0.8h, just like those in
incompressible flows (Ahn et al. 2015; Abe, Antonia & Toh 2018). In the outer region,
the peaks of their streamwise spectra are still divergent, that is, λx ≈ 2h and λx ≈ 1h
for u′′

d and T ′, respectively. However, their spectral peaks of the spanwise spectra share
equivalent length scale λz ≈ 1.4h. Hence, the shapes of the temperature streaks are more
isotropic than those of velocity streaks in the outer region. Overall, the spanwise length
scales of T ′ are in line with those of u′′

d spanning the whole channel. As the attached
eddies are self-similar with their spanwise length scales (Lozano-Durán et al. 2012; Hwang
2015; Cheng et al. 2019), it underlines the fact again that the temperature fluctuation in
compressible flow can also be treated as an attached variable. It also signifies that the Hw,
a wall-based kernel function introduced in § 2.2, is of physical significance. In the next
section, we elaborate on dissecting the coupling between u′′

d and T ′ within the linear-model
framework built in § 2.2. Furthermore, the statistical characteristics of T ′ will also be
investigated through the prism of the AEM.

4. Results of linear-model-based analysis

The linear-model-based analysis includes two branches, i.e. ym = yp and ym /= yp for (2.1)
to (2.3). The former represents that the wall-normal position of the inputted u′′

d is the same
as that of T ′, whereas the latter is the opposite. The results of them will be reported in
turn.

4.1. Linear-model-based analysis with ym = yp

4.1.1. Overall picture
Before proceeding with the detailed analysis, it is better to have a rough idea of the
effectiveness of the linear coupling model. The dashed lines in figure 2(a,b) show the

magnitudes of T ′2
p

+
as functions of yp/h and y∗

p for all the supersonic cases, respectively.
Here, T ′

p is calculated by an HT−based estimation according to (2.1) and (2.2). It can be
seen that only below the buffer layer can the temperature fluctuation intensities be largely
captured by the linear model. This observation can be further verified by inspecting the
relative deviations (RDs) displayed in figure 5. The definition of RD takes the form of

RD = T ′2+ − T ′2
p

+

T ′2+ . (4.1)

The linear model can recover over 95 % of T ′2+
for y∗

p < 10. This relative error, however,
rapidly increases as the wall-normal height increases. Taking the case Ma15Re20K as an
example, only 50 % fluctuation intensity of T ′ can be adequately captured at y∗

p ≈ 100.
An interesting thing worthy of note is that, for the case with the highest Reynolds number,
there is a wall-normal position in the outer region, yp ≈ 0.5h, where RD begins to increase
more rapidly than in the logarithmic region. This indicates that the effectiveness of the
linear coupling model degenerates more severely as yp approaches the channel centre. The
overall variation tendency is consistent with the correlations shown in figure 2(c), and
it is reminiscent of the variation of the similarity between the velocity and temperature
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Figure 5. (a,b) Relative deviations (RDs) as functions of (a) yp/h and (b) y∗
p for all the supersonic cases. Here,

yp is equal to ym for these cases under consideration; (c) variations of T ′2+
, T ′2

p
+

, T ′2
np

+
and T ′

pT ′
np

+
as functions

of the wall-normal height y∗
p for the case Ma15Re20K.

fluctuations in incompressible flow at the molecular Prandtl number Pr close to unity.
That is, there is a strong similarity in the near-wall region, while it is weakened away
from the wall (Abe & Antonia 2009; Antonia et al. 2009; Pirozzoli, Bernardini & Orlandi
2016). However, based on the linear model, the temperature fluctuation intensity T ′2+

can
be decomposed as

T ′2+ = T ′2
p

+ + T ′2
np

+ + 2T ′
pT ′

np
+
. (4.2)

Figure 5(c) shows the variations of T ′2+
, T ′2

p
+

, T ′2
np

+
and T ′

pT ′
np

+
as functions of the

wall-normal height y∗
p for the case Ma15Re20K. As seen, the magnitudes of T ′2

p
+

, T ′2
np

+

are non-negligible, whereas T ′
pT ′

np
+

nearly equals zero. It indicates that the interaction
between T ′

p and T ′
np have no contribution to the even-order moments of T ′. Other cases

show similar results. We will ignore this interaction term in the following study.
Accordingly, the entire channel can be divided into three regions for the purpose

of the linear-model-based analysis: (1) the near-wall region, where RD ≈ 5 %; (2) the
logarithmic region and the lower part of the outer region; and (3) the outer region in
the vicinity of the channel centre, where the effectiveness of the linear coupling model
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Figure 6. (a) The γ 2
c spectrum for the case Ma15Re20K when y∗

m = y∗
p ≈ 10; (b) Rpm spectrum for the case

Ma15Re20K when y∗
m = y∗

p ≈ 10. The dashed lines in panels (a,b) denote λ∗x = λ∗z .

is the worst. We will dissect these three regions separately and shed light on the linear
coupling relationship between u′′

d and T ′ in the following subsections.

4.1.2. Near-wall region (y∗
m = y∗

p ≈ 10)
We recall from (2.3) that γ 2

c is a measure of coherence between T ′( yp) and u′′
d( ym) (γ 2

c =
1 indicates a prefect coherence and γ 2

c = 0 indicates no coherence). Figure 6(a) shows
the γ 2

c spectrum when y∗
m = y∗

p ≈ 10 for the case Ma15Re20K. It is interesting to note
that the temperature streaks are perfectly coherent with the velocity streaks at the typical
near-wall turbulence length scales (λ∗x ≈ 1000 and λ∗z ≈ 100, see figure 4a,b). It shows that
the streamwise velocity fluctuations and temperature fluctuations carried by the near-wall
motions are entirely coherent. This is the reason why Ru′′

dT ′ ≈ 1 in the buffer layer (see
figure 2c). Moreover, we note that for the large-scale temperature fluctuations (λx > 1h
and λz > 0.5h), the magnitudes of γ 2

c also approach unity. It implies that the footprints
of large-scale T ′ and u′′

d in the near-wall region are also well coherent. In contrast, only
the small-scale and ‘fat’ motions (λ∗z > λ∗x ) lose the perfect coherence. Other cases bear
similar results and are not shown here for brevity.

Another way to gauge the linear coupling between these two signals is to investigate the
relative magnitude Rpm associated with T̂ ′

p and T̂ ′ at different length scales (Gupta et al.
2021), namely,

Rpm(λx, λz; ym, yp) =
√

〈|T̂ ′
p(λx, λz; ym, yp)|2〉/〈|T̂ ′(λx, λz; yp)|2〉, (4.3)

which are shown in figure 6(b) for the case M15Re20K. It appears that the energy of
the streamwise elongated structures (λ∗x > λ∗z ) can be almost completely recovered by the
linear model, whereas for those of the ‘fat’ motions (λ∗z > λ∗x ), the present approach loses
some capabilities. This scenario is consistent with the γ 2

c spectrum shown in figure 6(a).
We have checked that almost all the morphological properties of the instantaneous T

′+
displayed in figure 3(b) are recovered by T

′+
p (not shown here). This is because the majority

of the energetic motions populating the buffer layer are captured by the linear model.
At the end of this subsection, it is instructive to compare the probability density

functions (p.d.f.s) of T
′+
p and T

′+ to distinguish whether some extreme events of T
′+ are

predictable for the linear model. They are plotted in figure 7(a–c). For the positive extreme
events (T

′+ > 0), the linear model overestimates their probabilities of occurrence, whereas
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Figure 7. (a,b,c) The p.d.f.s of T
′+
p ( y∗

p = y∗
m ≈ 10) and T

′+( y∗ ≈ 10) for the case (a) Ma15Re3K,
(b) Ma15Re9K and (c) Ma15Re20K. (d) The p.d.f.s of T ′

p( y∗
p = y∗

m ≈ 10), T ′( y∗ ≈ 10) and u′′
d( y∗ ≈ 10) for

the case Ma15Re20K. Each variable is normalized by its root mean square (r.m.s.) value in panel (d). The ψ in
the abscissa of panel (d) stands for the corresponding variable.

for the negative extreme events (T
′+ < 0), the contrary is the case. The Reynolds number

has no bearing on the conclusion. In other words, even while the linear coupling model
can recapture the fundamental properties of the temperature field in the buffer layer, it is
not able to reliably identify the extreme thermal events. Figure 7(d) shows the p.d.f.s of
T ′

p( y∗
p = y∗

m ≈ 10), T ′( y∗ ≈ 10) and u′′
d( y∗ ≈ 10) for the case Ma15Re20K. To facilitate

comparison, each variable is normalized by its r.m.s. value. Other cases show similar
results and are not shown here. A noteworthy observation is that the p.d.f. of T ′

p bears
similar shape with that of u′′

d rather than T ′. This is the limitation of the linear model,
i.e. the instantaneous distribution of the predicted variable is controlled by that of the
measured variable (the results of other wall-normal positions also obey this criterion, see
figures 11c and 18b). Only with quadratic estimation techniques and above can the p.d.f.
of the predicted variable be modified and closer to the actual flow (Tinney et al. 2006).

4.1.3. Logarithmic region (ym = yp ≈ 0.1h–0.2h)
For the logarithmic region, the effectiveness of the linear model is not as excellent as it is
in the buffer layer. Taking the case Ma15Re20K as an example, at ym = yp ≈ 0.15h, the

964 A15-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

35
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.356


C. Cheng and L. Fu

3.0
1.0

0.8

0.6

0.4

0.2

0
0.3 1.0 4.0 8.0

1.0

0.3

3.0
1.0

0.8

0.6

0.4

0.2

0
0.3 1.0 4.0 8.0

1.0

0.3

3.0
1.0

0.8

0.6

0.4

0.2

0
0.3 1.0 4.0 8.0

1.0

0.3

3.0
1.0

0.8

0.6

0.4

0.2

0
0.3 1.0 4.0 8.0

1.0

0.3

3.0
1.0

0.8

0.6

0.4

0.2

0
0.3 1.0

λx/h

λ
z/

h
λ

z/
h

λ
z/

h

λx/h
4.0 8.0

1.0

0.3

3.0
1.0

0.8

0.6

0.4

0.2

0
0.3 1.0 4.0 8.0

1.0

0.3

(a) (b)

(c) (d )

(e) ( f )
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c spectra for the case Ma15Re20K when (a) ym = yp ≈ 0.1h, (c) ym = yp ≈ 0.15h,

(e) ym = yp ≈ 0.2h; (b,d, f ) Rpm spectra for the case Ma15Re20K when (b) ym = yp ≈ 0.1h, (d) ym = yp ≈
0.15h, ( f ) ym = yp ≈ 0.2h. The dashed oblique lines in panels (a,c,e) denote λx = λz, and the dashed transverse
and the vertical lines denote λz = 2yp and λx = 10yp, respectively.

RD is 55 %. A non-negligible fraction of fluctuation intensity cannot be captured by the
linear model.

The γ 2
c spectra of the case Ma15Re20K for ym = yp ≈ 0.1h, 0.15h and 0.2h are shown

in figures 8(a), 8(c) and 8(e), respectively. It is noted that we only report the results of
case Ma15Re20K in this subsection due to its relatively wider spanning of the logarithmic
region. It is not difficult to observe that only the streamwise elongated fluctuations (λx >
λz) of T ′ and u′′

d are highly coupled. This scenario is identical to that of the buffer layer (see
figure 6). Additionally, there is only a small portion of the scale range where the magnitude
of γ 2

c is remarkable. By dissecting the γ 2
c spectra of the disparate wall-normal positions

in the logarithmic region displayed in figure 8, this range can be roughly bounded by

λx > λz, λx > 10yp, λz > 2yp. (4.4a–c)

Figure 8(b,d, f ) show the Rpm spectra at the corresponding three wall-normal locations,
respectively. It is transparent that the energy in the range defined by (4.4a–c) can be
predominantly recovered by the linear model. The scale-based linear coupling can also
be recognized by comparing the instantaneous T

′+ and T
′+
p at y = 0.15h, which are

illustrated in figure 9(a). As seen, only the long streaks of T
′+ are maintained in the
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Figure 9. (a) Top view of the instantaneous T
′+
p field when ym = yp ≈ 0.15h for the case Ma15Re20K.

(b) Variation of λ
z/h as a function of yp/h in the logarithmic region for Ma15Re20K. In panel (b), the DNS
results are presented by circles and the black line denotes λ
z = 3.6yp.

instantaneous T
′+
p . Additionally, T

′+
p resembles the filtered u

′′+
d (see figure 3c), and T

′+
p

and T
′+ (see figure 3d) seem to organize similarly along the spanwise direction rather than

the streamwise direction. These observations are similar to the finite similarities between
the velocity and scalar fields reported in incompressible wall turbulence (Antonia et al.
2009).

Moreover, some details also deserve attention. First, the peaks of γ 2
c are located at

λz ≈ 1h–1.5h for the three selected wall-normal positions, which is the spanwise spacing
of the very-large-scale motions (VLSMs) in the outer region of the incompressible and
supersonic turbulent boundary layers (Del Álamo & Jiménez 2003; Abe et al. 2004a;
Ganapathisubramani, Clemens & Dolling 2006; Hutchins & Marusic 2007). It signifies
that VLSMs can not only permeate into the near-wall and the logarithmic regions, but
also be actively linked with the temperature streaks in the compressible wall turbulence.
Second, it is intriguing that the range boundaries defined by (4.4a–c) follow the scales of
the self-similar wall-attached motions in wall turbulence. To name but a few, Deshpande,
Monty & Marusic (2021) analysed the scale characteristics of the active motions (i.e.
the self-similar attached eddies) in the logarithmic region of the boundary layers, and
found their geometric shapes obey λx ≈ 10y and λz ≈ 3y. Hwang, Lee & Sung (2020) also
pointed out that the lower bound of the linear behaviours of the self-similar wall-attached
structures in wall turbulence follows λx > 12y and λx = 4λz. These pioneer results are
all very close to the scale-range estimation provided by (4.4a–c). Hence, it is sensible to
envision that the temperature streaks coupling the velocity field in the compressible flow
are considerably wall-attached. They consist of two components, e.g. one is the self-similar
wall-attached motions described by the AEM (Townsend 1976; Perry & Chong 1982); the
other is VLSMs which can also exert significant influences on the near-wall flow (Perry &
Marusic 1995; Cheng et al. 2019; Yoon et al. 2020).

To further characterize the energetic scales in LCS of the logarithmic region, we define
the γ 2

c −weighted average spanwise wavenumber k
z ( y) and the corresponding length scale
λ
z = 2π/k
z ( y). The definition of k
z takes the form of

k
z ( y) =

∫
Ω

kzγ
2
c ( y; kx, kz) dkx dkz∫

Ω

γ 2
c ( y; kx, kz) dkx dkz

, (4.5)
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where Ω is the spectral domain defined by (4.4a–c), i.e. the energetic scale range
of the LCS in the logarithmic region. It is the spanwise length scale rather than the
streamwise one that is taken into account here, as previous studies provide compelling
evidence that the energy-containing motions in the logarithmic region are self-similar
with their spanwise length scales (Del Álamo et al. 2004; Hwang 2015; Cheng et al.
2019). Figure 9(b) shows the variation of λ
z/h as a function of yp/h in the logarithmic
region for Ma15Re20K. It can be seen that there is a linear relationship between λ
z/h
and yp/h. This observation underscores the fact that the temperature and velocity fields
are linearly coupled within the self-similar scale range. The variation of γ 2

c spectra along
the wall-normal direction in the logarithmic region is chiefly ascribed to the self-similar
eddies.

The above argument can also be validated by inspecting the γ 2
w spectra of T

′+
p and T

′+
np as

per (2.8), which evaluate the wall coherence of these two signals. Herein, T ′
np = T ′ − T ′

p
is the uncoupling component of T ′. The results are displayed in figure 10 for the three
corresponding wall-normal planes in the logarithmic region. Only the motions of T ′

p within
the scale range roughly given by (4.4a–c) are coherent with the near-wall flow, whereas for
T ′

np, no coherence can be observed. This observation supports our claim above. Nearly all
the wall-attached temperature streaks are contained in T ′

p, rather than T ′
np. It is noted that

the γ 2
w spectra given here (figure 10a,c,e) and the γ 2

c spectra shown in figures 8(a), 8(c) and
8(e) are not identical. It suggests that some T ′ motions coupled with u′′

d are wall-detached
in the logarithmic region indeed.

Figure 11(a) shows the variations of the fluctuation intensities of T ′, T ′
p, T ′

p,w and T ′
np,w

as functions of the wall-normal height y/h in the logarithmic region. Herein, T ′
p,w and

T ′
np,w are the wall-attached components of T ′

p and T ′
np, respectively, which can be estimated

by an Hw-based estimation according to (2.6) and (2.7). As can be seen, the intensity of

T ′
p,w occupies approximately 34 % of T ′2

p
+

in the logarithmic region (equivalent to 15 %

of T ′2+
), whereas the magnitude of T ′

np,w is negligible. It shows once again that almost
all the temperature streaks that are attached to the wall are contained in T ′

p rather than
T ′

np. Figure 11(b) compares the p.d.f.s of the instantaneous T
′
, T

′+
p and T

′+
p,w at y/h = 0.1.

The p.d.f. of T
′+
p,w is found to be more symmetric than those of the other two signals

with invisible extreme events. This phenomenon hints that the small-scale T ′ motions,
which cannot be captured by the linear model, are more intermittent than the large-scale
counterparts. Figure 11(c) displays the p.d.f.s of T ′, T ′

p and u′′
d at y/h = 0.1. All variables

are normalized by their r.m.s. values. As expected, the p.d.f. of T ′
p has a similar shape with

that of u′′
d .

Since it is demonstrated that the wall-attached component of T ′ is contained in T ′
p,

it is instructive to inspect its statistical characteristics and compare with the celebrated
attached-eddy hypothesis (Townsend 1976; Perry & Chong 1982). In our previous work
(Cheng & Fu 2022a), we have proposed an operable framework to reach this goal. To be
specific, for a wall-attached variable φ in the logarithmic region between y∗

s and y∗
p (y∗

s
denotes the lower bound of the logarithmic region and is set as 80 in the present study),
if its representative spatial structures are arranged in a hierarchical manner which can be
adequately depicted by the AEM, the momentum generation function of its footprint in the
near-wall region (φL) should follow a so-called strong self-similarity (SSS), i.e.

〈exp(qφL)〉 ∼
(

yp

ys

)s(q)

, (4.6)
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Figure 10. (a,c,e) The γ 2
w spectra of T

′+
p for the case Ma15Re20K when (a) ym = yp ≈ 0.1h, (c) ym = yp ≈

0.15h and (e) ym = yp ≈ 0.2h; (b,d, f ) γ 2
w spectra of T

′+
np for the case Ma15Re20K when (b) ym = yp ≈ 0.1h,

(d) ym = yp ≈ 0.15h and ( f ) ym = yp ≈ 0.2h. The dashed oblique lines in the panels denote λx = λz, and the
dashed transverse and the vertical lines denote λz = 2yp and λx = 10yp, respectively.

where 〈exp(qφL)〉 is the momentum generation function, q is a real number, which can be
chosen optionally, s(q) = C1 ln〈exp(qa)〉 is called anomalous exponent, C1 is a constant
and a is a random additive, which represents the footprint of φ in the near-wall region
generated by the attached eddies at a given wall-normal height. The parameter q in the
momentum generation function serves as a ‘controller’ to highlight different components
of φL (Yang, Marusic & Meneveau 2016). To be specific, a positive q emphasizes the
positive component of φL and vice versa. Furthermore, the nth-order moment of φL can be
derived by (Yang et al. 2016)

〈φn
L〉 = ∂n〈exp(qφL)〉

∂qn

∣∣∣∣
q=0

. (4.7)

This relationship will be employed in § 5.1.
If a is a Gaussian variable, the anomalous exponent can be recast as

s(q) = C2q2, (4.8)

where C2 is another constant. However, an extended self-similarity (ESS) is
defined to describe the relationship between 〈exp(qφL)〉 and 〈exp(q0φL)〉 (fixed q0)
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Figure 11. (a) Variations of the fluctuation intensities of T ′, T ′
p, T ′

p,w and T ′
np,w as functions of the wall-normal

height y/h in the logarithmic region for the case Ma15Re20K; (b) p.d.f.s of the instantaneous T
′+, T

′+
p and T

′+
p,w

at y/h = 0.1 for the case Ma15Re20K; (c) p.d.f.s of the instantaneous T
′
, T ′

p and u′′
d at y/h = 0.1 for the case

Ma15Re20K. Each variable is normalized by its r.m.s. value in panel (c). The ψ in the abscissa of panel (c)
stands for the corresponding variable.

(Benzi et al. 1993), i.e.
〈exp(qφL)〉 = 〈exp(q0φL)〉ξ(q,q0), (4.9)

where ξ(q, q0) is a function of q (fixed q0). Note that the validity of ESS depends on
the hierarchical structures of φ in the logarithmic region, dominantly. A more detailed
derivation of the SSS and the ESS associated with the footprints of the attached eddies
can be found in Cheng & Fu (2022a).

For the footprints of the temperature fluctuations in supersonic channel flows, they can
be obtained by following (2.4) and (2.5) with T ′

ψ = T ′
p. Concurrently, we can further define

a moment generation function based on this estimation. It takes the form of

G(q, yp) = 〈exp(q(T
′+
p,L( ys, yi)− T

′+
p,L( yp, yi)))〉, (4.10)

where T
′+
p,L( ys, yi)− T

′+
p,L( yp, yi) is the footprint of T

′+
p generated by the attached eddies

with their wall-normal heights varying from ys to yp, which resembles the φL in (4.6)
and (4.9). Here, T ′

p,L is calculated by an HL−based estimation according to (2.4) and
(2.5). As per the hierarchical attached eddies in high-Reynolds-number wall turbulence,
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Figure 12. (a) The variations of G as a function of yp/ys for q = ±5 and q = ±3; (b) anomalous exponent
s(q) as a function of q. The line in panel (b) is a quadratic fit. The data are taken from the case Ma15Re20K.

T
′+
p,L( ys, yi) is the superposition at yi contributed from the wall-coherent motions with

their heights larger than ys. Thus, the difference value T
′+
p,L( ys, yi)− T

′+
p,L( yp, yi) can be

interpreted as the superposition contribution generated by the wall-coherent eddies with
their wall-normal heights within ys to yp (Cheng & Fu 2022a; Cheng et al. 2022). The
above process is not applied to T

′+
np , because we have verified that T

′+
np is not coherent with

the near-wall flow and does not bear a footprint (see figures 10 and 11a).
Figure 12(a) shows the variations of G as a function of yp/ys for q = ±5 and q = ±3.

Power-law behaviours can be found in the interval 1.1 ≤ yp/ys ≤ 1.8 for both positive
and negative q, justifying the validity of SSS, i.e. (4.6). This observation highlights that
the superpositions of wall-attached T ′ on the wall surface follow an additive process.
Additionally, the positive and negative components of T

′+
p,L( ys, yi)− T

′+
p,L( yp, yi) are

comparatively symmetrical (for lower Mach number, the asymmetries are more obvious,
see § 5.1). Furthermore, in an incompressible channel flow, the asymmetries between the
footprints of the high-speed and the low-speed u′ motions are quite evident, see Cheng &
Fu (2022a). Other q values yield similar results and are not shown here for brevity. The
anomalous exponent s(q) can be obtained by fitting the range 1.1 ≤ yp/ys ≤ 1.8, where
both positive and negative q display good power-law scalings. Figure 12(b) shows the
variation of the anomalous exponent s(q) as a function of q. The solid line denotes the
quadratic fit within −1 ≤ q ≤ 1. It can be seen that the variation of s(q) still follows a
quadratic law at large |q|. Moreover, the skewness and flatness of the footprints of T ′
generated by the attached eddies across the whole logarithmic region are −0.22 and 3.11
(the counterparts of u′ in an incompressible turbulent channel flow at Reτ = 2003 are 0.05
and 2.91 (Cheng & Fu 2022a)). These observations signify that the near-wall heat flux
generated by the attached eddies at a given wall-normal height can also be simply treated
as a Gaussian variable for modelling purposes (though a little super-Gaussian) at this Mb.
In the next section, we will discuss the Mach number effects on these statistics.

Different from SSS, ESS only relies on the hierarchical structures of T ′ in the
logarithmic region. Figure 13(a,b) shows the ESS scalings for q0 = −2 and q0 = 2,
respectively. As seen, ESS holds for the entire logarithmic region. This observation
suggests that the generation of the near-wall heat flux by the multi-scale logarithmic
motions obeys an additive process.
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Figure 13. The variations of (a) G(q) as functions of G(−2) for q = −1,−3,−5; (b) G(q) as functions of
G(2) for q = 1, 3, 5. Both vertical and horizontal axes in panels (a) and (b) are plotted in logarithmic form.
The data are taken from the case Ma15Re20K.

In summary, in the logarithmic region, the T ′ motions are found to be linearly coupled
with the streamwise velocity fluctuations at the scales which are corresponding to the
attached eddies and the VLSMs. The wall-attached structures contribute nearly 34 % of

T ′2
p

+
in the logarithmic region (equal to 15 % of T ′2+

). By dissecting their footprints, it
is demonstrated that T ′ motions in the logarithmic region are organized as hierarchical
structures and can be described by the AEM. This observation is consistent with some
recent studies on the temperature field in compressible wall turbulence (Cheng & Fu
2022b; Yu et al. 2022; Yuan et al. 2022). Moreover, we further reveal that their footprints
are non-intermittent and Gaussian in a supersonic channel flow.

4.1.4. Outer region (ym = yp ≈ 0.85h)
As ym(yp) moves into the outer region, the linear coupling between u′′

d and T ′ becomes
weaker. This phenomenon is more obvious at the outer region near the channel centre.
This is to be anticipated since u′′

d and T ′ are only linearly coupled at larger scales as ym(yp)
increases, as per our study above. In this subsection, we further shed light on this fact.
We only show the results of the case Ma15Re20K due to its relatively higher Reynolds
number.

Figure 14(a,b) illustrate the γ 2
c and Rpm spectra for ym = yp ≈ 0.85h, respectively.

Intriguingly, the two spectra are only non-trivial at λz > 1h and λx > 2h, which are
significantly different from those in the logarithmic and the near-wall regions. Only
VLSMs of T ′ and u′′

d are weakly coupled. Another interesting observation which deserves
attention is that these coupled motions are not isotropic as the scale characteristics of T

′+

in the outer region (see figure 4f ). In contrast, they resemble the scale characteristics of u
′′+
d

in the outer region (see figure 4e). In other words, T
′+
p is ‘passive’ in shaping their scale

properties. Figure 15(a,b) display the instantaneous T
′+ and T

′+
p for ym = yp ≈ 0.85h,

respectively. Apparently, the motions of T
′+
p emerge like those of u′′+

d (figure 3e) rather
than T

′+.
All in all, for the first branch of the linear-model-based analysis, i.e. yp = ym, the

applicability of SLSE depends on the wall-normal location in the boundary layer and is
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Figure 14. (a) The γ 2
c spectrum when ym = yp ≈ 0.85h for the case Ma15Re20K; (b) Rpm spectrum when

ym = yp ≈ 0.85h for the case Ma15Re20K.
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Figure 15. (a) Top view of the instantaneous T
′+ field when ym = yp ≈ 0.85h; (b) top view of the

instantaneous T
′+
p field when ym = yp ≈ 0.85h. The data are taken from the case Ma15Re20K.

closely related to the energy-containing motions residing in it. In the next section, we are
dedicated to another branch, namely yp /= ym.

4.2. Linear-model-based analysis with ym /= yp

For this branch of the linear-model-based analysis, we only consider one realization, i.e.
ym > yp with ym being in the logarithmic region. That is to say, what we pursue here is the
estimation of the T ′ in the near-wall region by invoking the u′′

d in the logarithmic region
through the linear model. This study bears some practical significance. For example, it may
be a guideline for the reconstruction of the temperature signals in the near-wall region
by employing limited velocity signals recorded by a hot-wired probe in the logarithmic
region. Hereafter, we adopt the case Ma15Re20K, and fix y∗

m as 80, 0.2h∗ and 3.9
√

Re∗
τ

(namely the centre of the logarithmic layer (Mathis, Hutchins & Marusic 2011), ym ≈
0.14h for Ma15Re20K). Concurrently, yp varies from the viscous sublayer to ym. The
reason we only use the case Ma15Re20K is due to its relatively higher Reynolds number
than other cases.

Figure 16(a) shows the profiles of T ′2
p

+
within the range 0 < y∗

p < y∗
m and the profile

of T ′2+
is also included for comparison. Only a fraction of temperature fluctuations can

be recovered by the linear model with inputs u′′
d from the logarithmic region. It is noted

that the wall-normal location of the peaks of T ′2
p

+
is identical to that of T ′2+

regardless
of the locus of y∗

m, namely y∗
p ≈ 10. This is under expectation, since the temperature

fluctuations have more energy at this wall-normal position indeed. Figure 16(b) illustrates
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Figure 16. (a) Profiles of T ′2
p

+
within the range 0 < y∗

p < y∗
m, and the profile of T ′2+

is also included for
comparison; (b) variations of RD as functions of y∗

p. The data are taken from the case Ma15Re20K, and y∗
m ≈

80, 3.9
√

Re∗
τ and 0.2h∗.
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Figure 17. (a) The γ 2
c spectrum when y∗

p = 10 for the case Ma15Re20K; (b) Rpm spectrum when y∗
p = 10 for

the case Ma15Re20K. Here, y∗
m is set as 3.9

√
Re∗
τ . The dashed oblique lines in the panels denote λx = λz, and

the dashed transverse and the vertical lines denote λz = 2yp and λx = 10yp, respectively.

the variations of RD as functions of y∗
p. Only 10 % of T ′2+

can be captured by the linear
model in the viscous sublayer. This ratio increases monotonously when yp approaches ym.

Figure 17(a,b) shows the γ 2
c and Rpm spectra at y∗

p ≈ 10 with y∗
m ≈ 3.9

√
Re∗
τ ,

respectively. The streamwise and spanwise length scales in the two figures are scaled in
the outer unit rather than viscous unit, because the magnitudes of γ 2

c and Rpm are observed
to be non-negligible only at a large-scale range. Comparing with the γ 2

w spectrum of T ′
p

displayed in figure 10(c) when yp = ym ≈ 0.15h, it is not difficult to find that the γ 2
c

spectrum here bears similar scale characteristics. It suggests that only the wall-attached
superposition components contributed by the motions at ym are identified at yp by the
linear model. Figure 17(b) also shows akin results.

Figure 18(a) further shows the p.d.f.s of T
′+
p ( ym /= yp) at y∗

p ≈ 10 with y∗
m ≈ 3.9

√
Re∗
τ ,

and the counterparts of T
′+( y∗ = 10) and T

′+
p ( y∗

m = y∗
p ≈ 10) are also included for

comparison. Comparing with the other two profiles, the p.d.f. of T
′+
p ( ym /= yp) is rather

symmetric with invisible extreme events. It signifies that in the near-wall region, only
the long temperature streaks with mild fluctuation intensities have linkages with the
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Figure 18. (a) The p.d.f.s of T
′+
p ( ym /= yp) at y∗

p ≈ 10 with y∗
m ≈ 3.9

√
Re∗
τ , and the counterparts of T

′+( y∗ =
10) and T

′+
p ( y∗

m = y∗
p ≈ 10) are also included for comparison. (b) The p.d.f.s of T ′

p( ym /= yp) at y∗
p ≈ 10 with

y∗
m ≈ 3.9

√
Re∗
τ , T ′( y∗ = 10) and u′′

d( ym). Each variable is normalized by its r.m.s. value in panel (b). The ψ in
the abscissa of panel (b) stands for the corresponding variable. The data are taken from the case Ma15Re20K.

motions in the logarithmic region. Furthermore, the near-wall flow should be given more
consideration to control the extreme thermal events on the wall surface in supersonic
wall turbulence, because, according to the results shown here, the intensities of the
superposition components contributed by the motions populating the logarithmic and the
outer regions are not that large indeed. Figure 18(b) displays the p.d.f.s of T ′( y∗ ≈ 10),
T ′

p( ym /= yp) at y∗
p ≈ 10 and u′′

d( ym) with y∗
m ≈ 3.9

√
Re∗
τ . Even though ym /= yp, the p.d.f.

shape of the predicted T ′
p at yp still conforms to that of u′′

d at ym.

5. Discussion

5.1. Mach number effects
In this subsection, we are dedicated to shedding light on the Mach number effects on the
linear coupling between u′′

d and T ′ by analysing the subsonic cases listed in table 1. We
acknowledge that the DNS data with a higher Mach number (for example, Mb = 3.0) are
needed for conducting a more comprehensive study on this problem. However, the DNS of
supersonic channel flows at both high Mach number and Reynolds number demands huge
computational costs. A more extensive investigation of the Mach number effects will be
carried out when the database is available.

Following the above manner, we start by taking the situation ym = yp into consideration.
Figure 19(a,b) shows the variations of RD for all cases as functions of yp/h and y∗

p,
respectively. The supersonic cases are illustrated by solid lines, whereas the subsonic
ones by dashed lines. Apart from the two cases with Re∗

τ ≈ 160, the profiles of RD
with similar Re∗

τ overlap with each other. The exceptions of the two cases may result
from the low-Reynolds-number effects. It suggests that the Mach number has negligible
effects on the linear coupling between u′′

d and T ′. It is the Reynolds number Re∗
τ rather

than Mach number that acts as a key similarity parameter in constructing their coupling.
This observation is consistent with our previous work on the scale characteristics of the
energy-containing motions in compressible channel flows (Cheng & Fu 2022b).

For yp = ym in the logarithmic region, all the wall-attached temperature streaks are
found to be contained in T ′

p (not shown here), and the SSS (4.6) is examined and shown
in figure 20 by analysing the case Ma08Re17K. Figure 20(a) shows the variations of G as
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Figure 19. (a) Relative deviations (RDs) as functions of yp/h for all the cases; (b) relative deviations (RDs)
as functions of y∗

p for all the cases. Here, yp equals to ym for these cases under consideration.
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Figure 20. (a) The variations of G as a function of yp/ys with q = ±5 and q = ±3 for Ma08Re17K;
(b) anomalous exponent s(q) as a function of q for Ma08Re17K. The solid line in panel (b) is a quadratic
fit, and the dashed line is the result of the supersonic case Ma15Re20K, which is included here for comparison.

a function of yp/ys for q = ±5 and q = ±3. It is particularly noteworthy that power-law
behaviours can be found in the interval of 1.1 ≤ yp/ys ≤ 1.6 with discernible differences
between G(q) and G(−q). By comparing with figure 12(a), it can be conjectured that
the enlargement of the Mach number leads to the disappearance of the asymmetric
characteristics between the positive and the negative footprints of T ′ generated by the
attached eddies.

This assertion can also be validated by examining the variational tendency of the
anomalous exponent s(q) (figure 20b). The profile of s(q) of Ma08Re17K is not that
symmetric with regards to q and has an optimal C2 ≈ 0.00218, in contrast to the result
of Ma15Re20K (see figure 12b). It indicates that the distribution of near-wall heat flux
generated by the attached eddies at a given wall-normal height deviates from the Gaussian
distribution slightly at this Mach number. This scenario is altered by the increased
compressibility of the supersonic flows. Moreover, it can also be noticed that the optimal
C2 of Ma08Re17K is remarkably different from that of Ma15Re20K (see blue dashed line
in figure 20b). It strongly suggests that there is a striking difference in the Reynolds number
dependence of the wall-heated flux fluctuation intensities at different Mb for compressible
channel flows. If we acknowledge that the Reynolds number dependence of wall heated
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Figure 21. Variations of RD as functions of y∗
p for the cases Ma08Re17K and Ma15Re20K. Here,

y∗
m ≈ 3.9

√
Re∗
τ (the vertical line) and 0 < y∗

p < y∗
m.

flux fluctuation intensity can be ascribed to the superposition of the self-similar attached
eddies (obviously, this is not true), the variational tendency of the temperature fluctuation
intensity in the viscous sublayer contributed by the attached eddies can be predicted by
(Yang et al. 2016; Cheng & Fu 2022a)

∂2G(q, yp)

∂q2

∣∣∣∣∣
q=0

∼ 2C2 ln( yp/ys). (5.1)

Unequal C2 for subsonic and supersonic flows indicates their different variational
tendencies with respect to ln( yp/ys). It underlines the fact that it is rather difficult to
formulate the Reynolds number dependence of the wall heated flux at different Mach
numbers by a unified formula without taking Mach number effects into account. For
yp = ym in the outer region close to the channel centre, the effectiveness of the linear
model is limited. For sake of brevity, these results are not shown here.

At last, let us turn our attention to another situation with ym /= yp. Similarly, y∗
m is fixed

as 3.9
√

Re∗
τ (ym ≈ 0.14h for Ma08Re17K), the centre of the logarithmic layer, and yp

varies from the viscous sublayer to ym. Figure 21 compares the variations of RD as a
function of y∗

p for Ma08Re17K and Ma15Re20K. For y∗
p < 50, the RD of Ma15Re20K

is larger than that of Ma08Re17K, whereas they overlap with each other for y∗
p > 50. It

may imply that the compressibility lessens the linkages between the near-wall temperature
field and the energy-containing motions populating the logarithmic region slightly. The
higher mean-temperature gradient of the supersonic case near the wall may preclude the
permeation of the wall-attached eddies. Whether it holds or not at larger Mach number
deserves further investigations.

5.2. Strong Reynolds analogy: a heuristic study
By far, we have shown that the temperature and the velocity fluctuations are highly linked
with each other through the prism of the multi-scale energy-containing eddies. However,
the SRA (1.1), which is deduced from the momentum and the energy equations with
some ideal hypotheses, indicates this interconnection from the mathematical statistics side
(Morkovin 1962). A question may be raised, e.g. can the present study be instructive to
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unravel the physical significance behind the SRA? In this subsection, we try to answer this
question in a heuristic way.

Gaviglio (1987) observed that, for a compressible boundary layer, the intensities of
the velocity and the temperature fluctuations carried by large-scale eddies are in direct
proportion to the gradients of their mean quantities. Additionally, their corresponding
ratios are positively related to the velocity length scale (�u) and the temperature length
scale (�T ), respectively. In a statistical manner, this relationship can be expressed by

a
√

T ′2/∂yT̄ =
√

u′2/∂yū, (5.2)

where a = �u/�T , namely the ratio between the velocity and the temperature length scales.
Equation (5.2) can be further cast as√

T ′2/T̄

(γ − 1)M2
√

u′2/ū
= 1

a(1 − ∂T̄t/∂T̄)
, (5.3)

where T̄t denotes the mean total temperature. Gaviglio (1987) and Rubesin (1990)
modelled a = 1 and a = 1.34, which are denoted as GSRA and RSRA hereafter,
respectively. Huang et al. (1995) further pointed out that a should be strictly identical
to the so-called turbulent Prandtl number Prt, whose definition takes the form of

Prt = ρv′u′∂yT̄

ρv′T ′∂yū
. (5.4)

We denote this version of SRA as HSRA hereafter. The performance of HSRA has been
reported to be excellent not only in wall-cooling turbulent channel flows, but also in the
turbulent boundary layers with different wall heated conditions, varying Mach numbers
and thermochemical non-equilibrium effects (Huang et al. 1995; Duan, Beekman &
Martin 2010, 2011; Fu et al. 2021; Huang et al. 2022; Passiatore et al. 2022). Additionally,
Zhang et al. (2014) proposed another definition of the turbulent Prandtl number, i.e.

Pr
t = (ρv)′u′∂yT̄

(ρv)′T ′∂yū
. (5.5)

The modified HSRA with this new definition of the turbulent Prandtl number yields even
better results than the original HSRA (Zhang et al. 2014). We denote this version of SRA
as MHSRA hereafter.

To connect the present linear coupling study with the SRA, here, we make three
propositions regarding the multi-scale interactions in compressible turbulence. First, the
mean flow field only controls the dynamics of the large-scale energy-containing eddies
in the turbulent boundary layers. This assertion has been fully supported by abounding
studies, e.g. Goto, Saito & Kawahara (2017), Lozano-Durán et al. (2021), to name a few.
Second, the large-scale energy-containing eddies which interact with the mean flow field
are chiefly the carriers that sustain the linear coupling between u′′

d and T ′. This proposition
is also rational, because our study above shows that u′′

d and T ′ are linearly coupled at
these scales. Third, the small-scale eddies that are not responsible for the linear coupling
between u′′

d and T ′ have negligible effects in determining the scale ratio a in (5.2). After all,
the physical model of Gaviglio (1987) is a description of the dynamics of the large-scale
eddies.
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On the basis of the above understanding, T ′
p( ym = yp) can be considered as the

temperature fluctuations carried by the large-scale energy-containing eddies at yp which
interact with the mean flow field. Apparently, the component of u′′

d which is carried by
them (denoted as u′′

d,p) and interacts with the mean flow field should also be provided.
Thus, we introduce another kernel function Hu, which reads as

Hu(λx, λz; ym, yp) = 〈û′′
d(λx, λz; yp)

˘̂T ′(λx, λz; ym)〉
〈T̂ ′(λx, λz; ym)

˘̂T ′(λx, λz; ym)〉
, (5.6)

and u′′
d,p can be estimated by

u′′
d,p( ym, yp) = F−1

x,z {Hu(λx, λz; ym, yp)Fx,z[T ′( ym)]}, (5.7)

where ym = yp. The intensities of u′′
d,p and T ′

p truly reflect the interactions dominated by the
large-scale eddies according to the physical picture depicted by Gaviglio (1987). Hence,
the scale ratio �u/�T can be estimated by a modified version of (5.2) which takes the
density variation effects into consideration, i.e.

aρ =
√

u′′2
d,p/∂yud√
T ′2

p /∂yT̄
, (5.8)

where ud = √
ρu is the density-weighted mean streamwise velocity, which corresponds

to the definition of u′′
d . Hereby, by invoking u′′

d,p and T ′
p, (5.8) genuinely establishes the

relationship between the linearly coupled interactions and the physical picture of the SRA.
Figure 22(a–c) shows the variations of aρ , Prt and Pr∗

t for all cases, respectively. It can
be seen that there is a negligible difference between Prt and Pr∗

t . This is under expectation,
since Zhang et al. (2014) pointed out that these two definitions only display discernible
differences at large Mach numbers. The empirical formula given by Abe & Antonia (2017)
for incompressible flow is included in figure 22(b,c) for comparison. This formula is in
accordance with the DNS results for y/h > 0.3, except for the two low-Reynolds-number
cases (Re∗

τ ≈ 160). The wall-normal distributions of Prt and Pr∗
t in compressible channel

flows are akin to those in incompressible flows with Pr close to unity (Pirozzoli et al. 2016;
Abe & Antonia 2017, 2019). Furthermore, it is interesting to find that the magnitudes of aρ
are very close to those of Prt and Pr∗

t , and not sensitive to the Mach number and Reynolds
number. It highlights a new and underlying physical significance of Prt. That is, Prt is also
a precise indicator of the linear coupling between the velocity and the temperature fields.
However, Prt is defined as the ratio between the momentum and the heat transfer eddy
diffusivity. This definition in turn implies the origin of the linear coupling between the
two fields, that is, the similarity between the momentum and the heat transfer. Moreover,
it also suggests that the propositions affirmed above are logical. Figure 22(d) compares
the results of GSRA, RSRA, HSRA, MHSRA and the present study (using aρ in (5.8))
by plotting the right-hand side of (5.3) (RH) using the case Ma15Re3K. Other cases show
similar results and are not shown here. It can be seen that the result of the present study
is close to that of HSRA and MHSRA, which further evidences the similarity among the
scale ratio aρ , Prt and Pr∗

t .
Before closing this section, it may be worth making a comment on the comparison with

the incompressible flow and the underlying physical relevance. The decreasing magnitude
of Prt in incompressible wall turbulence is essentially associated with the unmixedness
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Figure 22. The variations of (a) aρ as a function of yp/h for all cases; (b) Prt as a function of y/h for all
cases; (c) Pr∗

t as a function of y/h for all cases; (d) comparisons of various SRA predictions by using the case
Ma15Re3K. The empirical formula Prt = 0.9 − 0.3( y/h)2 given by Abe & Antonia (2017) for incompressible
flow is included in panels (b) and (c) for comparison.

of the scalar (Guezennec, Stretch & Kim 1990; Antonia et al. 2009; Pirozzoli et al. 2016;
Abe & Antonia 2019). The Prt and Pr∗

t obtained from the compressible channel flows in
the present study also diminish in the outer region and show ( y/h)2 dependence. This
observation indicates that the unmixedness of T ′ also exists in supersonic and subsonic
wall turbulence. Our analyses in this subsection may give some new insights on this
phenomenon. The unmixedness is highly linked with the degenerated coupling between
the velocity and the temperature fields in the outer region. Moreover, we conjecture that the
coupling between the velocity and the temperature fields largely results from the transport
effect, rather than a genuine dynamical interaction between the energy and momentum
equations, at least within the cases under scrutiny, because there is a remarkable similarity
between aρ , Prt in compressible channel flows and Prt in incompressible cases. For
incompressible turbulence, there is no dynamical interaction between the energy and
momentum equations, and T ′ acts as a passive scalar purely. Hence, it is sensible to
hypothesize that the transport effect, which exists in both incompressible and compressible
wall turbulence, is the key driving mechanism of the coupling. Whether this scenario will
be altered in wall turbulence at larger Mach numbers needs deeper investigations.

6. Concluding remarks

In the present study, we adopt a linear model, i.e. SLSE, to dissect the coupling between the
velocity and the temperature fields in compressible turbulent channel flows by using DNS
data from low to medium Reynolds numbers. The conclusions are summarized below.
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(a) In the near-wall region, the two fields are highly coupled and only the extreme
thermal events cannot be captured by SLSE.

(b) In the logarithmic region, the T ′ motions are found to be linearly coupled with
the streamwise velocity fluctuations at the scales which correspond to the attached
eddies and the VLSMs, namely λx > λz, λx > 10yp and λz > 2yp. It is also
demonstrated that the T ′ motions in the logarithmic region are organized as
hierarchical structures and can be described by the celebrated attached-eddy model.
Similar to the behaviour of u′, their footprints on the near-wall region can be treated
as a Gaussian variable.

(c) In the outer region, the two fields are linearly coupled only at the scales
corresponding to VLSMs. Only a fraction of temperature fluctuations can be
recovered by SLSE.

(d) The effectiveness of the linear model is found to be insensitive to the compressibility.
It is the Reynolds number rather than Mach number that acts as a key similarity
parameter in constructing u–T coupling. However, the enlargement of the Mach
number leads to the disappearance of the asymmetries between the positive and the
negative footprints of T ′ generated by the attached eddies.

(e) The turbulent Prandtl number Prt has been shown to be a precise indicator of the
linear coupling between the two fields. It also suggests that their coupling is ascribed
to the similarity between the momentum and the heat transfer in compressible wall
turbulence.

In our opinion, the most important contribution of the present study is the framework
built to analyse the multi-physics coupling in complex compressible wall-bounded
turbulence. Such a technology is comparatively mature in studying incompressible wall
turbulence, but rarely been adopted to inspect the more complex compressible flows.
In fact, the multi-physics coupling is more prominent in compressible wall turbulence
than incompressible flows to some extent. For example, very recently, several studies have
reported that the alterations of the wall thermal boundary condition can remarkably modify
the temperature and velocity streaks in supersonic/hypersonic turbulent boundary layers
(Hirai et al. 2021; Cogo et al. 2022; Huang et al. 2022). Hence, the present study can
provide an effective tool to quantify these variations. However, it should be accentuated
that the uncoupled motions are found to be responsible for the extreme thermal events
in the near-wall and the logarithmic regions. Their dynamics is a worthwhile subject for
further investigations.
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Figure 23. (a,c) Profiles of mean streamwise velocity and mean temperature for the cases (a) Ma15Re3K and
(c) Ma08Re3K; (b,d) profiles of the Reynolds stress for the cases (b) Ma15Re3K and (d) Ma08Re3K.

Appendix A. Description and validation of DNS database

The DNSs of compressible turbulent channel flows have been conducted with a
finite-difference code, by solving the 3-D unsteady compressible Navier–Stokes equations.
The convective terms are discretized with a seventh-order upwind-biased scheme
and the viscous terms are evaluated with an eighth-order central difference scheme.
Time advancement is performed using the third-order strong-stability-preserving (SSP)
Runge–Kutta method (Gottlieb, Shu & Tadmor 2001). A constant molecular Prandtl
number Pr of 0.72 and a specific heat ratio γ of 1.4 are employed. The dependence of
dynamical viscosity μ on temperature T is given by Sutherland’s law, i.e.

μ = μ0
T0 + S
T + S

(
T
T0

)3/2

, (A1)

where S = 110.4K and T0 = 273.1K.
The isothermal no-slip conditions are imposed at the top and bottom walls, and

the periodic boundary condition is imposed in the wall-parallel directions, i.e. x and
z directions. All simulations begin with a parabolic velocity profile with random
perturbations superimposed, and uniform temperature and density values. A body force
is imposed in the streamwise direction to maintain a constant mass flow rate and a
corresponding source term is also added to the energy equation. The code has been
validated by previous studies on the energy-containing eddies in quasi-incompressible
channel flows and the skin-friction decomposition in supersonic channel flows (Cheng
et al. 2019; Li et al. 2019).
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The validations of the cases Ma15Re9K, Ma15Re20K, Ma08Re8K and Ma08Re17K
listed in table 1 are provided by Cheng & Fu (2022b). Here, we validate the remaining
cases, i.e. Ma15Re3K and Ma08Re3K. Figure 23 compares the DNS results of Ma15Re3K
and Ma08Re3K with the flow statistics of Yao & Hussain (2020) at identical Mab
and Reb, respectively. Both the mean quantities and the Reynolds stress τij = ρ̄Rij with
Rij = ũ′′

i u′′
j = ũiuj − ũiũj are compared. All the profiles of the concerned quantities agree

reasonably with the previous study and these confirm the accuracy of the present database.
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