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Abstract

Let C(X, F) be the space of all continuous functions from the ultraregular compact Hausdorff space
X into the separated locally K-convex space F; K is a complete, but not necessarily spherically
complete, non-Archimedean valued field and C(X, F) is provided with the topology of uniform
convergence on X. We prove that C(X, F) is K-barrelled (respectively K-quasibarrelled) if and only if
F is K-barrelled (respectively K-quasibarrelled). This is not true in the case of R or C-valued
functions. No complete characterization of the K-bornological spaces C(X, F) is obtained, but our
results are, nevertheless, slightly better than the Archimedean ones. Finally, we introduce a notion of
K-ultrabornological spaces for K non-spherically complete and use it to study K-ultrabornological
spaces C(X, F).
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1. Introduction

Let K be a complete, non-trivially non-Archimedean valued field. Let E be a
separated locally convex space (s.l.c.s.) over K. Let E’ be the topological dual of
E (if X is not spherically complete, then E’ may reduce to {0}: see [6, Théoréme
2).

For X an ultraregular compact Hausdorff space, Let C(X, E) be the vector
space of all continuous functions from X into E, provided with the topology of
uniform convergence. Obviously, C(X, E) is again a s.l.c.s. over K.
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We define K-quasibarrelled, K-bornological, K-barrelled and K-ultraborno-
logical s.l.c.s. over K and investigate whether spaces of type C(X, E) have such
properties.

DEFINITION 1.1. A subset 4 of E is a polar set if it has the form 4 = B°,
where B C E’.

Equivalently, 4 is a polar set if and only if 4 = 4%, with polars being taken in
the pairing {( E, E"). Obviously, a polar set is K-convex in the sense of [8]. If X is
spherically complete, then the polar sets are just the I'-closed sets of [8].
Intersections of polar sets are again polar sets, and so also are the inverse images
of polar sets under continuous linear transformations.

DErFINITION 1.2. E is K-quasibarrelled if every bornivorous polar set is a
neighborhood.

Equivalently, E is K-quasibarrelled if and only if every family of continuous
linear functionals on E which is bounded on bounded subsets of E is equicon-
tinuous. An easy argument involving [8, Théoréme 4.14 and Théoréme 4.15]
shows that, for X spherically complete, E is K-quasibarrelled if and only if every
closed K-convex bornivorous set is a neighborhood. This justifies the terminol-
ogy.

Let E; denote the dual of E, provided with the strong topology. Obviously, E
is K-quasibarrelled if and only if every bounded set in E; is equicontinuous.

Complemented subspaces of K-quasibarrelled spaces are easily seen to be
K-quasibarrelled; and so also is any space that contains a dense K-quasibarrelled
subspace.

Ultrametrizable s.l.c. spaces are K-quasibarrelled.

DEfFINITION 1.3. E is K-barrelled if every absorbing polar set is a neighbor-
hood.

Obviously, E is K-barrelled if and only if every pointwise bounded family of
continuous linear functionals on E is equicontinuous. If K is spherically com-
plete, then E is K-barrelled if and only if every closed K-convex absorbing set is
a neighborhood. This justifies the terminology.

Complemented subspaces of K-barrelled spaces are K-barrelled; and so also is
any space that contains a dense K-barrelled subspace.

Complete ultrametrizable s.l.c.s. are K-barrelled.

A K-barrelled space is K-quasibarrelled.

DEFINITION 1.4. E is K-bornological if every K-convex bornivorous set is a
neighborhood.
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Obviously, E is K-bornological if and only if every linear transformation L:
E — F, where F is any other s.lLc.s., which is bounded on bounded sets is
continuous.

Complemented subspaces of K-bornological spaces are K-bornological.

A K-bornological space is K-quasibarrelled.

DEFINITION 1.5. A subset A C E is compactoid if, for every zero-neighborhood
U in E, there is a finite set X C E such that 4 € Co(X) + U, where Co(X) is
the closed K-convex hull of X [7, page 134]. A bounded K-convex subset A4 of E
is completing if ({A], m,) is a Banach space, where m, is the Minkowski
functional of A on the linear span [ 4] of A. A subset A4 of E is K-compact if it is
K-convex, compactoid and completing. E is K-ultrabornological if every K-con-
vex set in E that absorbs all K-compact sets is a neighborhood.

By straightforward arguments, the image of a K-compact set under a continu-
ous linear transformation is K-compact.

Every n.A. Banach space is K-ultrabornological since a zero-sequence in it is
easily seen to be contained in a K-compact set.

Complemented subspaces of K-ultrabornological spaces are K-ultrabornologi-
cal.

A K-ultrabornological space is both K-barrelled and K-bornological.

REMARK 1.6. In the definition of compactoid, it is often useful to know that the
definition is independent of the linear subspace in which A lies. For normed
spaces E, this follows frmo [7, Theorem 4.37]. The case of general locally convex
spaces is easily reduced to the normed case.

2. Spaces of continuous vector-valued functions

For F a sl.c.s. with T as system of seminorms, the tensor product C(X) ® F is
algebraically identified in the usual way with {fe C(X; F): f(X) lies in a
finite-dimensional subspace of F}. The w-tensor product of two n.A. locally
convex spaces is defined in [6]. In the case of spherically complete K, the next
result is in [6]; we prove it for arbitrary K.

PROPOSITION 2.1. If X is a compact T,-space, F a s.l.c.s., and p € T, then on

C(X) ® F the seminorms m, and || - ||, coincide, where
7,(z):= inf supllellp(¥),
z2=¥,9,®y

Izli= sup p(Zeu(x)).
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Proof. If z =X, ® y, then obviously |z|,:= sup,xpE,(x)y) <
Sup, ¢ x Sup;|P:(x)| p(¥;) < sup,ll@ill P (¥,)- So ||z}l , < m,(2).

On the other hand, let f € C(X) ® F and let any ¢ with 0 < < 1 be given.
Let [ f(X)] be the linear span of f(X) and let [ f(X)], be the quotient space of
[f(X)] modulo { y: p(y) = 0}. By [7, Theorem 3.15] we may find a t-orthogonal
basis { y1, ¥35-- -5 Ym} Of [f(X)],. Choose y,,y,..., ¥, in [f(X)]IN {y: p(y)=
0} such that {y,,..., y,} is a basis of [ f(X)]. Let ¢,,...,¢, € C(X) be such
that f =X, ¢,y

Then

1£1, = sup p(f(x)) = sup p( 5 cp(x)yi)

xeX xeX j=1

m
sup p( )y %(x)y,-) >t sup sup|o,(x)|p(y)
x€X i=1 xeXxX i

> tsup p(y,) sug{l«pi(x)|> t sup o)l .p(¥:) = tm,(f).
i x€ i

This holds for all 0 < ¢ < 1; hence || f||, > =,(f).

By routine arguments one sees that C(X)®,F is a dense subspace of
C(X, F). Moreover, every bounded subset of C( X, F) is contained in the closure
of a bounded subset of C(X) ®, F. (Note that (C(X) ® , F) N C(X, B) is dense
in C(X, B) whenever' B is bounded in F.) Also, F is clearly contained as a
complemented subspace in C(X) ® ,, F as well as in C( X, F).

An important special case of a space C(X, F) is ¢y,(F), the space of zero-
sequences in F, which is isomorphic to C(N*, F) where N* is the one-point
compactification of the natural numbers. Indeed, cy(F) is isomorphic to c¢(F),
the space of converging sequences in F.

REMARK 2.2. A survey of what is known about spaces of real valued or real
vector space valued continuous functions can be found in [9] and [11].

REMARK 2.3. In studying C( X, F) for compact Hausdorff X, there is no loss of
generality if we assume X to be ultraregular; indeed, we may always replace the

topology of X by the weak topology induced by the functions in C( X, F) (and, if
necessary, we can consider a Hausdorff quotient space).

3. K-quasibarrelled and K-barrelled spaces C( X, F)

The following result is basic.

ProPOSITION 3.1. If E is a normed space and F a K-quasibarrelled I.c. space,
then E ®  F is K-quasibarrelled.
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PROOF. Let D be a bounded subset of (E ® F)j; let b(E) and b(E;) denote
the unit balls in E and E;, respectively. If B is bounded in F, then b(E) ® B is
bounded in E ®, F and so sup{|L(x® y)|: Le D, x€ b(E), y € B} < o0.
For any L € (E® F) andy € F, the map E — K, x +» L(x ® y), belongs to
E; and has norm < p(y)if L(x, ® y,) < ||xoll () for xo, € E, y, € F. Hence
the map T: (E ®, F) = (F,E}), L-» (y + (x » L(x ® y))), is well defined.
Clearly, it is also one-to-one. Consider Z = N, < , T(L) " Y(b(E})). Then Z is a
bornivorous polar set in F and so a neighborhood. Since sup{|L(x ® y)|: L € D,
x € b(E), ye Z} <1, D is an equicontinuous subset of (E ®,k F);. Hence
E ®_ F is K-quasibarrelled.

PROPOSITION 3.2. If F is a s.l.c.s. and X a nonempty compact T,-space, then
C(X, F) is K-quasibarrelled if and only if F is K-quasibarrelled.

PrOOF. The “if” part foilows from Proposition 2.1, from Proposition 3.1, and
from the fact that C(X) ®_ F is dense in C(X, F); the “only if” part is true
because F is a complemented subspace of C( X, F).

REMARK 3.3. The Archimedean analogue of Proposition 3.2 does not hold, as
was first remarked in [3] and [10].

PROPOSITION 3.4. If F is K-barrelled and X a nonempty compact T,-space, then
C(X, F) is K-barrelled.

PrOOF. By Proposition 3.2, C(X, F) is K-quasibarrelled. Let A € C(X, F) be
a polar set that absorbs the points of C(X, F). It is enough to prove that A
absorbs the bounded sets of C(X, F), i.e. the sets of type C(X, B), where B is
bounded and K-convex in F.

First we treat the case that X is ultrametrizable. Let B be bounded in F and
assume that A4 does not absorb C( X, B). For every clopen subset Y of X, define

Cy(X,B)={feC(X,B): f=00n X\ Y}.
Then it is easily seen that there exists a sequence Y¥; 2 Y, 2 --- of clopen
subsets of X such that A does not absorb any Cy(X, B), and such that
diam Y, — 0. Obviously N, Y, contains just one point, say .

We claim that 4 does not absorb any of the sets { f € Cy (X, B): f(¢) = 0}.
Indeed, choose ¢ € C(X, K) such that ¢(¢) = 1, |¢| < 1 everywhere, and ¢ = 0
outside Y,.. If A absorbs { f € Cy (X, B): f(¢) = 0}, then it absorbs { f — f(#)¢:
f € Cy(X, B)} aswell as { f(2)9: f € Cy(X, B)}, and so the whole of Cy (X, B).

Choose any A € X, |A| > 1. By induction we may construct a sequence (f,),
in C(X, B) such that f, & A4 for all n, and such that {n: f,(x) # 0} is finite for
all x € X.
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Now define ®: ¢, = C(X, F), (X;); » L;A,f,. This definition is possible, and
® maps the unit ball of ¢, into C( X, B); so ® is continuous.

The set ®~!(4) is a polar set and absorbs all points. Since ¢, is K-barrelled,
there is a Ay € K\ {0} such that (X,); € X ®~!(A4) whenever |(A,),]l, < 1. In
particular, f; € A, 4 for all i, which contradicts the fact that f, & A" for all .

Now let X be arbitrary. Since 4 is closed, by the remarks following Proposi-
tion 2.1 it is enough to show that 4 absorbs (C(X) ®, F) N C(X, B). Of course,
it is also sufficient to prove that A absorbs any given sequence in (C(X) ® , F) N
C(X, B). There is, however, an ultra-semimetrizable topology on X, weaker than
the original topology, with respect to which all functions in such a sequence are
continuous. By passing, if necessary, to a quotient space of X, we are reduced to
the first case. ‘

REMARK 3.5. The Archimedean analogue of Proposition 3.4 does not hold
(again, see [3] and [10]). However, if C( X, F) is quasibarrelled and F is barrelled,
then C(X, F) is barrelled in the Archimedean case [4].

4. K-bornological spaces C( X, F)

The following result is fundamental.

PROPOSITION 4.1. If E is a normed space and F a K-bornological s.l.c.s., then
E ®_ Fis K-bornological.

PROOF. Let G be alcs., and let L: E ® , F > G be bounded on all bounded
sets of E ®, F. Define L: F —» L(E,G), y » (x » L(x ® y)). If B is bounded
in F, the b(E) ® B is bounded in E ®_ F, and so sup{ p(L(x ® y)): x € b(E),
y € B} < oo for every continuous seminorm p on G. Hence L is well-defined
and maps bounded sets onto bounded sets. The fact that F is K-bornological
implies that, for every neighborhood U in G, there is a neighborhood ¥ in F such
that L(x ® y)€ U if x € b(E)and y € V. So L is continuous.

COROLLARY 4.2. If X is a compact Hausdorff space and F a K-bornological s.l.c.
space, then { f € C(X, F): [ f(X)] is finite-dimensional } is K-bornological.

REMARK 4.3. If F is a locally K-convex space with the finest locally convex
topology, then C(X, F) is K-bornological for every compact Hausdorff space X
(indeed, then C(X) ®, F = C(X, F)). In the Archimedean case, even cy(F) will
not be bornological if F has uncountable dimension [3, 10].
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LeMMA 4.4. Let E, F be s.l.c.s. and E a bornological subspace of F. Assume that
for every y € F there is a bornological s.l.c.s. G and a continuous linear ®: G — F,
as well as a net (x;); c; in G that converges to x € G, such that ®(x,) € E for all i,
and such that ®(x) = y. Then F is bornological.

PrROOF. Let H be another sl.cs. and L: F — H a linear transformation that is
bounded on the bounded sets of F. Since E is K-bornological, there is for every
continuous seminorm p on H a continuous seminorm ¢ on F such that
p(Lx) < q(x) whenever x € E. Let y € F be arbitrary and let g, ®, (x,),, and
x be as the assumptions. Then L o ® is continuous, since G is K-bornological.
Hence p(L(y)) = p(L > ®(x)) = lim, p(L ° ®(x,)) < lim, g(®(x,)) = 9(»).

PROPOSITION 4.5. Let F be K-bornological and X any compact Hausdorff space.
Assume that for every f € C(X, F) there is a s.l.c.s. F; and a continuous linear
Junction ®,: F; —> F with C(X, F;) bornological and with f € ®;° C(X, F;). Then
C(X, F) is bornological.

Proor. This is an easy consequence of Corollary 4.2 and Lemma 4.4.

PROPOSITION 4.6. Let F be a sequentially complete s.l.c.s. If c,(F) is K-borno-
logical, then so also is C(X, F), provided that X is a compact Hausdorff space for
which f( X) is ultrametrizable for all f € C(X, F).

Proor. By Corollary 4.2 and Lemma 4.4 it is enough to prove that every
f € C(X, F) is contained in a bornological subspace G of C(X, F) such that f
belongs to the closure of GN (C(X)®, F). Let J;, be the weak topology
induced on X by f. We put G = C((X, 7;), F). It is enough to prove that G is
K-bornological. By [7, Corollary 5.26], C(X, ;) is isomorphic either to ¢, or to a
finite product of K. In the first case, ¢, ®,, F = C(X, J;) ®, F,sothat ¢,(F) = G
by taking sequential closures on both sides. In the second case, G is a finite
product of F.

REMARK 4.7. An Archimedean analogue of 4.5 is known [1] but requires an
additional assumption, namely, that F is an inductive limit F = ind, F, of
compactly regular type. No Archimedean analogue of Proposition 4.6 seems to be
known. It is meant to cover both the (in itself rather trivial) case that F is
ultrametrizable as well as the case that X is ultrametrizable. (The continuous
image of a compact ultrametrizable space is compact and ultrametrizable.)
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5. K-ultrabornological spaces C( X, F)

The next result is a non-Archimedean analogue of [2, Proposition 1.2]; it shows,
incidentally, that our definition of K-ultrabornological spaces in Section 1 was a
natural one.

PROPOSITION 5.1. Let X be a nonempty compact Hausdorff space in which all
points form Ggsets. Then C(X, F) is K-ultrabornological if and only if F is
K-ultrabornological and C( X, F) is K-bornological.

ProOF. Essentially, we have to prove that, for every K-ultrabornological space
F, every K-convex subset 4 of C(X, F) which absorbs all K-compact sets
absorbs all bounded sets.

Assume that 4 does not absorb C( X, B), where B is bounded in F. Since every
point in X is a Ggset, and since ¢, is K-ultrabornological, an argument exactly
like the one in the proof of Proposition 3.4 shows that every point x € X has a
clopen neighborhood U, such that A4 absorbs {f€ C(X, B): f=0o0on X\ U,
and f(x) = 0).

Define U:= U, . (U, \ {x}) and let S:= X\ U. Then U is open, and § is
finite (since S' has no accumulation point in X). If ¥ is a clopen subset of X
which is contained in U, then 4 absorbs { f€ C(X, B): f=0o0n X\ V}.

Now write S = {5, 5,,...,5,}. Choose (¢;)7-; € C(X, K) such that |p,| < 1,
9;(s;) =1, and ¢, = 0 outside U/, where (U,));-, constitute clopen sets such that
U/ NU =@ifi+].

Since F" is K-ultrabornological, there is a A € K\ {0} such that 4 absorbs
every function ¢, y; if y; € B. The argument can now be completed easily, since
every f € C(X, B) may be written in the form

f=flxyu,+ ) (fXU;i _f(si)q’i) + Zlf(si)(pi'
i=1 i=

COROLLARY 5.2. ¢o( F) is K-ultrabornological if and only if F is K-ultrabornologi-
cal and cy(F) is K-bornological.
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