Canad. Math. Bull. Vol. **55** (3), 2012 pp. 548–554 http://dx.doi.org/10.4153/CMB-2011-084-0 © Canadian Mathematical Society 2011

Non-complemented Spaces of Operators, Vector Measures, and c_o

Paul Lewis and Polly Schulle

Abstract. The Banach spaces L(X, Y), K(X, Y), $L_{w^*}(X^*, Y)$, and $K_{w^*}(X^*, Y)$ are studied to determine when they contain the classical Banach spaces c_o or ℓ_{∞} . The complementation of the Banach space K(X, Y) in L(X, Y) is discussed as well as what impact this complementation has on the embedding of c_o or ℓ_{∞} in K(X, Y) or L(X, Y). Results of Kalton, Feder, and Emmanuele concerning the complementation of K(X, Y) in L(X, Y) are generalized. Results concerning the complementation of the Banach space $K_{w^*}(X^*, Y)$ in $L_{w^*}(X^*, Y)$ are also explored as well as how that complementation affects the embedding of c_o or ℓ_{∞} in $K_{w^*}(X^*, Y)$ or $L_{w^*}(X^*, Y)$. The ℓ_p spaces for $1 = p < \infty$ are studied to determine when the space of compact operators from one ℓ_p space to another contains c_o . The paper contains a new result which classifies these spaces of operators. A new result using vector measures is given to provide more efficient proofs of theorems by Kalton, Feder, Emmanuele, Emmanuele and John, and Bator and Lewis.

1 Introduction

If each of *X* and *Y* is a real, infinite dimensional Banach space, L(X, Y) is the space of all continuous linear transformations (operators) $T: X \to Y$, and \mathcal{J} is a proper operator ideal, then is \mathcal{J} complemented in L(X, Y)? This question has long been of interest to functional analysts. Particular attention has been paid to the case when $\mathcal{J} = K(X, Y) :=$ the space of compact operators from *X* to *Y*. See Emmanuele and John [6] for an historical perspective and a guide to the extensive literature on this topic.

Since Kalton presented his results at the Gregynog Colloquium in 1972 and published these results for the broader mathematical community [11], his results and techniques have been the primary tools used by researchers in this area. The sharpest *complementation* results for K(X, Y) are as follows. Kalton [11] showed that if ℓ_1 is complemented in X, then K(X, Y) is not complemented in L(X, Y). Appealing to results in [11], Feder [7] showed that K(X, Y) is not complemented if there is a non-compact operator $T: X \to Y$ which has an unconditional compact expansion. Feder [8] subsequently showed that if $c_o \hookrightarrow Y$, then K(X, Y) is not complemented in L(X, Y). Noting that Kalton's hypothesis, as well as both hypotheses of Feder, implied that $c_o \hookrightarrow K(X, Y)$, Emmanuele [5] and John [10] showed that if $c_o \hookrightarrow K(X, Y)$, then K(X, Y) is not complemented in L(X, Y).

In the next section we use vector valued measures to give simple arguments showing that c_o frequently embeds in K(X, Y) and to unify and extend results in [5,7,8,10,

Received by the editors June 26, 2009; revised August 9, 2009.

Published electronically May 6, 2011.

AMS subject classification: 46B20.

Keywords: spaces of operators, compact operators, complemented subspaces, $w^* - w$ -compact operators.

11]. In the concluding section we investigate specifically when c_o embeds as a complemented subspace of $K(\ell_p, \ell_q)$. Our notation and terminology are standard. See [2,3] for undefined terms.

2 Vector Measures and Spaces of Operators

For the convenience of the reader, we begin with a brief discussion demonstrating that frequently c_o embeds in K(X, X) and $\ell_{\infty} \hookrightarrow L(X, X)$. Kalton [11, p. 267] observed that $\ell_{\infty} \hookrightarrow L(\ell_2, \ell_2)$, and it is not difficult to check that $c_o \hookrightarrow K(\ell_2, \ell_2)$. Of course, ℓ_2 has an unconditional (Schauder) basis.

More generally, suppose that *X* is an infinite dimensional complemented subspace of *Y* and *X* has an unconditional compact expansion of the identity (*i.e.*, $T_n \in K(X, X)$ such that $\sum_{n=1}^{\infty} T_n(x)$ converges to *x* unconditionally for each $x \in X$ [6,11]). Since *X* is infinite dimensional and $\sum T_n$ is not norm convergent, we may assume that $||T_n|| \neq 0$. Let \mathcal{F} be the finite-cofinite algebra of subsets of **N**, and let $P: Y \to X$ be a projection. Define $\mu: \mathcal{F} \to K(X, X)$ by

$$\mu(A) = \begin{cases} \sum_{n \in A} T_n \circ P & \text{if } A \text{ is finite,} \\ \sum_{n \notin A} T_n \circ P & \text{if } \mathbf{N} \setminus A \text{ is finite.} \end{cases}$$

It is not difficult to see that μ is finitely additive. Further, since $\sum T_n(x)$ converges unconditionally to x, μ is bounded and $\mu(\{n\}) \not\rightarrow 0$. (Thus, μ is not strongly additive.) An application of the Diestel–Faires theorem [3, p. 20] shows that $c_o \hookrightarrow K(Y, Y)$. An appeal to [11] and explicitly [12] shows that $\ell_{\infty} \hookrightarrow L(Y, Y)$.

More generally, it is known that if *X* is infinite-dimensional and $c_o \hookrightarrow L(X, Y)$, then $\ell_{\infty} \hookrightarrow L(X, Y)$ (see [12]). The conditions permitting ℓ_{∞} to embed isomorphically into K(X, Y) are quite specific: Kalton [11] showed that $\ell_{\infty} \hookrightarrow K(X, Y)$ if and only if $\ell_{\infty} \hookrightarrow X^*$ or $\ell_{\infty} \hookrightarrow Y$.

The first theorem in this section is a vector measure generalization of results in [11]. (It is not difficult to see that there are countably many functionals separating the points of L(X, Y) if X is separable and Y is the dual of a separable space.) Let \mathcal{P} be the σ -algebra consisting of all subsets of **N**.

Theorem 2.1 If $\mu: \mathcal{P} \to X$ is a bounded, finitely additive vector measure with $\mu(\{n\}) = 0$ for each $n \in \mathbf{N}$ and there are countably many points in X^* which separate the points in the range of μ , then there exists an infinite set $M \subseteq \mathbf{N}$ so that $\mu(A) = 0$ for all $A \subseteq M$.

Proof Since $\mathbf{R} \setminus \mathbf{Q}$ is uncountable and \mathbf{Q} is dense in \mathbf{R} , we partition \mathbf{N} into uncountably many infinite sets $(U_{\alpha})_{\alpha \in \Delta}$ so that $U_{\alpha} \cap U_{\beta}$ is finite if $\alpha \neq \beta$. Note that $\mu(\bigcup_{i \in F} U_i) = \sum_{i \in F} \mu(U_i)$ for all finite subsets F of Δ . We assert that there exists $\alpha \in \Delta$ so that $\mu(B) = 0$ for all $B \subseteq U_{\alpha}$. Suppose not, and for each $\alpha \in \Delta$ choose $B_{\alpha} \subseteq U_{\alpha}$ so that $\mu(B_{\alpha}) \neq 0$. Since there are countably many points in X^* which separate $\{\mu(A) : A \in \mathcal{P}\}$, we may assume that there is an $x^* \in X^*$ so that $\|x^*\| = 1$ and $\{\alpha : x^*\mu(B_{\alpha})\} \neq 0$ is uncountable. Without loss of generality, suppose p > 0 and $W = \{\alpha \in \Delta : x^*\mu(B_{\alpha}) > p!\}$ is uncountable. If F is a finite subset of W, then card $(F) \cdot p \leq \|\mu\bigcup_{i \in F} B_i)\|$, and we easily contradict the boundedness of μ .

In the sequel, let (e_n) denote the canonical unit vector basis of c_o and (e_n^*) denote the canonical unit vector basis of ℓ_1 .

The following argument immediately yields an improvement of [11, Lemma 3].

Corollary 2.2 Suppose that (x_n) is a normalized unconditional basic sequence whose closed linear span is complemented in X and S: $[x_n:n \ge 1] \rightarrow Y$ is an operator so that no subsequence of $(S(x_n))$ converges. Then K(X,Y) is not complemented in L(X,Y).

Proof Let $Q: X \to [x_n]$ be a projection, let $J: Y \to \ell_\infty$ be an operator such that J is an isometry on $[T(x_n):n \ge 1]$, and let $(P_A), A \subset \mathbf{N}$ be the family of projections associated with the unconditional basis (x_n) . Define $\mu: \mathcal{P} \to L(X, Y)$ by $\mu(A) = SP_AQ$. If A is finite, $\mu(A)$ is compact. Suppose by way of contradiction that $P: L(X, Y) \to K(X, Y)$ is a projection. Now μ and $P\mu$ are bounded and finitely additive, and $\mu(\{n\}) - P\mu(\{n\}) = 0$ for every $n \in \mathbf{N}$. Let M be an infinite set such that $J\mu(M)_{|[x_n]} = JP\mu(M)_{|[x_n]}$. But SP_MQ and JSP_MQ are not compact. Thus, we have a contradiction.

As a specific application of Corollary 2.2 note that if ℓ_1 embeds complementably in *X* and *Y* is infinite dimensional, then K(X, Y) is not complemented in L(X, Y).

Corollary 2.3 If $c_o \hookrightarrow Y$ and X is infinite dimensional, then K(X, Y) is not complemented in L(X, Y).

Proof Let $L: c_o \to Y$ be an isomorphism, and let (P_M) be the family of projections associated with the seminormalized and unconditional basic sequence $(y_n) = (L(e_n))$. Choose a normalized w^* -null sequence (x_n^*) in X^* [2, Chapter XII], and let $J: Y \to \ell_\infty$ be an operator so that $J_{|[y_n]}$ is an isometry. Define

$$S: X \to [y_i: i \ge 1] \subseteq Y$$

by $S(x) = \sum x_n^*(x)L(e_n)$. If X_o is any separable subspace of X that norms $(x_n)_{n=1}^{\infty}$, then $JP_M S_{|x_o}$ is compact if and only if M is finite. Suppose that K(X, Y) is complemented in L(X, Y), and let $P: L(X, Y) \to K(X, Y)$ be a projection. Define $\mu: \mathcal{P} \to L(X_o, \ell_\infty)$ by $\mu(A) = JP_A S - JPP_A S$, and apply Theorem 2.1 to find an infinite set M so that $JP_M S = JPP_M S$ on X_o . Since $JP_M S_{|x_o|}$ is not compact, we have a contradiction.

Analogous to Corollary 2.2 and the italicized statement following it, the proof of Corollary 2.3 immediately produces the following improvement of results in [8].

Corollary 2.4 If Y contains a seminormalized unconditional basic sequence (y_i) , (P_M) is the family of projections associated with (y_i) , $S: X_o \rightarrow [y_i : i \ge 1]$ is an operator, and X_o is a separable subspace of X so that $P_M S_{|_{X_o}}$ is not compact for any infinite subset M, then K(X, Y) is not complemented in L(X, Y).

Remark Essentially the only difference in the proof of Corollary 2.2 and Corollary 2.3 (Corollary 2.4) involves whether $S \circ P_M$ or $P_M \circ S$ is used in defining the operator-valued measure to which Theorem 2.1 is applied.

Moreover, Theorem 2.1 has applications to other operator ideals. For example, suppose $\ell_1 \stackrel{c}{\hookrightarrow} X$ and (y_n) is a bounded sequence in Y which has no weakly convergent subsequence. Defining an operator $S: X \to Y$ and an operator-valued measure

 μ precisely as in Corollary 2.2 produces the next result. The weakly compact operators from *X* to *Y* are denoted by *W*(*X*, *Y*).

Corollary 2.5 ([1, Theorem 3]) If $\ell_1 \xrightarrow{c} X$ and $W(X, Y) \neq L(X, Y)$, then W(X, Y) is not complemented in L(X, Y).

Corollary 2.6 ([5, 10]) If $c_o \hookrightarrow K(X,Y)$, then K(X,Y) is not complemented in L(X,Y).

Proof Suppose that $K(X, Y) \stackrel{c}{\hookrightarrow} L(X, Y)$. By Corollary 2.3 or Corollary 2.4, $c_o \nleftrightarrow Y$. Suppose that (T_n) is a sequence in K(X, Y) which is equivalent to (e_n) . Then $\sum T_n(x)$ is weakly absolutely summable and consequently unconditionally convergent for all $x \in X$. Define $\mu: \mathcal{P} \to L(X, Y)$ by $\mu(A)(x) = \sum_{n \in A} T_n(x)$, and let $\nu = P \circ \mu$. Since $\nu(\{n\}) \nleftrightarrow 0$, the Diestel–Faires theorem ensures that $\ell_{\infty} \hookrightarrow K(X, Y)$. Therefore, $\ell_{\infty} \hookrightarrow X^*$ (equivalently, $\ell_1 \stackrel{c}{\hookrightarrow} X$) or $\ell_{\infty} \hookrightarrow Y$. Corollaries 2.2 and 2.3 provide the contradiction that finishes the proof.

An operator $T: X \to Y$ is said to have an unconditional compact expansion if there exists a sequence (T_n) in K(X, Y) so that $\sum_{n=1}^{\infty} T_n(x)$ converges unconditionally to T(x) for all $x \in X$. As noted in the introduction, Feder [7] showed the following.

(*) The existence of a non-compact operator *T* with an unconditional compact expansion implies that K(X, Y) is not complemented in L(X, Y).

Emmanuele observed that the existence of such a non-compact *T* ensures that $c_o \hookrightarrow K(X, Y)$. Specifically, if \mathcal{F} denotes the finite-cofinite algebra of subsets of **N** and μ is defined by

$$\mu(A) = \begin{cases} \sum_{n \in A} T_n & \text{if } A \text{ is finite,} \\ -\sum_{n \notin A} T_n & \text{if } \mathbf{N} \setminus A \text{ is finite,} \end{cases}$$

then μ is finitely additive, the unconditional convergence of $\sum_{n=1}^{\infty} T_n(x)$ ensures that μ is bounded, and the non-compactness of T ensures that $\sum_{n=1}^{\infty} T_n$ is not Cauchy and that μ is not strongly additive. Another application of the Diestel–Faires theorem promises that $c_o \hookrightarrow K(X, Y)$.

While Corollary 2.6 certainly subsumes (*), Feder's result has applications where c_o is not mentioned explicitly. The next result, a complement to Kalton [11, Lemma 3], follows directly from (*) and the proof of Corollary 2.2.

Corollary 2.7 If $1 \le p < \infty$, ℓ_p is complemented in X, and there exists a noncompact operator $T: \ell_p \to Y$, then K(X, Y) is not complemented in L(X, Y).

3 $L(\ell_p, \ell_q)$ and c_o

As noted earlier in this paper, the list of infinite-dimensional Banach spaces X for which $c_o \hookrightarrow K(X, X)$ and $\ell_{\infty} \hookrightarrow L(X, X)$ is extensive. Furthermore, the preceding section suggests that criteria assisting one in determining the presence of c_o in spaces of operators would be beneficial. Emmanuele provided a useful tool for identifying copies, even complemented copies, of c_o in spaces of operators [5].

Theorem 3.1 Let X and Y be Banach spaces satisfying the following assumption: there exists a Banach space G with an unconditional basis (g_n) and biorthogonal coefficients (g_n^*) and two operators $R: G \to Y$ and $S: G^* \to X^*$ such that $(R(g_i))$ and $(S(g_i^*))$ are normalized basic sequences. Then $c_o \hookrightarrow K(X, Y)$.

Moreover, if $(R(g_i))$ and $(S(g_i^*))$ are basic and Y (or X^*) has the Gelfand–Phillips property, then K(X, Y) contains a complemented copy of c_o .

As an application of this result, Emmanuele observed that if $\ell_1 \hookrightarrow X$ and $\ell_p \hookrightarrow Y$ for some $p \ge 2$, then $c_o \hookrightarrow K(X, Y)$ and, of course, K(X, Y) is not complemented in L(X, Y).

We extend Emmanuele's observation in this section. The statement of a generalization of Theorem 3.1 and additional definitions will be helpful in our study.

A bounded subset *A* of *X* is called a limited subset of *X* if every w^* -null sequence in X^* tends to zero uniformly on *A*, and *X* has the Gelfand–Phillips property if every limited subset of *X* is relatively compact. Separable Banach spaces have the Gelfand– Phillips property ([14], [2, p. 116]).

The space of all $w^* - w$ continuous operators $T: X^* \to Y$ (resp. all compact and $w^* - w$ continuous operators) is denoted by $L_{w^*}(X^*, Y)$ (resp. $K_{w^*}(X^*, Y)$). Ruess [13] contains a discussion of $L_{w^*}(X^*, Y)$ and $K_{w^*}(X^*, Y)$, as well as applications of the following well-known isometries:

$$\begin{split} & L_{w^*}(X^*,Y) \cong L_{w^*}(Y^*,X); \quad K_{w^*}(X^*,Y) \cong K_{w^*}(Y^*,X), (T\mapsto T^*) \\ & W(X,Y) \cong L_{w^*}(X^{**},Y); \quad K(X,Y) \cong K_{w^*}(X^{**},Y), (T\mapsto T^{**}). \end{split}$$

See also Drewnowski [4] for an extension of results in [11] to the space $K_{w^*}(X^*, Y)$. Theorem 3.1 is extended in [9].

Theorem 3.2 Let X and Y be Banach spaces satisfying the following assumption: there exists a Banach space G with an unconditional basis (g_n) and biorthogonal coefficients (g_n^*) and two operators $R: G \to Y$ and $S: G^* \to X$ such that $(R(g_i))$ and $(S(g_i^*))$ are seminormalized sequences and either $(R(g_i))$ or $(S(g_i^*))$ is a basic sequence. Then $c_o \hookrightarrow K_{w^*}(X^*, Y)$ (indeed, in any subspace H of $L_{w^*}(X^*, Y)$ that contains $X \otimes_{\lambda} Y$).

Moreover, if $(R(g_i))$ and $(S(g_i^*))$ are basic and Y (or X) has the Gelfand–Phillips property, then $K_{w^*}(X^*, Y)$ contains a complemented copy of c_o .

If 1 , then we say <math>p' is conjugate to p if $\frac{1}{p} + \frac{1}{p'} = 1$, *i.e.*, $(\ell_p)^* \cong \ell_{p'}$.

Theorem 3.3 Suppose 1 , <math>p' is conjugate to p, and $S: \ell_p \longrightarrow X$ is a non-compact operator. For $p' \leq p \leq q$ or $p \leq p' \leq q$, if $R: \ell_q \rightarrow Y$ is a non-compact operator, then $c_o \hookrightarrow K_{w^*}(X^*, Y)$. Furthermore, if X or Y is Gelfand–Phillips (separability is sufficient), then $c_o \stackrel{c}{\hookrightarrow} K_{w^*}(X^*, Y)$. However, if p < q < p', then there exist spaces X and Y and appropriate operators S and R so that $c_o \nleftrightarrow K_{w^*}(X^*, Y)$.

Proof Case 1: $p' \le p \le q$. Since $S: \ell_p \to X$ is a non-compact operator, we can find a $\delta > 0$ and a sequence (x_n) in B_{ℓ_p} such that $||S(x_n) - S(x_m)|| > \delta$ if $n \ne m$. Since ℓ_p is reflexive, B_{ℓ_p} is weakly compact. Thus, without loss of generality we may assume $(a_n) = (x_n - x_{n+1})$ is weakly null.

Observe that $||S(a_n)|| > \delta$ for all $n \in \mathbb{N}$. Thus, $(a_n) \not\rightarrow 0$. Hence (a_n) is weakly null and seminormalized. By the Bessaga–Pelycznski selection principle (a_n) contains a subsequence (a_{n_k}) which is equivalent to a block basic sequence (h_n) of (e_n^p) .

Note that ℓ_p is perfectly homogeneous for all $1 \le p < \infty$, so we may assume (a_n) is equivalent to (e_n^p) . Thus, (a_n) is basic. Since $p' \le p$, there is a natural injection J from $\ell_{p'}$ into ℓ_p which sends $(e_n^{p'})$ to (a_n) . Note that the Bessaga–Pełczyński selection principle also applies to the sequence $(S(a_n))$. Hence, we have (a_n) equivalent to $(J((e_n^{p'})))$, and without loss of generality $(S(J((e_n^{p'})))) = (S(a_n))$ is a seminormalized basic sequence in X.

Similarly, one can find a weakly null, seminormalized sequence (b_n) equivalent to (e_n^q) in ℓ_q so that $(R(b_n))$ is a seminormalized basic sequence in Y. Since $p \leq q$, there is a natural injection U from ℓ_p into ℓ_q which sends (e_n^p) to (b_n) . Hence, we have (b_n) equivalent to $(U((e_n^p)))$, and without loss of generality $(R(U((e_n^p)))) = (R(b_n)))$ is a weakly null, seminormalized basic sequence in Y. (The Bessaga–Pełczyński selection principle applies to the sequence $(R(b_n))$.) Therefore, by Theorem 3.2, $c_o \hookrightarrow K_{w^*}(X^*, Y)$.

Case 2: $p \le p' \le q$. Repeat the argument for Case 1.

Case 3: p < q < p'. Since p < q < p', every operator from ℓ_q to ℓ_p is compact and every operator from $\ell_{p'}$ to ℓ_q is compact, *i.e.*, $K_{w^*}((\ell_p)^*, \ell_q) = K(\ell_{p'}, \ell_q) = L(\ell_{p'}, \ell_q)$. In fact, this space of compact operators is reflexive. Thus c_o cannot embed in $K_{w^*}((\ell_p)^*, \ell_q)$. In this case, let $X = \ell_p$, $Y = \ell_q$, and let $S: \ell_p \to \ell_p$ and $R: \ell_q \to \ell_q$ be identity operators.

Corollary 3.4 If $\ell_1 \hookrightarrow X$ and there exists a $p \ge 2$ with a non-compact operator $A: \ell_p \to Y$, then $c_o \hookrightarrow K(X,Y)$.

Proof Since $\ell_1 \hookrightarrow X$, $L_1 \hookrightarrow X^*$ [2, Notes and Remarks, Chapter X]. The Rademacher functions span a copy of ℓ_2 in L_1 , and thus $\ell_2 \hookrightarrow X^*$. The perfect homogeneity of the unit vector basis of ℓ_p [15] and the non-compactness of the operator *A* produces a non-compact operator *B*: $\ell_2 \to Y$ (as in the proof of Case 1 of Theorem 3.3). Theorem 3.3 guarantees that $c_o \hookrightarrow K_{w^*}(X^{**}, Y)$. The isometry $K_{w^*}(X^{**}, Y) \cong K(X, Y)$ finishes the argument.

References

- [1] E. Bator and P. Lewis, *Complemented spaces of operators*. Bull. Polish Acad. Sci. Math. **50**(2002), no. 4, 413–416.
- J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Mathematics 92. Springer-Verlag, New York, 1984.
- [3] J. Diestel and J. J. Uhl, Jr., Vector Measures. Mathematical Surveys 15. American Mathematical Society, Providence, RI, 1977.
- [4] L. Drewnowski, *Copies of ℓ_∞ in an operator space*. Math. Proc. Camb. Philos. Soc. 108(1990), no. 3, 523–526. http://dx.doi.org/10.1017/S0305004100069401
- [5] G. Emmanuele, A remark on the containment of c_o in the space of compact operators. Math. Proc. Camb. Philos. Soc. **111**(1992), no. 2, 331–335. http://dx.doi.org/10.1017/S0305004100075435
- [6] G. Emmanuele, and K. John, Uncomplementability of spaces of compact operators in larger spaces of operators. Czechoslovak Math. J. 47(122)(1997), no. 1, 19–31. http://dx.doi.org/10.1023/A:1022483919972
- [7] M. Feder, On subspaces of spaces with an unconditional basis and spaces of operators. Illinois J. Math. 24(1980), no. 2, 196–206.

P. Lewis and P. Schulle

- [8] _____, On the non-existence of a projection onto the space of compact operators. Canad. Math. Bull. 25(1982), no. 1, 78–81. http://dx.doi.org/10.4153/CMB-1982-011-0
- [9] I. Ghenciu and P. Lewis, Unconditional convergence in the strong operator topology and ℓ_∞. Glasgow Math. J., FirstView Articles, available on CJO, March 10, 2011. http://dx.doi.org/10.1017/S0017089511000152
- [10] K. John, On the uncomplemented subspace K(X, Y). Czechoslovak Math. J. 42(117)(1992), no. 1, 167–173.
- [11] N. Kalton, Spaces of compact operators. Math. Ann. 208(1974), 267–278. http://dx.doi.org/10.1007/BF01432152
- [12] P. Lewis, *Spaces of operators and c_o*. Studia Math. **145**(2001), no. 3, 213–218. http://dx.doi.org/10.4064/sm145-3-3
- [13] W. Ruess, *Duality and geometry of spaces of compact operators*. In: Functional Analysis: Surveys and Recent Results III. North-Holland Math. Studies 90. North-Holland, Amsterdam, 1984, pp. 59-78.
- [14] T. Schlumprecht, Limited Sets in Banach Spaces Dissertation, Munich, 1987.
- [15] I. Singer, *Bases in Banach Spaces. II.* Springer-Verlag, Berlin, 1981.

Department of Mathematics, University of North Texas, Denton, TX 76203-1430 USA e-mail: lewis@unt.edu

Department of Mathematics, Richland College, Dallas, TX 75243-2199 USA e-mail: PSchulle@dcccd.edu