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Non-complemented Spaces of Operators,
Vector Measures, and co

Paul Lewis and Polly Schulle

Abstract. The Banach spaces L(X,Y ), K(X,Y ), Lw∗ (X∗,Y ), and Kw∗ (X∗,Y ) are studied to determine

when they contain the classical Banach spaces co or ℓ∞. The complementation of the Banach space

K(X,Y ) in L(X,Y ) is discussed as well as what impact this complementation has on the embedding of

co or ℓ∞ in K(X,Y ) or L(X,Y ). Results of Kalton, Feder, and Emmanuele concerning the complemen-

tation of K(X,Y ) in L(X,Y ) are generalized. Results concerning the complementation of the Banach

space Kw∗ (X∗,Y ) in Lw∗ (X∗,Y ) are also explored as well as how that complementation affects the

embedding of co or ℓ∞ in Kw∗ (X∗,Y ) or Lw∗ (X∗,Y ). The ℓp spaces for 1 = p < ∞ are studied to

determine when the space of compact operators from one ℓp space to another contains co. The paper

contains a new result which classifies these spaces of operators. A new result using vector measures

is given to provide more efficient proofs of theorems by Kalton, Feder, Emmanuele, Emmanuele and

John, and Bator and Lewis.

1 Introduction

If each of X and Y is a real, infinite dimensional Banach space, L(X,Y ) is the space

of all continuous linear transformations (operators) T : X → Y , and J is a proper

operator ideal, then is J complemented in L(X,Y )? This question has long been of

interest to functional analysts. Particular attention has been paid to the case when

J = K(X,Y ) := the space of compact operators from X to Y . See Emmanuele and

John [6] for an historical perspective and a guide to the extensive literature on this

topic.

Since Kalton presented his results at the Gregynog Colloquium in 1972 and pub-

lished these results for the broader mathematical community [11], his results and

techniques have been the primary tools used by researchers in this area. The sharpest

complementation results for K(X,Y ) are as follows. Kalton [11] showed that if ℓ1

is complemented in X, then K(X,Y ) is not complemented in L(X,Y ). Appealing

to results in [11], Feder [7] showed that K(X,Y ) is not complemented if there is a

non-compact operator T : X → Y which has an unconditional compact expansion.

Feder [8] subsequently showed that if co →֒ Y , then K(X,Y ) is not complemented in

L(X,Y ). Noting that Kalton’s hypothesis, as well as both hypotheses of Feder, implied

that co →֒ K(X,Y ), Emmanuele [5] and John [10] showed that if co →֒ K(X,Y ), then

K(X,Y ) is not complemented in L(X,Y ).

In the next section we use vector valued measures to give simple arguments show-

ing that co frequently embeds in K(X,Y ) and to unify and extend results in [5,7,8,10,
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11]. In the concluding section we investigate specifically when co embeds as a com-

plemented subspace of K(ℓp, ℓq). Our notation and terminology are standard. See

[2, 3] for undefined terms.

2 Vector Measures and Spaces of Operators

For the convenience of the reader, we begin with a brief discussion demonstrating

that frequently co embeds in K(X,X) and ℓ∞ →֒ L(X,X). Kalton [11, p. 267] ob-

served that ℓ∞ →֒ L(ℓ2, ℓ2), and it is not difficult to check that co →֒ K(ℓ2, ℓ2). Of

course, ℓ2 has an unconditional (Schauder) basis.

More generally, suppose that X is an infinite dimensional complemented sub-

space of Y and X has an unconditional compact expansion of the identity (i.e.,Tn ∈
K(X,X) such that

∑∞
n=1 Tn(x) converges to x unconditionally for each x ∈ X [6,11]).

Since X is infinite dimensional and
∑

Tn is not norm convergent, we may assume

that ‖Tn‖ 6→ 0. Let F be the finite-cofinite algebra of subsets of N, and let P : Y → X

be a projection. Define µ : F → K(X,X) by

µ(A) =

{

∑

n∈A Tn ◦ P if A is finite,
∑

n6∈A Tn ◦ P if N \ A is finite.

It is not difficult to see thatµ is finitely additive. Further, since
∑

Tn(x) converges un-

conditionally to x, µ is bounded and µ({n}) 6→ 0. (Thus, µ is not strongly additive.)

An application of the Diestel–Faires theorem [3, p. 20] shows that co →֒ K(Y,Y ). An

appeal to [11] and explicitly [12] shows that ℓ∞ →֒ L(Y,Y ).

More generally, it is known that if X is infinite-dimensional and co →֒ L(X,Y ),

then ℓ∞ →֒ L(X,Y ) (see [12]). The conditions permitting ℓ∞ to embed isomorphi-

cally into K(X,Y ) are quite specific: Kalton [11] showed that ℓ∞ →֒ K(X,Y ) if and

only if ℓ∞ →֒ X∗ or ℓ∞ →֒ Y .

The first theorem in this section is a vector measure generalization of results in

[11]. (It is not difficult to see that there are countably many functionals separating

the points of L(X,Y ) if X is separable and Y is the dual of a separable space.) Let P

be the σ-algebra consisting of all subsets of N.

Theorem 2.1 If µ : P → X is a bounded, finitely additive vector measure with

µ({n}) = 0 for each n ∈ N and there are countably many points in X∗ which separate

the points in the range of µ, then there exists an infinite set M ⊆ N so that µ(A) = 0 for

all A ⊆ M.

Proof Since R \ Q is uncountable and Q is dense in R, we partition N into un-

countably many infinite sets (Uα)α∈∆ so that Uα ∩ Uβ is finite if α 6= β. Note that

µ(
⋃

i∈F Ui) =
∑

i∈F µ(Ui) for all finite subsets F of ∆. We assert that there exists

α ∈ ∆ so that µ(B) = 0 for all B ⊆ Uα. Suppose not, and for each α ∈ ∆ choose

Bα ⊆ Uα so that µ(Bα) 6= 0. Since there are countably many points in X∗ which

separate {µ(A) : A ∈ P}, we may assume that there is an x∗ ∈ X∗ so that ‖x∗‖ = 1

and {α : x∗µ(Bα)} 6= 0 is uncountable. Without loss of generality, suppose p > 0

and W = {α ∈ ∆ : x∗µ(Bα) > p!} is uncountable. If F is a finite subset of W , then

card(F) · p ≤ ‖µ
⋃

i∈F Bi)‖, and we easily contradict the boundedness of µ.
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In the sequel, let (en) denote the canonical unit vector basis of co and (e∗n ) denote

the canonical unit vector basis of ℓ1.

The following argument immediately yields an improvement of [11, Lemma 3].

Corollary 2.2 Suppose that (xn) is a normalized unconditional basic sequence whose

closed linear span is complemented in X and S : [xn :n ≥ 1] → Y is an operator so that

no subsequence of (S(xn)) converges. Then K(X,Y ) is not complemented in L(X,Y ).

Proof Let Q : X → [xn] be a projection, let J : Y → ℓ∞ be an operator such that

J is an isometry on [T(xn) :n ≥ 1], and let (PA), A ⊂ N be the family of pro-

jections associated with the unconditional basis (xn). Define µ : P → L(X,Y ) by

µ(A) = SPAQ. If A is finite, µ(A) is compact. Suppose by way of contradiction that

P : L(X,Y ) → K(X,Y ) is a projection. Now µ and Pµ are bounded and finitely addi-

tive, and µ({n}) − Pµ({n}) = 0 for every n ∈ N. Let M be an infinite set such that

Jµ(M)|[xn]
= JPµ(M)|[xn]

. But SPMQ and JSPMQ are not compact. Thus, we have a

contradiction.

As a specific application of Corollary 2.2 note that if ℓ1 embeds complementably in

X and Y is infinite dimensional, then K(X,Y ) is not complemented in L(X,Y ).

Corollary 2.3 If co →֒ Y and X is infinite dimensional, then K(X,Y ) is not comple-

mented in L(X,Y ).

Proof Let L : co → Y be an isomorphism, and let (PM) be the family of projec-

tions associated with the seminormalized and unconditional basic sequence (yn) =

(L(en)). Choose a normalized w∗-null sequence (x∗n ) in X∗ [2, Chapter XII], and let

J : Y → ℓ∞ be an operator so that J|[yn]
is an isometry. Define

S : X → [yi : i ≥ 1] ⊆ Y

by S(x) =
∑

x∗n (x)L(en). If Xo is any separable subspace of X that norms (xn)∞n=1, then

JPMS|Xo
is compact if and only if M is finite. Suppose that K(X,Y ) is complemented

in L(X,Y ), and let P : L(X,Y ) → K(X,Y ) be a projection. Define µ : P → L(Xo, ℓ∞)

by µ(A) = JPAS − JPPAS, and apply Theorem 2.1 to find an infinite set M so that

JPMS = JPPMS on Xo. Since JPMS|Xo
is not compact, we have a contradiction.

Analogous to Corollary 2.2 and the italicized statement following it, the proof of

Corollary 2.3 immediately produces the following improvement of results in [8].

Corollary 2.4 If Y contains a seminormalized unconditional basic sequence (yi),

(PM) is the family of projections associated with (yi), S : Xo → [yi : i ≥ 1] is an

operator, and Xo is a separable subspace of X so that PMS|Xo
is not compact for any

infinite subset M, then K(X,Y ) is not complemented in L(X,Y ).

Remark Essentially the only difference in the proof of Corollary 2.2 and Corol-

lary 2.3 (Corollary 2.4) involves whether S ◦ PM or PM ◦ S is used in defining the

operator-valued measure to which Theorem 2.1 is applied.

Moreover, Theorem 2.1 has applications to other operator ideals. For example,

suppose ℓ1
c
→֒ X and (yn) is a bounded sequence in Y which has no weakly conver-

gent subsequence. Defining an operator S : X → Y and an operator-valued measure
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µ precisely as in Corollary 2.2 produces the next result. The weakly compact opera-

tors from X to Y are denoted by W (X,Y ).

Corollary 2.5 ([1, Theorem 3]) If ℓ1
c
→֒ X and W (X,Y ) 6= L(X,Y ), then W (X,Y )

is not complemented in L(X,Y ).

Corollary 2.6 ([5, 10]) If co →֒ K(X,Y ), then K(X,Y ) is not complemented in

L(X,Y ).

Proof Suppose that K(X,Y )
c
→֒ L(X,Y ). By Corollary 2.3 or Corollary 2.4, co 6 →֒ Y .

Suppose that (Tn) is a sequence in K(X,Y ) which is equivalent to (en). Then
∑

Tn(x)

is weakly absolutely summable and consequently unconditionally convergent for all

x ∈ X. Define µ : P → L(X,Y ) by µ(A)(x) =
∑

n∈A Tn(x), and let ν = P ◦ µ. Since

ν({n}) 6→ 0, the Diestel–Faires theorem ensures that ℓ∞ →֒ K(X,Y ). Therefore,

ℓ∞ →֒ X∗ (equivalently, ℓ1
c
→֒ X) or ℓ∞ →֒ Y . Corollaries 2.2 and 2.3 provide the

contradiction that finishes the proof.

An operator T : X → Y is said to have an unconditional compact expansion if

there exists a sequence (Tn) in K(X,Y ) so that
∑∞

n=1 Tn(x) converges unconditonally

to T(x) for all x ∈ X. As noted in the introduction, Feder [7] showed the following.

(∗)
The existence of a non-compact operator T with an unconditional com-

pact expansion implies that K(X,Y ) is not complemented in L(X,Y ).

Emmanuele observed that the existence of such a non-compact T ensures that co →֒
K(X,Y ). Specifically, if F denotes the finite-cofinite algebra of subsets of N and µ is

defined by

µ(A) =

{

∑

n∈A Tn if A is finite,

−
∑

n6∈A Tn if N \ A is finite,

then µ is finitely additive, the unconditional convergence of
∑∞

n=1 Tn(x) ensures that

µ is bounded, and the non-compactness of T ensures that
∑∞

n=1 Tn is not Cauchy

and that µ is not strongly additive. Another application of the Diestel–Faires theorem

promises that co →֒ K(X,Y ).

While Corollary 2.6 certainly subsumes (∗), Feder’s result has applications where

co is not mentioned explicitly. The next result, a complement to Kalton [11,

Lemma 3], follows directly from (∗) and the proof of Corollary 2.2.

Corollary 2.7 If 1 ≤ p < ∞, ℓp is complemented in X, and there exists a non-

compact operator T : ℓp → Y , then K(X,Y ) is not complemented in L(X,Y ).

3 L(ℓp, ℓq) and co

As noted earlier in this paper, the list of infinite-dimensional Banach spaces X for

which co →֒ K(X,X) and ℓ∞ →֒ L(X,X) is extensive. Furthermore, the preceding

section suggests that criteria assisting one in determining the presence of co in spaces

of operators would be beneficial. Emmanuele provided a useful tool for identifying

copies, even complemented copies, of co in spaces of operators [5].
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Theorem 3.1 Let X and Y be Banach spaces satisfying the following assumption: there

exists a Banach space G with an unconditional basis (gn) and biorthogonal coefficients

(g∗n ) and two operators R : G → Y and S : G∗ → X∗ such that (R(gi)) and (S(g∗i )) are

normalized basic sequences. Then co →֒ K(X,Y ).

Moreover, if (R(gi)) and (S(g∗i )) are basic and Y (or X∗) has the Gelfand–Phillips

property, then K(X,Y ) contains a complemented copy of co.

As an application of this result, Emmanuele observed that if ℓ1 →֒ X and ℓp →֒ Y

for some p ≥ 2, then co →֒ K(X,Y ) and, of course, K(X,Y ) is not complemented in

L(X,Y ).

We extend Emmanuele’s observation in this section. The statement of a general-

ization of Theorem 3.1 and additional definitions will be helpful in our study.

A bounded subset A of X is called a limited subset of X if every w∗-null sequence

in X∗ tends to zero uniformly on A, and X has the Gelfand–Phillips property if every

limited subset of X is relatively compact. Separable Banach spaces have the Gelfand–

Phillips property ([14], [2, p. 116]).

The space of all w∗ − w continuous operators T : X∗ → Y (resp. all compact

and w∗ − w continuous operators) is denoted by Lw∗(X∗,Y ) (resp. Kw∗(X∗,Y )).

Ruess [13] contains a discussion of Lw∗(X∗,Y ) and Kw∗(X∗,Y ), as well as applica-

tions of the following well-known isometries:

Lw∗(X∗,Y ) ∼= Lw∗(Y ∗,X); Kw∗(X∗,Y ) ∼= Kw∗(Y ∗,X), (T 7→ T∗)

W (X,Y ) ∼= Lw∗(X∗∗,Y ); K(X,Y ) ∼= Kw∗(X∗∗,Y ), (T 7→ T∗∗).

See also Drewnowski [4] for an extension of results in [11] to the space Kw∗(X∗,Y ).

Theorem 3.1 is extended in [9].

Theorem 3.2 Let X and Y be Banach spaces satisfying the following assumption: there

exists a Banach space G with an unconditional basis (gn) and biorthogonal coefficients

(g∗n ) and two operators R : G → Y and S : G∗ → X such that (R(gi)) and (S(g∗i ))

are seminormalized sequences and either (R(gi)) or (S(g∗i )) is a basic sequence. Then

co →֒ Kw∗(X∗,Y ) (indeed, in any subspace H of Lw∗(X∗,Y ) that contains X ⊗λ Y ).

Moreover, if (R(gi)) and (S(g∗i )) are basic and Y (or X) has the Gelfand–Phillips

property, then Kw∗(X∗,Y ) contains a complemented copy of co.

If 1 < p < ∞, then we say p ′ is conjugate to p if 1
p

+ 1
p ′

= 1, i.e., (ℓp)∗ ∼= ℓp ′ .

Theorem 3.3 Suppose 1 < p < ∞, p ′ is conjugate to p, and S : ℓp −→ X is a

non-compact operator. For p ′ ≤ p ≤ q or p ≤ p ′ ≤ q, if R : ℓq → Y is a non-

compact operator, then co →֒ Kw∗(X∗,Y ). Furthermore, if X or Y is Gelfand–Phillips

(separability is sufficient), then co
c
→֒ Kw∗(X∗,Y ). However, if p < q < p ′, then there

exist spaces X and Y and appropriate operators S and R so that co 6 →֒ Kw∗(X∗,Y ).

Proof Case 1: p ′ ≤ p ≤ q. Since S : ℓp → X is a non-compact operator, we can find

a δ > 0 and a sequence (xn) in Bℓp
such that ‖S(xn) − S(xm)‖ > δ if n 6= m. Since ℓp

is reflexive, Bℓp
is weakly compact. Thus, without loss of generality we may assume

(an) = (xn − xn+1) is weakly null.
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Observe that ‖S(an)‖ > δ for all n ∈ N. Thus, (an) 6→ 0. Hence (an) is weakly

null and seminormalized. By the Bessaga–Pelycznski selection principle (an) contains

a subsequence (ank
) which is equivalent to a block basic sequence (hn) of (e

p
n).

Note that ℓp is perfectly homogeneous for all 1 ≤ p < ∞, so we may assume (an)

is equivalent to (e
p
n). Thus, (an) is basic. Since p ′ ≤ p, there is a natural injection J

from ℓp ′ into ℓp which sends (e
p ′

n ) to (an). Note that the Bessaga–Pełczyński selection

principle also applies to the sequence (S(an)). Hence, we have (an) equivalent to

( J((e
p ′

n ))), and without loss of generality (S( J((e
p ′

n )))) = (S(an)) is a seminormalized

basic sequence in X.

Similarly, one can find a weakly null, seminormalized sequence (bn) equivalent to

(e
q
n) in ℓq so that (R(bn)) is a seminormalized basic sequence in Y . Since p ≤ q, there

is a natural injection U from ℓp into ℓq which sends (e
p
n) to (bn). Hence, we have

(bn) equivalent to (U ((e
p
n))), and without loss of generality (R(U ((e

p
n)))) = (R(bn))

is a weakly null, seminormalized basic sequence in Y . (The Bessaga–Pełczyński se-

lection principle applies to the sequence (R(bn)).) Therefore, by Theorem 3.2, co →֒
Kw∗(X∗,Y ).

Case 2: p ≤ p ′ ≤ q. Repeat the argument for Case 1.

Case 3: p < q < p ′. Since p < q < p ′, every operator from ℓq to ℓp is compact

and every operator from ℓp ′ to ℓq is compact, i.e., Kw∗((ℓp)∗, ℓq) = K(ℓp ′ , ℓq) =

L(ℓp ′ , ℓq). In fact, this space of compact operators is reflexive. Thus co cannot embed

in Kw∗((ℓp)∗, ℓq). In this case, let X = ℓp, Y = ℓq, and let S : ℓp → ℓp and R : ℓq → ℓq

be identity operators.

Corollary 3.4 If ℓ1 →֒ X and there exists a p ≥ 2 with a non-compact operator

A : ℓp → Y , then co →֒ K(X,Y ).

Proof Since ℓ1 →֒ X, L1 →֒ X∗ [2, Notes and Remarks, Chapter X]. The Rade-

macher functions span a copy of ℓ2 in L1, and thus ℓ2 →֒ X∗. The perfect ho-

mogeneity of the unit vector basis of ℓp [15] and the non-compactness of the op-

erator A produces a non-compact operator B : ℓ2 → Y (as in the proof of Case 1

of Theorem 3.3). Theorem 3.3 guarantees that co →֒ Kw∗(X∗∗,Y ). The isometry

Kw∗(X∗∗,Y ) ∼= K(X,Y ) finishes the argument.
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