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Abstract

Given a partial action θ of a group on a set with an algebraic structure, we construct a reflector of θ in the
corresponding subcategory of global actions and study the question when this reflector is a globalization.
In particular, if θ is a partial action on an algebra from a variety V, then we show that the problem reduces
to the embeddability of a certain generalized amalgam of V-algebras associated with θ. As an application,
we describe globalizable partial actions on semigroups, whose domains are ideals.
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1. Introduction

Recall from [8, Definition 1.2] that a partial action of a group G on a set A is a
collection of bijections θ = {θx : Dx−1 → Dx}x∈G, where Dx ⊆ A and

(i) D1 = A with θ1 = idA;
(ii) θx(Dx−1 ∩ Dy) = Dx ∩ Dxy;
(iii) θx ◦ θy = θxy on Dy−1 ∩ Dy−1 x−1 .

The subsets Dx are called the domains of θ. When A possesses an extra structure,
one naturally assumes that θ respects this structure in some sense. For example, in
the algebra [6], ring [5] or semigroup [7] setting the domains Dx are supposed to be
ideals of A and the partial bijections θx are isomorphisms. An alternative (equivalent)
definition of a partial action, in terms of a partially defined map θ from G × A to A, can
be found in [12] (see Definition 2.1).

A natural way to construct a partial action θ of a group G on a set A is to restrict
a global action of G on some bigger set to A. It was proved by Abadie in [1], in the
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context of partial actions on topological spaces, and independently by Kellendonk and
Lawson in [12] that, up to an isomorphism, each partial action θ of G on A can be
obtained this way. The corresponding global action is called an enveloping action of
θ in [1] and a globalization of θ in [12]. We shall follow the terminology of [12].
Both [1, 12] give the same explicit construction of a globalization of θ, which we
denote by θU . Moreover, it is proved in [12, Theorem 3.4] that θU is universal among
all the globalizations of θ, while [1, Theorem 1.1] contains a stronger result saying that
θU is a reflector of θ in the subcategory of global actions.

For a partial action of a group on an associative algebraA the question of existence
of a globalization was first considered in [6]. If A is unital, then it was proved in [6,
Theorem 4.5] that θ admits a globalization if and only if each ideal Dx is unital. This
criterion was generalized to so-called left s-unital rings in [5, Theorem 3.1]. It was
also used in [9] to prove that a partial action on a semiprime ring is globalizable.

In this paper, we study the globalization problem in the universal algebra setting.
The idea is to construct a reflector of a partial action in the corresponding subcategory
of global actions. Then the problem reduces to the verification of whether the reflector
is a globalization, and whenever it is, such a globalization is automatically universal.

The article is organized as follows. In Section 2 we fix the notations and recall
well-known facts about partial actions of groups on sets and their globalizations. In
Section 3 we introduce the notion of a partial action of a group on a relational system
and show that it admits a universal globalization which is a reflector (see Theorem 3.4).
We proceed to partial actions on (in general, partial) algebras in Section 4. The
domains of such partial actions are assumed to be relative subalgebras. Theorem 4.3
gives a necessary and sufficient condition for the existence of a globalization of a
partial action on a partial algebra, which holds, in particular, when the domains
are subalgebras (see Remark 4.5). In the case of partial actions on total algebras
we begin with the construction of a reflector in the subcategory of global actions,
which uses the concept of the algebra absolutely freely generated by a partial
algebra (see Proposition 4.8 and Remark 4.14), and then show that the reflector is
a globalization in Theorem 4.16. Restricting ourselves to partial actions on algebras
from some fixed variety, we can still construct a reflector (see Corollaries 4.19 and 4.25
and Remark 4.20), which may not be a globalization in general. A characterization of
globalizable partial actions is given in Theorem 4.27.

It turns out that the globalization problem is closely related to the embeddability
problem for generalized amalgams, which was investigated, in the group case, by
Neumann and Neumann in [16–19, 21] (see also the survey [20]). More precisely,
with any partial action θ of a group on an algebra from a variety V we associate a
generalized amalgam A of V-algebras, such that θ is globalizable if and only if A is
embeddable (see Theorem 5.8).

In Section 6 we use Theorem 4.27 and the technique of reduction systems to obtain
a criterion of the existence of a globalization of a partial action θ on a semigroup,
whose domains are ideals (see Theorem 6.1). In particular, when the domains of θ
are idempotent or weakly-reductive semigroups, the partial action is globalizable (see
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Corollary 6.4). If, moreover, the domains of θ are unital ideals, then we show in
Theorem 6.5 that θ is isomorphic to the restriction of a global action to some ideal.

2. Preliminaries

Let A and B be sets. We use the notation f : A d B for a partial map from A to B.
If f (a) is not defined, then we write f (a) = ∅.

It will be convenient to us to use the following equivalent definition of a partial
action, which is due to [12].

Definition 2.1. Let G be a group and A a set. A partial action of G on A is a partial
map θ : G × A d A satisfying:

(i) ∅ , θ(1, a) = a;
(ii) θ(x, a) , ∅ ⇒ ∅ , θ(x−1, θ(x, a)) = a;
(iii) θ(y, a) , ∅ & θ(x, θ(y, a)) , ∅ ⇒ ∅ , θ(xy, a) = θ(x, θ(y, a)).

If θ is everywhere defined, then we say that θ is global.

This definition is equivalent to [8, Definition 1.2] mentioned in the introduction
with Dx = ran θ(x,−) and θx = θ(x,−).

A set A with a partial action θ on it will be denoted by (θ,A). The pairs (θ,A) form a
category pA(G), in which a morphism from (θ, A) to (θ′, A′) is a map ϕ : A→ A′, such
that

θ(x, a) , ∅ ⇒ ∅ , θ′(x, ϕ(a)) = ϕ(θ(x, a)). (2.1)

The full subcategory consisting of the pairs (θ, A) with global θ will be denoted by
A(G).

In what follows, when there is no confusion, we shall write xa for θ(x, a). For
example, (2.1) can be rewritten as

xa , ∅ ⇒ ∅ , xϕ(a) = ϕ(xa). (2.2)

Partial actions appear in the following situation. Suppose that we are given a global
action ϑ of G on B and A ⊆ B. Denote by θ the restriction of ϑ to A, that is the partial
map G × A d A, such that θ(x, a) = b⇔ ϑ(x, a) = b ∈ A for any a ∈ A. Then θ is a
partial action of G on A.

The converse construction is called a globalization.

Definition 2.2. A globalization [1, 12] of a pair (θ, A) ∈ pA(G) is a pair (ϑ, B) ∈ A(G)
with an injective morphism ι : (θ, A)→ (ϑ, B) such that for all x ∈ G and a ∈ A

xa , ∅ ⇔ xι(a) ∈ ι(A). (2.3)

Observe that it is sufficient to require the ‘only if’ part of (2.3), since the ‘if’ part
follows from (2.2). The morphism ι itself will also be called a globalization.

https://doi.org/10.1017/S1446788717000167 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000167


[4] Reflectors and globalizations of partial actions of groups 361

Definition 2.3. A globalization ι : (θ, A) → (ϑ, B) is called universal, if for any
globalization ι′ : (θ, A)→ (ϑ′, B′) there exists a unique morphism κ : (ϑ, B)→ (ϑ′, B′)
such that ι′ = κ ◦ ι.

For any pair (θ, A) there exists a (unique up to an isomorphism) universal
globalization (θU , AU), which can be constructed as follows. Define the equivalence
relation ∼ on G × A:

(x, a) ∼ (y, b) ⇔ ∅ , (y−1x)a = b

and set AU = (G × A)/∼. Let [x, a] be the ∼-class containing (x, a). The action θU of
G on AU has the form x[y, a] = [xy, a], and the map [1,−] sending a ∈ A to [1, a] ∈ AU

is the desired injection. Moreover, note that for any globalization ι : (θ, A)→ (ϑ, B)
the corresponding morphism κ : (θU , AU)→ (ϑ, B) is injective (see [1, Theorem 1.1]
and [12, Theorem 3.4]).

Recall the definition of a reflector (see [14, IV.3] or [23, IV.4]).

Definition 2.4. A subcategory D of a category C is called reflective, if for any object
C ∈ C there exists an object RD(C) ∈ D (called a D-reflector of C) and a morphism
εD(C) : C → RD(C) (a reflector morphism), such that for all D ∈ D and ϕ : C → D
there is a unique ψ : RD(C)→ D in D with ψ ◦ εD(C) = ϕ.

Remark 2.5. The map C 7→ RD(C) is a functor C→ D, which is left adjoint to the
inclusion functor D → C. In particular, any two D-reflectors of C are naturally
isomorphic.

The following fact is due to Abadie (see [1, Theorem 1.1]).

Proposition 2.6. The subcategory A(G) is reflective in pA(G). More precisely, (θU ,AU)
is an A(G)-reflector of (θ, A) ∈ pA(G).

3. Partial actions on relational systems

The basic notions of model theory that we use in this section can be found in [10,
Section 36].

A type of relational systems is a sequence T = {nγ}γ<o(T ) of positive integers indexed
by ordinal numbers. For each γ < o(T ) we fix a symbol ργ of an nγ-ary relation. A
relational system of type T is a pairA = (A,R), where A is a set and R = {(ργ)A}γ<o(T ),
each (ργ)A being an nγ-ary relation on A. We shall write ργ for (ργ)A, if this does not
lead to confusion.

Relational systems of the same type T form a category R(T ). A morphism
ϕ :A→A′ is a map ϕ : A→ A′, such that ϕ(ργ) ⊆ ργ, that is

(a1, . . . , anγ ) ∈ ργ ⇒ (ϕ(a1), . . . , ϕ(anγ )) ∈ ργ.

A systemA is a subsystem of B, if A ⊆ B and (ργ)A = (ργ)B ∩ Anγ .
Let G be a group and A a relational system. By an action of G on A we mean an

action of G on A, which preserves each ργ ∈ R in the sense that xργ ⊆ ργ, that is

(a1, . . . , anγ ) ∈ ργ ⇒ (xa1, . . . , xanγ ) ∈ ργ.
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Remark 3.1. LetB be a relational system andA a subsystem ofB. Then the restriction
of an action of G on B to A satisfies

(a1, . . . , anγ ) ∈ ργ & xa1, . . . , xanγ , ∅ ⇒ (xa1, . . . , xanγ ) ∈ ργ. (3.1)

This motivates the following definition.

Definition 3.2. Let G be a group and A a relational system. A partial action of G on
A is a partial action of G on A satisfying (3.1).

Denote by pA(G,R(T )) the category whose objects are the pairs (θ,A), where
A ∈ R(T ) and θ is a partial action of G on A. A morphism from (θ,A) to (θ′,A′)
is a morphism A→A′ of relational systems, which is at the same time a morphism
of partial actions (θ, A)→ (θ′, A′). The pairs (θ,A) with global θ form a subcategory
A(G,R(T )).

Definition 3.3. A globalization of (θ,A) ∈ pA(G,R(T )) is (ϑ,B) ∈ A(G,R(T )) with an
injective morphism ι : (θ,A)→ (ϑ,B) such that:

(i) ι : (θ, A)→ (ϑ, B) is a globalization in pA(G);
(ii) (ι(a1), . . . , ι(anγ )) ∈ ργ ⇒ (a1, . . . , anγ ) ∈ ργ.

Observe that condition (ii) in Definition 3.3 says that ι(A) = (ι(A), {ι(ργ)}γ) is a
subsystem of B.

Theorem 3.4. Let (θ,A) ∈ pA(G,R(T )). Define AU to be the relational system on AU

with

(ργ)AU = {([x, a1], . . . , [x, anγ ]) | (a1, . . . , anγ ) ∈ (ργ)A, x ∈ G}.

Then (θU ,AU) is a universal globalization of (θ,A) in A(G,R(T )). Moreover, (θU ,AU)
is an A(G,R(T ))-reflector of (θ,A).

Proof. To prove that (θU ,AU) is a globalization, it is sufficient to check (ii) of
Definition 3.3. Let ([1, a1], . . . , [1, anγ ]) ∈ ργ. Then there are x ∈ G and (a′1, . . . , a

′
nγ ) ∈

ργ, such that [1, ai] = [x, a′i], and hence ∅ , xa′i = ai for all i. Therefore, (a1, . . . , anγ ) ∈
ργ by (3.1).

The universality of (θU ,AU) will follow from the reflectivity. Take (ϑ,B) ∈
A(G,R(T )) and ϕ : (θ,A)→ (ϑ,B). According to Proposition 2.6 there is a unique
morphism ψ : (θU , AU)→ (ϑ, B) satisfying ϕ = ψ ◦ [1,−], and we only need to show
that ψ(ργ) ⊆ ργ. Indeed, if ([x, a1], . . . , [x, anγ ]) ∈ ργ, then

ψ([x, a1], . . . , [x, anγ ]) = (xϕ(a1), . . . , xϕ(anγ )) ∈ xϕ(ργ) ⊆ xργ ⊆ ργ. �
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4. Partial actions on algebras

The terminology that we use in this section is due to Grätzer [10].
Let A be a set and n ≥ 0. A partial n-ary operation on A is a partial function

f : An d A, where A0 is by definition a singleton {∅}. If n = 0, then f will be identified
with f (∅) (which may be undefined). We shall frequently use the expressions of the
form f (a1, . . . , an), which for n = 0 should be understood as f .

A type of algebras is a sequence T = {nγ}γ<o(T ) of nonnegative integers indexed by
ordinal numbers. For each γ < o(T ) we fix a symbol fγ of an nγ-ary operation. A
partial algebra of type T is a pair A = (A, F), where A is a set and F = {( fγ)A}γ<o(T ),
each ( fγ)A being a partial nγ-ary operation on A. We shall often omit the index A,
writing fγ for ( fγ)A, ifA is clear from the context. If o(T ) = 1, then we write f for f0
and (A, f ) for (A, { f }).

Let A and B be partial algebras of the same type. A map ϕ : A → B is a
homomorphismA→ B, if

fγ(a1, . . . , anγ ) , ∅⇒ ∅ , fγ(ϕ(a1), . . . , ϕ(anγ )) = ϕ( fγ(a1, . . . , anγ )).

An isomorphism is a bijective homomorphism whose inverse is also a homomorphism.
An equivalence relation Θ on A is a congruence on A, if for all (ai, bi) ∈ Θ,

1 ≤ i ≤ nγ, one has

fγ(a1, . . . , anγ ), fγ(b1, . . . , bnγ ) , ∅⇒ ( fγ(a1, . . . , anγ ), fγ(b1, . . . , bnγ )) ∈ Θ.

The Θ-class of a ∈ A will be denoted by [a]Θ. The quotient set A/Θ has the natural
structure of a partial algebra, which we denote by A/Θ. The map a 7→ [a]Θ is an
epimorphismA→A/Θ, for which we use the notation Θ\. Sometimes it is convenient
to write (a, b) ∈ Θ as a ∼Θ b. Given a homomorphism ϕ :A→ B, the kernel of ϕ is
the congruence kerϕ = {(a, b) ∈ A2 | ϕ(a) = ϕ(b)} onA.

For partial algebras there are several notions of a subalgebra. A partial algebra B is
a relative subalgebra ofA, if B ⊆ A and the partial operations on B are the restrictions
of the partial operations onA to B in the sense that

( fγ)B(b1, . . . , bnγ ) , ∅⇔ ∅ , ( fγ)A(b1, . . . , bnγ ) ∈ B.

If B is closed under all fγ, that is

( fγ)A(b1, . . . , bnγ ) , ∅⇒ ( fγ)A(b1, . . . , bnγ ) ∈ B,

then a relative subalgebra B is called a subalgebra ofA.
Observe that each partial operation f : An d A can obviously be identified with an

(n + 1)-ary relation

ρ = {(a1, . . . , an, f (a1, . . . , an)) | f (a1, . . . , an) , ∅} ⊆ An+1.

Conversely, if ρ ⊆ An+1 satisfies

(a1, . . . , an, b), (a1, . . . , an, c) ∈ ρ ⇒ b = c,
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then ρ comes from some (uniquely defined) f : An d A. When n = 1, this property of ρ
is called functionality. We shall use the same terminology for n , 1 as well. Moreover,
we shall say that a relational system is functional, if all its relations are functional.

Denote by pAl(T ) the category of partial algebras of type T and homomorphisms
between them. As it was observed above, eachA ∈ pAl(T ) can be seen as a functional
relational system R(A) of type T + 1 on A, where T + 1 := {nγ + 1}γ<o(T ). This defines
an embedding functor of pAl(T ) into R(T + 1).

Definition 4.1. Given a group G and A ∈ pAl(T ), a partial action of G on A is by
definition a partial action of G on R(A).

Taking into account (3.1), we see that a partial action of G on A is a partial action
of G on A satisfying

xa1, . . . , xanγ , x fγ(a1, . . . , anγ ) , ∅⇒ ∅ , fγ(xa1, . . . , xanγ ) = x fγ(a1, . . . , anγ ). (4.1)

Here, x fγ(a1, . . . ,anγ ) , ∅ assumes that fγ(a1, . . . ,anγ ) , ∅. If nγ = 0, then (4.1) should
be understood as x fγ , ∅⇒ x fγ = fγ.

Note that (4.1) is equivalent to the fact that θx is an isomorphismDx−1 →Dx, where
Dx is the relative subalgebra on Dx.

The full subcategory of pA(G,R(T + 1)) consisting of partial actions of G on partial
algebras of type T will be denoted by pA(G, pAl(T )). The corresponding subcategory
of global actions is A(G, pAl(T )) = pA(G, pAl(T )) ∩ A(G,R(T + 1)).

Definition 4.2. By a globalization of (θ,A) ∈ pA(G, pAl(T )) in A(G, pAl(T )) we
mean (ϑ,B) ∈ A(G, pAl(T )), such that (ϑ,R(B)) is a globalization of (θ,R(A)) in
A(G,R(T + 1)).

Observe that an injective morphism ι : (θ,A)→ (ϑ,B) is a globalization if and only
if ι(A) is a relative subalgebra of B and (2.3) holds.

Theorem 4.3. There exists a globalization of (θ,A) ∈ pA(G, pAl(T )) in A(G, pAl(T ))
if and only if R(A)U is functional. In this case (θU ,AU) is a universal globalization
of (θ,A) in A(G, pAl(T )), where AU is the partial algebra structure on AU , such that
R(AU) = R(A)U , that is

(ργ)AU ([x, a1], . . . , [x, anγ ]) = [x, ργ(a1, . . . , anγ )].

Moreover, (θU ,AU) is an A(G, pAl(T ))-reflector of (θ,A).

Proof. The ‘if’ part is obvious. For the ‘only if’ part suppose that ι : (θ,A)→ (ϑ,B)
is a globalization of (θ,A) in A(G, pAl(T )). Then by Theorem 3.4 there is an
injective κ : (θU ,R(A)U)→ (ϑ,R(B)) in A(G,R(T + 1)). Since κ(ργ) ⊆ ργ and R(B)
is functional, it follows that R(A)U is also functional. The second affirmation of the
theorem is immediate. �

The following proposition clarifies Theorem 4.3.
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Proposition 4.4. Let (θ,A) ∈ pA(G, pAl(T )). Then (θ,A) is globalizable if and only if

fγ(a1, . . . , anγ ), xa1, . . . , xanγ , ∅⇒ fγ(xa1, . . . , xanγ ) = x fγ(a1, . . . , anγ ). (4.2)

(The equality in (4.2) should be understood in a partial sense. If nγ = 0, then (4.2)
takes the form fγ , ∅⇒ fγ = x fγ.)

Proof. We show that (4.2) is equivalent to the functionality of R(A)U . Assume that
R(A)U is functional and take a1, . . . , anγ ∈ A and x ∈ G for which the left-hand side of
(4.2) holds. If x fγ(a1, . . . , anγ ) , ∅, then ∅ , fγ(xa1, . . . , xanγ ) = x fγ(a1, . . . , anγ ) by
(4.1). Now suppose that fγ(xa1, . . . , xanγ ) , ∅. Observe first that fγ(a1, . . . , anγ ) , ∅
implies

(a1, . . . , anγ , fγ(a1, . . . , anγ )) ∈ ργ ⇒ ([1, a1], . . . , [1, anγ ], [1, fγ(a1, . . . , anγ )]) ∈ ργ
⇒ ([x, a1], . . . , [x, anγ ], [x, fγ(a1, . . . , anγ )]) ∈ ργ.

Similarly xa1, . . . , xanγ , fγ(xa1, . . . , xanγ ) , ∅ yields

([1, xa1], . . . , [1, xanγ ], [1, fγ(xa1, . . . , xanγ )]) ∈ ργ.

But [x, a1] = [1, xa1], . . . , [x, anγ ] = [1, xanγ ], and hence

[x, fγ(a1, . . . , anγ )] = [1, fγ(xa1, . . . , xanγ )].

The latter means that ∅ , x fγ(a1, . . . , anγ ) = fγ(xa1, . . . , xanγ ).
Conversely, assume (4.2) and let

([x, a1], . . . , [x, anγ ], [x, fγ(a1, . . . , anγ )]) ∈ ργ,
([y, b1], . . . , [y, bnγ ], [y, fγ(b1, . . . , bnγ )]) ∈ ργ

with [x, a1] = [y, b1], . . . , [x, anγ ] = [y, bnγ ].

fγ(a1, . . . , anγ ) , ∅, ∅ , (y−1x)a1 = b1, . . . ,∅ , (y−1x)anγ = bnγ

and fγ((y−1x)a1, . . . , (y−1x)anγ ) = fγ(b1, . . . , bnγ ) , ∅. So (y−1x) fγ(a1, . . . , anγ ) is
defined and thus equals fγ(b1, . . . , bnγ ) by (4.2). It follows that

[x, fγ(a1, . . . , anγ )] = [y, fγ(b1, . . . , bnγ )]. �

Remark 4.5. Let (θ,A) ∈ pA(G, pAl(T )), such that Dx is a subalgebra of A for all x.
Then there is a globalization of (θ,A) in A(G, pAl(T )).

Indeed, suppose that fγ(a1, . . . , anγ ), xa1, . . . , xanγ , ∅. The latter means that
a1, . . . , anγ ∈ Dx−1 and fγ(a1, . . . , anγ ) , ∅. Since Dx−1 is a subalgebra, then
fγ(a1, . . . , anγ ) ∈ Dx−1 , that is x fγ(a1, . . . , anγ ) , ∅, and hence (4.1) yields ∅ ,
fγ(xa1, . . . , xanγ ) = x fγ(a1, . . . , anγ ).

The next example shows that the condition thatDx is a subalgebra is not necessary
in general for the existence of a globalization.

Example 4.6. Define f : Z→ Z by f (n) = n + 1. Then Z acts on (Z, f ) by shifts.
Consider the restriction of this action to the relative subalgebra on {1, 2}. Since
D−1 = {1} and f (1) = 2 < D−1, thenD−1 is not a subalgebra.
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4.1. Total algebras. Denote by Al(T ) ⊆ pAl(T ) the subcategory of total algebras of
type T .

Remark 4.7. Let (θ,A) ∈ pA(G, pAl(T )), such that A ∈ Al(T ). Then there exists a
globalization of (θ,A) in A(G, pAl(T )) if and only ifDx is a subalgebra ofA for all x.

Indeed, in this situation (4.2) takes the form

xa1, . . . , xanγ , ∅⇒ fγ(xa1, . . . , xanγ ) = x fγ(a1, . . . , anγ ) (4.3)

(for nγ = 0 this simply means that x fγ = fγ). Since A is total, fγ(xa1, . . . , xanγ ) , ∅,
provided that xa1, . . . , xanγ , ∅, so

xa1, . . . , xanγ , ∅⇒ x fγ(a1, . . . , anγ ) , ∅,

that isDx−1 is a subalgebra.
The full subcategory of pA(G, pAl(T )) formed by the pairs (θ,A) with A ∈ Al(T )

and Dx being a subalgebra of A will be denoted by pA(G, Al(T )). It contains the
subcategory of global actions A(G,Al(T )) = pA(G,Al(T )) ∩ A(G, pAl(T )).

Proposition 4.8. The subcategory A(G,Al(T )) is reflective in pA(G,Al(T )).

Proof. It follows from Theorem 4.3 that A(G, pAl(T )) is reflective in pA(G,Al(T )).
Considering G as the category with one object, observe that A(G, Al(T )) and
A(G, pAl(T )) are isomorphic to the categories of functors from G to Al(T ) and pAl(T ),
respectively. Since Al(T ) is reflective in pAl(T ) by [10, page 182, Corollary 2], then
A(G, Al(T )) is reflective in A(G, pAl(T )) thanks to [23, Proposition IV.4.6]. Thus,
A(G,Al(T )) is reflective in pA(G,Al(T )). �

To give the precise form of an A(G,Al(T ))-reflector of (θ,A) ∈ pA(G,Al(T )), we
recall some basic constructions from universal algebra.

Let X be an arbitrary nonempty set, whose elements are called letters. We define a
word over X as follows:

(i) each x ∈ X is identified with the word x of length l(x) = 1;
(ii) if nγ = 0, then fγ is a word of length l( fγ) = 1;
(iii) if nγ > 0 and w1, . . . ,wnγ are words, then w = fγ(w1, . . . ,wnγ ) is a word of length

l(w) = l(w1) + · · · + l(wnγ ) + 1;
(iv) each word can be obtained using (i)–(iii) finitely many times.

The set W(X) of words over X forms an algebraW(X) under the operations defined in
(ii) and (iii). It is the free algebra of type T over X.

Given A ∈ pAl(T ), consider the free algebra W(A). The value v(w) of w ∈ W(A)
will be defined as follows:

(i) Let a be a letter. Then v(a) = a as an element of A.
(ii) Let nγ = 0. If ( fγ)A , ∅, then v( fγ) = ( fγ)A; otherwise v( fγ) = ∅.
(iii) Let nγ > 0 and w = fγ(w1, . . . , wnγ ). If ∅ , v(wi) = ai, 1 ≤ i ≤ nγ, and ∅ ,

( fγ)A(a1, . . . , anγ ) = a, then v(w) = a; otherwise v(w) = ∅.
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Thus, v is a partial function W(A) d A. It induces a congruence Θ on W(A):
(w,w′) ∈ Θ if and only if either ∅ , v(w) = v(w′), or

w = fγ(w1, . . . ,wnγ ), w′ = fγ(w′1, . . . ,w
′
nγ ), (wi,w′i) ∈ Θ, 1 ≤ i ≤ nγ

(see [10, Theorem 14.1, Lemma 14.1]). The quotient of W(A) by Θ is the algebra
absolutely freely generated by A in the sense of [10, Section 28] (when T = {2}, this
algebra is called the free completion of A in [2, IV.7.3] and the free extension of A
in [13, 2.5.9]. See also [15, V.11.3]). We denote it byW(A) = (W(A), F).

Remark 4.9. The algebra W(A) is an Al(T )-reflector of A ∈ pAl(T ) with a 7→ [a]Θ

being the reflector morphism.

This is explained by [10, Definition 1 on page 180 and Corollary 2 on page 182].
The following proposition clarifies the structure of Θ.

Proposition 4.10. The congruence Θ is generated by the pairs

( fγ(a1, . . . , anγ ), ( fγ)A(a1, . . . , anγ )), (4.4)

where γ < o(T ), a1, . . . , anγ ∈ A and ( fγ)A(a1, . . . , anγ ) , ∅.

Proof. Denote by Θ the congruence generated by (4.4). Obviously, Θ ⊆ Θ, since each
pair (4.4) has the same value ( fγ)A(a1, . . . , anγ ) ∈ A.

For the converse inclusion, we first show by induction on l(w) that (w, v(w)) ∈
Θ for any w ∈ W(A) with v(w) , ∅. Indeed, this is clear, when l(w) = 1. Let
w = fγ(w1, . . . ,wnγ ) with nγ > 0 and v(w) , ∅. Then v(wi) , ∅ for all i and ∅ ,
( fγ)A(v(w1), . . . , v(wnγ )) = v(w). Note that (wi, v(wi)) ∈ Θ. By the induction hypothesis
(wi, v(wi)) ∈ Θ and hence (w, fγ(v(w1), . . . , v(wnγ ))) ∈ Θ. It remains to use (4.4) and
transitivity.

We now prove by induction on l(w) + l(w′) that (w,w′) ∈ Θ⇒ (u, v) ∈ Θ. If l(w) = 1
or l(w′) = 1, then (w,w′) ∈ Θ means that∅ , v(w) = v(w′). Since (w, v(w)), (w′, v(w′)) ∈
Θ, by transitivity (w,w′) ∈ Θ. Now let w = fγ(w1, . . . ,wnγ ), w′ = fδ(w′1, . . . ,w

′
nδ) with

nγ, nδ > 0 and (w,w′) ∈ Θ. If ∅ , v(w) = v(w′), then (w,w′) ∈ Θ as above. Otherwise
nγ = nδ and (wi,w′i) ∈ Θ, 1 ≤ i ≤ nγ. By the induction hypothesis (wi,w′i) ∈ Θ for all i.
Then clearly (w,w′) ∈ Θ. �

Remark 4.11. Each partial action θ of G on a set A naturally extends to a partial action
θ̄ of G onW(A) by the rule:

(i) if w = a is a letter, then θ̄(x,w) , ∅⇔ θ(x, a) , ∅, and θ̄(x,w) = θ(x, a) in this
case;

(ii) if nγ = 0 and w = fγ, then θ̄(x,w) = fγ;
(iii) if nγ > 0 and w = fγ(w1, . . . ,wnγ ), then θ̄(x,w) , ∅⇔ θ̄(x,wi) , ∅ for 1 ≤ i ≤ nγ,

and θ̄(x,w) = fγ(θ̄(x,w1), . . . , θ̄(x,wnγ )) in this case.

Indeed, (i)–(iii) of Definition 2.1 for θ̄ can be easily proved by induction on l(w),
and (4.3) is immediate. Note also that θ̄(x,w) , ∅⇔ θ(x, a) , ∅ for any letter a of
w ∈ W(A).
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Proposition 4.12. The pair (θ̄,W(A)) is a reflector of (θ, A) ∈ pA(G) in the category
pA(G,Al(T )) seen as a subcategory of pA(G), the reflector morphism is the inclusion
i : A→ W(A).

Proof. The fact that i is a morphism (θ, A) → (θ̄,W(A)) is trivial. Let (ϑ,B) ∈
pA(G,Al(T )) and ϕ be a morphism (θ, A)→ (ϑ, B) in pA(G). There exists a (unique)
homomorphism ϕ̄ :W(A)→B which extends the map ϕ : A→ B. It remains to check
(2.2), which can be easily done by induction on l(w). �

Proposition 4.13. Given (θ,A) ∈ A(G, pAl(T )), the map θ(x, [w]Θ) = [θ̄(x,w)]Θ is a
well-defined action of G onW(A). Moreover, the pair (θ,W(A)) is an A(G,Al(T ))-
reflector of (θ,A), the reflector morphism being a 7→ [a]Θ.

Proof. To prove that θ is well defined, it suffices to note that the image of a pair (4.4)
under θ̄(x,−) is again a pair of the form (4.4). Then clearly (θ,W(A)) ∈ A(G,Al(T )).

Since θ(x, [a]Θ) = [θ̄(x, a)]Θ = [θ(x, a)]Θ, the second assertion of the proposition
follows from Remark 4.9 together with Propositions IV.4.1 and IV.1.13 and the
observation before Proposition IV.4.6 from [23]. �

The next remark complements Proposition 4.8.

Remark 4.14. The pair (θU,W(AU)), where θU(x, [w]Θ) = [θU(x,w)]Θ for w ∈W(AU),
is an A(G, Al(T ))-reflector of (θ,A) ∈ pA(G, Al(T )). The reflector morphism maps
a ∈ A to the Θ-class [1, a]Θ ∈ W(AU) of the one-letter word [1, a] ∈ W(AU).

Definition 4.15. A globalization of (θ,A) ∈ pA(G, Al(T )) in A(G, Al(T )) is a
globalization of (θ,A) in A(G, pAl(T )) which belongs to A(G,Al(T )).

Theorem 4.16. Each (θ,A) ∈ pA(G, Al(T )) admits a globalization in A(G, Al(T )).
Moreover, (θU,W(AU)) is a universal globalization of (θ,A) in A(G,Al(T )).

Proof. It is enough to prove that (θU,W(AU)) is a globalization of (θ,A) in
A(G, Al(T )). Taking into account [10, Theorem 14.2], we see that the reflector
morphism (θ,A)→ (θU,W(AU)) is injective, as [1,−] is injective and Θ\ restricted
to the set of one-letter words [x, a] ∈ W(AU) is injective. It remains to check (2.3).
Suppose that there are a, b ∈ A, such that [1, b]Θ = θU(x, [1, a]Θ) = [x, a]Θ. By [10,
Theorem 14.2] one has [1, b] = [x, a] and hence θ(x, a) , ∅. �

Remark 4.17. Let (θ, A) ∈ pA(G). Then a universal globalization of (θ̄,W(A)) in
A(G,Al(T )) is isomorphic to (θU ,W(AU)).

4.2. Algebras with identities. Let T = {nγ}γ<o(T ) be a type of algebras and X a set.
An identity over X is a pair of words w,w′ ∈ W(X) written as an equality w = w′.
An algebra A satisfies an identity w = w′, if for any homomorphism ϕ :W(X)→A
one has ϕ(w) = ϕ(w′). Given a set of identities Σ, the variety of algebras of type T
determined by Σ is the class Al(T,Σ) of algebras of type T satisfying each σ ∈ Σ.

We now fix T and Σ and set V = Al(T,Σ). The variety V can be seen as a full
subcategory of Al(T ).
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Proposition 4.18. The subcategory V is reflective in Al(T ).

Proof. Let A ∈ Al(T ). Define Φ to be the congruence on A generated by the
pairs (ϕ(w), ϕ(w′)), where (w,w′) ∈ Σ and ϕ :W(X)→A is a homomorphism. By
Birkhoff’s theorem A/Φ ∈ V (see [10, Theorem 26.3]), and it is easy to check that
A/Φ is a V-reflector ofA. �

Let G be a group. The embedding V ⊆ Al(T ) naturally defines the categories
A(G,V) ⊆ pA(G,V) ⊆ pA(G,Al(T )).

Corollary 4.19. The subcategory A(G,V) is reflective in pA(G,V).

Indeed, using Proposition 4.18 and the same argument as in the proof of
Proposition 4.8, one concludes that A(G,V) is reflective in A(G,Al(T )). Moreover,
A(G, Al(T )) is reflective in pA(G, Al(T )) by Proposition 4.8, therefore, A(G, V) is
reflective in pA(G,Al(T )). In particular, A(G,V) is reflective in pA(G,V).

Remark 4.20. The pair (θ̃U,W(AU)/Φ), where

θ̃U(x, [[w]Θ]Φ) = [θU(x, [w]Θ)]Φ = [[θU(x,w)]Θ]Φ

for w ∈ W(AU), is an A(G,V)-reflector of (θ,A) ∈ pA(G,V). The reflector morphism
is Φ\ ◦ Θ\ ◦ [1,−].

We would like to write the reflector in a more convenient form. To this end we need
some observations about congruences on abstract algebras.

The next fact is immediate.

Lemma 4.21. Let ϕ : A→ B be a homomorphism and Θ a congruence on B. Then
ϕ−1(Θ) is a congruence onA.

GivenA ∈ Al(T ) and ρ ⊆ A2, by ρ∗ we denote the congruence onA generated by ρ.
It is the intersection of all the congruences onA containing ρ.

Lemma 4.22. Let ρ ⊆ A2 and ϕ :A→ B be a homomorphism. Then ϕ(ρ)∗ = ϕ(ρ∗)∗.

Proof. Clearly, ϕ(ρ)∗ ⊆ ϕ(ρ∗)∗, as ρ ⊆ ρ∗. For the converse inclusion observe that
ϕ(ρ∗) ⊆ ϕ(Θ) for any congruence on A, such that Θ ⊇ ρ. In particular using
Lemma 4.21 we may take Θ of the form ϕ−1(Θ′), where Θ′ is a congruence on B.
Thus, ϕ(ρ∗) ⊆ ϕ(ϕ−1(Θ′)) ⊆ Θ′ for any Θ′ on B with ϕ−1(Θ′) ⊇ ρ. It remains to note
that the latter inclusion is equivalent to Θ′ ⊇ ϕ(ρ). �

Proposition 4.23. LetA ∈ Al(T ), ρ,σ ⊆ A2 and P = ρ∗, Σ = σ∗. Then (A/P)/P\(σ)∗ �
(A/Σ)/Σ\(ρ)∗.

Proof. We shall prove (A/P)/P\(σ)∗ � A/(ρ ∪ σ)∗ (the fact that (A/Σ)/Σ\(ρ)∗ �
A/(ρ ∪ σ)∗ is symmetric). Clearly, P = ρ∗ ⊆ (ρ ∪ σ)∗, so by [10, Theorem 11.4] one
has A/(ρ ∪ σ)∗ � (A/P)/((ρ ∪ σ)∗/P), where (ρ ∪ σ)∗/P is the congruence on A/P
defined by

(P\(a), P\(b)) ∈ (ρ ∪ σ)∗/P⇔ (a, b) ∈ (ρ ∪ σ)∗.

https://doi.org/10.1017/S1446788717000167 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000167


370 M. Khrypchenko and B. Novikov [13]

Observe that (ρ ∪ σ)∗/P is exactly P\((ρ ∪ σ)∗), and since the latter is a congruence,
by Lemma 4.22 it coincides with P\(ρ ∪ σ)∗. But P\(ρ ∪ σ)∗ = P\(σ)∗, as P\(ρ) is the
equality relation. �

Since W(X) is free over X in Al(T ), then its reflector W(X)/Φ in V, denoted by
WV(X) = (WV(X),F), will be free over X in V. It is the so-called free algebra over X in
the variety V. We shall need the injectivity of the map X → WV(X), x 7→ [x]Φ. To this
end we assume that V contains nontrivial algebras (see [10, page 163, Corollary 2]).

LetA ∈ pAl(T ). Applying Φ\ to the generators (4.4) of the congruence Θ onW(A),
we obtain the pairs

(( fγ)WV(A)(a1, . . . , anγ ), ( fγ)A(a1, . . . , anγ )) ∈ WV(A)2, (4.5)

where ( fγ)A(a1, . . . , anγ ) , ∅, and the elements of A are identified with their images in
WV(A). The congruence onWV(A) generated by (4.5) will be denoted by ΘV and the
corresponding quotient algebra byWV(A) = (WV(A), F).

Corollary 4.24. The algebraW(A)/Φ is isomorphic toWV(A).

Indeed, each homomorphism ϕ :W(X)→W(A) has the form Θ\ ◦ φ, for some
homomorphism φ :W(X)→W(A). Therefore, the generators of Φ onW(A) are the
images under Θ\ of the generators of the analogous congruence onW(A). It remains
to apply Proposition 4.23.

Corollary 4.25. The pair (θU
V ,WV(AU)), where

θU
V (x, [[w]Φ]ΘV) = [[θU(x,w)]Φ]ΘV

for w ∈W(AU), is an A(G,V)-reflector of (θ,A) ∈ pA(G,V). The reflector morphism is
Θ
\
V ◦ Φ\ ◦ [1,−].

This follows from Remark 4.20 and Corollary 4.24.

Definition 4.26. A globalization of (θ,A) ∈ pA(G,V) in A(G,V) is a globalization of
(θ,A) in A(G,Al(T )) which belongs to A(G,V).
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Theorem 4.27. There exists a globalization of (θ,A) ∈ pA(G,V) in A(G,V) if and only
if

([x, a], [y, b]) ∈ ΘV ⇒ [x, a] = [y, b] (4.6)

for all [x, a], [y, b] ∈ AU seen as the elements of WV(AU). In this case the reflector
(θU

V ,WV(AU)) is a universal globalization of (θ,A) in A(G,V).

Proof. If (θ,A) is globalizable, then the reflector of (θ,A) is its globalization. Suppose
that

([x, a], [y, b]) ∈ ΘV. (4.7)

Then y−1x[1, a]ΘV = y−1[x, a]ΘV = [1, b]ΘV . Hence, (y−1x)a , ∅ by (2.3) and thus
[x, a] = [y, (y−1x)a]. It follows from (4.7) that [1, (y−1x)a]ΘV = [1, b]ΘV . Therefore,
(y−1x)a = b, since the reflector morphism is injective in this case. So, [x, a] = [y, b].

Conversely, assume (4.6). We shall prove that the reflector is a globalization. It
immediately follows that the reflector morphism is injective. Let us verify (2.3). If
[1, b]ΘV = x[1, a]ΘV = [x, a]ΘV , then [1, b] = [x, a], so ∅ , xa = b. �

The following example is inspired by [6, Example 3.5].

Example 4.28. Let Sem be the variety of semigroups. Consider S = (S , ·) ∈ Sem,
where S = {0, u, v, t} with 0 being zero and

u2 = v2 = t2 = uv = vu = ut = tu = 0, vt = tv = u.

Take G = 〈x | x2 = 1〉 and define θ : G × S d S by x0 = 0, xu = v, xv = u, xt = ∅,
θ(1,−) = idS . Then (θ,S) ∈ pA(G,Sem). Observe that in WSem(SU)

[1, v] = [x, u] ∼ΘSem [x, v][x, t] = [1, u][x, t] ∼ΘSem [1, t][1, v][x, t]
= [1, t][x, u][x, t] ∼ΘSem [1, t][x, 0] = [1, t][1, 0] ∼ΘSem [1, 0].

Consequently, (θ,S) is not globalizable in A(G,Sem) by Theorem 4.27.

5. Partial actions and generalized amalgams

Let V = Al(T,Σ) be a fixed variety of algebras. The following definitions should be
well-known, but we could not find an appropriate reference.

Definition 5.1. By a (generalized) amalgam of V-algebras we mean a triple

A = [{Ai}i∈I , {Ai j}i, j∈I , {αi j}i, j∈I],

where Ai ∈ V, Ai j is a subalgebra of Ai and αi j is an isomorphism Ai j →A ji with
α ji = α−1

i j , i, j ∈ I (for convenience we shall assume that Aii = Ai and αii = id).

Definition 5.2. We say that an amalgam A is embeddable into an algebra A ∈ V, if
there exist injective morphisms ϕi : Ai →A, such that ϕ j ◦ αi j = ϕi|Ai j and ϕi(Ai) ∩
ϕ j(A j) = ϕi(Ai j) (which coincides with ϕ j(A ji)).
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Definition 5.3. Given an amalgam A, the quotient of the free algebra WV(
⊔

Ai) by
the congruence N generated by⋃

k,γ

{(( fγ)WV(
⊔

Ai)(a1, . . . , anγ ), ( fγ)Ak (a1, . . . , anγ )) | a1, . . . , anγ ∈ Ak} (5.1)

∪ {(a, αi j(a)) | i, j ∈ I, a ∈ Ai j}, (5.2)

will be denoted by
∏∗
Ai j=A ji

Ai and called the free product of algebras Ai with
amalgamated subalgebrasAi j.

The maps νi(a) = [a]N , a ∈ Ai, are homomorphisms Ai →
∏∗
Ai j=A ji

Ai, as N
contains (5.1), and they satisfy ν j ◦ αi j = νi|Ai j , since N contains (5.2). Moreover,∏∗
Ai j=A ji

Ai is universal among the algebras with such properties, as the next lemma
shows.

Lemma 5.4. Let A be an amalgam,A ∈ V and ϕi :Ai →A homomorphisms satisfying
ϕ j ◦ αi j = ϕi|Ai j . Then there is a unique homomorphism ψ :

∏∗
Ai j=A ji

Ai→A, such that
ψ ◦ νi = ϕi.

Proof. The map φ :
⊔

Ai → A, φ|Ai = ϕi, uniquely extends to a homomorphism
φ̄ : WV(

⊔
Ai) → A. Clearly, the generators (5.1) belong to ker φ̄, as ϕi are

homomorphisms. Since φ̄ ◦ αi j = ϕ j ◦ αi j = ϕi|Ai j = φ̄|Ai j , the generators (5.2) also
belong to ker φ̄. Hence, there exists ψ :

∏∗
Ai j=A ji

Ai →A satisfying ψ ◦ N\ = φ̄, and it
is uniquely defined on the generators νi(a) of

∏∗
Ai j=A ji

Ai by ψ ◦ νi(a) = ϕi(a). �

Lemma 5.5. An amalgam A is embeddable into a V-algebra if and only if it is
embeddable into

∏∗
Ai j=A ji

Ai.

Proof. The ‘if’ part is trivial. For the ‘only if’ part suppose that there are morphisms
ϕi :Ai →A, which determine an embedding of A intoA. By Lemma 5.4 there exists
ψ :
∏∗
Ai j=A ji

Ai →A, such that ψ ◦ νi = ϕi. Since ϕi is injective, it follows that νi is
also injective.

Obviously, νi(Ai j) = ν j(A ji) ⊆ νi(Ai) ∩ ν j(A j). Now if a = νi(b) = ν j(c) ∈ νi(Ai) ∩
ν j(A j) for b ∈ Ai and c ∈ A j, then ψ(a) = ϕi(b) = ϕ j(c) ∈ ϕi(Ai) ∩ ϕ j(A j) = ϕi(Ai j). It
follows from the injectivity of ϕi that b ∈ Ai j. Hence, a ∈ νi(Ai j), and thus νi(Ai) ∩
ν j(A j) = νi(Ai j). �

Proposition 5.6. An amalgam A is embeddable into a V-algebra if and only if

(a, b) ∈ N ⇒ a ∈ Ai j & αi j(a) = b (5.3)

for all a ∈ Ai and b ∈ A j seen as elements of WV(
⊔

Ai).

Proof. By Lemma 5.5 the amalgam A is embeddable if and only if νi : Ai →∏∗
Ai j=A ji

Ai is injective and νi(Ai) ∩ ν j(A j) = νi(Ai j). One immediately sees that the
injectivity of νi is equivalent to (5.3) with i = j.

Now, assuming injectivity of νi for all i, we show that for i , j the implication (5.3)
is equivalent to the inclusion νi(Ai) ∩ ν j(A j) ⊆ νi(Ai j) (the converse inclusion is always
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true). Let νi(Ai) ∩ ν j(A j) ⊆ νi(Ai j). If a ∈ Ai, b ∈ A j and (a, b) ∈ N, then νi(a) = ν j(b).
It follows that νi(a) ∈ νi(Ai j), and hence a ∈ Ai j in view of the injectivity of νi. Now
νi(a) = ν j(αi j(a)), so we conclude from the injectivity of ν j that αi j(a) = b. Conversely,
suppose that (5.3) holds. For any c ∈ νi(Ai) ∩ ν j(A j) there are a ∈ Ai and b ∈ A j such
that c = νi(a) = ν j(b). Then (a, b) ∈ N, so a ∈ Ai j by (5.3). Consequently, c ∈ νi(Ai j). �

With any (θ,A) ∈ pA(G,V) we shall associate the amalgam

A(θ,A) = [{Ax}x∈G, {Ax,y}x,y∈G, {αx,y}x,y∈G],

whereAx is a copy ofA,Ax,y =Dx−1y and αx,y = θy−1 x for all x, y ∈ G.

Proposition 5.7. Given (θ,A) ∈ pA(G, V), the algebra WV(AU) is isomorphic to∏∗
Ax,y=Ay,x

Ax.

Proof. For any a ∈ A denote by ax the copy of a in Ax. Given [x,a] ∈ AU , set ψ([x,a]) =

[ax]N . Observe that if [x,a] = [y,b], that is (y−1x)a = b, then ax ∈ Ax,y and αx,y(ax) = by.
So, ψ([x, a]) = ψ([y, b]). Thus, ψ is a well-defined map AU →WV(

⊔
Ax)/N, and hence

it extends to a homomorphism WV(AU)→
∏∗
Ax,y=Ay,x

Ax, which we denote by the
same letter. Moreover,

ψ(( fγ)WV(AU )([x, a1], . . . , [x, anγ ])) = [( fγ)WV(
⊔

Ax)((a1)x, . . . , (anγ )x)]N

= [( fγ)Ax ((a1)x, . . . , (anγ )x)]N

= [( fγ)A(a1, . . . , anγ )x]N

= ψ([x, ( fγ)A(a1, . . . , anγ )])
= ψ(( fγ)AU ([x, a1], . . . , [x, anγ ])).

Therefore, ψ induces a homomorphism ψ̄ :WV(AU)→
∏∗
Ax,y=Ay,x

Ax, such that ψ =

ψ̄ ◦ Θ
\
V. Note that ψ̄ maps a generator [x, a]ΘV of WV(AU) to the generator [ax]N of∏∗

Ax,y=Ay,x
Ax.

We now define η :WV(
⊔

Ax)→ WV(AU) by η(ax) = [x, a]ΘV . Observe that

η(( fγ)WV(
⊔

Ax)((a1)x, . . . , (anγ )x)) = [( fγ)WV(AU )([x, a1], . . . , [x, anγ ])]ΘV

= [( fγ)AU ([x, a1], . . . , [x, anγ ])]ΘV

= [x, ( fγ)A(a1, . . . , anγ )]ΘV

= η(( fγ)A(a1, . . . , anγ )x)
= η(( fγ)Ax ((a1)x, . . . , (anγ )x)).

Moreover, for ax ∈ Ax,y = Dx−1y one has [x, a] = [y, (y−1x)a], so η(ax) = η(((y−1x)a)y) =

η(αx,y(ax)). Thus, there exists a homomorphism η̄ :
∏∗
Ax,y=Ay,x

Ax →WV(AU) with
η = η̄ ◦ N\. It maps a generator [ax]N of

∏∗
Ax,y=Ay,x

Ax to the generator [x, a]ΘV of
WV(AU).

It remains to note that the compositions η̄ ◦ ψ̄ and ψ̄ ◦ η̄ are identity on the
generators. �
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Theorem 5.8. Let (θ,A) ∈ pA(G,V). There exists a globalization of (θ,A) in A(G,V)
if and only if A(θ,A) is embeddable into a V-algebra.

Proof. By Theorem 4.27, the pair (θ,A) is globalizable in A(G,V) if and only if (4.6)
is satisfied. Observe using the isomorphism from Proposition 5.7 that

([x, a], [y, b]) ∈ ΘV ⇔ (ax, by) ∈ N.

Moreover,

[x, a] = [y, b]⇔ a ∈ Dx−1y & (y−1x)a = b⇔ ax ∈ Ax,y & αx,y(ax) = by.

Thus, (4.6) is equivalent to (5.3), the latter being a criterion of embeddability of
A(θ,A) into a V-algebra by Proposition 5.6. �

Corollary 5.9. Suppose that V has the amalgamation property [10, page 395] (for
example, this holds for groups, inverse semigroups, but does not hold for semigroups).
Then any partial action of a group of order 2 on a V-algebra admits a globalization.

Corollary 5.10. Let V be a variety andA ∈ V be retractable [4, page 143]. Consider
(θ,A) ∈ pA(G,V), such that Dx is the minimal subalgebra of A for all x , 1. Then
(θ,A) has a globalization in A(G, V), which is an action of G on the free product∏∗

x∈GAx of copies ofA (see also [5, Example 3.5]).

In what follows Grp denotes the variety of groups.

Remark 5.11. Given (θ,H) ∈ pA(G,Grp), the amalgam A(θ,H) satisfies the necessary
conditions 3.0 from [16]: if Hx,y,z := Hx,y ∩ Hx,z, then αx,y(Hx,y,z) = Hy,z,x and for any
h ∈ Hx,y,z one has αy,z ◦ αx,y(h) = αx,z(h).

Indeed, by (ii) of [8, Definition 1.2] y−1x(Dx−1y ∩ Dx−1z) = Dy−1z ∩ Dy−1 x, and
z−1y(y−1x · h) = z−1x · h thanks to (iii) of Definition 2.1.

Corollary 5.12. Let (θ,H) ∈ pA(G,Grp). Each one of the following conditions is
sufficient for (θ,H) to have a globalization in A(G,Grp):

(i) H is locally cyclic;
(ii) |G| = 3 andH is abelian.

Indeed, (i) follows from [18, Theorem 6.1] saying that an amalgam of locally cyclic
groups is embeddable into a group (and even into an abelian group); (ii) is explained
by the fact that an amalgam of three abelian groups is embeddable into an (abelian)
group (see [19, 9.0]).

The following example shows that the result of (ii) of Corollary 5.12 cannot be
extended to nonabelianH .

Example 5.13. Let G = 〈x | x3 = 1〉,H = 〈a, b | a−1ba = b2〉 and θx : 〈a〉 → 〈b〉, θx(a) =

b. Then (θ,H) ∈ pA(G,Grp) and (θ,H) does not have a globalization in A(G,Grp).
Indeed, A(θ,H) is the amalgam from [20, page 549], whose free product with
amalgamated subgroups is the trivial group.

https://doi.org/10.1017/S1446788717000167 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000167


[18] Reflectors and globalizations of partial actions of groups 375

Remark 5.14. Note that the partial action (θ,H) from Example 5.13 has no
globalization in A(G,Sem) as well, since otherwise its amalgam A(θ,H) would be
embeddable in the (semigroup) amalgamating product

∏∗
Hx,y=Hy,x

Hx, which is in fact
a group, so (θ,H) would be globalizable in A(G,Grp). In particular, this gives us
an example of a nonglobalizable partial action of a group of order 3 on an inverse
semigroup.

6. Partial actions on semigroups whose domains are ideals

Let Alg be the variety of (associative, not necessarily unital) algebras over a fixed
field. In [6] the authors considered (θ,A) ∈ pA(G,Alg) with Dx being an ideal in A
for all x ∈ G. By an enveloping action of (θ,A) was meant (ϑ,B) ∈ A(G,Alg) with an
injective morphism ι : (θ,A)→ (ϑ,B), such that ι(A) is an ideal in B and

⋃
x∈G xι(A)

generatesB. Theorem 4.5 from [6] says that (θ,A) with unitalA admits an enveloping
action exactly when the idealsDx are unital algebras.

The above result extends to partial actions on (left) s-unital rings (this means that
a ∈ Aa for all a ∈ A). If allDx are s-unital and some extra condition on multipliers of
A holds, then a globalization exists and it is unique [5, Theorem 3.1]. Observe that an
s-unital ringA is idempotent in the sense thatA2 =A, so one could ask if there is an
analogue of the globalization theorems for idempotent rings. We shall give an answer
to the question in the context of partial actions on semigroups.

Another class of rings, partial actions on which have been well studied, are
semiprime rings. Recall thatA is semiprime, whenever aAa = 0⇒ a = 0 for all a ∈ A.
Any partial action of G on a semiprime ring A, whose domains are nonzero ideals
of A, admits a globalization, as it was proved in [9, Theorem 1.6]. Observe that the
multiplicative semigroup of a semiprime ring is reductive, in particular, it is weakly
reductive (see [3, pages 9–11]).

Theorem 6.1. Let (θ,S) ∈ pA(G,Sem), such that Dx is an ideal of S for all x ∈ G.
Then (θ,S) has a globalization in A(G,Sem) if and only if

x(x−1(su)t) = sx(x−1(u)t) (6.1)

for all x ∈ G, u ∈ Dx and s, t ∈ S .

Proof. The ‘only if’ part is obvious: if (ϑ,T ) is a globalization of (θ,S), then (6.1)
trivially holds for (ϑ,T ), and hence, in particular, for (θ,S).

For the ‘if’ part observe that ΘSem is generated by the following abstract reduction
system [22, Definition 1.1.1]:

(WSem(SU), {w[x, s][x, t]w′ → w[x, st]w′ | w,w′ ∈ WSem(SU), x ∈ G, s, t ∈ S }).

Moreover, each one-letter word [x, s] is a normal form [22, Definition 1.1.13(i)]. So,
in view of Theorem 4.27 the pair (θ,S) is globalizable if and only if→ has the unique
normal form property [22, Definition 1.1.13(v)].
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Since l(w[x, st]w′) < l(w[x, s][x, t]w′), the relation → is strongly normalizing [22,
Definition 1.1.13(iii)], so by [22, Theorem 1.2.1 and (i) of Theorem 1.2.2] it suffices
to prove that→ is weakly confluent [22, Definition 1.1.8(iii)]. It is clearly enough to
consider the reductions of a word of the form [x, s][x, u][y, t], where [x, u] = [y, v], that
is

[x, s][x, u][y, t]→ [x, su][y, t],
[x, s][x, u][y, t]→ [x, s][y, vt].

Note that u belongs to the ideal Dx−1y and therefore

[x, su][y, t] = [y, (y−1x)(su)][y, t]→ [y, (y−1x)(su)t]. (6.2)

Similarly it follows from v = (y−1x)u ∈ Dy−1 x that

[x, s][y, vt] = [x, s][x, (x−1y)((y−1x)(u)t)]→ [x, s(x−1y)((y−1x)(u)t)]. (6.3)

By (6.1) the reductions (6.2) and (6.3) give the same word. �

Remark 6.2. If |G| = 2, then, in view of Theorem 5.8, the result of Theorem 6.1 is a
particular case of [11, Theorem 1].

Remark 6.3. Observe that in Example 4.28 the domain Dx = {0, u, v} is an ideal of S,
but x(x−1(tu)t) = 0 , u = tx(x−1(u)t).

Corollary 6.4. Under the conditions of Theorem 6.1 each one of the following
assumptions is sufficient for (θ,S) to be globalizable in A(G,Sem):

(i) Dx is idempotent for all x ∈ G\{1};
(ii) Dx is weakly reductive for all x ∈ G\{1}.

In particular, (i) (as well as (ii)) is true, when S is inverse or eachDx is unital.

Indeed, it is enough to check (6.1) for x , 1. If u′, u′′ ∈ Dx−1 , then x(x−1(su′u′′)t) =

su′x(x−1(u′′)t) = sx(x−1(u′u′′)t), so (i) implies (6.1). Assuming now (ii) and taking
v′, v′′ ∈ Dx, we obtain (6.1) as a consequence of v′x(x−1(su)t) = x(x−1(v′su)t) =

v′sx(x−1(u)t) and x(x−1(su)t)v′′ = sux(tx−1(v′′)) = sx(x−1(u)t)v′′.
For partial actions whose domains are unital ideals a stronger result holds.

Theorem 6.5. Suppose thatDx is unital, that is Dx = 1xS for some central idempotent
1x ∈ S . Set [x, s] ∗ [y, t] = [x, s(x−1y)(1y−1 xt)]. Then ∗ is a well-defined associative
operation on SU . Moreover, (θU , (SU , ∗)) is a (nonuniversal) globalization of (θ,S) in
A(G,Sem) and [1, S ] is a (unital) ideal of (SU , ∗).

Proof. First of all notice that

x(1x−1 1y) = 1x1xy (6.4)

for all x, y ∈ G. Indeed, this follows from (ii) of [8, Definition 1.2] and the fact that
Dx ∩ Dy = DxDy = 1x1yS for arbitrary x, y ∈ G.
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We now prove that ∗ is well defined. Suppose that

[x, s] = [z, u], (6.5)
[y, t] = [w, v]. (6.6)

We need to show that

[x, s(x−1y)(1y−1 xt)] = [z, u(z−1w)(1w−1zv)]. (6.7)

It follows from (6.5) that

(z−1x)(s(x−1y)(1y−1 xt)) = u(z−1x)(1x−1z(x−1y)(1y−1 xt)). (6.8)

Observe using (6.4) that

(z−1x)(1x−1z(x−1y)(1y−1 xt)) = (z−1x)(1x−1z1x−1y(x−1y)(1y−1 xt))

= (z−1x)((x−1y)(1y−1z1y−1 xt))

= (z−1y)(1y−1z1y−1 xt). (6.9)

Using (6.4) and (6.6), we see that

(z−1y)(1y−1z1y−1 xt) = (z−1w)((w−1y)(1y−1z1y−1 xt)) = (z−1w)(1w−1z1w−1 xv). (6.10)

Thus, by (6.4), (6.5) and (6.8)–(6.10)

(z−1x)(s(x−1y)(1y−1 xt)) = u(z−1w)(1w−1z1w−1 xv)

= u1z−1 x(z−1w)(1w−1zv)

= u(z−1w)(1w−1zv),

proving (6.7).
For the associativity of ∗ take [x, s], [y, t], [z, u] ∈ SU and observe that

([x, s] ∗ [y, t]) ∗ [z, u] = [x, s(x−1y)(1y−1 xt)] ∗ [z, u]

= [x, s(x−1y)(1y−1 xt)(x−1z)(1z−1 xu)], (6.11)

[x, s] ∗ ([y, t] ∗ [z, u]) = [x, s] ∗ [y, t(y−1z)(1z−1yu)]

= [x, s(x−1y)(1y−1 xt(y−1z)(1z−1yu))]. (6.12)

To prove that (6.11) coincides with (6.12), it suffices to show that

1x−1y(x−1z)(1z−1 xu) = (x−1y)(1y−1 x(y−1z)(1z−1yu)),

the latter being explained by (6.9).
Clearly, [1, s] ∗ [1, t] = [1, st], so the map [1, −] is a monomorphism S →

(SU , ∗). Moreover, [1, s] ∗ [x, t] = [1, sx(1x−1 t)] and [x, t] ∗ [1, s] = [x, tx−1(1xs)] =

[1, x(tx−1(1xs))], so [1, S ] is an ideal of (SU , ∗).
We finally prove that (θU , (SU , ∗)) is a globalization of (θ,S) in A(G,Sem). It is

enough to show that θU respects ∗. For [x, s], [y, t] ∈ SU and z ∈ G one has

z([x, s] ∗ [y, t]) = z[x, s(x−1y)(1y−1 xt)] = [zx, s(x−1y)(1y−1 xt)]

= [zx, s(x−1z−1 · zy)(1(zy)−1·zxt)]
= [zx, s] ∗ [zy, t] = (z[x, s]) ∗ (z[y, t]). �
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Remark 6.6. Under the conditions of Theorem 6.5 if S is inverse, then (SU , ∗) is
inverse.

Indeed, observe that [x, s] ∗ [x, t] = [x, st]. Therefore, [x, s] ∗ [x, s−1] ∗ [x, s] = [x, s],
so (SU , ∗) is regular. Moreover, each idempotent of (SU , ∗) is of the form [x, e], where
e ∈ E(S ), and hence the idempotents commute.
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