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Abstract

Let C(X, F) be the space of all continuous functions from the ultraregular compact Hausdorff space
X into the separated locally Jf-convex space F; AT is a complete, but not necessarily spherically
complete, non-Archimedean valued field and C(X, F) is provided with the topology of uniform
convergence on X. We prove that C( X, F) is ^-barrelled (respectively AT-quasibarrelled) if and only if
F is AT-barrelled (respectively /f-quasibarrelled). This is not true in the case of R or C-valued
functions. No complete characterization of the if-bornological spaces C( X, F) is obtained, but our
results are, nevertheless, slightly better than the Archimedean ones. Finally, we introduce a notion of
A"-ultrabornological spaces for K non-spherically complete and use it to study Af-ultrabornological
spaces C(X, F).

1980 Mathematics subject classification (Amer. Math. Soc.): 46 P 05.

1. Introduction

Let K be a complete, non-trivially non-Archimedean valued field. Let £ be a
separated locally convex space (s.l.c.s.) over K. Let E' be the topological dual of
E (if K is not spherically complete, then E' may reduce to {0}: see [6, Theoreme
2]).

For X an ultraregular compact Hausdorff space, Let C(X, E) be the vector
space of all continuous functions from X into E, provided with the topology of
uniform convergence. Obviously, C(X,E) is again a s.l.c.s. over K.
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[2 ] Duality properties of spaces of non-Archimedean valued functions 49

We define .K-quasibarrelled, X-bornological, ^-barrelled and A^ultraborno-
logical s.Lc.s. over K and investigate whether spaces of type C(X, E) have such
properties.

DEFINITION 1.1. A subset A of E is a polar set if it has the form A = B°,
where B c E'.

Equivalently, A is a polar set if and only if A = A00, with polars being taken in
the pairing (E, E'). Obviously, a polar set is ^-convex in the sense of [8]. If K is
spherically complete, then the polar sets are just the T-closed sets of [8].
Intersections of polar sets are again polar sets, and so also are the inverse images
of polar sets under continuous linear transformations.

DEFINITION 1.2. E is K-quasibarrelled if every bornivorous polar set is a
neighborhood.

Equivalently, E is .K-quasibarrelled if and only if every family of continuous
linear functional on E which is bounded on bounded subsets of E is equicon-
tinuous. An easy argument involving [8, Th&>reme 4.14 and Theoreme 4.15]
shows that, for K spherically complete, E is £-quasibarrelled if and only if every
closed AT-convex bornivorous set is a neighborhood. This justifies the terminol-
ogy.

Let E'b denote the dual of E, provided with the strong topology. Obviously, E
is £-quasibarrelled if and only if every bounded set in E'b is equicontinuous.

Complemented subspaces of A-quasibarrelled spaces are easily seen to be
£-quasibarrelled; and so also is any space that contains a dense X-quasibarrelled
subspace.

Ultrametrizable s.l.c. spaces are ^f-quasibarrelled.

DEFINITION 1.3. E is K-barrelled if every absorbing polar set is a neighbor-
hood.

Obviously, E is A-barrelled if and only if every pointwise bounded family of
continuous linear functional on E is equicontinuous. If K is spherically com-
plete, then E is AT-barrelled if and only if every closed .K-convex absorbing set is
a neighborhood. This justifies the terminology.

Complemented subspaces of AT-barrelled spaces are AT-barrelled; and so also is
any space that contains a dense .K-barrelled subspace.

Complete ultrametrizable s.l.c.s. are AT-barrelled.
A .K-barrelled space is .K-quasibarrelled.

DEFINITION 1.4. E is K-bomological if every .K-convex bornivorous set is a
neighborhood.
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Obviously, E is A-bornological if and only if every linear transformation L:
E -* F, where F is any other s.l.c.s., which is bounded on bounded sets is
continuous.

Complemented subspaces of A-bornological spaces are if-bornological.
A tf-bornological space is A-quasibarrelled.

DEFINITION 1.5. A subset A c E is compactoid if, for every zero-neighborhood
U in E, there is a finite set X c E such that A c Co(Z) + U, where Co( JiQ is
the closed ^-convex hull of X [7, page 134]. A bounded ^-convex subset A of E
is completing if ([A], mA) is a Banach space, where mA is the Minkowski
functional of A on the linear span [A] of A. A subset A of E is K-compact if it is
.K-convex, compactoid and completing. E is K-ultrabornological if every K-con-
vex set in E that absorbs all ^f-compact sets is a neighborhood.

By straightforward arguments, the image of a A-compact set under a continu-
ous linear transformation is A-compact.

Every n.A. Banach space is Jf-ultrabornological since a zero-sequence in it is
easily seen to be contained in a A-compact set.

Complemented subspaces of X-ultrabornological spaces are .K-ultrabornologi-
cal.

A .K-ultrabornological space is both X-barrelled and .K-bornological.

REMARK 1.6. In the definition of compactoid, it is often useful to know that the
definition is independent of the linear subspace in which A lies. For normed
spaces E, this follows frmo [7, Theorem 4.37]. The case of general locally convex
spaces is easily reduced to the normed case.

2. Spaces of continuous vector-valued functions

For F a s.Lc.s. with T as system of seminorms, the tensor product C(X) ® F is
algebraically identified in the usual way with { /e C(X; F): f(X) lies in a
finite-dimensional subspace of F}. The w-tensor product of two n.A. locally
convex spaces is defined in [6]. In the case of spherically complete K, the next
result is in [6]; we prove it for arbitrary K.

PROPOSITION 2.1. If Xis a compact T2-space, Fa s.l.c.s., andp e T, then on
C(X) ® F the seminorms irp and \\ • \\p coincide, where

77 (z):= inf sup |
z — £ • op- ® v-

\\z\\P:= sup

https://doi.org/10.1017/S1446788700033942 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033942


[41 Duality properties of spaces of non-Archimedean valued functions 51

P R O O F . If z = H<pi9yi, then obviously \\z\\p:= supxeXp(Liq>i(x)yi) ^

sup*<= A-sup.KWI/Kj',) < sup , -^^ /^ , . ) . So \\z\\p < trp(z).
On the other hand, let / e C(X) ® F and let any t with 0 < t < 1 be given.

Let [f(X)] be the linear span of f(X) and let [f(X)]p be the quotient space of
[f(X)] modulo {y: p(y) = 0}. By [7, Theorem 3.15] we may find a r-orthogonal
basis {yvy2,...,ym} of [f(X)]p. Choose yn+l,...,yn in [/(*)] n {y: p(y) =
0} such that {yv...,yn) is a basis of [f(X)]. Let (p1(. . . ,<pn G CX*) be such

Then

UP = sup p(f(x)) = sup p\ Y. <p(x)yi

= sup/> E<p,(x)j, > t sup sup|9,(*)l/»(j'«)

> * supp(y,) sup |<p,(x) | > r sup IkIL/?(y,) > tvp(f).

This holds for all 0 < t < 1; hence \\f\\p > ^
By routine arguments one sees that C{X)®nF is a dense subspace of

C(X, F). Moreover, every bounded subset of C(X,F) is contained in the closure
of a bounded subset of C(X) «„ F. (Note that (C(X) ®w F) n C(X, B) is dense
in C(X, B) whenever B is bounded in F.) Also, .F is clearly contained as a
complemented subspace in C(X) ® „ F as well as in C(Ar, F).

An important special case of a space C{X, F) is co(F), the space of zero-
sequences in F, which is isomorphic to C(N*, F) where M* is the one-point
compactification of the natural numbers. Indeed, co(F) is isomorphic to c(F),
the space of converging sequences in F.

REMARK 2.2. A survey of what is known about spaces of real valued or real
vector space valued continuous functions can be found in [9] and [11].

REMARK 2.3. In studying C(X, F) for compact Hausdorff X, there is no loss of
generality if we assume X to be ultraregular; indeed, we may always replace the
topology of X by the weak topology induced by the functions in C(X, F) (and, if
necessary, we can consider a Hausdorff quotient space).

3. .K-quasibarrelled and ^-barrelled spaces C(X,F)

The following result is basic.

PROPOSITION 3.1. / / E is a normed space and F a K-quasibarrelled I.e. space,
then E ®w F is K-quasibarrelled.
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PROOF. Let D be a bounded subset of (F ® F)'b; let b(E) and b{E'b) denote
the unit balls in E and Eb, respectively. If B is bounded in F, then b(E) ® B is
bounded in £ »„ F and so sup{|L(x ® j ) | : L e D, X e 6(£), j> e fi} < oo.
For any L e ( £ 8 F) ' andj e F, the map £ -» K, x -* L(x ®y), belongs to
E'b and has norm < p(y) if L(x0 ® j 0 ) < ||̂ coll-P(>'o) f o r *o G £> ô G ^- Hence
the map T: (F ®ff F) ' -» (F, Fj), L -*» (>» -» (x -f* L(x ® y))), is well defined.
Clearly, it is also one-to-one. Consider Z = C\LeDT(L)~\b(E'b)). Then Z is a
bornivorous polar set in F and so a neighborhood. Since sup{ |L(x®j>) | :LeD,
x e 6(F), j i e Z } < l , Z)isan equicontinuous subset of (F ®w F)'fc. Hence
E ®w F is ^C-quasibarrelled.

PROPOSITION 3.2. / / F is a s.l.c.s. and X a nonempty compact T2-space, then
C(X, F) is K-quasibarrelled if and only if F is K-quasibarrelled.

PROOF. The " i f part follows from Proposition 2.1, from Proposition 3.1, and
from the fact that C(X) ®WF is dense in C(X,F); the "only i f part is true
because F is a complemented subspace of C(X, F).

REMARK 3.3. The Archimedean analogue of Proposition 3.2 does not hold, as
was first remarked in [3] and [10].

PROPOSITION 3.4. / / F is K-barrelled and X a nonempty compact T2-space, then
C(X,F)isK-barrelled.

PROOF. By Proposition 3.2, C(X,F) is ^-quasibarrelled. Let A c C(X, F) be
a polar set that absorbs the points of C(X, F). It is enough to prove that A
absorbs the bounded sets of C(X, F), i.e. the sets of type C(X, B), where B is
bounded and ^-convex in F.

First we treat the case that X is ultrametrizable. Let B be bounded in F and
assume that A does not absorb C(X, B). For every clopen subset Y of X, define

CY(X,B):= {f<EC(X,B):f=0onX\Y}.

Then it is easily seen that there exists a sequence Y1 2 Y2 2 • • • of clopen
subsets of X such that A does not absorb any CYII(X,B), and such that
diam Yn -* 0. Obviously r\kYk contains just one point, say /.

We claim that A does not absorb any of the sets {/ e CY(X, B): f(t) = 0}.
Indeed, choose <p e C(X, K) such that <p(/) = l, |<p|<l everywhere, and <p = 0
outside Yn. If A absorbs {/ e CY(X, B): f(t) = 0}, then it absorbs {/ - f(t)<p:
f e Cy( X, B)} as well as { f(t)<p"f e CY(X, B)}, and so the whole of CYn(X, B).

Choose any \ e K, \X\ > 1. By induction we may construct a sequence (/„)„
in C(X, B) such that /„ £ \"A for all n, and such that {«: /„(*) =h 0} is finite for
a l l x e l
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Now define $: c0 -» C(X, F), (X;), -*• £,-X,-/). This definition is possible, and
$ maps the unit ball of c0 into C(X, B); so <!> is continuous.

The set <S>~\A) is a polar set and absorbs all points. Since c0 is X-barrelled,
there is a Xo e A"\ {0} such that (X,), e X Q * - 1 ^ ) whenever IKX,),^ < 1. In
particular, ft e X0A for all i, which contradicts the fact that /„ £ X"A for all n.

Now let X be arbitrary. Since A is closed, by the remarks following Proposi-
tion 2.1 it is enough to show that A absorbs (C(X) ®ff F) n C(X, B). Of course,
it is also sufficient to prove that A absorbs any given sequence in (C(X) ®w F) O
C(X, B). There is, however, an ultra-semimetrizable topology on X, weaker than
the original topology, with respect to which all functions in such a sequence are
continuous. By passing, if necessary, to a quotient space of X, we are reduced to
the first case.

REMARK 3.5. The Archimedean analogue of Proposition 3.4 does not hold
(again, see [3] and [10]). However, if C(X, F) is quasibarrelled and F is barrelled,
then C(X, F) is barrelled in the Archimedean case [4].

4. AT-bornological spaces C(X, F)

The following result is fundamental.

PROPOSITION 4.1. / / E is a normed space and F a K-bornological s.l.c.s., then
E ®w .Fis K-bornological.

PROOF. Let G be a lx.s., and let L: E ®w F -* G be bounded on all bounded
sets of E ®w F. Define L: F -* L(E,G), y -** (x -» L(x ® y)). If B is bounded
in F, the b(E) <8> B is bounded in E «„ F, and so sup{^(L(x ® y)): x e b(E),
y e B) < oo for every continuous seminorm p on G. Hence L is well-defined
and maps bounded sets onto bounded sets. The fact that F is AT-bornological
implies that, for every neighborhood U in G, there is a neighborhood V in F such
that L(x ® y) e U if x e b(E) and y e V. So L is continuous.

COROLLARY 4.2. If X is a compact Hausdorff space and F a K-bornological s.l.c.
space, then { / e C(X,F): [f(X)] is finite-dimensional) is K-bornological.

REMARK 4.3. If F is a locally jST-convex space with the finest locally convex
topology, then C(X, F) is ^-bornological for every compact Hausdorff space X
(indeed, then C(X) ®nF= C(X, F)). In the Archimedean case, even co(F) will
not be bornological if F has uncountable dimension [3,10].
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LEMMA 4.4. Let E, F be s.l.c.s. and E a bornological subspace ofF. Assume that
for every y e F there is a bornological s.l.c.s. G and a continuous linear 0: G -* F,
as well as a net (JC,), 6 7 in G that converges to x e G, such that $(JC,) e Efor all i,
and such that Q>(x) = y. Then F is bornological.

PROOF. Let H be another s.l.c.s. and L: F -> H a Unear transformation that is
bounded on the bounded sets of F. Since E is ^-bornological, there is for every
continuous seminorm p on H a continuous seminorm q on F such that
p(Lx) < q(x) whenever x e E. Let y e F be arbitrary and let g, $, (*,),, and
x be as the assumptions. Then L » 0 is continuous, since G is Jf-bornological.
Hence p(L(y)) = />(L ° $(*)) = Urn.^(L o $(*.)) < Urn.^r($(x,)) = q(y).

PROPOSITION 4.5. Let F be K-bomological and X any compact Hausdorff space.
Assume that for every / e C(X, F) there is a s.l.c.s. Ff and a continuous linear
function <bf: Ff-* F with C(X, Ff) bornological and with f e <bf •> C(X, Ff). Then
C(X, F) is bornological.

PROOF. This is an easy consequence of Corollary 4.2 and Lemma 4.4.

PROPOSITION 4.6. Let F be a sequentially complete s.l.c.s. If co(F) is K-borno-
logical, then so also is C(X, F), provided that X is a compact Hausdorff space for
which f(X) is ultrametrizable for all f G C(X,F).

PROOF. By Corollary 4.2 and Lemma 4.4 it is enough to prove that every
/ e C(X, F) is contained in a bornological subspace G of C(X,F) such that /
belongs to the closure of C n ( C ( X ) « , F ) . Let ^ be the weak topology
induced on X by / . We put G = C((X, &}),F). It is enough to prove that G is
^-bornological. By [7, Corollary 5.26], C(X, yf) is isomorphic either to c0 or to a
finite product of K. In the first case, c0 «„ F = C(X, J}) »„ F, so that co(F) = G
by taking sequential closures on both sides. In the second case, G is a finite
product of F.

REMARK 4.7. An Archimedean analogue of 4.5 is known [1] but requires an
additional assumption, namely, that F is an inductive limit F = i n d x F x of
compactly regular type. No Archimedean analogue of Proposition 4.6 seems to be
known. It is meant to cover both the (in itself rather trivial) case that F is
ultrametrizable as well as the case that X is ultrametrizable. (The continuous
image of a compact ultrametrizable space is compact and ultrametrizable.)
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5. K-ultrabornological spaces C(X, F)

The next result is a non-Archimedean analogue of [2, Proposition 1.2]; it shows,
incidentally, that our definition of .K-ultrabornological spaces in Section 1 was a
natural one.

PROPOSITION 5.1. Let X be a nonempty compact Hausdorff space in which all
points form Gs-sets. Then C(X,F) is K-ultrabornological if and only if F is
K-ultrabornological and C(X, F) is K-bornological.

PROOF. Essentially, we have to prove that, for every .K-ultrabornological space
F, every .K-convex subset A of C(X,F) which absorbs all ^-compact sets
absorbs all bounded sets.

Assume that A does not absorb C(X, B), where B is bounded in F. Since every
point in X is a G8-set, and since c0 is .K-ultrabornological, an argument exactly
like the one in the proof of Proposition 3.4 shows that every point x e X has a
clopen neighborhood Ux such that A absorbs ( / e C ( J f , B ) : / = 0 on X\UX

and f(x) = 0}.
Define U:= DxeX(Ux\ {*}) m(i l e t S:= X\ U. Then U is open, and S is

finite (since S has no accumulation point in X). If V is a clopen subset of X
which is contained in U, then A absorbs {f e C(X,B): f = 0 on X\V}.

Now write S = {slts2,...,sn}. Choose (<p,)"=i ^ C(X, K) such that |<p,| < 1,
fPi(si) = 1> an(^ <Pi ~ 0 outside Us', where (£//)"-1 constitute clopen sets such that
UM'tn U/.= 0 if i*j.

Since F" is .K-ultraboniological, there is a \ e K\ {0} such that A absorbs
every function (p,̂ , if j , e B. The argument can now be completed easily, since
every / e C(X, B) may be written in the form

ft n

f = f\x\\j,u;. + E {/Xu;. ~ f(si)<Pi) + E/(•*«) <P,--
i—i ' i=i

COROLLARY 5.2. cQ(F) is K-ultrabornological if and only ifFis K-ultrabornologi-
cal and co(F) is K-bornological.
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