THE ASYMPTOTIC GROWTH OF INTEGER SOLUTIONS TO THE ROSENBERGER EQUATIONS

Arthur Baragar and Kensaku Umeda

Zagier showed that the number of integer solutions to the Markoff equation with components bounded by T grows asymptotically like $C(\log T)^{2}$, where C is explicitly computable. Rosenberger showed that there are only a finite number of equations $a x^{2}+b y^{2}+c z^{2}=d x y z$ with a, b, and c dividing d, and for which the equation admits an infinite number of integer solutions. In this paper, we generalise Zagier's techniques so that they may be applied to the Rosenberger equations. We also apply these techniques to the equations $a x^{2}+b y^{2}+c z^{2}=d x y z+1$.

Introduction

The Markoff equation

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=3 x y z \tag{1}
\end{equation*}
$$

was studied by Markoff (1879) [7], who demonstrated a relationship between its integer solutions and Diophantine approximation. The equation is also interesting as a Diophantine equation. Its set of integer solutions is infinite and nontrivial, yet is easy to describe. The Markoff equation is quadratic in each variable, so given a solution (x, y, z), we can find a new solution ($3 y z-x, y, z$). Using this map, permutations of the variables, and the fundamental solution ($1,1,1$), we can construct the Markoff tree \mathfrak{M} of positive ordered solutions, shown in Figure 1. Every nontrivial integer solution to equation 1 is derived from a solution in this tree by applying a permutation of the variables and sign changes in pairs (see, for example, [3]). The trivial solution is ($0,0,0$).

Zagier [11] considered the quantity

$$
N(T)=\#\{(x, y, z) \in \mathfrak{M}: z<T\}
$$

and proved

$$
N(T)=C(\log T)^{2}+O\left(\log T(\log \log T)^{2}\right)
$$

where C is explicitly computable and $C \approx .180717104712$. Note that there is a typo in [11] - the seventh digit of C is omitted.

Figure 1: The Markoff tree \mathfrak{M}.

There are several generalisations of the Markoff equation, including the Hurwitz equations,

$$
\begin{equation*}
x_{1}^{2}+\cdots+x_{n}^{2}=a x_{1} \cdots x_{n} \tag{2}
\end{equation*}
$$

investigated by Hurwitz [5]; equations studied by Mordell [8],

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=a x y z+b \tag{3}
\end{equation*}
$$

variations studied by Rosenberger [9],

$$
\begin{equation*}
a x^{2}+b y^{2}+c z^{2}=d x y z \tag{4}
\end{equation*}
$$

and a variation studied by Jin and Schmidt [6],

$$
\begin{equation*}
a x^{2}+b y^{2}+c z^{2}=d x y z+1 \tag{5}
\end{equation*}
$$

In these last two classes of equations, we further require that a, b, and c divide d.
Zagier's techniques are not applicable to the Hurwitz equations, equation 2 (see [1]). The application to those equations studied by Mordell (equation 3) is straight forward when it applies ([2]). In this paper, we shall generalise Zagier's techniques so that they may be applied to the Rosenberger variations, equation 4. The application is not straight forward, since we shall not be able to exploit the symmetry of the equation.

Every equation of the form equation 4 has the trivial solution ($0,0,0$). Rosenberger showed that if such an equation includes a nontrivial integer solution and $a \leqslant b \leqslant c$, then the equation is one of six equations. These six equations include the Markoff equation equation 1 , and

$$
\begin{array}{lr}
R_{1}: & x^{2}+y^{2}+2 z^{2}=4 x y z \\
R_{2}: & x^{2}+2 y^{2}+3 z^{2}=6 x y z \\
R_{3}: & x^{2}+y^{2}+5 z^{2}=5 x y z
\end{array}
$$

The last two equations are

$$
\begin{array}{lc}
R_{4}: & x^{2}+y^{2}+z^{2}=x y z \\
R_{5}: & x^{2}+y^{2}+2 z^{2}=2 x y z
\end{array}
$$

An integer triple (x, y, z) is a solution to the Markoff equation if and only if $(3 x, 3 y, 3 z)$ is a solution to R_{4}. Thus, the Markoff equation and R_{4} are essentially the same. Similarly, an integer triple (x, y, z) is a solution to R_{1} if and only if $(2 x, 2 y, 2 z)$ is a solution to R_{5}.

Let

$$
H(x, y, z)=|x|+|y|+|z|
$$

be a height on integer triples. Let

$$
N_{m}(T)=\#\left\{(x, y, z) \in \mathbb{Z}^{3}:(x, y, z) \text { is a solution to } R_{m} \text { and } H(x, y, z)<T\right\}
$$

Our main result is the following:
Theorem 0.1. The number of integer solutions to the Rosenberger equation R_{m} with height bounded by T grows asymptotically like

$$
N_{m}(T)=C_{m} \log ^{2} T+O\left(\log T(\log \log T)^{2}\right)
$$

where $C_{1} \approx 1.63142834189, C_{2} \approx 1.66271739346$, and $C_{3} \approx 3.52831194430$.
We also have $C_{4}=18 C \approx 3.25290788481$, where C is the constant found by Zagier, and $C_{5}=C_{1}$.

In Section 5, we apply the technique to equation 5, though we leave checking many details to the reader. We also discuss what portions of our results are applicable to equations of the form

$$
a x^{2}+b y^{2}+c z^{2}=d x y z+e
$$

where the coefficients are integers, and a, b, and c divide d.

1. The Rosenberger variations

Let us write equation 4 in the following fashion:

$$
\begin{equation*}
a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+a_{3} x_{3}^{2}=d x_{1} x_{2} x_{3} \tag{6}
\end{equation*}
$$

From a solution $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ to equation 6 , we can generate three new solutions by applying the automorphisms:

$$
\begin{aligned}
\phi_{1}(\mathbf{x}) & =\left(\frac{d}{a_{1}} x_{2} x_{3}-x_{1}, x_{2}, x_{3}\right) \\
\phi_{2}(\mathbf{x}) & =\left(x_{1}, \frac{d}{a_{2}} x_{1} x_{3}-x_{2}, x_{3}\right) \\
\phi_{3}(\mathbf{x}) & =\left(x_{1}, x_{2}, \frac{d}{a_{3}} x_{1} x_{2}-x_{3}\right) .
\end{aligned}
$$

We shall call a solution \mathbf{x} a positive integral solution if all the components of \mathbf{x} are positive integers. If \mathbf{x} is a positive integral solution, then so is $\phi_{i}(\mathbf{x})$. One can see this by noting that the product of x_{i} and $\left(d / a_{i}\right) x_{j} x_{k}-x_{i}$ is $a_{j} x_{j}^{2}+a_{k} x_{k}^{2}$, which is clearly positive. If $x_{i}=0$ for any i, then $\mathbf{x}=(0,0,0)$. Thus, every nontrivial integer solution can be obtained from a positive integer solution by a couple of sign changes.

Note that we cannot have both $H\left(\phi_{i}(\mathbf{x})\right) \leqslant H(\mathbf{x})$ and $H\left(\phi_{j}(\mathbf{x})\right) \leqslant H(\mathbf{x})$, for then we would have

$$
\begin{aligned}
& \frac{d}{a_{i}} x_{j} x_{k} \leqslant x_{i} \\
& \frac{d}{a_{j}} x_{i} x_{k} \leqslant x_{j}
\end{aligned}
$$

so

$$
\begin{aligned}
d x_{i} x_{j} x_{k} & \leqslant 2 a_{i} x_{i}^{2} \\
d x_{i} x_{j} x_{k} & \leqslant 2 a_{j} x_{j}^{2} \\
d x_{i} x_{j} x_{k} & \leqslant a_{i} x_{i}^{2}+a_{j} x_{j}^{2} \\
& <a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+a_{3} x_{3}^{2}=d x_{1} x_{2} x_{3} .
\end{aligned}
$$

Thus, descent, when it occurs, is unique.
Since descent is unique and cannot continue indefinitely, there exists a fundamental solution \mathbf{w} from which we cannot descend. By investigating the properties of fundamental solutions, Rosenberger concluded that there are only six equations of this form that have an infinite set of integer solutions. Both of the equations R_{1} and R_{2} have the single fundamental solution ($1,1,1$), and R_{3} has the two fundamental solutions (1,2,1) and $(2,1,1)$. Note that, for each of the fundamental solutions w for equations R_{1}, R_{2}, and R_{3}, we have $H\left(\phi_{3}(\mathbf{w})\right)=H(\mathbf{w})$ and $H\left(\phi_{j}(\mathbf{w})\right)>H(\mathbf{w})$ for $j=1$ and 2.

We shall study the integer solutions to these Rosenberger variations by studying the tree of solutions $\mathfrak{T}_{\mathbf{y}}$ for a positive integer solution \mathbf{y}. This tree is rooted at \mathbf{y} and is generated as follows. For any \mathbf{x} in $\mathfrak{T}_{\mathbf{y}}$, there exists a permutation i, j, k of $\{1,2,3\}$ such that $H\left(\phi_{i}(\mathbf{x})\right) \leqslant H(\mathbf{x})$. The daughters of \mathbf{x} are the nodes $\phi_{j}(\mathbf{x})$ and $\phi_{k}(\mathbf{x})$. The tree $\mathfrak{T}_{(1,1,1)}$ for R_{1} is shown in Figure 2. This tree contains every positive integer solution to R_{1}.

2. Zagier's Argument

In this section, we condense and generalise Zagier's techniques. There are three main ideas. The first is to compare the tree \mathcal{T}_{y} with the Euclid tree. The Euclid tree \mathbb{E} is the tree rooted at $(1,1)$ and generated by the branching operations $\sigma_{1}(a, b)=(a, a+b)$ and $\sigma_{2}(a, b)=(b, a+b)$. This tree contains all ordered coprime pairs twice and going down

Figure 2: The tree of positive integer solutions to the equation $x^{2}+y^{2}+2 z^{2}=4 x y z$.
the tree is the Euclidean algorithm, hence the tree's name. We shall be interested in Euclid trees $\mathfrak{E}_{(\alpha, \beta)}$ rooted at an arbitrary pair (α, β). Let

$$
E_{(\alpha, \beta)}(t)=\#\left\{(a, b) \in \mathfrak{E}_{(\alpha, \beta)}: a+b<t\right\} .
$$

It is well known that $E_{(1,1)}(t)$ grows asymptotically like ($3 / \pi^{2}$) t^{2} (see, for example, [4, p. 266]). More generally, for $\beta \geqslant \alpha>0$,

$$
E_{(\alpha, \beta)}(t)=\frac{3 t^{2}}{\pi^{2} \alpha \beta}+O\left(\frac{t \log t}{\alpha}\right)
$$

as is shown in [11]. (Zagier's error term is slightly better than this, but this is enough for our argument.)

To compare the trees, we define a map Ψ from the tree $\mathfrak{T}_{\mathbf{y}}$ to the tree $\mathfrak{E}_{(\alpha, \beta)}$. Our definition is inductive. For each $\mathbf{x} \in \mathfrak{T}_{\mathbf{y}}$, there exists an $i \in\{1,2,3\}$ such that $H\left(\phi_{i}(\mathbf{x})\right)$ $\leqslant H(\mathbf{x})$. For $\mathbf{x}=\mathbf{y}$, we fix j and k. We let $\Psi(\mathbf{y})=(\alpha, \beta), \Psi\left(\phi_{j}(\mathbf{y})\right)=(\beta, \alpha+\beta)$ and $\Psi\left(\phi_{k}(\mathbf{y})\right)=(\alpha, \alpha+\beta)$. We define the rest of Ψ inductively. For all other $\mathbf{x} \in \mathfrak{T}_{\mathbf{y}}$, there exists a permutation (i, j, k) of $(1,2,3)$ such that $H\left(\phi_{i}(\mathbf{x})\right)<H(\mathbf{x})$ and $H\left(\phi_{j} \phi_{i}(\mathbf{x})\right)$ $\leqslant H\left(\phi_{i}(\mathrm{x})\right)$. (This choice almost always gives $x_{i} \geqslant x_{j} \geqslant x_{k}$, but there are some exceptions.) If $\Psi(\mathbf{x})=\mathbf{s}$, then let

$$
\begin{aligned}
& \Psi\left(\phi_{j}(\mathbf{x})\right)=\left(s_{2}, s_{1}+s_{2}\right) \\
& \Psi\left(\phi_{k}(\mathbf{x})\right)=\left(s_{1}, s_{1}+s_{2}\right) .
\end{aligned}
$$

The map Ψ from $\mathfrak{T}_{(1,1,1)}$ for R_{2} to the tree $\mathfrak{E}_{(1,1)}$ is shown in Figure 3.
The second main idea is an averaging technique. Averaging techniques are fairly common - for example, Tate used the idea when defining canonical heights on elliptic curves [10, p. 228]. If we fix a solution $\mathrm{p}=\left(p_{1}, p_{2}, p_{3}\right)$ to equation 6 , then the branch of the tree $\mathfrak{T}_{\mathrm{p}}$ with $x_{1}=p_{1}$ is given by alternately applying ϕ_{2} and ϕ_{3}. The composition $\phi_{2} \phi_{3}$ generates a linear action on (x_{2}, x_{3}), which has the eigenvalue

$$
\lambda_{p_{1}}=\left(\frac{m_{1} p_{1}+\sqrt{m_{1}^{2} p_{1}^{2}-4}}{2}\right)^{2}
$$

Figure 3: The tree $\mathfrak{T}_{(1,1,1)}$ for the equation $x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}=6 x_{1} x_{2} x_{3}$, and the map Ψ to the Euclid tree $\mathfrak{E}_{(1,1)}$.
and its multiplicative inverse, where $m_{1}=d / \sqrt{a_{2} a_{3}}$. If this eigenvalue is not one, then in the long run, the action looks like multiplication by this eigenvalue. Taking a cue from Zagier, we therefore define

$$
f_{i}(x)=\log \left(\frac{m_{i} x+\sqrt{m_{i}^{2} x^{2}-4}}{2}\right)
$$

where $m_{i}=d / \sqrt{a_{j} a_{k}}$.
Suppose now that \mathbf{x} is a solution to equation 6 with $H\left(\phi_{i}(\mathbf{x})\right) \leqslant H(\mathbf{x})$. Let

$$
x_{i *}=f_{i}^{-1}\left(f_{j}\left(x_{j}\right)+f_{k}\left(x_{k}\right)\right)
$$

(Note that f_{i}^{-1} exists, since f_{i} is an increasing function in x.) Let \mathbf{x}_{*} be the vector obtained from \mathbf{x} by substituting x_{i} with $x_{i *}$. Then \mathbf{x} *atisfies the equation

$$
\begin{equation*}
a_{i} x_{i *}^{2}+a_{j} x_{j}^{2}+a_{k} x_{k}^{2}=d x_{i *} x_{j} x_{k}+\frac{4 a_{1} a_{2} a_{3}}{d^{2}} \tag{7}
\end{equation*}
$$

To see this, let us first let $u_{i}=e^{f_{i}\left(x_{i \cdot}\right)}, u_{j}=e^{f_{j}\left(x_{j}\right)}=\sqrt{\lambda_{x_{j}}}$, and $u_{k}=e^{f_{k}\left(x_{k}\right)}=\sqrt{\lambda_{x_{k}}}$. Then $u_{i}=u_{j} u_{k}$. We also note that u_{i} is a root of the quadratic $t^{2}-m_{i} x_{i *} t+1$, so the other root is u_{i}^{-1} and the sum of the roots is $u_{i}+u_{i}^{-1}=m_{i} x_{i}$. Similarly, $m_{j} x_{j}=u_{j}+u_{j}^{-1}$ and $m_{k} x_{k}=u_{k}+u_{k}^{-1}$. Plugging these expressions for $x_{i *}, x_{j}$ and x_{k} into the expression

$$
a_{i} x_{i *}^{2}+a_{j} x_{j}^{2}+a_{k} x_{k}^{2}-d x_{i *} x_{j} x_{k}
$$

and simplifying, we get $\left(4 a_{1} a_{2} a_{3}\right) / d^{2}$. Thus, the map $\mathbf{x} \rightarrow\left(f_{k}\left(x_{k}\right), f_{j}\left(x_{j}\right)\right)$ is a good approximation of the map Ψ. Let us make this last statement more precise.

Lemma 2.1. For any $\mathbf{x} \in \mathfrak{T}_{\mathbf{y}}$, let (i, j, k) be a permutation of $\{1,2,3\}$ such that $H\left(\phi_{i}(\mathbf{x})\right) \leqslant H(\mathbf{x})$. Suppose there exist $r_{i}<2 a_{i}$ such that $r_{i} x_{i}>d x_{j} x_{k}$. Then

$$
x_{i}<x_{i *}<x_{i}+\frac{K_{i}}{x_{i}}
$$

The constant K_{i} depends on i and the constants a_{1}, a_{2}, a_{3}, d, and r_{i}.
Proof: First, note that $x_{i *}>x_{i}$. To see this, think of x_{i} and $x_{i *}$ as roots of the appropriate parabolas suggested by equations 6 and 7 . The shapes of these parabolas are identical, but the parabola for $x_{i *}$ is shifted down. Thus, the roots x_{i} and x_{i}^{\prime} of equation 6 are between the roots $x_{i *}$ and $x_{i *}^{\prime}$ of equation 7 . Since x_{i} and $x_{i *}$ are the larger roots of their respective equations, we get $x_{i}<x_{i *}$.

Let us now take the difference of equations 6 and 7 . This gives

$$
\begin{aligned}
a_{i} x_{i *}^{2}-a_{i} x_{i}-d x_{i *} x_{j} x_{k}+d x_{i} x_{j} x_{k} & =\frac{4 a_{1} a_{2} a_{3}}{d^{2}} \\
\left(x_{i *}-x_{i}\right)\left(a_{i} x_{i *}+a_{i} x_{i}-d x_{j} x_{k}\right) & =\frac{4 a_{1} a_{2} a_{3}}{d^{2}} \\
\left(x_{i *}-x_{i}\right)\left(2 a_{i}-r_{i}\right) x_{i} & <\frac{4 a_{1} a_{2} a_{3}}{d^{2}} \\
x_{i}^{*} & <x_{i}+\frac{4 a_{1} a_{2} a_{3}}{d^{2}\left(2 a_{i}-r_{i}\right) x_{i}} \\
& <x_{i}+\frac{K_{i}}{x_{i}} .
\end{aligned}
$$

ThEOREM 2.2. Suppose \mathbf{w} is a fundamental solution and that $f_{m}\left(w_{m}\right)>0$ for $m=1,2$, and 3. For each $\mathbf{x} \in \mathfrak{T}_{\mathbf{w}}$, let (i, j, k) be a permutation of $\{1,2,3\}$ such that $H\left(\phi_{i}(\mathbf{x})\right) \leqslant H(\mathbf{x})$. Suppose there exist $r_{m}<2 a_{m}$ such that, for all but finitely many $\mathbf{x} \in \mathfrak{T}_{\mathbf{w}}$, we have $r_{i} x_{i}>x_{j} x_{k}$. Then, for all but finitely many $\mathbf{y} \in \mathfrak{T}_{\mathbf{w}}$, we have

$$
N_{\mathbf{y}}(T)=\frac{3 \log ^{2} T}{\pi^{2} f_{j}\left(y_{j}\right) f_{k}\left(y_{k}\right)}+O\left(\frac{\log ^{2} T}{y_{i}^{2} f_{j}\left(y_{j}\right) f_{k}^{2}\left(y_{k}\right)}\right)+O\left(\frac{\log T \log \log T}{f_{k}\left(y_{k}\right)}\right)
$$

where $H\left(\phi_{i}(\mathbf{y})\right) \leqslant H(\mathbf{y})$ and, if $\mathbf{y} \neq \mathbf{w}, H\left(\phi_{j} \phi_{i}(\mathbf{y})\right) \leqslant H\left(\phi_{i}(\mathbf{y})\right)$.
Proof: Let us first note that for any $\mathbf{x} \in \mathfrak{T}_{\mathbf{y}}$ with $H\left(\phi_{i}(\mathbf{x})\right) \leqslant H(\mathbf{x})$, we have

$$
\begin{aligned}
x_{i} & \geqslant \frac{d}{a_{i}} x_{j} x_{k}-x_{i} \\
2 a_{i} x_{i} & \geqslant d x_{j} x_{k} .
\end{aligned}
$$

In particular, $x_{j}, x_{k} \leqslant 2 a_{i} x_{i}$.
Let $(\alpha, \beta)=\left(f_{k}\left(y_{k}\right), f_{j}\left(y_{j}\right)\right)$. Let Ψ be the map from the tree $\mathfrak{T}_{\mathbf{y}}$ to the tree $\mathfrak{E}_{(\alpha, \beta)}$. Let $\mathbf{x} \in \mathfrak{T}_{\mathbf{y}}$ and suppose $\Psi(\mathbf{x})=\left(s_{1}, s_{2}\right)$. We claim that $f_{k}\left(x_{k}\right) \leqslant s_{1}$ and $f_{j}\left(x_{j}\right) \leqslant s_{2}$,
which we prove using induction. As a consequence of our choice of (α, β), it is true for the base case. Suppose it is true for \mathbf{x}. Then, by Lemma 2.1,

$$
f_{i}\left(x_{i}\right) \leqslant f_{i}\left(x_{i *}\right)=f_{j}\left(x_{j}\right)+f_{k}\left(x_{k}\right) \leqslant s_{1}+s_{2}
$$

Thus, the inequalities are true for the two daughters of \mathbf{x}, which completes the induction. Now, suppose we order a_{1}, a_{2}, and a_{3} so that $a_{1} \leqslant a_{2} \leqslant a_{3}$. Then $f_{1}(x) \leqslant f_{2}(x) \leqslant f_{3}(x)$. Suppose

$$
s_{1}+s_{2}<f_{1}\left(\frac{T}{6 a_{3}}\right)
$$

Then

$$
\begin{aligned}
f_{i}\left(x_{i}\right) & \leqslant s_{1}+s_{2}<f_{1}\left(\frac{T}{6 a_{3}}\right) \leqslant f_{i}\left(\frac{T}{6 a_{3}}\right) \\
x_{i} & <\frac{T}{6 a_{3}} \\
H(\mathbf{x}) & <T
\end{aligned}
$$

where in the last, we used that x_{j} and $x_{k} \leqslant 2 a_{i} x_{i} \leqslant 2 a_{3} x_{i}$. Thus,

$$
\begin{equation*}
N_{\mathbf{y}}(T) \geqslant E_{(\alpha, \beta)}\left(f_{1}\left(T / 6 a_{3}\right)\right)=E_{(\alpha, \beta)}(\log (T)+O(1)) \tag{8}
\end{equation*}
$$

By Lemma 2.1,

$$
\begin{equation*}
f_{j}\left(x_{j}\right)+f_{k}\left(x_{k}\right)=f_{i}\left(x_{i}\right)<f_{i}\left(x_{i}+O\left(\frac{1}{x_{i}}\right)\right)=f_{i}\left(x_{i}\right)+O\left(\frac{1}{x_{i}^{2}}\right) \tag{9}
\end{equation*}
$$

Let

$$
\begin{equation*}
\left(\alpha^{\prime}, \beta^{\prime}\right)=\left(f_{k}\left(y_{k}\right)-\frac{c}{y_{i}^{2}}, f_{j}\left(y_{j}\right)-\frac{c}{y_{i}^{2}}\right) \tag{10}
\end{equation*}
$$

where $c /\left(4 a_{3}^{2}\right)$ is a constant that bounds the functions implied by the big O in equation 9 for each of $i=1,2$, and 3. If y_{i} is large enough, then $\alpha^{\prime}, \beta^{\prime}>0$. Since $y_{j}, y_{k}<2 a_{3} y_{i}$, we have that y_{i} is large enough for all but finitely many y in \mathfrak{T}_{w}.

Since we shall choose permutations of $\{1,2,3\}$ for each $\mathbf{x} \in \mathfrak{T}_{\mathbf{y}}$, let us fix $i(\mathbf{y})$ so that $H\left(\phi_{i(\mathbf{y})}(\mathbf{y})\right) \leqslant H(\mathbf{y})$. Note that $x_{i(\mathbf{y})} \geqslant y_{i(\mathbf{y})}$ for all $\mathbf{x} \in \mathfrak{T}_{\mathbf{y}}$. Suppose $\Psi(\mathbf{x})=\mathbf{s}$. We claim that $f_{k}\left(x_{k}\right)-c /\left(y_{i(y)}^{2}\right) \geqslant s_{1}$ and $f_{j}\left(x_{j}\right)-c /\left(y_{i(y)}^{2}\right) \geqslant s_{2}$, which we again prove using induction. Our choice of $\alpha^{\prime}, \beta^{\prime}$ covers the base case. Suppose it is true for \mathbf{x}. Then

$$
\begin{equation*}
f_{i}\left(x_{i *}\right) \leqslant f_{i}\left(x_{i}\right)+\frac{c}{4 a_{3}^{2} x_{i}^{2}} \tag{11}
\end{equation*}
$$

Since $x_{i(y)} \leqslant 2 a_{3} x_{i}$, we get

$$
f_{i}\left(x_{i *}\right) \leqslant f_{i}\left(x_{i}\right)+\frac{c}{y_{i(y)}^{2}}
$$

Thus

$$
f_{i}\left(x_{i}\right)-\frac{c}{y_{i(\mathrm{y})}^{2}} \geqslant f_{i}\left(x_{i *}\right)-\frac{2 c}{y_{i(\mathrm{y})}^{2}}=f_{j}\left(x_{j}\right)+f_{k}\left(x_{k}\right)-\frac{2 c}{y_{i(\mathrm{y})}^{2}} \geqslant s_{1}+s_{2} .
$$

This completes the induction step. Now, suppose $H(\mathbf{x})<T$. Then

$$
\begin{aligned}
x_{i} & <T \\
f_{i}\left(x_{i}\right) & <f_{i}(T)=\log (T)+O(1) \\
s_{1}+s_{2} & <\log (T)+O(1)
\end{aligned}
$$

Thus,

$$
E_{\left(\alpha^{\prime}, \beta^{\prime}\right)}(\log T+O(1)) \geqslant N_{\mathbf{y}}(T) .
$$

Combining this with equation 8 , we get

$$
N_{\mathrm{y}}(T)=\frac{3 \log ^{2} T}{\pi^{2}\left(f_{j}\left(y_{j}\right)+O\left(1 / y_{i}^{2}\right)\right)\left(f_{k}\left(y_{k}\right)+O\left(1 / y_{i}^{2}\right)\right)}+O\left(\frac{\log T \log \log T}{\min \left\{f_{k}\left(y_{k}\right), f_{j}\left(y_{j}\right)\right\}}\right)
$$

In most cases, we expect $\min \left\{f_{k}\left(y_{k}\right), f_{j}\left(y_{j}\right)\right\}=f_{k}\left(y_{k}\right)$. In the rare cases that this is not the case, we have $y_{k} \leqslant 2 a_{j} y_{j}$, so

$$
O\left(\min \left\{f_{k}\left(y_{k}\right), f_{j}\left(y_{j}\right)\right\}\right)=O\left(f_{k}\left(y_{k}\right)\right)
$$

Thus, we get

$$
N_{y}(T)=\frac{3 \log ^{2} T}{\pi^{2} f_{j}\left(y_{j}\right) f_{k}\left(y_{k}\right)}+O\left(\frac{\log ^{2} T}{y_{i}^{2} f_{j}\left(y_{j}\right) f_{k}^{2}\left(y_{k}\right)}\right)+O\left(\frac{\log T \log \log T}{f_{k}\left(y_{k}\right)}\right)
$$

as claimed.
This theorem is not particularly useful when y is small, since the first error term dominates. However, we do immediately get the following result, which will be useful later on.

Corollary 2.3. Suppose \mathbf{w} is a fundamental solution, $f_{m}\left(w_{m}\right)>0$ for $m=1$, 2 , and 3 , and $\mathbf{y} \in \mathfrak{T}_{\mathbf{w}}$. Then

$$
N_{\mathrm{y}}(T)=O\left(\log ^{2} T\right)
$$

Furthermore, the constant implied by the big O can be chosen so that it is independent of \mathbf{y} (though it depends on \mathbf{w}).

For y very large, the approximation in Theorem 2.2 is very good. Zagier's third main idea exploits that feature. Let $\mathfrak{T}_{\mathbf{y}}(U)$ be the subtree of $\mathfrak{T}_{\mathbf{y}}$ that includes all $\mathrm{x} \in \mathfrak{T}_{\mathbf{y}}$ such that $H(\mathbf{x}) \leqslant U$. The boundary of $\mathfrak{T}_{\mathbf{y}}(U)$ is the set $\partial \mathfrak{T}_{\mathbf{y}}(U)$ of solutions \mathbf{x} with $H(\mathbf{x})>U$ and $\phi_{i}(\mathbf{x}) \in \mathfrak{T}_{\mathbf{y}}(U)$ for some i. Then, for $U<T$, we can write

$$
\begin{equation*}
N_{\mathbf{y}}(T)=N_{\mathbf{y}}(U)+\sum_{\mathbf{x} \in \partial \mathrm{T}_{\mathbf{y}}(U)} N_{\mathbf{x}}(T) \tag{12}
\end{equation*}
$$

We estimate this using Theorem 2.2 and its corollary. The details are in the next theorem, which is the main result of this section.

THEOREM 2.4. Suppose \mathbf{w} is a fundamental solution and that $f_{m}\left(w_{m}\right)>0$ for $m=1,2$, and 3. For each $\mathbf{x} \in T_{\mathbf{w}}, \mathbf{x} \neq \mathbf{w}$, let (i, j, k) be a permutation of $\{1,2,3\}$ such that $H\left(\phi_{i}(\mathbf{x})\right) \leqslant H(\mathbf{x})$ and $H\left(\phi_{j} \phi_{i}(\mathbf{x})\right) \leqslant H\left(\phi_{i}(\mathbf{x})\right)$. For $\mathbf{x}=\mathbf{w}$, let $(i, j, k)=(3,2,1)$. Suppose there exist $r_{m}<2 a_{m}$ such that, for all but finitely many $\mathbf{x} \in \mathfrak{T}_{\mathbf{w}}$, we have $r_{i} x_{i}>x_{j} x_{k}$. Then for any $\mathbf{y} \in \mathfrak{T}_{w}$, the constant

$$
C_{\mathbf{y}}=\frac{3}{\pi^{2}} \frac{1}{f_{j}\left(y_{j}\right) f_{k}\left(y_{k}\right)}+\lim _{U \rightarrow \infty} \frac{3}{\pi^{2}} \sum_{\mathbf{x} \in \mathcal{T}_{y}(U)} \frac{f_{j}\left(x_{j}\right)+f_{k}\left(x_{k}\right)-f_{i}\left(x_{i}\right)}{f_{i}\left(x_{i}\right) f_{j}\left(x_{j}\right) f_{k}\left(x_{k}\right)}
$$

exists and

$$
N_{\mathbf{y}}(T)=C_{\mathbf{y}} \log ^{2} T+O\left(\log T(\log \log T)^{2}\right)
$$

Proof: Let us use Theorem 2.2 and its corollary to expand equation 12 as

$$
\begin{equation*}
N_{\mathbf{y}}(T)=O\left(\log ^{2} U\right)+C_{U} \log ^{2} T+O\left(D_{U} \log ^{2} T+E_{U} \log T \log \log T\right) \tag{13}
\end{equation*}
$$

where

$$
\begin{align*}
C_{U} & =\frac{3}{\pi^{2}} \sum_{\mathbf{x} \in \partial T_{y}(U)} \frac{1}{f_{j}\left(x_{j}\right) f_{k}\left(x_{k}\right)} \tag{14}\\
D_{U} & =\sum_{x \in \partial T_{y}(U)} \frac{1}{x_{i}^{2} f_{j}\left(x_{j}\right) f_{k}^{2}\left(x_{k}\right)} \\
E_{U} & =\sum_{x \in \partial T_{y}(U)} \frac{1}{f_{k}\left(x_{k}\right)} .
\end{align*}
$$

Let $g\left(x_{j}, x_{k}\right)$ be an arbitrary function on \mathfrak{T}_{y} and let $\mathfrak{T}_{y}^{\prime}$ be a finite subtree of \mathfrak{T}_{y} that contains y and is connected. Then

$$
\begin{equation*}
\sum_{\mathbf{x} \in \partial T_{y}^{\prime}} g\left(x_{j}, x_{k}\right)=g\left(y_{j}, y_{k}\right)+\sum_{\mathbf{x} \in \mathbb{T}_{\mathbf{y}}^{\prime}}\left(g\left(x_{i}, x_{j}\right)+g\left(x_{i}, x_{k}\right)-g\left(x_{j}, x_{k}\right)\right) . \tag{15}
\end{equation*}
$$

This result, which may be thought of as a version of Green's theorem, is easily proved using induction. Using equation 15 , we have

$$
C_{U}=\frac{3}{\pi^{2} f_{j}\left(y_{j}\right) f_{k}\left(y_{k}\right)}+\frac{3}{\pi^{2}} \sum_{\mathbf{x} \in \mathbb{T}_{y}(U)} \frac{f_{j}\left(x_{j}\right)+f_{k}\left(x_{k}\right)-f_{i}\left(x_{i}\right)}{f_{i}\left(x_{i}\right) f_{j}\left(x_{j}\right) f_{k}\left(x_{k}\right)}
$$

so

$$
C_{y}=\lim _{U \rightarrow \infty} C_{U}
$$

Then

$$
\begin{aligned}
C_{U} & =C_{\mathbf{y}}-\frac{3}{\pi^{2}} \sum_{\substack{\mathbf{x} \in \mathcal{T}_{y} \\
H(\mathbf{x}) \geqslant U}} \frac{f_{j}\left(x_{j}\right)+f_{k}\left(x_{k}\right)-f_{i}\left(x_{i}\right)}{f_{i}\left(x_{i}\right) f_{j}\left(x_{j}\right) f_{k}\left(x_{k}\right)} \\
& =C_{\mathbf{y}}+O\left(\sum_{\substack{\mathbf{x} \in \mathcal{T}_{y} \\
H(\mathbf{x}) \geqslant U}} \frac{1}{x_{i}^{2} f_{i}\left(x_{i}\right) f_{j}\left(x_{j}\right) f_{k}\left(x_{k}\right)}\right)
\end{aligned}
$$

where in the last line we have used the result in equation 9 . To evaluate the tail of this sum, we introduce the quantity

$$
N_{\mathbf{y}}^{\prime}(T)=\#\left\{\mathrm{x} \in \mathfrak{T}_{\mathrm{y}}: x_{i}<T\right\}
$$

Since $x_{i}<H(\mathbf{x})<6 a_{3} x_{i}$, we know $N_{\mathbf{y}}^{\prime}(T)=O\left(\log ^{2} T\right)$ by Corollary 2.3. Note also that $a_{i} x_{i}<d x_{j} x_{k} \leqslant d x_{j}^{2}$, so both $f_{i}\left(x_{i}\right)$ and $f_{j}\left(x_{j}\right)$ are bounded below by a constant times $\log x_{i}$. Note that $f_{k}\left(x_{k}\right) \geqslant f_{k}\left(w_{k}\right)>0$, so it is bounded below. Thus,

$$
\begin{aligned}
O\left(\sum_{\substack{\mathbf{x} \in T_{y} \\
H(\mathbf{x}) \geqslant U}} \frac{1}{x_{i}^{2} f_{i}\left(x_{i}\right) f_{j}\left(x_{j}\right) f_{k}\left(x_{k}\right)}\right) & =O\left(\sum_{\substack{\mathbf{x} \in T_{\mathbf{y}} \\
H(\mathbf{x}) \geqslant U}} \frac{1}{x_{i}^{2} \log ^{2} x_{i}}\right) \\
& =O\left(\sum_{\substack{\mathbf{x} \in T_{y} \\
x_{i} \geqslant U / 6 a_{3}}} \frac{1}{x_{i}^{2} \log ^{2} x_{i}}\right)
\end{aligned}
$$

For simplicity, let us set $U^{\prime}=\left\lfloor U / 6 a_{3}\right\rfloor$, where $\lfloor x\rfloor$ is the greatest integer function. Then, we have

$$
\begin{aligned}
& O\left(\sum_{\substack{x \in T_{y} \\
H(\mathbf{x}) \geqslant U}} \frac{1}{x_{i}^{2} f_{i}\left(x_{i}\right) f_{j}\left(x_{j}\right) f_{k}\left(x_{k}\right)}\right) \\
&=O\left(\sum_{n=U^{\prime}}^{\infty} \frac{N_{\mathbf{y}}^{\prime}(n+1)-N_{\mathbf{y}}^{\prime}(n)}{n^{2} \log ^{2} n}\right) \\
&=O\left(-\frac{N_{\mathbf{y}}^{\prime}\left(U^{\prime}-1\right)}{\left(U^{\prime}\right)^{2} \log ^{2} U^{\prime}}+\sum_{n=U^{\prime}}^{\infty} N_{\mathbf{y}}^{\prime}(n+1)\left(\frac{1}{(n-1)^{2} \log ^{2}(n-1)}-\frac{1}{n^{2} \log ^{2} n}\right)\right) \\
&=O\left(\frac{N_{\mathbf{y}}^{\prime}(U)}{U^{2} \log ^{2} U}\right)+O\left(\sum_{n=U^{\prime}}^{\infty} \frac{N_{\mathbf{y}}^{\prime}(n+1)}{n^{3} \log ^{2} n}\right) \\
&=O\left(\frac{1}{U^{2}}\right)
\end{aligned}
$$

This establishes that C_{y} exists and that $C_{U}=C_{y}+O\left(1 / U^{2}\right)$. This also allows us to estimate D_{U}, since

$$
D_{U}=O\left(\frac{1}{U^{2}} C_{U}\right)=O\left(\frac{1}{U^{2}}\right)
$$

To estimate E_{U}, we note that, by equation 15 ,

$$
E_{U}=O\left(\frac{1}{f_{k}\left(y_{k}\right)}+\sum_{\mathbf{x} \in \mathbb{T}_{\mathbf{y}}(U)} \frac{1}{f_{j}\left(x_{j}\right)}\right)
$$

We again note that $O\left(1 / f_{j}\left(x_{j}\right)\right)=O\left(1 / \log \left(x_{i}\right)\right)$, so

$$
\begin{aligned}
E_{U} & =O(1)+O\left(\sum_{n=1}^{\lfloor U\rfloor} \frac{N_{y}^{\prime}(n)-N_{y}^{\prime}(n-1)}{\log n}\right) \\
& =O(1)+O\left(\frac{N_{y}^{\prime}(U)}{\log [U\rfloor}+\sum_{n=1}^{\lfloor U\rfloor-1} N_{y}^{\prime}(n)\left(\frac{1}{\log n}-\frac{1}{\log (n+1)}\right)\right) \\
& =O(1)+O\left(\frac{\log ^{2} U}{\log U}\right)+O\left(\sum_{n=1}^{[U\rfloor-1} \frac{N_{y}^{\prime}(n)}{n \log ^{2} n}\right) \\
& =O(\log U)
\end{aligned}
$$

Combining these results in equation 13, we get

$$
N_{\mathbf{y}}(T)=C_{\mathbf{y}} \log ^{2} T+O\left(\log ^{2} U+\frac{\log ^{2} T}{U^{2}}+\log U \log T \log \log T\right)
$$

To make the error as small as possible, we choose $U=(\sqrt{\log T}) /(\log \log T)$, which gives

$$
N_{\mathbf{y}}(T)=C_{\mathbf{y}} \log ^{2} T+O\left(\log T(\log \log T)^{2}\right)
$$

3. The Rosenberger variations again

In this section, we establish the conditions of Theorems 2.2 and 2.4 for each of the Rosenberger equations R_{1}, R_{2}, and R_{3}.

Given a solution \mathbf{x} to a Rosenberger equation, we often want to select the component x_{i} of \mathbf{x} such that $H\left(\phi_{i}(\mathbf{x})\right) \leqslant H(\mathbf{x})$. This component is almost always the largest component:

Lemma 3.1. Suppose \mathbf{x} is a positive integer solution to the Rosenberger equation R_{1}, R_{2}, or R_{3}. Let (i, j, k) be the permutation of $\{1,2,3\}$ such that $H\left(\phi_{i}(\mathbf{x})\right) \leqslant H(\mathbf{x})$ and $x_{j} \geqslant x_{k}$. Then either

$$
x_{i} \geqslant x_{j}
$$

or $x_{k}=1$ in R_{3}, and $k=1$ or 2 .
Proof: Let

$$
f(T)=a_{i} T^{2}+a_{j} x_{j}^{2}+a_{k} x_{k}^{2}-d T x_{j} x_{k}
$$

Then $f\left(x_{i}\right)=0$. Let x_{i}^{\prime} be the other root of $f(T)$. Since $H\left(\phi_{i}(\mathbf{x})\right) \leqslant H(\mathbf{x})$, we know $x_{i}^{\prime} \leqslant x_{i}$. We consider

$$
\begin{equation*}
f\left(x_{j}\right)=a_{i} x_{j}^{2}+a_{j} x_{j}^{2}+a_{k} x_{k}^{2}-d x_{j}^{2} x_{k} \leqslant\left(a_{1}+a_{2}+a_{3}-d x_{k}\right) x_{j}^{2} \tag{16}
\end{equation*}
$$

If $x_{k} \geqslant 2$, then the right hand side of equation 16 is negative, so $f\left(x_{j}\right)<0$ and hence, $x_{i}^{\prime}<x_{j}<x_{i}$. If $x_{k}=1$, then the right hand side is zero for equations R_{1} and R_{2}, so in these cases, $x_{j} \leqslant x_{i}$. If $x_{3}=1$ in R_{3}, then $k=3$ and

$$
x_{i}^{\prime}=5 x_{j}-x_{i} \leqslant x_{i},
$$

which implies $x_{i}>x_{j}$.
Note that, if x_{1} or $x_{2}=1$ in R_{3}, and $H\left(\phi_{3}(\mathbf{x})\right)<H(\mathbf{x})$, then x_{3} is in fact not the maximal component of \mathbf{x}. This creates a minor wrinkle in the study of R_{3}.

It will also be useful to note that, if $x_{i} \geqslant x_{j}, x_{k}$, then

$$
\begin{aligned}
a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+a_{3} x_{3}^{2} & =d x_{1} x_{2} x_{3} \\
a_{1} x_{i}^{2}+a_{2} x_{i}^{2}+a_{3} x_{i}^{2} & \geqslant d x_{i} x_{j} x_{k} \\
x_{i} & \geqslant \frac{d}{a_{1}+a_{2}+a_{3}} x_{j} x_{k} .
\end{aligned}
$$

For equations R_{1} and R_{2}, this gives

$$
\begin{equation*}
x_{i} \geqslant x_{j} x_{k} \tag{17}
\end{equation*}
$$

and for R_{3}, this yields

$$
\begin{equation*}
x_{i} \geqslant \frac{5}{7} x_{j} x_{k} . \tag{18}
\end{equation*}
$$

Let us now consider the various cases. For these cases, it will be more convenient to set $(x, y, z)=\left(x_{1}, x_{2}, x_{3}\right)$.
Equation R_{1}. Let us first suppose that $i=1$. Then $x \geqslant y z$ by equation 17. We can improve on this bound by noting that $y, z \geqslant 1$, and observing that

$$
\begin{aligned}
(x-y z)(x-3 y z) & =x^{2}-4 x y z+3 y^{2} z^{2} \\
& =x^{2}-x^{2}-y^{2}-2 z^{2}+3 y^{2} z^{2} \\
& =y^{2}\left(z^{2}-1\right)+2 z^{2}\left(y^{2}-1\right) \geqslant 0 .
\end{aligned}
$$

If we have equality, then $y=z=1$ and $x=1$ or 3 . If $x=1$, then $i \neq 1$, and if $x=3$, then $x=3 y z$. Otherwise, $x-y z>0$ so $x-3 y z>0$. That is, $x \geqslant 3 y z$ for all x with $i=1$. Hence, we may choose $r_{1}=4 / 3$ (in Theorem 2.4). By symmetry, we may also choose $r_{2}=4 / 3$.

If $i=3$, then we may assume, without loss of generality, that $y \geqslant x$. By observing how the tree of solutions begins (see Figure 2) and excluding ($1,1,1$), we may further assume that $y \geqslant 3$ and $x \geqslant 1$. Now observe that

$$
2\left(z-\frac{1}{3} x y\right)\left(z-\frac{5}{3} x y\right)=\frac{1}{9} x^{2}\left(y^{2}-9\right)+y^{2}\left(x^{2}-1\right) \geqslant 0 .
$$

Thus, since $z \geqslant x y>x y / 3$, we get $z \geqslant(5 / 3) x y$ for all $\mathbf{x} \neq(1,1,1)$ with $i=3$. This yields $r_{3}=5 / 2$.
EQUATION R_{2}. If $i=1$, then $x \geqslant y \geqslant 1$ and $x \geqslant z \geqslant 1$, so

$$
(x-y z)(x-5 y z)=2 y^{2}\left(z^{2}-1\right)+3 z^{2}\left(y^{2}-1\right) \geqslant 0 .
$$

We have equality if and only if $\vec{x}=(1,1,1)$ or $(5,1,1)$. If $x=1$ then $i \neq 1$, and for $\mathbf{x}=(5,1,1), x=5 y z$. Otherwise, $x>5 y z$, so we may choose $r_{1}=6 / 5$.

If $i=2$, then $y \geqslant x \geqslant 1$ and $y \geqslant z \geqslant 1$, so

$$
2(y-x z)(y-2 x z)=x^{2}\left(y^{2}-1\right)+3 z^{2}\left(x^{2}-1\right)
$$

We have equality only if $(x, y, z)=(1,1,1)$ or $(1,2,1)$. If $y=1$ then $i \neq 2$, and if $y=2$ then $y=2 x z$. Otherwise, $y \geqslant 2 x z$, so we may choose $r_{2}=3$.

We shall split the case when $i=3$ up into two cases. First, let us suppose $z \geqslant y \geqslant x$ and $x \neq(1,1,1)$. Then we may assume $y \geqslant 2$ and $x \geqslant 1$ (see Figure 3), so

$$
3\left(z-\frac{1}{2} x y\right)\left(z-\frac{3}{2} x y\right)=\frac{1}{4} x^{2}\left(y^{2}-4\right)+2 y^{2}\left(x^{2}-1\right) \geqslant 0
$$

Thus, $z \geqslant(3 / 2) x y$. If $z \geqslant x \geqslant y$, then we may assume $x \geqslant 5$ and $y \geqslant 1$ (see Figure 3), so

$$
3\left(z-\frac{1}{5} x y\right)\left(z-\frac{9}{5} x y\right)=x^{2}\left(y^{2}-1\right)+\frac{2}{25} y^{2}\left(x^{2}-25\right) \geqslant 0
$$

Thus, $z \geqslant(9 / 5) x y$. Combining these two inequalities, we get $z \geqslant(3 / 2) x y$ whenever $i=3$ and $x \neq(1,1,1)$. Thus, we may choose $r_{3}=4$.
Equation R_{3}. If $i=1$ and $y \geqslant 2$, then $x \geqslant(5 / 7) y z$ by Lemma 3.1 and equation 18. Note also that

$$
\left(x-\frac{1}{2} y z\right)\left(x-\frac{9}{2} y z\right)=y^{2}\left(z^{2}-1\right)+\frac{5}{4} z^{2}\left(y^{2}-4\right) \geqslant 0
$$

so $x>(9 / 2) y z$. The solutions where $y=1$ are all on the branch rooted at $(2,1,1)$ and generated by ϕ_{1} and ϕ_{3} :

$$
\begin{equation*}
(2,1,1) \longrightarrow(3,1,1) \longrightarrow(3,1,2) \longrightarrow(7,1,2) \longrightarrow(7,1,5) \longrightarrow \ldots . \tag{19}
\end{equation*}
$$

Every other solution on this branch, starting with $(3,1,1)$, has $i=1$. So let us write

$$
\left(x_{n}, 1, z_{n}\right)=\left(\phi_{1} \phi_{3}\right)^{n}(3,1,1) .
$$

We claim that $x_{n} \geqslant 3 z_{n}$, and prove this using induction. It is clearly true for the case when $n=0$. Note that

$$
\left(x_{n+1}, 1, z_{n+1}\right)=\phi_{1} \phi_{3}\left(x_{n}, 1, z_{n}\right)=\left(4 x_{n}-5 z_{n}, 1, x_{n}-z_{n}\right),
$$

and

$$
4 x_{n}-5 z_{n} \geqslant 3\left(x_{n}-z_{n}\right)
$$

if and only if $x_{n} \geqslant 2 z_{n}$. The latter is true by our induction hypothesis, so $x_{n} \geqslant 3 z_{n}$ for all n. Combining this with the case when $y \geqslant 2$, we get $x \geqslant 3 y z$ whenever $i=1$, and hence we can choose $r_{1}=5 / 3$. By symmetry, we may choose $r_{2}=5 / 3$, too.

If $i=3$ and $y \geqslant 2$, then $z \geqslant(5 / 7) x y$ by Lemma 3.1 and equation 18. If $y=1$, then \mathbf{x} is in the branch described above in equation 19. In a similar fashion, let us write

$$
\left(x_{n}, 1, z_{n}\right)=\left(\phi_{3} \phi_{1}\right)^{n}(2,1,1)
$$

We claim that $z_{n} \geqslant(2 / 3) x_{n}$ for $n \geqslant 1$. We note that $\left(x_{1}, 1, z_{1}\right)=(3,1,2)$, so the claim is true in the base case. We note that

$$
\left(x_{n+1}, 1, z_{n+1}\right)=\phi_{3} \phi_{1}\left(x_{n}, 1, z_{n}\right)=\left(5 z_{n}-x_{n}, 1,4 z_{n}-x_{n}\right)
$$

and

$$
\begin{aligned}
4 z_{n}-x_{n} & \geqslant \frac{2}{3}\left(5 z_{n}-x_{n}\right) \\
12 z_{n}-3 x_{n} & \geqslant 10 z_{n}-2 x_{n} \\
2 z_{n} & \geqslant x_{n} .
\end{aligned}
$$

The last is true since $2 z_{n} \geqslant(4 / 3) x_{n}$, by the induction hypothesis. Thus, if $i=3$, then $z \geqslant(2 / 3) x y$ for $\mathbf{x} \neq(2,1,1)$ or $(1,2,1)$. Hence, we may choose $r_{3}=(15) / 2$.

4. Calculations

We calculate C_{m} using the formula for C_{U} in equation 14 . For equation R_{1}, using $U=10^{6}$ we find

$$
C_{(1,1,1)} \approx 0.543809447296
$$

Calculations using $U=10^{10}$ appear to be accurate to 22 digits and take about a second of computing time (using a 500 Mhz Celeron). The constant C_{1} in Theorem 0.1 is obtained by multiplying by 3 , to account for the solutions with negative entries. For equation R_{2}, using $U=10^{6}$, we find

$$
C_{(1,1,1)} \approx .554239131152
$$

The constant C_{2} is 3 times this. Finally, for equation R_{3}, we use $U=10^{7}$ and find

$$
C_{(1,2,1)} \approx .588051990717
$$

The constant C_{3} is 6 times this, to account for solutions with negative entries and solutions in the tree $\mathfrak{T}_{(2,1,1)}$.

5. Applications to other equations

There are several places within the above discussions where we have made use of certain properties of the Rosenberger variations. Specifically, we made use of the following:
(1) If \mathbf{x} is a positive integral solution, than so is $\phi_{i}(\mathbf{x})$ for $i=1,2$, and 3.
(2) Descent, when it occurs, is unique.
(3) If x is an integer solution and $x_{i}=0$ for some i, then $\mathfrak{T}_{\mathrm{x}}$ is finite.

For a particular equation of the form

$$
\begin{equation*}
a x^{2}+b y^{2}+c z^{2}=d x y z+e \tag{20}
\end{equation*}
$$

these properties are no doubt easy to verify, but general results seem overly complicated and not worth pursuing. If the integer solutions in a tree of solutions for an equation of the form equation 20 satisfy these properties, then we may apply Theorem 2.4 to that tree, though some of our arguments may have to be modified (for example, if e is large enough, then the inequalities in Lemma 2.1 change directions). These properties are easy enough to check for the equations studied in [6], where $e=1$. Thus, one need only check the conditions of Theorem 2.4 and calculate C_{U} for large enough U. We have done this, but spare the reader the details. The conditions of Theorem 2.4 are the most difficult items to check. As a consequence, we have the following theorem:

Theorem 5.1. Let

$$
N(T)=\#\left\{\mathbf{x}=(x, y, z) \in \mathbb{Z}^{3}: a x^{2}+b y^{2}+c z^{2}=d x y z+1 \text { and } H(\mathbf{x})<T\right\}
$$

Then, for the equations listed in Table 1,

$$
N(T)=C \log ^{2} T+O\left(\log T(\log \log T)^{2}\right)
$$

where approximations for C are also given.

Equation	Fundamental solution(s)	C
$x^{2}+5 y^{2}+5 z^{2}=5 x y z+1$	$(4,1,2)$ and $(4,2,1)$	3.92062681166
$x^{2}+3 y^{2}+6 z^{2}=6 x y z+1$	$(2,1,1)$	2.22381295435
$2 x^{2}+7 y^{2}+14 z^{2}=14 x y z+1$	$(2,1,1)$	1.85092947320
$2 x^{2}+2 y^{2}+3 z^{2}=6 x y z+1$	$(1,1,1)$	3.04230700308
$6 x^{2}+10 y^{2}+15 z^{2}=30 x y z+1$	$(1,1,1)$	1.86988733010
$x^{2}+2 y^{2}+2 z^{2}=2 x y z+1$	$(3,2,2)$	3.69061353513

Table 1: Equations of the form of equation 5, together with the constants C, accurate to 12 places. The constant C was calculated using $U=10^{6}$.

For equations of the form

$$
\begin{equation*}
x^{2}+b y^{2}+b z^{2}=2 b x y z+1 \tag{21}
\end{equation*}
$$

the conditions of Theorem 2.4 are probably satisfied for every fundamental solution ($1, y, y$), but the number of fundamental solutions with height less than T grows asymptotically like $O(T)$. In [2], such rapid growth was also noted for $b=1$ in equation 21, and for the equations

$$
x^{2}+y^{2}+z^{2}=d x y z+e
$$

where $(d, e)=\left(1, s^{2}+4\right)$ or $\left(2, s^{2}+1\right)$ and $s \in \mathbb{Z}$.

References

[1] A. Baragar, 'Asymptotic growth of Markoff-Hurwitz numbers', Compositio Math. 94 (1994), 1-18.
[2] A. Baragar, 'Products of consecutive integers and the Markoff equation', Aequationes Math. 51 (1996), 129-136.
[3] J.W.S. Cassels, An introduction to Diophantine approximation, (Chapter II) (Cambridge, 1957).
[4] G.H. Hardy, E.M. Wright, An introduction to the theory of numbers (Oxford at the Clarendon Press, Oxford, 1954).
[5] A. Hurwtiz, 'Über eine Aufgabe der unbestimmten analysis', Arch. Math. Phys. 3 (1907), 185-196. Also in A. Hurwitz, Mathematisch Werke Vol. 2, Chapter LXX, 1933 and 1962, 410-421.
[6] Y. Jin, A. Schmidt, 'A Diophantine equation appearing in Diophantine approximation', Indag. Mathem. N.S. 12 (2001), 477-482.
[7] A.A. Markoff, 'Sur les formes binaires indéfinies', Math. Ann. 17 (1880), 379-399.
[8] L.J. Mordell, 'On the integer solutions of the equation $x^{2}+y^{2}+z^{2}+2 x y z=n$ ', J. London Math. Soc. 28 (1953), 500-510.
[9] G. Rosenberger, 'Über die Diophantische Gleichung $a x^{2}+b y^{2}+c z^{2}=d x y z$ ', J. Reine Angew Math. 305 (1979), 122-125.
[10] J.H. Silverman, The arithmetic of elliptic curves (Springer-Verlag, New York, 1986).
[11] D. Zagier, 'On the number of Markoff numbers below a given bound', Math. Comp. 39 (1982), 709-723.

Department of Mathematical Sciences
University of Nevada Las Vegas
4505 Maryland Parkway
Las Vegas, NV 89154-4020
United States of America
e-mail: baragar@unlv.nevada.edu

Department of Mathematical Sciences
Florida Atlantic University
Boca Raton, FL 33431-0991
United States of America
e-mail: kumeda@fau.edu

