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Isospectrality for Orbifold Lens Spaces

Naveed S. Bari and Eugenie Hunsicker

Abstract. 'We answer Mark Kac’s famous question, “Can one hear the shape of a drum?” in the positive
for orbifolds that are 3-dimensional and 4-dimensional lens spaces; we thus complete the answer to this
question for orbifold lens spaces in all dimensions. We also show that the coefficients of the asymptotic
expansion of the trace of the heat kernel are not sufficient to determine the above results.

1 Introduction

Given a closed Riemannian manifold (M, g), the eigenvalue spectrum of the asso-
ciated Laplace Beltrami operator is referred to as the spectrum of (M, g). The in-
verse spectral problem asks the extent to which the spectrum encodes the geome-
try of (M, g). While various geometric invariants such as dimension, volume, and
total scalar curvature are spectrally determined, numerous examples of isospectral
Riemannian manifolds, i.e., manifolds with the same spectrum, show that the spec-
trum does not fully encode the geometry. Not surprisingly, the earliest examples of
isospectral manifolds were manifolds of constant curvature including flat tori [M],
hyperbolic manifolds [V], and spherical space forms [IY, Gi, I1,12]. Lens spaces are
spherical space forms that are quotients of round spheres by cyclic groups of orthog-
onal transformations that act freely on the sphere. Lens spaces have provided a rich
source of isospectral manifolds with interesting properties. In addition to the work of
Ikeda and Yamamoto cited above, see the results of Gornet and McGowan [GoM].

In this paper we generalize this theme to the category of Riemannian orbifolds.
A smooth orbifold is a topological space that is locally modelled on an orbit space
of R" under the action of a finite group of diffeomorphisms. Riemannian orbifolds
are spaces that are locally modelled on quotients of Riemannian manifolds by finite
groups of isometries. Orbifolds have wide applicability, for example, in the study of
3-manifolds and in string theory [DHVW, ALR].

The tools of spectral geometry can be transferred to the setting of Riemannian orb-
ifolds by using their well-behaved local structure (see [Chi,S1,52]). As in the manifold
setting, the spectrum of the Laplace operator of a compact Riemannian orbifold is a
sequence 0 < A; <A, < A3 <--- 7 oo, where each eigenvalue is repeated according to
its finite multiplicity. We say that two orbifolds are isospectral if their Laplace spectra
agree.

The literature on inverse spectral problems on orbifolds is less developed than that
for manifolds. Examples of isospectral orbifolds include pairs with boundary [BCDS,
BW]; isospectral flat 2-orbifolds [DR]; arbitrarily large finite families of isospectral
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orbifolds [BSW]; isospectral orbifolds with different maximal isotropy orders [RSW7];
and isospectral deformation of metrics on an orbifold quotient of a nilmanifold [PS].

In the study of inverse isospectral problem spherical space forms provide a rich
and important set of orbifolds with interesting results. For the 2-dimensional case, it
is known [DGGW] that the spectrum determines the spherical orbifolds of constant
curvature R > 0. Lauret [L] found examples in dimensions 5 through 8 of orbifold lens
spaces (spherical orbifold spaces with cyclic fundamental groups) that are isospectral
but not isometric. For dimension 9 and higher, the author proved the existence of
isospectral orbifold lens spaces that are non-isometric [Ba]. The problem was un-
solved for 3 and 4-dimensional orbifold lens spaces. For 3-dimensional manifold lens
spaces, Ikeda and Yamamoto (see [IY, Y, I1]) proved that the spectrum determines
the lens space. In [I2], Ikeda further proved that for general 3-dimensional manifold
spherical space forms, the spectrum determines the space form. In the manifold case,
it is also known that even dimensional spherical space forms are only the canonical
sphere and the real projective space. For orbifold spherical space forms, this is not
the case, as there are many even dimensional orbifold spherical space forms. In this
article, we will prove the following results.

Theorem 3.1 Any two three-dimensional isospectral orbifold lens spaces are isometric.
Theorem 4.3 Any two four-dimensional isospectral orbifold lens spaces are isometric.

Theorem 5.6 Let S*" ' /G and S*" ! |G’ be two (orbifold) spherical space forms. Suppose
G is cyclic and G’ is not cyclic. Then S*"~' |G and S*" |G’ cannot be isospectral.

The above results will complete the classification of the inverse spectral problem
on orbifold lens spaces in all dimensions.

In addition to the above theorems, we also prove that one of the traditonal methods
of obtaining geomeric invariants from the spectrum, i.e., from the coefficients of the
trace of the heat kernel, is not sufficient to prove the above results. We will show that
we can have two non-isospectral orbifold lens spaces with identical coefficients of the
trace of heat kernel.

2 Orbifold Lens Spaces

In this section, we will generalize the idea of manifold lens spaces to orbifold lens
spaces. Note that lens spaces are special cases of spherical space forms, which are
connected complete Riemannian manifolds of positive constant curvature 1. An m-
dimensional spherical space form can be written as S™ /G where G is a finite subgroup
of the orthogonal group O(m +1). In fact, the definition of spherical space forms can
be generalized to allow G to have fixed points making S™/G an orbifold. Manifold
lens spaces are spherical space forms where the m-dimensional sphere S™ of constant
curvature 1 is acted upon by a cyclic group of fixed point free isometries on S™. We
will generalize this notion to orbifolds by allowing the cyclic group of isometries to
have fixed points. For details of spectral geometry on orbifolds, see Stanhope [S1] and
E. Dryden, C. Gordon, S. Greenwald, and D. Webb [DGGW].
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2.1 Orbifold Lens Spaces and their Generating Functions

We now reproduce the background work developed by Ikeda in [I1,12] for manifold
spherical space forms. For the most part, we will keep the notation used by Ikeda.
We will note that, with slight modifications, the results are valid for orbifold spherical
space forms. This is the background work we will need to develop our results for
orbifold lens spaces.

We will first consider general m = 2n—1dimensional lens spaces. Let g be a positive
integer. Set

1 . .
5 if g is even.

go - {qzl if g is odd,
Throughout this section we assume that g > 4.

For n < qq, let py,..., p, be n integers. Note, if ged(p1, ..., pn-q) # 1, we can
divide all the p’s and g by this ged to get a case where the ged is 1. So, without loss of
generality, we can assume that gcd(ps, . .., pu» q) = 1. We denote by g the orthogonal
matrix given by

M(p/q) 0

o Mpala))

where

cos2mf sin2m0
M(6) = (— sin27 cos 2716) '
Then g generates a cyclic subgroup G = {g'}_ of order g of the special orthogonal
group SO(2n), since det g = 1. Note that g has eigenvalues y', y=P1, yP2 y7P2 . yPr,
y~Pr, where y is a primitive g-th root of unity. We define the lens space
L(g:p1,...,pn) as follows:

L(q: p1>...,pn) = S*7Y/G.

Note that if gcd(p;,g) = 1 for all i, then L(q : py,...,p,) is a smooth mani-
fold; Tkeda and Yamamoto have answered Kac’s question in the affirmative for
3-dimensional manifold lens spaces [IY, Y]. To get an orbifold in this setting with
non-trivial singularities, we must have ged(p;,q) > 1 for some i. In such a case
L(q: p1>...,Ppn) is a good smooth orbifold with $*"~! as its covering manifold. Let
7 be the covering projection of S*"~! onto S*"~!/G,

e SZn—l _ SZn—l/G‘

Since the round metric of constant curvature one on S*"~! is G-invariant, it induces
a Riemannian metric on S**~!/G. Henceforth, the term “lens space” will refer to this
generalized definition.

Ikeda proved the following result for manifold spherical space forms ([I2, Lemma
1.2]). We note that the proof does not require the groups to be fixed-point free, and it
reproduces the result for orbifold spherical space forms.
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Lemma 2.1 Let S™/G and S™ /G’ be spherical space forms for any integer m > 2.
Then S™ |G is isometric to S™ |G" if and only if G is conjugate to G’ in O(m +1).

Note that if we have a lens space S*"!/G = L(q : pi,...,pn), with G = (g),
permuting the p;s does not change the underlying group G; similarly, if we multiply all
the p;s by some number +/, where ged(1, q) = 1, that simply means we have mapped
the generator g to the generator g’, and so we still have the same group G. Also note
that if two lens spaces S**™'/G = L(q : p1,...,pn) and S*"1/G' = L(q : s1,...,5,)
are isometric, then by the above lemma, G and G’ must be con]ugate So, the lift of the
isometry on S*"~! maps a generator, g of G to a generator g’ "of G'. This means that
the eigenvalues of g and g’* are the same, which means that each p; is equivalent to
some [s;or —Is; (mod q). These facts give us the following corollary for Lemma 2.1.

Corollary 2.2 LetL =L(q: p1,...,pn) and L' = L(q : s1,...,s,) be lens spaces.
Then L is isometric to L' if and only if there is a number 1 coprime with q and numbers
e; € {-1,1} such that (py, ..., pn) is a permutation of (e;lsy, ..., e,ls,) (mod q).

Assume we have a spherical space form S” /G for any integer m > 2. For any
f € C*(S™/G), we define the Lapacian on the spherical space form as A(7* f) =
7 (Af). We now construct the spectral generating function associated with the Lapla-
cian on S?"~!/G analogous to the construction in the manifold case (see [IY,11,12]).
Let A, A, and A, denote the Laplacians of S>*~!, S*~1/G, and R?", respectively.

Definition 2.3  For any non-negative real number A, we define the eigenspaces E;
and E, as follows:

Ey={feC™(S8"|Af =Af},
Ey={feC™(S"/G)|Af = Af}.

The next lemma follows from the definitions of A and smooth function.

Lemma 2.4 Let G be a finite subgroup of O(2n).

(i) Forany f € C*(S**1/G), we have A(m* f) = n* (Af).
(ii) For any G-invariant function F on S**7', there exists a unique function
f € C®(S*"!/G) such that F = n* f.

Corollary 2.5 Let (Ey)¢ be the space of all G-invariant functions of Ey. Then
dlm(E/{) = dlm(E,l)G

Let Ao be the Laplacian on R*" with respect to the flat Kahler metric. Set r* =
212"1 x7, where (x1,%2,...,%2,) is the standard coordinate system on R?". For k > 0,
let P* denote the space of complex valued homogeneous polynomials of degree k on
R2", Let H* be the subspace of P¥ consisting of harmonic polynomials on R?",

={feP"|Af =0}.

https://doi.org/10.4153/50008414X19000178 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X19000178

Isospectrality for Orbifold Lens Spaces 285

Each orthogonal transformation of R*" canonically induces a linear isomorphism
of Pk,

Proposition 2.6  The space H* is O(2n)-invariant, and P* has the direct sum decom-
position P* = H* @ r2P*-2,

The injection map i: S*"~! - R?" induces a linear map i* : C* (R*") - C>(S**™!).
We denote i*(H*) by H*.

Proposition 2.7  H* is an eigenspace on on S*" with eigenvalue k(k + 2n - 2),
and Y52, H* is dense in C*(S*"71) in the uniform convergence topology. Moreover,
Kk is isomorphic to HX. That is, i*: H* = 3k,

For proofs of these propositions, see [BGM].
Now Corollary 2.5 and Proposition 2.7 imply that if we denote by HX the space of
all G-invariant functions in (¥, then

dim E(k420-2) = dim FE.

Moreover, for any integer k such that diim 3% # 0, 14 = k(k+2n-2) is an eigenvalue
of A on S*"~!/G with multiplicity equal to dim 3£, and no other eigenvalues appear
in the spectrum of A.

Definition 2.8 Let O be a closed compact Riemannian orbifold with the Laplace
spectrum, 0 < Ay < A3 < A3--- 7 oo. For each Ay, let the eigenspace be

Ey ={feC™(0)|Af = Mf}.

We define the spectrum generating function associated with the spectrum of the Lapla-
cian on O as

Fo(z) = i (dim Exk)zk.
k=0

In terms of spherical space forms, the definition becomes the following.
Definition 2.9 'The generating function Fg(z) associated with the spectrum of the

Laplacian on S™/G is the generating function associated with the infinite sequence
{dimHE}2, e,

Nk

Fg(z) = (dimﬂ-(’é)zk.

=~
I}

0

By Corollary 2.5, Proposition 2.7, and subsequent discussion, we know that the
generating function determines the spectrum of S /G. This fact gives us the following
proposition.

Proposition 2.10 Let S™ /G and S™ |G’ be two spherical space forms. Let Fg(z) and
Fg:(2) be their respective spectrum generating functions. Then S™ |G is isospectral to
S™/G" if and only if Fg(z) = Fg:(2).
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Our first goal is to find an alternative expression for Fg(z) that will allow us to
compare Fg(z) and Fg/(z).

If G is a finite subgroup of O(2n) with orientation preserving action on $*" !, then
G is a subgroup of SO(2#n). In the sequel, we will consider orientation-preserving
group actions.

The following theorem, proved for manifold spherical space forms in [12, Theorem
2.2], holds true for the orbifold spherical space forms as well, since the proof does not
require the group action to be free.

Theorem 2.11 Let G be a finite subgroup of SO(2n), and let S**' |G be a spherical
space form with spectrum generating function Fg(z). ‘Then, on the domain
{zeC | |z| <1}, Fg(z) converges to the function

1 2

1-z
F = T4 5 ./ N0
o(2) =5 g det(Loy - g2)

where |G| denotes the order of G and I, is the 2n x 2n identity matrix.

We denote the generating function for a lens space L = L(q : p1,...,pn) by
Fy(z:p1se.osPn).

Corollary 212 Let L(q : p1,...,pn) be a lens space and let Fy(z : pi1,..., pn) be
the generating function associated with the spectrum of L(q : p1, ..., pu). Then, on the
domain {z € (C| 2| < 1},

1 1-22

1
Fo(z:p1s..ospn) =— - . —,
A R N N el Pty

where y is a primitive g-th root of unity.

Proof Let y; denote the character of the natural representation of SO(2n) on H¥.
Then, in the notation of the Theorem 2.11, we get

1 13 :
=14 ZXk(g) = alz_:)(k(g )-

dim HK =
¢ |G| geG

So

(1-2%) 1
Fo(z:pi,...,pn) = n
o P P) =G L T (1 y )

(1—22) q |

q STl (z-yrid)(z—ypid)’
since multiplying through by 1 = (—y ?1)(=y?i!) gives (1 - yPilz)(1 -y Pilz) =
(z -y P (z - yPh). .

Remark By Theorem 2.11 and unique analytic continuation, we can consider the
generating function to be a meromorphic function on the whole complex plane C
with poles on the unit circle S' = {z € C | || = 1}.
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From this remark, we have the following corollary.

Corollary 2.13 Let S*"'/G and S**' |G’ be two spherical space forms. Let E(g)
denote the set of eigenvalues of g, with multiplicity counted. If there is a one to one
mapping ¢ of G onto G’ such that the set E(g) equals the set E(¢(g)) forall g € G,
then S*" G is isospectral to S*" ' |G'.

Proof The proof follows from the fact that

[T (A-yz)= II (z—y) =det(I,,—gz). |
yeE(g) yeE(g)

Corollary 2.14 Let S*"'/G and S*" |G’ be two isospectral spherical space forms.
Then |G| = |G|

3 3-Dimensional Orbifold Lens Spaces

For 3-dimensional manifold lens spaces, it is known that if two lens spaces are isospec-
tral, then they are also isometric ([IY] and [Y]). We will generalize this result to the
orbifold case.

Using the notation adopted in the previous section, we write the two isospectral
lens spaces as Ly = L(q : p1,p2) and L, = L(q : s1,52). Now there are only five
possibilities.

Case 1: Both L; and L, are manifolds. In this case, ged(p;,q) = 1 = ged(s;, q) for
i=12.

Case 2: One of the two lens spaces, say Ly, is a manifold, while the other, L, is an orb-
ifold with non-trivial isotropy groups. This means that gcd(p1, q) = ged(p2,9) =1,
while at least one of s; or s, is not coprime to q.

Case 3: Both L; and L, are orbifolds with non-trivial isotropy groups so that exactly
one of p; or p, is coprime to q and exactly one of s; or s, is coprime to g.

Case 4: Both L; and L, are orbifolds with non-trivial isotropy groups, but in one case,
say for L;, exactly one of p; or p, is coprime to g, while for the other lens space, L,,
neither s; nor s; is coprime to gq.

Case 5: None of py, ps, 51, and s, is coprime to g.

With these five cases in mind, we will prove our main theorem.

Theorem 3.1  Given two 3-dimensional lens spaces Ly = L(q : p1, p2) and Ly =
L(q :s1,s2). If Ly is isospectral to L, then the two lens spaces are isometric.

Proof We will consider each case separately:

Case 1: In this case L, and L, are both manifolds. Ikeda and Yamamoto proved this
case (see [1Y,Y]).

Case 2: We know that whenever two isospectral good orbifolds share a common Rie-
mannian cover, their respective singular sets are either both trivial or both non-trivial
[GR]. Therefore, for orbifold lens spaces we cannot have a situation where two lens
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spaces are isospectral, but one has a trivial singular set while the other has a non-trivial
singular set. So this case is not possible.

Case 3: By multiplying the entries of L; and L, by appropriate numbers coprime to g,
we can rewrite Ly = L(q:1,x) and L, = L(q : 1, ¥), where x and y are not coprime to
q. Let Fi(z) (resp. F,(z)) be the generating function associated with the spectrum of
L, (resp. L,). Let y be a primitive g-th root of unity.

Now,
(3.) Egg(z-y)fﬁ(z)
) mli (z-y)(1-2)
=y q 1o 1-y'2) Ay '2) (1 - y*l2) (1 - y=*lz)
lim S (1-y'2)(1-2%)
B I Y (s T s e T

Each term of the sum vanishes unless (1 - y~'z) cancels one of the four terms in the
denominator. This occurs if one of the following congruences has a solution:

() 1+1=0 (mod q),
(2) -1+1=0 (mod q),
(3) xI+1=0 (mod q),
(4) -x1+1=0 (mod q).

Congruences (3) and (4) have no solution as x is not coprime to g. The solution to (1)
is | = q — 1, and the solution to (2) is I = 1. Substituting into (3.1), we get

_Zy
q(1—y== ) (1 - y¥1)

lim(z - y)Fi(2) =
z-y

By the same argument, we get

li —y)E = .
21_1)1}(2' Y) Z(Z) q(l_y_y+1)(1_yy+l)
Since
lim(z - y)Fi(z) =lim(z - y)F,(z),
z-y z-y
we get
-2y _ -2y
q(L-y== ) (1-p1)  g(1-y ) (1-yp*1)’
1 1
:3[Lwr“uwﬂw+WJ‘U—Wﬂﬂ+w“wwﬂ’
I y—x+1 =y y+1 y+1.
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Since y # 0, we get

y Y =y
1 1

— 4+ yx = — + yy,

y* Y

1+y*  1+yY
y* yo

yy +_y2x+y — yx +_y

yy __yx+2y — yx —y

P (A-y) =y 1-y"),

(' -y)(1-y"7) =0,

y’ -y =0o0rl-y*" =0,

!

xX+2y
b

2x+y
b

Lrrrer ol

x=y (modg)orx=-y (modq).
Thus, by Corollary 2.2, we get that L, and L, are isometric.
Case 4: By the same argument as in Case 3, we get

1- y—x+1)(1 _ yx+1) '

lim(=~Y)F(2) =

However,
lim(z -y)F(z) =0,
Z—y

since the congruences (1)-(4) in Case 3 become

(1) s1+1=0 (mod q),

(2") -s11+1=0 (mod q),

(3") s1+1=0 (mod q),

(4") -s;1+1=0 (mod q),

and these congruences have no solutions, because s; and s, are not coprime to gq.
Thus, in this case, L; cannot be isospectral to L,.

Case 5: This is the hardest of all the cases. First, we can simplify the forms of the two
lens spaces as follows.

Let ged(p1,q) =x>1, ged(pa2,q) =y>1, ged(s1,q) =u>1, and ged(sz,q) =v>1
Also, without loss of generality, we can assume that y > x and v > u, because if x = y
(resp. u = v), then |G| = q/x (resp. |G| = q/u), which contradicts our assumption that
G| = q.

We rewrite Ly = L(q : ax,by) and L, = L(q : cu,dv). Since ged(ax,q) =
ged(x,q) = x and ged(cu, q) = ged(u,q) = u, we can multiply the entries of L,
and L, by appropriate numbers coprime to g and rewrite L; = L(g : x, py) and
L, = L(q : u,sv) (see [GP]). We will also assume that gcd(x, py) =1 = ged(u, sv),
because if say gcd(x, py) = e > 0, then we could divide x, py, and g by e and get a
lens space with fundamental group of order g/e instead of g, which is a contradiction.

In this case, we again want to consider a limit of the spectral generating functions
for L; and L,.
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Proposition 3.2 Suppose L = L(q : x, py) is an orbifold lens space with spectrum
generating function Fy(z). Then lim,_,,x(z - y*)F,(z) # 0, where y = ¢*™/9 isa
primitive g-th root of unity.
Proof We denote q/, = % and g/, = % Then
(3.2) lim (z - y*)F, (z)

z—y*

1= y¥2) (1= y>2) (1= yP'2) (1 -y 'z)

i (1-y™2)(1-2)
"l Z(l— PR (1-y ) (1 yPTe) (1 y Pz)

As before, the terms in the above sum are non-zero if and only if one of the follow-
ing congruences has a solution:
(1) xl+x=0 (mod q),
(2") —xl+x=0 (mod q),
(3") pyl+x=0 (mod q),
4"y -pyl+x=0 (mod q),

(3") implies that pyl + x = 0 (mod y), so, if (3") has a solution, it would violate
the fact that ged(x, y) = 1. Therefore, (3") has no solution. Similarly, (4”) has no
solution.

The solution to (1”) is I = tq;, — 1, and the solution to (2”) is [ = tq;, + 1 for
te{l,...,x}. Note that for [ = tq/, +1,

(1-y™*2)(1-2%) _
=y (L= yHlz)(1-ylz)
We can therefore write (3.2) as

i: (z-y)(1-2%)

X X 1

hm (2= y")Fy(2) = _qu Z

Writing a; = py(tq, —1), we get
lim (z - y*)Fy(2)
z—y*

(1 — yP)’(fQ/x—l)"'X)(] — y Py(tq/x 1)+x)

~ _zyx X 1
g FQ-yle)(1-y(am)
-2y* 1

Il
1M~

q y(“t‘*'x) (y—(“t—x) - y—(txt‘*'x))

x [ 1- y—l(a,+x) 1o y—l(a,—:o ]

* 1
q(yz" —1) ; [1— y (e 1- y*"‘f*"’]
= O

1
i2q sin qu Pt [ 1-e- 12ﬂ(a:+x)/q 1— e—izn(a—x)/q ] :
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By writing a; = «a; + x and b; = «; — x, we can rewrite the above as

=2 ud 1 1
. X _ _
leg/lx(z Y )Fq(z) 12q sin 27;)( ; [ 1- e—i2na,/q 1- e—iant/q:I

1 Z":[ 2i 2i ]
- 2q sinZ% Sl e-i2nafq ] g-i2nbi/q

Now, using the identity cot 0 + i = kfﬁ, we get

) . B 1 d ma; b
(33) le)l’}']lx(z—y )Fq(Z) = quinzz)‘;[Cth_Cth].

The above limit can only be 0 if

d ma, by
cot — — cot —
;[ q q ]

x 4 /4
= [ cot [tpyaye = (py =] - <ot [tpyase = (py+x)]] =0.
=1
Suppose A; (resp. B;) is the remainder when a4, (resp. b;) is divided by g. Then %
is between 0 and 7.
Consider the following two sets of remainders of positive integers (mod g) when
a; and b, are divided by ¢:

A={A;:Ay=a; (modq),t=12,...,x},
B={B;:B;=b; (modgq),t=12,...,x}.

Suppose min{A} = A;and min{B} = Bi. Now we have the following possibilities:
(i) A;j > Bi. Then it is easy to check that Aj,; > By, for t = 0,1,...,x — 1, since
Ajit — bryy = aj — br. So we can re-write (3.3) as

1 x-1

s s

(3.4) Zliglx(z—y")Fq(z) = m ;[cot EA]«H—cotEBkH].
We know that if 0 < B < A < , then cotA — cotB < 0. Since in the above
equation 0 < By, < Aj;; < 7 for all ¢, each pair gives us a negative value, and
therefore (3.4) is negative.

(ii) A;j < Bg. Thenusinga similar argument as above, equation (3.4) will be positive.

(iii) Aj = By. This means a; - by = (j—k)pyq/x +2x =0 (mod q). But this means
that y|2x, which is not possible, since we are assuming that gcd(x, y) = 1and
X< Y.

This proves the proposition. ]

We will also need the following results to prove the theorem for Case 5.
Proposition 3.3  Suppose Ly = L(q : x, py) and L, = L(q : u, sv) are two isospectral

lens orbifolds where gcd(x, q) = x, ged(py, q) = v, ged(u, q) = u, and ged(sv, q) = v.
Then either u = x andv = y,oru = yand v = x.
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Note 1 Ifu=xandv=y,thenL; =L(q:x,py)andL, =L(q:x,sy);ifu=yand
v=xthenL =L(q:x,py)and Ly =L(q: y,sx) =L(q:s'y,x) =L(q: x,57'y).
In either case, this implies that we can write L; = L(q : x, py) and L, = L(q : x,s"y),
where s’ =sors’ =571

We now prove the above claim.

Proof We denote g/, = % and q;, = 4. Then, writing F; to denote the spectrum
y
generating function of L;, we have

lim (z - y*)Fi(z) =
z—y*

L (2-y)(1-2)
B T Dy 0y Pl

Recall that the only non-zero terms in this limit will be the ones where xI + x = 0
(mod g) or —xI + x = 0 (mod g), which gives | = tq), —1orl = tq +1for t €
{1,...,x}. Also note that for such a t, we have

1
(1— ypy(tas=D+x) (1 = y=py(tap=D)txy =

1
(1- ypy[(x—t)q/x+1]+x)(1 — y—py[(x—t)q/x+1]+x) ’

These two facts, along with Proposition 3.2, give

L 1 lim (2 - y*)Fi(2).
q ; (1_ypy(tq/x—l)ﬂ)(l_y—py(tq/x—l)H) zg;l 2Ty )h
Since
lim (z - y*)Fi(z) = lim (z - y*)Fy(2),
z—y* z—p*
we get
_zyx x 1 i . F(
q = (l_ypy(tQ/x_1)+x)(1_y_Py(tQ/x_l)"'x) _zinyl"(z y ) 2 Z)
x 4 A X _ 2
S 1y~ 9)(-2) |
=y T L=y lz)(1-yz) (1 - yi2) (1~ y=z)

So there must be an [ such that one of the following holds:

ul+x=0 (mod q),
—ul+x=0 (mod q),
svl+x=0 (mod q),
-svl+x=0 (mod q).
Recall that u|q. Then ul + x =0 (mod g) or —ul + x =0 (mod g) imply that ulx.

Similarly, since v|q, we can show thatif syl +x =0 (mod q) or —svl+x =0 (mod gq),
then v|x. So either u|x or v|x.
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Now by multiplying the elements of L; by an appropriate number we can rewrite
Ly = L(q : y, p'x). Then applying the same argument as above where we swap the
roles of x and y, we get either u|y or v|y.

Suppose u|x. Then since gcd(x, y) = 1, we cannot have u|y. Similarly, if v|x, then
we cannot have v|y. Therefore, either u|x and v|y, or v|x and u|y, since if u or v divide
both, then it contradicts gcd(q, x, py) = 1.

We can swap the roles of L; and L, and repeat the above arguments again to get
either x|u and y|v, or y|u and x|v.

If u|x and v|y, and at the same time x|v and y|u, then x|y, which contradicts the
fact that gcd(g, x, ¥) = 1. So the only possibilities are the following:

(i) ulx,v|y, x|u, and y|v. This means x = u and y = v.
(i) v|x, uly, x|v, and y|u. This means x = v and y = u.
This completes the proof of the proposition. ]

Corollary 3.4  Without loss of generality, we can write the two lens spaces as L, =
L(q:x,py)and Ly = L(q : x,sy) with ged(q, py) = y = ged(q,sy) and y > x.

Note 2 Ifoneof x or y is even (in case when ¢ is even), we will also assume that x is
always odd. This will not violate our assumption that x < y, because if we have a lens
space L(q : x', p’y") with even x" and odd y’ and x” > y’, then we can replace x" and
y" with y = g—x" and x = g - ', respectively; we can then multiply by an appropriate
number to re-write the lens space as L(q : x, py).

Proposition 3.5 Suppose Ly = L(q : x, py) is a lens space as in Corollary 3.4. Then

(3.5) Zl cot g[ tpyas - (py-x)] = Z; cot g[ tq). — (py - x)].,
(3.6) Z;cotg[ tpyq s — (py +x)] = Z;cot g[tq/x -(py+ x)]

Proof We will only prove the proposition for (3.5), as the proof for (3.6) is similar.

We denote z = py — x. Since x and py are coprime, we have gcd(x,z) =
ged(py,z) =1.

We claim that t,zq/, = g/, (mod q) for some t; € {1,2,...,x ~1}.

Since ged(z,x) = 1, there exist numbers « and f such that az + Sx = 1, which
means az =1 (mod x). Without loss of generality, we can also assume that « < x, for
if & > x, then we can write a = yx + &’ (with &’ < x); this would give us (yx+a’)z =1
(mod x), which gives a’z = 1 (mod x) with o’ < x. Multiplying both sides of the
congruence by g/, proves our claim; i.e., wehavea t;(= & (mod x)) € {1,2,...,x-1}
such that t1zq,, = g/, (mod q).

Now, multiplying the congruence az =1 (mod x) by j € {2,3,...,x — 1}, we get
jaz = j (mod x). As before, we can find t;j(= ja (mod x)) € {L,2,...,x — 1} such
that tjzq,, = jq;x (mod g).

Now suppose that for i > j, we get t; = t;. This implies that i = j (mod x), or
i—j=0 (mod x); but since i and j are smaller than x, this is not possible. So we now
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have a 1-1 correspondance between the sets {1,2,...,x—1} and {#, t2,..., tx_1}, i.e.
the set {1, t2,..., tx_1} is just a permutation of the set {1,2,...,x —1}.
Now, for each tj € {1,2,...,x — 1}, we get

tjzq/x = jq;x (mod q),

= tj(py - X)qx = ja;x (mod q),

= 1;pyqx = j9/x (mod q),

= tjpyq/. — (py —x) = jqsx — (py —x) (mod q).

This proves (3.5). [ |

To prove Case 5, we will use the fact that between 0 and 7, the cotangent function is
strictly decreasing. Using this property along with the fact that the cotangent function
is periodic with period 7, we will line up the minimum values (and hence all the values
due to periodicity) of tq/x + ay + x, tqx + ay — x, tq)c + By — x,and tq), + By + x,
respectively.

Proposition 3.6  Suppose Ly = L(q : x, py) and L, = L(q : x, sy) are isospectral lens
spaces as in Corollary 3.4, where y # q, with spectrum generating functions F,(z)

and F,(z) respectively. Suppose ay = (q— p)y (mod q) and fy = (g—s)y (mod q).
Consider the following four sets of positive integers (mod q):

A={A;:A;=[tq) +ay+x] (modgq),t=0,1,...,x -1},
B={B;:B;=[tq) +ay-x] (modgq),t=0,1,...,x~1},
C={C/:Ci=[tg)+Py—-x] (modgq),t=0,1,...,x -1},
D={D;:D;=[tq). +By+x] (modgq),t=0,1,...,x~1}.

Then the minimum values of A and B occur for the same value t' € {0,1,...,x — 1}, and
the minimum values of C and D occur for the same value t" € {0,1,...,x —1}.

Proof We note that the only time the minimum values for A and B (resp. C and D)
will occur at different values of ¢ is when for some ¢, fq/, + ay + x > 0 and tq/, +
ay—x < 0. But this would mean that y(tq,, + &) < x, which cannot be true, because
we are assuming y > x. Therefore, for every t, both tq/, + ay + x and tq), + ay — x
are positive (with the only exception happening when y = g/, which we will look at
alittle later). This implies that the minimum values of tq/, + ay + x and tq,, + ay — x
occur for the same value of = #', and in such a case, the difference between the
minimum values would be 2x. The same will be the case for the minimum values of
tqx + By + x and tq,, + By — x, which occur for some value of £ = ¢”. ]

Corollary 3.7 Suppose Ly = L(q : x, py) and Ly = L(q : x,sy) are isospectral lens
spaces as above. Also suppose min{A} = Ay, min{B} = By, min{C} = C», and
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min{D} = Dy». Then forall t € {0,1,..., @},
s 3
cot —(Ap +tq/c) — cot —(By + tq/y)
ot (v + taj0) — ot (B )]
s s
- [cota(Ctu +1q/x) — cot E(D,n + tq/x)]
s 7
+ [cotg(At/ +(x—-t- l)q/x) —COta(Bﬂ +(x—-t- l)q/x)]
s 4
- [COta(Ct" +(x—-t- l)q/x) —COta(Dt" +(x— t—l)q/x)] =0,

and for t = @,
o ) o )

_[Cotg(ct” + (xz_l)q/x) —Cotg(Dt""" (x _I)Q/x)] =0.

Proof Using a similar argument to that in Proposition 3.2 and the fact that Fi(z) =
Fy(z), we will get

x-1

5 cot [ apyaye - (o)) - <ot X[ tpyase—(py 0] -

=0

x=1

Z(:) [cotg[tsyq/x —(sy —x)] - cot Z[ tsyq) — (sy +x)] ]
)

Using (3.5) and (3.6), the above equation can be written as

g[cotf[tq/x (py=)] ~cot " [ta). ~ (py+)] ] =

XZ_;)[cotg[tq/x— (sy—x)] —cotg[tq/x - (sy+x)]].

Finally, by writing ay = (¢ — p)y (mod gq) and fy = (¢ —s)y (mod q), we can
rewrite the above equality as

x-1

(3.7) [cotf tqx +ay +x] —cotg[tq/x +ay-— x]] =

=0
x-1
> [cotz[tq/x +By+x]- cotz[tq/x + By —x]].
t=0 q q

Since the minimum values for A and B (resp. C and D) occur at the same value of
t, A; > By (resp. C; > Dy) for all values of ¢ € {0,1,...,x —1}.

Also note that mA,/q, nBy/q, nCu/q, and nD;/q lie between 0 and
n/x(= 7q/¢/q), and each subsequent A ;/q, By 11/q, mCiry1/q, and Dy 1/q
for t € {1,2,...,x — 1} is simply a translation of mAy,-1/q, nBy11-1/q, nCrrir1/q,
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and 7Dy 4-1/q, respectively, to the right by 7/x. This means that we can re-write
equation (3.7) as

x-1

m m
38 > [cota(A,, +tq/x) - cotE(Bt, + tq/x)]

t=0

- [cotz(Ctn +1q/x) —cotE(Dtu + tq/x)] =0
q q

Further note that the distance between A, ; and By, = 2x = distance between Cy,;
and D, for all values of ¢.
Now we have the following possibilities:

Case I: Suppose Ay > Cyr, Ay > By, and Cyv > Dy . We have two possibilities in
this case: Ay > Cyv > By > Dynyor Ay > By > Cyr > Dy,

We will prove the result for the case when Ay > By > Cyv > Dy, and will note
that the case when Ay > Cy» > By > Dy» can be proved similarly with a slight
modification.

For t < (x —1)/2, we have

cot z(A,r +1tq/y) — cot E(B[f +tq/c) <0,
q q
s s
cot —(Cyr + tq,) — cot —(Dyr + tqy,) <0,
q q
And since the distance between A, + tq/, and By + tq, is the same as the distance
between Cy» +tq/, and Dy~ + tq/., and the slope of the cotangent function is negative

and continuously increasing between 0 and 7, we also have

>

‘ cotz(Ctn +1q,,) — cot E(Dt,, +1q)y)
q q

‘ cotg(Atr +1q/x) — cot Z(Btz +1q/x)|-
These three conditions imply
(3.9) [COtg(A[/ +1q/x) — cot g(Bt/ + tq/x)]
- [cotg(Ctu +1q/x) — cotg(D,u + tq/x)] > 0.
Similarly, for t < (x —1)/2, we have
cotg(At/ +(x - t—l)q/x) —cotg(Btr +(x-t- l)q/x) <0,

cotg(Ctu +(x—t-1)q)x) —cotg(Dtu +(x—t-1)q,x) <0,and

|cotg(A,/ +(x—t-1)q/x) —cotg(Bﬂ +(x—t-1)q)x)

> ‘ cotg(Ctu +(x—-t- l)q/x) —cotg(Dtu +(x—-t- l)q/x)
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These three conditions imply that
7 7
(3.10) [cot a(At: +(x-t- l)q/x) - cot E(Btr +(x—-t- l)q/x) ]
s s
- [cotf(Ctu +(x-t- l)q/x) - cotf(Dtu +(x-t- l)q/x)] <0.
q q

Adding the two left sides of (3.9) and (3.10), we get the following expression for ¢ <

(x-1)/2:
s T
(3.11) cot—(Ay +tqy,) —cot—(By +tq/,)
[ P v +iq) p t Q/]
7 s
- [COta(Ct" +1q/x) — cotE(D,u + tq/x)]
+[cotE(At/+(x—t—1)q/x)—cotE(Bt/+(x—t—l)q/x)]
q q

- [COtg(Ct” +(x—t-1)q/y) —cotg(Dtu +(x— t—l)q/x)].

We know that the distance between A, + tq,, and By + tq,, (resp. Cy» + tq, and
Dy» + tqy,) is 2x. Suppose the distance between By + tq/c and Cy + tqx is . We
can thus write Civ + tq)x = Dy + tq), + 2x, By + tq), = Dy + tq), + 2x + 1, and
Ap+tq = Dyr+tq)+4x+r. Now, letting d = Dy» +1q ., we can view the expression
(3.11) as a function of d as follows:

f(d) = [cotz(d+4x+r) —cotE(d+2x+r)— [cotz(d+2x) —cotz(d)]
q q q q
+ [cotz(d+4x+r+(x—2t—1)q/x)
q
7
—cotf(d+2x+r+(x—2t—1)q/x)]
q

—[cotz(d+2x+(x—2t—1)q/x) —cotz(d+(x—2t—1)f1/x)]-
q q

Now, using the property
cotXcotY ¥1

cotY+cot X = —————,
cot(X+Y)

we can rewrite the above function as

— [—cotz(d+4x+r)c0tz(d+2x+r)
cotE(Zx) q q

+cotE(d+2x) cotE(d)
q q
—cotz(d+4x+r+(x—2t—1)q/x)
q
xcotz(d+2x+r+(x—2t—1)q/x)
q

+cotz(d+2x+(x—2t—1)q/x) cotz(d+(x—2t—1)Q/x)]-
q q
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We claim that the function f(d) is decreasing. To see this, we look at the first deriv-
ative of this function as follows:

f(d) =

ni[cotz(d+4x+r)csc2E(d+2x+r)
cotE(Zx) q q
+csc2E(d+4x+r)cotz(d+2x+r)
q q
—cotz(d+2x)csczz(d)—csczz(d+2x)cotz(d)
q q q q
+cotz(d+4x+r+(x—2t—1)q/x) csczﬁ(d+2x+r+(x—2t—1)q/x)
q q
+cscZE d+4x+r+ (x-2t-1)qy, cotE d+2x+r+(x-2t-1)q,
q/ 9/
q q
—cotz(d+2x+(x—2t—l)q/x) csczz(d+(x—2t—1)q/x)
q q
czz(d+2x+(x—2t—1)q/x) cotz(d+(x—2t—1)q/x)].
q q

It will be easier to see that between 0 and 7, f'(d) < 0 if we rewrite f'(d) back in
terms of Dy, Cyr, Bt/ and A

T T
f(d) = [COtE(At' +1q;) csc? E(Bt, +tq/)

+csc E(At, +tq/x) COtg(B[/ +1q/x)

_ Cotg(ct” +1q),) csc? Z(Dtu +1q)y)

- csc? z(Ctu +q,y) cot z(Dt" +1q)x)

+C0tE(At’ + (x - t—l)Q/x) csc? q (B" +(x=t=-1gqy)
+csc E(At’*'(x_t—l)CI/X) cot = (Bur+ (x=t=1)q;:)

—cotg(Ctu +(x—t-1)q)x) csc

\:l&\:l

(
(Dtu + (x -t - 1)(]/x)
ol

—csc f(C,n +(x—t-1)q) cot=( D+ (x -t - l)q/x)].
q

Recall that we are assuming Ay > By > Cpr > Dtu. This implies the following two
facts:

(@) 3 > Ay +1tq)c > By +tq) > Cpr + tq) > Dy + tq)¢ > 0, and

(b) > Ap+(x—t-1)q; > By+(x~t-1)q)5 > Con+(x~t-1)q)5 > D +(x~t-1)qy5.
We know that csc® is positive, decreasing between 0 and 2, and increasing between
7 and 7. We also know that cot is positive and decreasing between 0 and 7, and
cot is negative and decreasing between 7 and 7. Combining these facts with our as-
sumptions noted above, we can now easily conclude that between 0 and 7, f'(d) <0,
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and that f(d) is a decreasing function. This implies that if the distance between 0 and
Dy is greater than (resp. less than) the distance between Ay + (x —1)g /x and 7, then
the expression (3.11) is greater than (resp. less than) 0.

We note that the case where Ay > Cy» > By > Dy is similar with the only dif-
ference being that in this case, By + tq;, = Dy + tq), +2x —r, and Ay + tq), =
Dyn +tq), + 4x — r. The remaining arguments will be the same.

Since x is odd, then we can rewrite (3.8) as

(x-3)/2

(312) >

[cotE(Atf +1q)x) — cotE(Bt/ + tq/x)]
=0 q q

m m
—| cot =(Cy» + tq,) — cot — (D + tq, )
A / P /]

cotg(Ctu +(x—t-1)q)x) —cotg(Dtu +(x—-t- l)q/x)]}

cotﬂ(Atr + (xz_l)q/x) —cot%(Bt/ + (xz_l)Q/x)]

(x-1)
2

QA Q|

{
[
+ [cotg(At/ +(x—t-1)q/x) —COtg(Bt' +(x - t_l)Q/x)]
[
[
[

o) e 2D+ E 20 )] <o

If (3.11) is greater than (resp. less than) for some t, then (3.11) is greater than (resp. less
than) for all ¢, since if the distance between 0 and D,~ is greater than (resp. less than)
the distance between Ay +(x~1)q,, and 7, then the distance between 0 and D +tq,
will be greater than (resp. less than) the distance between Ay + (x — t —1)q,, and 7.
Further, it can be easily seen that if (3.11) is greater than (resp. less than) 0 for all ¢,

then
[cotg(Atf + Qq/x) —cotg(B,: + Lz_l)qn)]
_ [Cotg(ctu + (xz_l)q/x) —COtZ(Dt” + (x;l)q/x):l >0

(resp. < 0). This would mean that (3.12) will not be satisfied. Therefore, we conclude
that for all ¢, (3.11) equals 0. This also means that from (3.12), we have

[cotg(Atf + (xz—l) q/x) —cotg(Bt/ + Lz_l)qu)]

— [Cotg(ctu + Qq/x) —Cotg(Dw + (xz—l)q/x)] =0.

Case II: Suppose Ay > Cyr, Ay > By and Cpv < Dy . We have two possibilities in
this case: Ay > Dy > By > Cyror Ay > By > Dy > Cyr.
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Since the cotangent function is strictly decreasing, we have, for t < (x —1)/2,
cotE(A,, +tq)x) - cotE(B,r +1tq/c) <0,
q q
T s
cot — (D + tq;,) — cot —(Cyr + tq,) < 0.
q q
This means that
7 7
[cotg(At/ +1q/x) — cota(Bt/ + tq/x)]
- [cotz(Ctu +1q/x) — cotE(D,u + tq/x)] <0.
q q
Similarly, for t < (x —1)/2, we have
cotz(At: +(x—-t- l)q/x) —cotz(Bt/ +(x—-t- l)q/x) <0,
q q
s s
cotf(Dtu +(x— t—l)q/x) - cotf(Ctu +(x— t—l)q/x) <0.
q q
This means that
[cotE(Atf +(x—t-1)q) - cotE(Bt/ +(x-t- l)q/x)]
q q
7 7
- [cotf(Ctu +(x- t—l)q/x) - cotf(Dtu +(x- t—l)q/x)] <0.
q q

Rewriting (3.8)) as (3.12) as in Case I, we can see that the entire expression will be
negative, unless (3.11) equals 0 for every value of ¢. Reasoning as in Case I, we also get

[Cotg(At, . (xz—l)q/x) —cotg(B,/+ (xz—l)q/x)]

x-1)
2

- [COtg(C'” + ( q/x) —cotg(Dw + (xz_l)‘J/x)] =0.

Case IIl: By > Ay > Dy > Cyry0r By > Dy > Ay > Cyr. In this case, we can take
the minus sign out of expression (3.11) and swap the roles of By and Ay (resp. Dy
and Cy~) to see that the function g(c¢) (defined very similarly to the function f(d) in
Case I) is increasing. This would mean again that (3.12) would not be satisfied unless
(3.11) equals 0 for all ¢, and subsequently

[cot%(Atz + (x_l)Q/x) —cotg(B,/ + (xz—l)q/x)]

2

2

- [cotg(Ctu +

CaseIV: By > Cyv > Ay > Dy, or By > Ay > Cyr > Dynr. In this case we notice that
(3.12) will be positive unless (3.11) = 0 for every value of t. Reasoning, as in Case II,
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we also get

[ cotg(Ay + QQ/X) —COtg(Bt’ + Lz_l)qu)]
(x-1)
=

- [cotE(Ctu +

: ) e 20+ E2 0 )] <0

Note 3 We will get four more possible cases, where the roles of A, and C;~ (resp. By
and D) are swapped with each other. With slight modifications, these four cases can

be proved in the same manner as the above four cases.

This proves the result.

Corollary 3.8  One of the following holds for all t € {0,1,...., 521
(i) cot gAyH = cot gCtuH and cot gth.t = cot thuﬂ,

(i) cot gA,rH = —cot %Dtu_(m) and cot %B,/H = —cot %Ct”—(t+1)-

Proof Recall that between 0 and 7 the slope of the cotangent function is strictly and
continuously increasing, and since the distance between A’, and B} = 2x = distance

between C}’ and D7, the only way for

I:COtE(At/ + fq/x) - COtE(Bt/ + tq/x)] - [COtE(Ctu + tq/x) _COtE(Dtu + tq/x)]
q q q q

+[cotg(Atr +(x—t-1)q,) - cot Z(Btz +(x—-t- l)q/x)]

[ cot Z(Cur+ (x — t=1)qy) — ot = (Dyr + (x— £ -1)qz,) | =0
q q
is if one of the following conditions (a) or (b) is met:
cotE(A,r +1tq),) = cot E(Ctu +tq/x),
@ n x
cot —(By +tq)y) = cot — (D + tqy).
q q
Note that these two statements are equivalent to
A A
cotf(A,r +(x-t- l)q/x) = cot 7( Cor+(x—t- 1)q/x),
q q
A A
cot f(Bt/ +(x-t- l)q/x) = cot f(D,u +(x-t- l)q/x) .
q q
T A
cot —(Ap +1tq;,) = —cotf(Dtu +(x-t- l)q/x),
q q

(b) T -
cot =(By +tq/) =—cot=(Cp + (x =t =1)qy).
q q
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Note that these two statements are equivalent to
s s
cot f(At/ +(x-t- 1)q/x) = —cot — (D + tqx)s
q q

cotE(Btr +(x-t- 1)q/x) = —cotE(Ctu +tqx).
q q

Also note that for t = (x—;l), since

[cotg(At, + (X;I) q/x) —cotg(Bu + L;I)Q/x)]

2 00.) e 2+ E500,)] -0

- [cotg(ctu +

we again get

cotE(A,r +1q/x) = cot E(Ctu +1tq/x), and
q q

cotE(B,/ +1tq/x) = cot E(Dtu +tq)x)-
q q

This means one of the following two conditions must be true for all values of ¢ ¢

{0,1,..., 5Dy

(I) cot %A,/H = cot %Ct”ﬂ and cot %Bturt = cot thuH when A, > B} and C/ >
D} or when A} < B and C{’ < D}.

(II) cot gA,:H = —cot %Dt"—(t+1) and cot %th_t = —cot ng,(Hl) when A, > B
and C} < D} or when A, < By and C;’ > Dy ]

We are now ready to prove that isospectrality in Case 5 implies that the lens spaces
are isometric.

Proposition 3.9  Under Corollary 3.8(i), Ly and L, are isometric.

Proof Condition (i) impliesthat Ay, = Cyryy (mod q) and By = Dyryy (mod q),
ie, 3t e {0,1,..., 5 with
pyth/x -py+x= Ay (mod q),
pyhq e —py—x= By (mod q),
syt2q)x —sy +x = Cp (mod q),
sytaqx —$y —x = Dy (mod q)
such that
py(ti+t)q/;x —py+x=sy(ta+t)q)x —sy+x (mod q),
vte{0,1,...,x -1},
py(ti+1)q) —py—x=sy(ta+1)q) —sy—x (mod q),
vte{0,1,...,x -1}
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These congruences imply that for all t € {0,1,...,x -1}

py[ (th+1)q)x — 1] = sy[(tz +1)q/x — 1] (mod q).

Now, if t = x — t;, then by writing t3 = x — #; + t,, the above congruence can be
written as

py(q-1) =sy(t3q)x —1) (mod g).

We know that gcd(q —1,9) = 1. We claim that ged(t3g/x —1,q) = 1. To see this,
suppose gcd(t3q/, — 1,q) = d > 1. But this means

py(q-1)=sy(t39)x —1) (modd)=0 (modd)).

Now d does not divide g, since d|(¢39/x —1), which means d|x, since d|q. Now, since
gcd(x, py) = 1, this would imply that (g —1) = 0 mod d, which is a contradiction.
Therefore, gcd(t3q,, — 1,q) = 1. Now we see that the corresponding lens spaces are
isometric, because

L(gsx, py) ~ L(gs =%, =py) ~ L( g —x, (t3q/x = 1)sy) ~ L(gs x,5). m

Proposition 3.10  Under Corollary 3.8(ii), L, and L, are isometric.

Proof Condition (ii) implies that Ayyy = —Dyryy (mod q) and Byyy = —Cpryy
(mod q),i.e, 31,1, €{0,1,..., ("—2_1)} with
pytiq —py+x=Ay (mod g),
pyhq s —py-x =By (modq),
sytaqx —sy +x = Cyr (mod q),
sytaq)x —sy —x = Dy (mod q)
such that
py(t + t)q/x —py+x=-sy(t,—t- l)q/x +sy+x (mod gq),
vte{0,1,...,x—1},
py(ti+10)q) —py—x=—sy(ta—t-1)q; +sy—-x (mod q),
Vte{0,L,...,x —1}.
These congruences imply that for ¢ € {0,1,...,x -1},

pyl(t+1)q)x =1 = =sy[(a =t =1)q/ +1] (mod q).

As before, if t = x — 1, then, by writing ¢3 = x + 1 — #; — t,, the above congruence can
be written as

py(g-1) =-sy(tsq/x +1) (mod q).

With a similar argument as in Proposition 3.9, we get that gcd(t3q, +1,9) =1, and,
as before, the corresponding lens spaces are isometric because

L(gsx, py) ~ L(q; %, -py) ~ L( g —x, —(t39/x+1)sy) ~ L(g; x,5y). .
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We note that in the above setting, when y = q/,, the minimum positive value for
tq,x + x is x, which occurs when ¢ = 0, and the minimum positive value for g/, — x
is q/x — x, which occurs when ¢ = 1. If g/, > 2x (resp. g/, < 2x), then the minimum
value of tq/, — x (i.e., g/, — x) is greater than (resp. less than) the minimum value of
tq)x + x (i.e., x). Consequently, A; < B;; and C; < Dy forall ¢ € {0,1,...,x ~ 1}
(resp. Ay > Byyp and C; > Dy forall t € {0,1,...,x —1}). This means that for each
t,Bry1 — Ay = qjx = 2x = Dyyy — Gy (resp. Ay — Byyy = 2x — q/x = C; — Dyy1). Now
by substituing 0 (resp. 1) in place of ¢’ and ¢” in the subscripts of A (resp. B) and C
(resp. D), respectively, we can prove the previous results with similar arguments for
the case when y = q,..

Proposition 3.11  Suppose lens spaces Ly = L(q : x, py) and L, = L(q : x,sy) are

isospectral where gcd(q,py) = y = gcd(g,sy) and y = qx; then for all t €
{0,1,..., 52,

[cotg(Ao +1q)x) —cotg(Bl + tq/x)]
- [cotg(Co +tqx) - cotg(Dl + tq/x)]
+ [cotg(Ao +(x—t-1)q/x) —cotg(Bl +(x— t—l)q/x)]

- [cotz(C0+(x—t—1)q/x) —cotz(D1+(x—t—1)q/x)] =0,
q q

and for t = @,

[Cotg(Ao+ (x_l)q/x) _Cotg(31+ (xz_l)q/")]

—[cotg(C0+ (xz_l)q/x) —cotg(D1+ (xz_l)q/x)] =0.

Corollary 3.12  One of the following holds for all t € {0,1, ..., (xz;l)}
(i) cot gA[ = cot gCt and cot %BM = cot gDM,
(ii) cot %A, = —cotZD_, and cot gBm = —cotgc_,_l.

Proof The proof is similar to the proof of Corollary 3.8. ]

Proposition 3.13  Under Conditions (i) and (ii) of Corollary 3.12, lens spaces L, and
L, are isometric.

Proof The proof is similar to the proofs of Propositions 3.9 and 3.10. ]

This completes the proof of our theorem for Case 5. ]
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4 4-Dimensional Orbifold Lens Spaces

It is known that in the manifold case, even-dimensional spherical space forms are only
the sphere and the real projective spaces [12]. It is also known that the sphere S" is
not isospectral to the real projective space P"(R) [BGM].

In the orbifold case, there are many even dimensional spherical space forms with
fixed points. We will focus on the 4-dimensional orbifold lens spaces. In [L], Lau-
ret classified cyclic subgroups of SO(2n + 1) up to conjugation. According to this
classification, any cyclic subgroup G of SO(2n + 1) is represented by G = (y), where
y = diag(M(Z), ..., M(Z£),1) and M(8) = (<%, inf).

In order to prove our theorem for 4-dimensional orbifold lens spaces, we need a
couple of results from [Ba]. We define

M(pifa) 0
gw+ = M(pa/q)
0 IW
and
M(sifa) 0
Fiw- = M(sJg) |
0 IW

where Iy is the W x W identity matrix for some integer W. We can define Gws
= (Zw+) and Gy, = (Z}y.). Then Gy, and G}, are cyclic groups of order g. We
define lens spaces Ly, = S*"*V~1/Gy, and I}, = $*"*"W~1/G!, .. Further suppose
that the corresponding 2n — 1-dimensional orbifold lens spaces are given by L = L(g :
p1>p2s--->pn)and L' = L(q : s1,82,...,5,). Then by [Ba, Lemma 3.2.2], we get the
following lemma.

Lemma 4.1 LetL, L', Ly, and L', be as defined above. Then L is isometric to L'
if and only if Ly, is isometric to L}, .

And by [Ba, Theorem 3.2.3] we get the following theorem.

Theorem 4.2 ~Lel‘ F}"*(2z: p1,..., pn,0) be the generating function associated with
the spectrum of Ly .. Then on the domain {z € CI 2| < 1},

(1+2) 1

14
FV*(z: yeuusPny0) = c = 7 :
q ( P p ) (I_Z)W—l qgnid(z_ypx‘l)(z_y_ml)

Now suppose n = 2. Let

M(pi/q) 0
&= M(p2/q)
0 1
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and

M(s1/q) 0
M(s2/q)
0 1

FSl
I

Suppose there are 4-dimensional orbifold lens spaces O; = S*/ G1 (denoted by L(
P1,p2,0)) and O, = 84/G2 (denoted by L(q : s1,52,0)), where G, = (g1) and G, =
(22). Further suppose the corresponding 3-dimensional orbifold lens spaces are given
by Li=L(q: p1,p2)and L, = L(q : 51,52).

We now prove the following theorem for 4-dimensional orbifold lens spaces.

Theorem 4.3 We have O, O,, Gy, and G, as above. If O, and O, are isospectral,
then they are isometric.

Proof From Theorem 4.2 we know that on the domain {z € C| 2| < 1} , the spec-
trum generating functions of O; and O,, respectively, are,

1d (1+2)
F,(z:p1,p2,0) = — >
R N Pt vty
13 (1+2)
F,(z:58,8,,0) = — .
s ) ey

Notice that Fg(z : p1, p2) = (1= 2)F4(z : p1,p2,0) and Fy(z : s1,5,) = (1-2)
Fy(z : 51,52,0), where Fy(z : p1, p2) and Fy(z : s1,5,) are respectively the spectrum
generating functions for the 3-dimensional orbifold lens spaces L; = L(q : p1, p») and
L, = L(q : s1,52). This means that if O; and O, are isospectral, then L; and L, are
also isospectral.

Now, from Theorem 3.1, we know that L; and L, are isometric. By Lemma 4.1 we
know that L, is isometric to L, if and only if Oy is isometric to O,. This proves the
theorem. ]

5 Lens Spaces and Other Spherical Space Forms

One question still remains: Is an orbifold lens space ever isospectral to an orbifold
spherical space form that has non-cyclic fundamental group?

Our next result proves that an orbifold lens space cannot be isospectral to a general
spherical space form with non-cyclic fundamental group. We will use some results
from [12] noting that in some cases his assumption that the acting group is fixed-point
free is not used in certain proofs, and therefore, the results hold true for orbifolds. The
notation is also borrowed from [12].

Definition 5.1 Let G be finite group and let G be the subset of G consisting of all
elements of order k in G. Let 6(G) denote the set consisting of orders of elements in
G. Then we have

G= U G (disjoint union).
kea(G)
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The following lemma is proved in [12, Lemma 2.5] for fixed-point free subgroups of
SO(2n), but we note that the proof does not require this condition, and we reproduce
the proof from [12].

Lemma 5.2 Let G be a finite subgroup of SO(2n) (n > 2). Then the subset Gy is
divided into the disjoint union of subsets Cj, ..., C;* such thateach C}, (t = 1,2, ..., ix)
consists of all generic elements of some cyclic subgroup of order k in G.

Proof For any g € Gy, we denote by A, the cyclic subgroup of G generated by g.
Now, for g, g’ € Gy the cyclic group A, N Ay is of order k if and only if A, = A
Now the lemma follows from this observation immediately. ]

We now state another lemma (see [12, Lemma 2.6] for proof) that will be used to
prove our result.

Lemma 5.3 Let g be an element in SO(2n) (n > 2) and of order q (q > 3). Set
y = €™V 14. Assume g has eigenvalues y,y~', y?', y P, ..., yP*, yP%, with multiplic-
ities 1,1, iy, i1, . . ., ik, ig, respectively, where py, ..., py are integersprime to g with p; #
+pi(modq) (for1<i < j<k) p; # £1(modq) (fori=1,. k)tmdl+i1+-~-+ik = n.

Then the Laurent expansion of the meromorphic function

1 (\/__1)n+lyl k - . ;
(z=y)t 21— y2)nt JHI{ C‘”g(l’f 1) - Cotg(pj -1}

7@(12 o) atz=7yis

+ lower order terms.

The following proposition is proved by Ikeda for a group G that acts freely. How-
ever, we note that the proposition is true even if G does not act freely since the proof
does not use the property that G acts freely.

Proposition 5.4 Let G be a finite subgroup of SO(2n) (n > 2), and let k € o(G).
We define a positive integer ko by
ko=2n-1lifk=1o0r2,
= m%x{multiplicities of eigenvalues of g} if k > 3.
8€Gk
Then the generating function Fg(z) has a pole of order ky at any primitive k-th root of 1.
Proof Atz =1, we notice that for g = I, € Gy, we get
2

lim(1-z)*""'F ==,

im(1 -2 Fo(2) = 1o
as g has eigenvalue 1 with multiplicity 2n. So Fg(z) has a pole of order 2n —1latz = 1.

At z = -1 we notice that for g = I, € G,, we get
2

Gl
as g has eigenvalue —1 with multiplicity 2n. Also, for any other g’ € G,, the eigenvalue
-1 has multiplicity at most 2#1. So F(z) has a pole of order 2n — 1 at z = —1 as well.

lim (1+ 2)*" 'Fg(z) =
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We now assume k > 3. Now let Gy, C,lc, . C,ik be as in Lemma 5.2. Then we have

6) AR =Y ey
. G = B -
ec, det(lon — g2) 4676, det(Lyn - g2)

i 1-2? 1- 22

=22

— 4 —_—
i1 gec det(L, — gz) geGZ—:Gk det(I, — g2)

Sety = 2™k For any primitive k-th root ' of 1, where t is an integer prime to
k, let
a, (1) aky-1(1) et a(t)
(z=yHk  (z-y)k (z=y")

be the principal part of the Laurent expansion of F (z) at z = y'. Then each coefficient
a;(t) is an element in the k-th cyclotomic field Q(y) over the rational number field
Q. The automorphisms o; of Q(y) defined by y — y' transforms a;(1) to a;(t) by
equation (5.1). Hence, it is sufficient to show that the generating function Fg(z) has
a pole of order kg at z — y, that is, to show that a;, (1) # 0.

Recall thatif 0 < b < a < 7, then cota — cotb < 0. Now the proposition follows
immediately from Lemma 5.3 and equation (5.1). [ |

From Proposition 5.4, we get the following corollary.

Corollary 5.5 Let S*" /G and S*"~'/G' be two isospectral orbifold spherical space
forms. Then 0(G) = o(G').

We now prove our result.

Theorem 5.6 Let S*"' /G and S*"~' /G’ be two (orbifold) spherical space forms. Sup-
pose G is cyclic and G is not cyclic. Then S*" |G and S*"* |G’ cannot be isospectral.

Proof By Corollary 2.14, we already know that if |G| # |G’|, then S**!/G and
S**1/G’ cannot be isospectral. So let us assume that |G| = |G'| = g.

Suppose S*"! /G and S*"! /G’ are isospectral. If G is cyclic, then it has an element
of order g. Now, by Corollary 5.5, G’ must also have an element of order g, but since
|G'| = g, that implies that G’ is cyclic, which is not true by assumption, and we arrive
at a contradiction. This proves the theorem. ]

The above results will complete the classification of the inverse spectral problem
on orbifold lens spaces in all dimensions, and also will imply that orbifold lens spaces
cannot be isospectral to any other spherical space forms.

6 Heat Kernel For Orbifold Lens Spaces

In the mathematical study of heat conduction and diffusion, a heat kernel is the funda-
mental solution to the heat equation on a specified domain with appropriate boundary
conditions. It is also one of the main tools in the study of the spectrum of the Laplace
operator, and is thus of some auxiliary importance throughout mathematical physics.
The heat kernel represents the evolution of temperature in a region whose boundary
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is held fixed at a particular temperature (typically zero), such that an initial unit of
heat energy is placed at a point at time t = 0.

In this section we will show that the coefficients of the asymptotic expansion of
the heat trace of the heat kernel are not sufficient to obtain the results in the previ-
ous sections. More specifically, if two orbifold lens spaces have the same asymptotic
expansion of the heat trace, that does not imply that the two orbifolds are isospectral.

Definition 6.1 Let M be a Riemannian manifold. A heat kernel, or alternatively, a
fundamental solution to the heat equation, is a function

K:(0,00)x MxM — M

that satisfies
(i) K(t,x,y)isC"intand C?in x and y;
(ii) 0K/dt+ A,(K) = 0, where A, is the Laplacian with respect to the second vari-
able (i.e., the first space variable);
(i) lim,o+ f,, K(t,x,)f(y)dy = f(x) for any compactly supported function f
on M.

The heat kernel exists and is unique for compact Riemannian manifolds. Its im-
portance stems from the fact that the solution to the heat equation

aiu
ot
u:[0,00) x M — R,

+A(u) =0,

(where A is the Laplacian with respect to the second variable) with initial condition
u(0,x) = f(x) is given by

u(t.x) = [ K(txy)f()dy.

If {A;} is the spectrum of M and {(;} are the associated eigenfunctions (normalized
so that they form an orthonormal basis of L?(M)), then we can write

i
K(t,x,y) =Y e M (x)(y).
i
From this, it is clear that the heat trace,
Z(t)=> e,
i
is a spectral invariant. The heat trace has an asymptotic expansion as t - 0+,

Z(t) = (4mt)dim@D/2 > ajt

=

where the a; are integrals over M of universal homogeneous polynomials in the cur-
vature and its covariant derivatives ([G], see [Gi2] or [CPR] for details). The first few
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of these are

ag = vol(M),

1
alsz'[,
6 Jm

1 2 2 2
= — [ (572 =2|p|* = 10|R]*),
@ 360fM(T 4 IRF)

where 7 = Zif;’n:(f\/[) Rpap is the scalar curvature, p = fo(M) R,cpe is the Ricci ten-
sor, and R is the curvature tensor. The dimension, the volume, and the total scalar
curvature are thus completely determined by the spectrum. If M is a surface, then the
Gauss—-Bonnet Theorem implies that the Euler characteristic of M is also a spectral

invariant.
6.1 Heat Trace Results for Orbifolds

In the case of a good Riemannian orbifold, Donnelly [D] proved the existence of the
heat kernel and also proved the following results.

Theorem 6.2 Let f: M — M be an isometry of a manifold M, with fixed point set Q).
(i) There is an asymptotic expansion ast | 0

ZA:Tr(f;L“)eM ~ Z(4ﬂt)_"/2]§)tk/ka(f,a)dvolN(a),

NeQ

where N is a subset of Q (and a submanifold of M), ) is an eigenvalue of A, fi! is a
linear map from A-eigenspace to itself induced by f, and the functions by (f, a) depend
only on the germ of f and the Riemannian metric of M near the points a € N.

(i) The coefficients by(f,a) are of the form by(f,a) = |detB|b;((f, a) where
b;c (f,a) is an invariant polynomial in the components of B = (I — A)™" (where A de-
notes the endomorphism induced by f on the fiber of the normal bundle over a € N) and
the curvature tensor R and its covariant derivatives at a.

In particular,

bo(f>a) = |det B,
T 1 1
bi(f,a) = |det B ( 5 TPkt gRiksthiBhs

1
+ gRiktthtBhi - RkahaBkths)~

In [DGGW] Donnelly’s work is extended to general compact orbifolds, where the
heat invariants are expressed in a form that clarifies the asymptotic contributions of
each part of the singular set of the orbifold. Borrowing their notation, we will sum-
marise the construction used in [DGGW] in the following remarks before stating
their main theorem.
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Remarks and Notation

(i) An Orbifold O was identified with the orbit space F(O)/O(n), where F(O)
(a smooth manifold) is the orthonormal frame bundle of O and O(#) is the orthogonal
group, acting smoothly on the right and preserving the fibers. It can be shown that
the action of O(n) on the frame bundle F(O) gives rise to a (Whitney) stratification
of O. The strata are connected components of the isotropy equivalence classes in O.
The set of regular points of O intersects each connected component Oy of O in a single
stratum that constitutes an open dense submanifold of Oy. The strata of O are referred
to as O-strata.

(i) If (U Gy, my) is an orbifold chart on O, then it can be shown that the action
of Gy on U gives rise to stratifications both of U and of U. These are referred to as
U-strata and U-strata, respectively.

(iii) Let O be a Riemannian orbifold and let (U, Gy, 71y ) be an orbifold chart. Let
N be a U-stratum in U. Then it can be shown that all the points in N have the same
isotropy group in Gy; this group is referred to as the isotropy group of N, denoted
Iso(N).

(iv) Givena U-stratum N, denote by Iso™(N) the set of all y € Iso(N) such that
N is open in the fixed point set Fix(y) of y. For y € Gy, it can be shown that each
component W of the fixed point set Fix(y) of y (equivalently, the fixed point set of
the cyclic group generated by y) is a manifold stratified by a collection of U-strata,
and the strata in W of maximal dimension are open and their union has full measure
in W. In particular, the union of those U-strata N for which y € Iso™*(N) has full
measure in Fix(y).

(v) Let y be an isometry of a Riemannian manifold M and let Q(y) denote the
set of components of the fixed point set of y. Each element of Q(y) is a submanifold
of M. For each non-negative integer k, Donnelly [D] defined a real-valued function
(cited above), which we temporarily denote by ((M, y), - ), on the fixed point set of
y. For each W € Q(y), the restriction of by ((M, y), -) to W is smooth. Two key
properties of the by, are:

(a) Locality. For a € W, bi((M,y),a) depends only on the germs at a of the
Riemannian metric of M and of the isometry y. In particular, if U is a y-invariant
neighborhood of a in M, then by ((M,y), a) = by ((U,y), a).

(b) Universality. If M and M’ are Riemannian manifolds admitting the respective
isometries y and y’, and if 6 : M - M’ is an isometry satisfying ¢ o y = ' o g, then
br((M,y),x) =b((M',y"),0(x)) for all x € Fix(y).

In view of the locality property, we will usually delete the explicit reference to M
and rewrite these functions as by (y, - ) as they are written in [D].

(vi) Let O be an orbifold and let (U Gy, y) be an orbifold chart. Let N be a U-
stratum and let y € Isomax(N ). Then N is an open subset of a component of Fix(y)
and thus, b (y, - )(= bx((U,y), -)) is smooth on N for each nonnegative integer k.
Define a function by (N, -) on N by

be(Nox) = 30 bi(y.x).

yelsomax(N)
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Definition 6.3 Let O be a Riemannian orbifold and let N be an O-stratum.

(i) For each nonnegative integer k, define a real-valued function by (N, - ) by set-
ting bx(N, p) = bx(N,p) where (U, Gy, ny) is any orbifold chart about p,
peny ' (p),and N is the U-stratum through p.

(ii) The Riemannian metric on O induces a Riemannian metric, and thus a volume
element, on the manifold N. Set

Iy = (4mt)~4mN/2 57 fN br(N, x)dvoly(x),
k=0

where d voly is the Riemannian volume element.
(iii) Set
Io = (4mt) ™™ 5™ g, (0) ¥,
k=0

where the a;(O) (which we will usually write simply as ay) are the familiar
heat invariants. In particular, ay = vol(0), a1 = ¢ [, 7(x)dvol O(x), and so
forth. Observe that if O is finitely covered by a Riemannian manifold M (say,
O = G\M), then a;(0) = ﬁak(M).

We now state the main theorem that was proved in [DGGW].

Theorem 6.4 Let O be a Riemannian orbifold and let A, < A, < --- be the spectrum
of the associated Laplacian acting on smooth functions on O. The heat trace 3,72, e Mt
of O is asymptotic as t — 0% to

>
NeS(0) [Iso(N))]
where S(O) is the set of all O-strata, |Iso(N)| is the order of the isotropy at each p € N,

and Iso(p) is the conjugacy class of subgroups of O(n). This asymptotic expansion is of
the form

I()+

(47t)~im(0)/2 i ¢t
j=0

for some constants c; .

We will be using this theorem later to calculate the first few coeflicients of the as-
ymptotic expansion of the heat trace.

6.2 Heat Kernel For 3-Dimensional Lens Spaces

Using the notation from [Iv], we define the normal coordinates for a three-sphere as
follows. Consider a three-sphere of radius r,

8(r) = {(ny v v va) €RY: ()7 + (1) + (1) + (va) = 17,

and let (w, v, 6, ¢) be the spherical coordinates in R* where w € (0, 00), y € (0, 7],
0 € (0,7] and ¢ € [0,27). These coordinates are connected with the standard
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coordinate system (uy, Uz, u3, tg) in R* by the following equations:
U = wsinysin 6 cos ¢,
Uy = wsiny sin 0 sin ¢,
(6.1) )
u3 = wsinycos 6,
Uy = WCOS Y.

The equation of S*(r) in these coordinates is w? = r2. The functions x; = v, x; = 0,

and x3 = ¢ provide an internal coordinate system on S*(r) (without one point) in
which the metric g induced on S’ (r) from E? has components g;; such that
2

r 0
2

(gij) = r*sin® y
0 7% sin® y sin® 6
Then g induces on S*(r) a Riemannian connection v. Using the formula
I = 1™ [9;g1; + 9ig1; - 01851,

we can calculate the Christoffel symbols, which are as follows:

I3 = I = coty, I3 = I3 = coty,
I3, = I3, = cot 6, I,, = —sinycosy,
I3; = —siny cos ysin® 6, T2, = —sin 6 cos 0.

All the other symbols are zero.
Nowlet y : [0,27] - S*(r) be a path in S*(r) such that x;0y = /2 for i = 1,2 and
x30y = id|[g,24]. Since cos /2 = cot 7/2 = 0 and sin 77/2 = 1, we have F}k|y([0,2n]) =0,

and consequently, if we take w = r = 1, we get g;; = 6. Therefore, the coordinate
system {x, x2, x3} and the frame {0/dx;, 9/dx;, d/dx3} are normal for v along the
path y.

From equations (6.1) it is clear that the set y([0, 27]) is a circle obtained by inter-
secting S () with the (vi,v;)-plane {v € R* : v;(p) = 0 for i > 3} in R*. In fact, we
have

y([0,27]) = { (v1,v2,0,0) e R* : v] +v3 = r*} =S'(r) x (0,0).

It is clear if C is a circle on S*(r) obtained by intersecting S*(r) by a 2-plane
through its origin, then there are coordinates on S’ (r) normal along C for the Rie-
mannian connection considered above.

We will assume r = 1. Then, using the above normal coordinate system and the
formulas

i
lem

= 01T = Omlf; + TpTfy = TST
Rapea = gajR{,Cd,

we calculate the values of the curvature as follows:

Riiz = Rygyp = sin’y,

Rizi3 = Rygyg = sin’ 1//sin2 0,

Ry33 = Rg¢9¢ = sin4 l//Sirl2 0.
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All other values are zero. The values of the Ricci tensor, calculated by p,; = RS, are
as follows:

P11 = Pyy =2,

P22 = pag = 2sin’ y,

P33 = pog = 2sin” ysin® 6.

All other values are zero. We then calculate the scalar curvature as follows:

T=g"pyy + 8" pos + §%%pyy = 6.

Since 7 is constant, all its covariant derivatives 7,; are zero. Using pap;m = Ompap —
pisTha — paill ,, we also calculate all the covariant derivatives of the Ricci tensor,
which turn out to be zero as well.

Let e; = (1,0,0,0), e; = (0,1,0,0), e5 = (0,0,1,0), and e4 = (0,0,0,1) be the
standard basis in R*. We define the following two subsets:

N, :{(x,y,O,O):szryZ:l} c R4,
N, = {(0,0,Z,W) (22 +w? :1} c R%.

The tangent space T,, S, has basis vectors {e,, e, e, } such that {e, } is a basis for
T, N, and {e3, e4} is a basis for T, N*. Similarly, the tangent space T,,S?, has basis
vectors {ej, ey, e3 } such that {es } is a basis for T,, N;, and {ey, e, } is a basis for T, N
We will now calculate the values for by (f, a) and by (f, a).

Suppose O = S*/G is an orbifold lens space where G = (y) and

C(M(E) o
o m®)

cos2mf sin2ml
—sin 270 cos2mO

B

where
M(0) = (

is the rotation matrixand p1 # £p, (mod q). Suppose ged(p1, q) = g1 and ged(p2, q)

=g, 50 ﬁlatf)\l = p1q1, P2 = P29z, and q = @q; = fq;. Suppose ged(@, B) = g so that
@ =ag, B =pgandgcd(a, f) = 1. This means we can write y as

ML) o
. 0 ML
(55)
Now
L 0

|)

0 M(E)
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fixes N,, and
M(2Ey o

0 L

fixes Ny, where I, is the 2 x 2 identity matrix.

Note that since the group action is transitive and the fixed point sets are S', the
functions b ( -, - ) are constant along these fixed circles. Therefore, it suffices to con-
sider just a single point in these fixed point sets to calculate the values of the functions.
We will choose the points e; € N, and e4 € N}, to calculate the values of functions.

In the notation of the Theorem 6.4, N, = S' x {(0,0)} and N}, = {(0,0)} x S".
Also,

I50(N,) = {1,)% %%,y BT}, JIso(N,)| = B,
Iso(Ny) = {1, yg, yzﬁ, ... y(""l)’?}, [Iso(Np)| = a.

We now use Theorem 6.4 to calculate the heat trace asymptotic for O using the
formula I + IZ" + =t where

Iy = (4mt)"4im(0)/2 Z ap(0)t*F = (47r)~dim(0)/2 Z —a(S*)tF
k=0 =0 |Gl
(47‘[t) 3/2 oo (4t)_3/2 ootk ~ t—3/2 ;

= e
4qm [z k! 32qm

i =
5

q

and fori € a, b,
Iy, = (4mt)~dimND/2 > tk f by (N;, x)d voly, (x)
k=0 N

t 1/2 oo
(ﬂ ) Z t f b (N7, x)d volg (%),
since N; — N; is trivial in this case

(ﬂt) 1/2 oo
Z t*27b, (N7, x) (for any choice of x by homogeneity)

= /atr? Z t* b (N7, x) , where b (N7, x) = Yo bi(y.x).

k=0 yelsomax N;

Nowfora=e andre{1,2,...(f-1)},

1 1 1-cos szﬁnar —sm 2P2ﬁ”""
Bye(0) = (= Aye(a))™ = Toapomer | i anir 1 o e
B
1 1 —cot%
" 2 \cot PZ;M 1 '
So ‘detByvﬁ(aN = i(l + COt2 Pzgar) — 1

. 9 ppmar ©
4 sin e
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Similarly we can show that for b= ey and r e {1,2,... (a - 1)},

1 1 —cotmr
Byrﬁ(b) =5 pinpr * ’
2 \cot = 1

and [det B, 5(b)| = §(1+ cot? 226y = 1

4sin? 217Br”
«

We will now calculate b; (N, - ) for i = 0,1and j = a, b:

2 pzmxr) _ 1
B 4sin” 228

bo(y'®, a) = |det B,=(a)| = i(“ cot

So

bo(Na,a)= Y bo(f>a)

felsomax N,
B-1

Al T 1 ) pamar
= ;bo(y ,a) = ;Z(H-cot T)

(l+ cot? %), since ged(paa, f) =1

-1

=

N

= =
U

1

2 nr

4 sin 3

_t
—_

-1
12

o
'

, by [DGGW, lemma 5.4].
We can similarly show that

2.1
12

— Ry | L, AT\«
bo(Nyp, b) = ; Z(1+C0t ;) =

We will now calculate by(N,,a) and b;(Ny, b). Note that for both By=(a) and
By,g(b), Biz = By3 = B3; = B3, = B33 = 0. Using the formula in Theorem 6.2, we get

= |det (B,=(a))]
by, a) = )
x {Rmz[z — (B, + 321)2 — (B + Byn)* - 2(By* + 3222)]

+ R1313[2 — (By + B33)? = 2(Bu” + B33?) — 3(Bin* + B322)]

+ R2323[2 ~ (By + B33)? = 2(By,” + B33”) = 3(By* + 3312)] }
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This gives

3
x {Rmz[z— i(cot@, —coth,)* - ( % + %) _2(1 l)]

+R1313[2—(%+0)2—2(1+0) —3(icot297+0)]
+Rz3z3[2—(%+0) —2(% 0) —3(%C0t29r+0)]},

bi(y"®,a) =

which gives

bl(y'a,a): é(l+€0t20 ){R1313(2—7—Zc0t 0 ) +R2323(2—Z—Zc0t2 6,))}

1 3
= E(1+cot29 )(Riz3 + Rasp3)[2 — Z(1+cot 6:)]

—

= (Ruz13 + Razo3)

(
= (R1313+R2323)[ (1+cot 6,) - —6(1+cot 6,) ]
[sem

1 ]
0, ~ 16sin? 0.,
where 0, = 22227,

B
So

-1

b1(No, a) = Z bi(y™®, a)

ﬁ 1

= Z(R1313 + R2323)[ ! - 17 ]

et n? ng‘" 16 sin* p’;‘”
1A 181
=(R +R — - >
(Rizis 2323)[ 5 ; Sin? T, ; sin ﬂﬁr]

since gcd(pzoc B) =1

Also, Z, 1 Sm; 7 = £ _1 and Z, 1 sm} = = M (see [DGGW] for the simpli-
F ¥

fication of their expression (5.9), which uses this result for evaluation of this geometric
sum). So we get

bl(m,a):(R1313+R2323)(ﬁ18—1_,3 +17(;[(§) —11)
NSOV

720

= —(R1313 + R323
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We can similarly show that

a?-1 oc4+10(x2—11)
720

(a?-29)(a*-1)
= —(Ryai3 + Rpsp3) —— 2,
( 1313 2323) 720

bl(m, b) = (R1313 + stzs)(

Using Theorem 6.4 we now calculate the first few coeflicients of the asymptotic ex-
pansion as follows:

N In, N In,
0
[Iso(N,)|  |Iso(Np)|
) t_3/2 et . (n,t)—l/z
32qm B
)12
. &[
o

I:tOT[bo(N:,a) + tlﬂbl(NNa,a) + ]

t71by (N, b) + t' by (Ny, b) + ]

312 B bo(Ng, a) (Nb b) .
= 144+ — 4+ — 4+ — 4+ ... i > = /2
32q71(++2+6+24+ )+( g )\/_
bl(N\;) a) bl(Nb) b) 1/2
+( 3 )\/_t
From this, the coefficient of ~3/2 is T the coefficient of /2 is

1 bo(Ng, a) bo(Nb,b) \/_
32q7‘[ B Vi V= 32qr[ 12[3

LI

SaB -+

and the coefficient of /2 is

1 Vr(Ruis + Ross) [a(B? - 29) (B7 — 1) + (a® = 29) (a? - 1)]
64qn 72003 '

The above results show that the coefficients are dependent on g, «, f3, the curva-
ture tensor, and its covariant derivatives. Since all lens spaces are finitely covered by
S, the parts of the coefficients that consist of the curvature tensor and its covariant
derivatives will be the same for all lens spaces. The only difference will therefore be in
the terms containing & and 3. We can rewrite

T Al 1 B-1 1 B-1 1
b()(Na,a)z *(1+C tzw) — *+Z*C0t2 P27T0””
-4 B “4 4 B
) 1 a—1 1 a-1 1
bo(Ny, b) = 7(1+c t2 plﬂﬁr) N chotz plﬂﬁr,
=4 a ps i S @
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bl(Nﬂ’a) Z(R1313+R2323)[ ( COtZM)_%(1+COt2M)2]

r=1 ﬁ ﬁ
' 5(Ryzs + R Bl Rus +R

_ Z ( 1313 2323) + Z ( 1313 2323) cot? paamr
r=1 48 r=1 24 ﬂ

-1
R +R onr
( 1313 2323) cot? P2 ,
r=1 16 ﬂ

bi(Ny, b) = i (Rizis + Rass [ é(“’ cot? plﬁm) - %(14— cot’ Pli”r) 2]

SE %

5(R1313 + R2323) + az_:l ( Riz13 + Rp323 ) cot? piprr
48 | 24 o

<
& —

1( Ryzpz + R2323) cot? p1pnr
r=1 o

Note that each bj(Na, a), (j=0,1) is of the form

b;i(Ng,a) = ZZC (R) coth M,

r=1i=1 /3
pramr

where Aj is the finite number of monomials in the powers of cot B and for each

i, C, (R) are constant functions in terms of the curvature tensor and its covariant

derlvatlves of the covering space, i.e., the sphere. Since ged(p,a, ) = 1, and we are
summing over r as it ranges from 1 to /5 -1, we can write

bi(Na,a) = ZZC (R) coth

r=1 i=1
Similarly, since ged(a, p18) = 1, we can write

a-14;
bi(Np,b) = Z Cli(R) cot™
r=1 i=1
More generally, for any k, the functions by (y'%, a) and bk(yrﬁ ,a) are universal
polynomials in the components of the curvature tensor, its covariant derivatives and
the elements of B,=(a) and By,g(b), respectively. Since the elements of B,=(a) are

By =By =1/2, By = —% cot% and By, = %cot%, every bi(y"®, a) will be of

the form Y7 Cfi(R) cothi %. This means that for each k, we will have

B-1 Ag

bi(Nara) = . > CL(R) cot ?

r=1 i=1

and similarly,
a—1 Ay

bi(Np,b) = > ZCibk(R) coth L.
«

r=1 i=1
This observation gives us the following lemma for three-dimensional orbifold lens
spaces.
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Lemma 6.5  Given two orbifold lens spaces Oy = S* /G, and O, = S*|G,, such that
= (y1) and G, = (y,) where

(M2 o
T o mB)

< [®)

with p1 # +p> (mod q), ged(p1,9) = qu, ged(p2,q) = 921, p1 = prqu, P2 = p2qan,
q= “1Q11 = [;16121: ng(“bﬁl) F48 o = 181, ﬁl ﬁlgl, and

(M) o
2T 0 M)

with 5| # +5; (mod q), ged(51,9) = g2, 8ed(52,9) = 422, 51 = 51912, 52 = 52922,
q = &q12 = B2q22 gcd(&3, B2) = g2, & = a282, B2 = P2gs. Then Oy = S*/G, and
0, = S* /G, will have the exact same asymptotic expansion of the heat kernel if a; = «,

and ﬁ] = ﬂz.

This lemma gives us a tool to find examples of 3-dimensional orbifold lens spaces
that are non-isometric (hence non-isospectral) but have the exact same asymptotic
expansion of the heat kernel.

Example 6.6 Suppose q = 195, and consider the two lens spaces O; = L(195 : 3,5)
and O, = L(195 : 6,35). Since there is no integer I coprime to 195 and no e; € {1, -1}
such that {e;13, e;15} is a permutation of {6,35} (mod g), O, and O, are not iso-
metric (and hence non-isospectral). However, in the notation of the lemma above,
P1=3,p2="575=6,5 =35gcd(p1,q) =3 = ged(51, 9), ged(p2, ) = 5 = ged(52, 9),
and g =195 = 3x 65 =5x39. So & = & = 65 and f; = B, = 39, with ged (&}, B;) = 13
(for i = 1,2) giving &y = a, = 5and 8; = 8, = 3. Therefore, O; = L(195 : 3,5) and
O, = L(195 : 6, 35) have the exact same asymptotic expansion.

6.3 Heat Kernel For 4-Dimensional Lens Spaces

Similar to the three-dimensional case, we can show the construction of examples in
four-dimensional lens spaces where the lens spaces will not be isospectral but will have
the exact same asymptotic expansion of the trace of the heat kernel. Again, borrowing
the notation from [Iv], we define the normal coordinates for a four-sphere as follows.
Consider a four-sphere of radius 7,

SHr) = { (w2 v, va vs) €R7: ()" + (v2) o+ (1) + (va)” + (v5)* = 1,

and let (w, v, 6, ¢, t) be the spherical coordinates in R*> where w € (0, ), y € (0, 7],
0 € (0,7], ¢ € (0,7], and t € [0,27]. These coordinates are connected with the
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standard coordinate system (uy, u3, U3, tg, us) in R by the following equations:
u; = wsin ysin 0 sin ¢ cos t,
Uy =wsinysin 0sin ¢ sint,
u3z = wsiny sin 6 cos ¢,
uy = wsinycos6,
Us = Wcos Y.
The equation of S*(r) in these coordinates is w* = 7. The functions x; = ¥, x, = 0,

x3 = ¢ and x4 = t provide an internal coordinate system on S*(r) (without one point)
in which the metric g induced on S*(r) from E* has components g;; such that
2 0
| rsin’y
(8ij) = r? sin” ysin” 6
0 12 sin? y sin” 0 sin® ¢

r

As before, we calculate the values of the curvature tensor as follows:
Rizip = Rygyo = sin’ v,
Ri313 = Rygye = sin® ysin® 6,
Risia = Rysy = sin” ysin® Osin” ¢,
Ry3p3 = Rgggg = sin® ysin® 6,
Ry24 = Rosg, = sin” ysin® Osin® ¢,
Rss34 = Ryrgr = sin® ysin® Osin” ¢.
All other values are zero. The values of the Ricci tensor, calculated by p,j, = R ,,are
as follows:
Pu = Pyy =3,
p22 = pog = 3sin’ y,
P33 = pog =3 sin® ysin® 6,
Pas = Pt = 3 sin? 1//sin2 6 sin® é.
All other values are zero. We then calculate the scalar curvature as follows:
7= 8"pyy + 8" P00 + 8% pgy + &' p1 = 12.

Now, let e; = (1,0,0,0,0), e = (0,1,0,0,0), e3 = (0,0,1,0,0), e = (0,0,0,1,0),
es = (0,0,0,0,1) be the standard basis in R>. We can then define the following two

subsets:
N, :{(x,y,O,O,v):x2+y2+v2:1} cR%,
Ny ={(0,0,z,w,v) : 22 + w> +v* =1} c R’

The tangent space T,,S*, has basis vectors {e,, e3, €4, €5} such that {e;, es} is a
basis for T,, N, and {es, e4} is a basis for T, N*. Similarly, the tangent space T,,S*,
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has basis vectors {e}, e,, e3, es } such that {es, es } is a basis for T,, N, and {e;, e, } isa
basis for T, N}.
Suppose O = S*/G is an orbifold lens space where G = (y) and

M(2) 0
y= M%) |
0 1

where p; # +p, (mod g). Suppose gcd(pl, ) = g and gcd(f)\z,q) = ¢, so that

1:7:1 = pi1g1> P2 = p2qz and q = aq; = /)’qz Suppose ged(@, ﬁ) = gsothat@ = ag,
B = Bg and gcd(a, §) = 1. This means we can write y as

M(o%) 0

— i3

y= M(52)
0 1

Now

Iz 0

a_ p2c

Y= M%)

0 1

fixes N,, and

5o (M) o

Y 0 I3

fixes Nj. Here I, and I5 are the 2 x 2 and 3 x 3 identity matrices respectively.

As before, it suffices to consider just a single point in these fixed point sets to cal-
culate the values of the functions. We will choose the points e; € N, and e4 € N, to
calculate the values of functions.

We have, in the notatlon of Theorem 6.4, N, = S?x{(0,0)} and N, = {(0,0)}xS?.

Also, Isoy, = {1,y%, 9%, ...,y D% JIson, | = B, Ison, = {1, yﬁ .. Lyt 1)/5}

Now, as in the case of three-dimensional lens spaces, we have for a = e; and r €

{1,2,....(B-1)},

1 1 —cot —Pzgm
Byﬁx‘((}l) = 5 (COt ngar 1 ) :

So |detBy,z;(a)| = i(l + C0t2 Pzﬂvcr) _ 1

B 4 gin2 2270r *

Similarly we can show that for b = ey and r e {1,2,...,(a - 1)},

1 1 _ cot rmBr
By,ﬁ(b) = E ( pirfr * ’
cot —— 1

and|detBy,;;(b)\ = 3 (1+cot? pl%ﬁr) = W' Note again that for both Bz (a) and
B 5(b), Bi3 = Bys = B3y = B3y = B3y = Byy = By = Byp = Byy = Bys = B3y = Byy = 0.
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This means that, just as in the case of three-dimensional lens spaces, for each k, we
will have,

Similar to the three-dimensional case, this observation gives us the following lemma.

Lemma 6.7  Given two orbifold lens spaces Oy = S*/G, and O, = S*/G,, such that
G = (y1) and G, = (y,) where

M(%) 0
"= M(E)
0 1

with p1 # £p> (mod q), ged(P1,q) = qu, ged(p2,9) = a1, P1 = p1qu, P2 = p2qau,
q= 071(]11 = ﬁlfhl, ng(&\b/-;l) =81 o = *1415 ﬁl = /31g1, and
M(%‘) 0
Y2 = M(Z) |
0 1

with s; # +5; (mod q), ged(51,9) = qu2, ged(52,9) = 422, 51 = 51912, 52 = 52922,
q = 2912 = P2q22, ged(@2, B2) = g2, &2 = 282, B2 = P2

Then O, = S*/G, and O, = S*/ G, will have the exact same asymptotic expansion of
the heat kernel if o = a3 and 5, = B,.

This lemma gives us a tool to find examples of 4-dimensional orbifold lens spaces
that are non-isometric (hence non-isospectral) but have the exact same asymptotic
expansion of the heat kernel.

Example 6.8 Suppose g = 195, and consider the two lens spaces O, = Ly, =
L(195:3,5,0) and O, = L}, = L(195 : 6,35, 0) (using the notation from Lemma 4.1).
Since there is no integer I coprime to 195 and no e; € {1, -1} such that {e;13, e;I5}
is a permutation of {6,35} (mod ¢q), O; and O, are not isometric (and hence non-
isospectral). However, in the notation of the lemma above, p; = 3, p, = 5,5 = 6,
§2 = 35 ged(p1,q) = 3 = ged(51,9), ged(p2,q) = 5 = ged(52,9) and g = 195 =
3x65=5x39.S0a&; =a& =65and ff; = 2 = 39, with ged(a;, ;) =13 (for i = 1,2)
giving &1 = ap = 5, and f; = B, = 3. Therefore, O; and O, have the exact same
asymptotic expansion.
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