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Basic Notions in Category Theory

1.1 Definition of a Category and Examples

If you want to define a category, it is not enough to specify the objects that you
want to consider; you always have to say what kind of morphisms you want to
allow.

Definition 1.1.1 A category C consists of

(1) A class of objects, ObC.
(2) For each pair of objects C1 and C2 of C, there is a set C(C1,C2). We call

the elements of C(C1,C2) the morphisms from C1 to C2 in C.
(3) For each triple C1,C2, and C3 of objects of C, there is a composition law

C(C1,C2)× C(C2,C3)→ C(C1,C3).

We denote the composition of a pair ( f, g) of morphisms by g ◦ f .
(4) For every object C of C, there is a morphism 1C , called the identity

morphism on C .

The composition of morphisms is associative, that is, for morphisms f ∈
C(C1,C2), g ∈ C(C2,C3), and h ∈ C(C3,C4), we have

h ◦ (g ◦ f ) = (h ◦ g) ◦ f,

and identity morphisms do not change morphisms under composition, that is,
for all f ∈ C(C1,C2),

1C2 ◦ f = f = f ◦ 1C1 .

We will soon see plenty of examples of categories. Despite the fact that for
some categories this notation is utterly misleading, it is common to denote
morphisms as arrows. If f ∈ C(C1,C2), then we represent f as f : C1 → C2.
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8 Basic Notions in Category Theory

As for functions, we call C1 = s( f ) the source (or domain) of f and
C2 = t ( f ) the target (or codomain) of f for all f ∈ C(C1,C2).

The identity morphism 1C is uniquely determined by the object C : if both
1C and 1′

C are identity morphisms on C , then

1C = 1C ◦ 1′
C = 1′

C .

One can visualize the unit and associativity conditions geometrically. Omit-
ting the objects from the notation, the rule f ◦ 1 = f = 1 ◦ f can be expressed
as two (glued) triangles,

�

f

f

1

f

f

and the associativity constraint corresponds to a tetrahedron.
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g ◦ f

h ◦ g

(h ◦ g) ◦ f = h ◦ (g ◦ f)

These pictures are more than mere illustrations; this will become clear when
we discuss nerves and classifying spaces of small categories in 11.1 and 11.2.

Remark 1.1.2 Sometimes one does not require that the morphisms constitute
a set, but one would allow classes of morphisms as well. In such contexts, our
definition would be called a locally small category, that is, one in which for
every pair of objects C1, C2, C(C1,C2) is a set and not a class.

Remark 1.1.3 Some authors require that the sets of morphisms in a cat-
egory are pairwise disjoint. If (C1,C2) is different from (C ′

1,C
′
2), then
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1.1 Definition of a Category and Examples 9

C(C1,C2) ∩ C(C ′
1,C

′
2) = ∅. This is related to the question of how you define

a function: If X and Y are sets, then a function can be viewed as a relation
f ⊂ X × Y with the property that, for all x in X , there is a unique y ∈ Y
with (x, y) ∈ f , or you could say that a function is a triple (X, Y, f ) with
f ⊂ X × Y with the same uniqueness assumption. In the latter definition, the
domain and target are part of the data. In the first definition, f could also be a
function for some other X ′ and Y ′.

Definition 1.1.4
• A category C is small if the objects of C are a set (and not a proper class).
• A small category is finite if its set of objects is a finite set and every set of

morphism is finite.
• A category is discrete if the only morphisms that occur in it are identity

morphisms.

In particular, you can take any class X and form the discrete category asso-
ciated with X , by declaring the elements of X to be the objects and by allowing
only the identity morphisms as morphisms. If X is a set, then this category is
small.

You are probably already familiar with several examples of categories.

Examples 1.1.5
• Sets: The category of sets and functions of sets. Here, the objects form a

proper class.
• Gr: The category of groups and group homomorphisms.
• Ab: The category of abelian groups and group homomorphisms.
• K -vect: Here, K is a field and K -vect is the category of K -vector spaces

and K -linear maps.
• R-mod: Here, R is an associative ring with unit and R-mod is the category

of (left) R-modules and R-linear maps.
• Top: The category of topological spaces and continuous maps.
• Top∗: The category of topological spaces with a chosen basepoint and

continuous maps preserving the basepoint.
• CW: The category of CW complexes and cellular maps.
• Ch: The category of (unbounded) chain complexes of abelian groups

together with chain maps. Here, objects are families of abelian groups
(Xi )i∈Z with boundary operators di : Xi → Xi−1

· · · dn+2
Xn+1

dn+1
Xn

dn
Xn−1

dn−1 · · ·.
The di are linear maps and satisfy di ◦ di+1 = 0 for all i ∈ Z. We denote
such a chain complex by (X∗, d). A chain map from (X∗, d) to (Y∗, d ′) is a
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10 Basic Notions in Category Theory

family of linear maps ( fi : Xi → Yi )i∈Z such that fi ◦ di+1 = d ′
i ◦ fi+1 for

all i ∈ Z, so the following diagram commutes:

· · · dn+2
Xn+1

fn+1

dn+1
Xn

fn

dn
Xn−1

fn−1

dn−1 · · ·

· · ·
d ′

n+2
Yn+1

d ′
n+1

Yn
d ′

n
Yn−1

d ′
n−1 · · ·.

We also consider the variant of the category of nonnegatively graded chain
complexes, Ch≥0, where Xi = 0 for all negative indices i . An important vari-
ant is to allow different ground rings than the integers, so we might consider
chain complexes of R-modules for some associative and unital ring R, and
then, the boundary operators and chain maps are required to be R-linear.

There are other examples of categories where you might find the morphisms
slightly nonstandard.

Examples 1.1.6
(1) Let Corr be the category of correspondences. Objects of this category are

sets, and the morphisms Corr(S, T ) between two sets S and T are the
subsets of the product S × T . If you have U ⊂ R × S and V ⊂ S × T ,
then U × V is a subset of R × S × S × T . You can take the preimage
of U × V under the map j : R × S × T → R × S × S × T that takes
the identity on R and T and the diagonal map on S and then project with
p : R×S×T → R×T . This gives the composition. The identity morphism
on the set S is the diagonal subset

�S = {(s, s)|s ∈ S} ⊂ S × S.

(2) Let X be a partially ordered set (poset, for short), that is, a nonempty set
X together with a binary relation ≤ on X that satisfies that x ≤ x for all
x ∈ X (reflexivity), that x ≤ y and y ≤ z implies x ≤ z (transitivity), and
if x ≤ y and y ≤ x , then x = y (antisymmetry).

We consider such a poset as a category, and by abuse of notation, we call
this category X . Its objects are the elements of X , and the set of morphisms
X (x, y) consists of exactly one element if x ≤ y. Otherwise, this set is
empty.

(3) Quite often, we will view categories as diagrams. For instance, let [0]
be the category with one object and one morphism, the identity on that
object.
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1.1 Definition of a Category and Examples 11

Similarly, let [1] = {0, 1} be the category with two objects 0 and 1,
coming with their identity morphisms and one other morphism from 0
to 1. This corresponds to the poset 0 < 1 viewed as a category: 0 → 1.

When we draw diagrams like that, we usually omit the identity mor-
phisms and we don’t draw composites in posets. For every poset [n] =
0 < 1 < · · · < n, we get the corresponding category 0 → 1 → · · · → n.

(4) Let X be a topological space and let U(X) denote its family of open subsets
of X . We can define a partial order on U(X) by declaring that U ≤ V if
and only if U ⊂ V .

(5) If C is an arbitrary category and if C is an object of C, then the endomor-
phisms of C , C(C,C) form a monoid, that is, a set with a composition that
is associative and possesses a unit. Thus, every category can be thought of
as a monoid with many objects.

Conversely, if (M, ·, 1) is a monoid with composition · and unit 1, then
we can form the category that has one object ∗ and has M as its set of
endomorphisms. We denote this category by CM .

There are several constructions that build new categories from old ones.

Definition 1.1.7
• We will need the empty category. It has no object and hence no morphism.
• If we have two categories C and D, then we can build a third one by forming

their product C ×D. As the notation suggests, the objects of C ×D are pairs
of objects (C, D) with C an object of C and D an object of D. Morphisms
are pairs of morphisms:

C × D((C1, D1), (C2, D2)) = C(C1,C2)× D(D1, D2),

and composition and identity morphisms are formed componentwise:

( f2, g2) ◦ ( f1, g1) = ( f2 ◦ f1, g2 ◦ g1), 1(C,D) = (1C , 1D).

This is indeed a category.
• Given two categories C and D, we can also form their disjoint union, C �D.

Its objects consist of the disjoint union of the objects of C and D. One defines

(C � D)(X, Y ) :=

⎧
⎪⎪⎨

⎪⎪⎩

C(X, Y ), if X, Y are objects of C,
D(X, Y ), if X, Y are objects of D,
∅, otherwise.

• If we want a limited amount of interaction between C and D, we can form
the join of C and D, denoted by C ∗ D. The objects of C ∗ D are the disjoint
union of the objects of C and the objects of D, and as morphism, we have
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12 Basic Notions in Category Theory

(C∗D)(X, Y ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C(X, Y ), if X and Y are objects of C,
D(X, Y ), if X and Y are objects of D,
{∗}, if X is an object of C and Y is an object of D,
∅, otherwise.

So the join is not symmetric: There are morphisms from C to D but not from
D to C.

• Let C be an arbitrary category. Let Co be the category whose objects are the
same as the ones of C but where

Co(C,C ′) = C(C ′,C).

We denote by f o the morphism in Co(C,C ′) corresponding to f ∈ C(C ′,C).
The composition of f o ∈ Co(C,C ′) and go ∈ Co(C ′,C ′′) is defined as

go ◦ f o := ( f ◦ g)o. The category Co is called the dual category of C or the
opposite category of C.

If you consider the preceding example of the category CM from above,
then the dual (CM)

o is the category associated with the opposite of the
monoid M , Mo. Here, Mo has the same underlying set as M , but the
multiplication is reversed:

m ·o m ′ := m ′ · m.

1.2 EI Categories and Groupoids

Definition 1.2.1 We call a morphism f ∈ C(C,C ′) in a category C an
isomorphism if there is a g ∈ C(C ′,C), such that g ◦ f = 1C and f ◦ g = 1C ′ .

We denote g by f −1, because g is uniquely determined by f .

Definition 1.2.2
• A category C is an EI category if every endomorphism of C is an isomor-

phism.
• A category C is a groupoid if every morphism in C is an isomorphism.

Of course, every groupoid is an EI category. In any EI category, the
endomorphisms of an object form a group.

Examples 1.2.3
• Consider the category I whose objects are the finite sets n = {1, . . . , n} with

n ≥ 0 and 0 = ∅. The morphisms in I are injective functions. Hence, the
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1.2 EI Categories and Groupoids 13

endomorphisms of an object n constitute the symmetric group on n letters,
�n , and I is an EI category.

• Dually, let � be the category of finite sets and surjections, that is, � has the
same objects as I , but�(n,m) is the set of surjective functions from the set
n to the set m. Again, the endomorphisms of n consist of the permutations
in �n , and � is an EI category.

• Let C be any category. Then one can build the associated category of
isomorphisms of C, Iso(C). This has the same objects as C, but we take

Iso(C)(C1,C2) = { f ∈ C(C1,C2)| f is an isomorphism}.

Hence, for all categories C, the category Iso(C) is a groupoid. We call the cat-
egory Iso(I) = Iso(�) the category of finite sets and bijections, �, that is,
� has the same objects as � but

�(n,m) =
{
�n, if n = m,

∅, otherwise.

• If G is a group, then we denote by CG the category with one object ∗ and
CG(∗, ∗) = G with group multiplication as composition of maps. Then, CG

is a groupoid. Hence, every group gives rise to a groupoid. Vice versa, a
groupoid can be thought of as a group with many objects.

• Let X be a topological space. The fundamental groupoid of X , 	(X), is the
category whose objects are the points of X , and 	(X)(x, y) is the set of
homotopy classes of paths from x to y:

	(X)(x, y) = [[0, 1], 0, 1; X, x, y].

The endomorphisms 	(x, x) of x ∈ X constitute the fundamental group of
X with respect to the basepoint x , π1(X, x).

• Another important example of a groupoid is the translation category of a
group. If G is a discrete group, then we denote by EG the category whose
objects are the elements of the group and

EG(g, h) = {hg−1}, g
hg−1

h.

This category has the important feature that there is precisely one morphism
from one object to any other object, so every object has equal rights.
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14 Basic Notions in Category Theory

For the symmetric group on three letters, �3, the diagram of objects and
(nonidentity) morphisms looks as follows:

Here, we use cycle notation for permutations. Note that the upper-right
triangle depicts the translation category of the cyclic group of order three.

1.3 Epi- and Monomorphisms

Often, we will need morphisms with special properties. In the category of sets,
one can use elements in order to test whether a function is surjective or injec-
tive. In a general category, we do not have a notion of elements, but we always
have sets of morphisms. Epimorphisms and monomorphisms are defined using
morphisms as test objects. For the category of sets, this is straightforward: if
a function f : S → T is injective, then f (s1) = f (s2) implies that s1 = s2.
So, this is also true for morphisms h1, h2 : U → S. If f ◦ h1 = f ◦ h2, then
h1 = h2. A similar consideration applies to surjective functions.

Definition 1.3.1 Let C be a category and f ∈ C(C1,C2). Then, f is an epi-
morphism if for all objects D in C and all pairs of morphisms h1, h2 : C2 → D,
the equation h1 ◦ f = h2 ◦ f implies that h1 = h2.

Epimorphisms are therefore right-cancellable.

Exercise 1.3.2 Beware, epimorphisms might not be what you think they are.
Consider the category of commutative rings with unit and show that the unique
morphism from the integers into the rational numbers is an epimorphism.

Remark 1.3.3 Of course, every identity morphism is an epimorphism and the
composition of two epimorphisms is an epimorphism. If g ◦ f is an epimor-
phism, then so is g, because h1 ◦g = h2 ◦g implies that h1 ◦g ◦ f = h2 ◦g ◦ f ,
and by assumption, this yields h1 = h2. Note that every isomorphism is an
epimorphism.

Proposition 1.3.4 Epimorphisms in the category of sets and functions are
precisely the surjective functions.

https://doi.org/10.1017/9781108855891.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108855891.002


1.3 Epi- and Monomorphisms 15

Proof Let f : X → Y be a surjective function of sets and let h1, h2 : Y → Z
be functions with h1 ◦ f = h2 ◦ f. Let y ∈ Y be an arbitrary element. Then,
there is an x ∈ X with f (x) = y. Hence

h1(y) = h1( f (x)) = h2( f (x)) = h2(y),

and thus, h1 = h2. Conversely, let f : X → Y be an epimorphism. Let Z =
{z1, z2} with z1 �= z2 and define h1 : Y → Z as h1(y) = z1 for all y ∈ Y and let
h2 be the test function of the image of f , that is, h2(y) = z1 if y is in the image
of f and h2(y) = z2 if y lies outside of the image of f . Then, h1 ◦ f = h2 ◦ f
is the constant function with value z1, and hence, h1 = h2, which implies that
f is surjective. �

Similarly, one can prove that epimorphisms of topological spaces are surjec-
tive continuous maps. It is more involved to show that epimorphisms of groups
are surjective group homomorphisms. See, for example, [Bo94-1, 1.8.5.d].

Dual to the notion of an epimorphism is the one of a monomorphism.

Definition 1.3.5 Let C be a category. A morphism f ∈ C(C1,C2) is a
monomorphism if f o ∈ Co(C2,C1) is an epimorphism.

So, monomorphisms are left-cancellable. For all objects D in C and all
h1, h2 : D → C1, the equation f ◦ h1 = f ◦ h2 implies that h1 = h2.

One can use morphism sets as test objects because the very definition of
mono- and epimorphisms gives the following criteria.

Proposition 1.3.6 A morphism f ∈ C(C1,C2) is a monomorphism if and only
if for all objects D in C, the induced map C(D, f ) : C(D,C1) → C(D,C2) is
an injective function of sets.

Dually, a morphism f ∈ C(C1,C2) is an epimorphism if and only if for
all objects D in C, the induced map C( f, D) : C(C2, D) → C(C1, D) is an
injective function of sets.

Monomorphisms of sets are injective functions. Monomorphisms of com-
mutative rings with unit are injective ring homomorphisms: Let f : R1 → R2

be a monomorphism of commutative rings with unit. Consider the polynomial
ring in one variable over the integers, Z[X ]. A morphism h : Z[X ] → R1 deter-
mines and is determined by the element r = h(X) of R1. For all r, s ∈ R1, we
define h1 : Z[X ] → R1 via h1(X) = r and h2 : Z[X ] → R1 via h2(X) = s. If
f (r) = f (s), then f ◦ h1 = f ◦ h2, and thus, h1 = h2, which implies r = s,
so f is injective. The converse is easy to see.

There are categories where monomorphisms should be handled with care,
that is, where monomorphisms do not behave like injective maps. A stan-
dard example is the category of divisible abelian groups (see Exercise 1.3.13).
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16 Basic Notions in Category Theory

A topologically minded example is the category of connected Hausdorff
topological groups [HM13, A3.10].

Exercise 1.3.7 Show that, in the category of monoids, the inclusion of the
additive monoid of natural numbers into the integers is a monomorphism and
an epimorphism.

Definition 1.3.8 A morphism r ∈ C(C1,C2) is called a retraction if there is
an s ∈ C(C2,C1), such that r ◦ s = 1C2 . In this situation, s is called a section
and C2 is a retract of C1.

Proposition 1.3.9 Retractions are epimorphisms, and sections are monomor-
phisms.

Proof We only prove the first claim; the second is dual. Let r be a retraction
with section s. If h1 ◦ r = h2 ◦ r , then h1 = h1 ◦ r ◦ s = h2 ◦ r ◦ s = h2. �

Remark 1.3.10 Be careful: the converse of the preceding statement is often
wrong. For instance, let C be the category of groups. Then, a surjective group
homomorphism f does not have a section in general. There is a section of
the underlying function on sets, but this section does not have to be a group
homomorphism in general.

The example of the category of commutative rings with units shows that
there are categories where morphisms f that are epimorphisms and monomor-
phisms do not have to be isomorphisms: take f : Z → Q. It is a monomor-
phism because it is injective, and it is an epimorphism but certainly not an
isomorphism.

You might know the notions of projective and injective modules from homo-
logical algebra. The following is the categorical analog of these properties.

Definition 1.3.11
• An object P in a category C is called projective if for every epimorphism

f : M → Q in C and every p : P → Q, there is a ξ ∈ C(P,M) with
f ◦ ξ = p:

P
ξ

p

M
f

Q

• Dually, an object I in a category C is called injective if for every monomor-
phism f : U → M in C and every j : U → I , there is a ζ ∈ C(M, I ) with
ζ ◦ f = j :
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1.3 Epi- and Monomorphisms 17

I

U
f

j

M

ζ

Remark 1.3.12 We think of the morphism ξ as a lift of p to M and of the
morphism ζ as an extension of j to M . Note that uniqueness of the morphisms
ξ and ζ is not required.

In the category of sets, every object is injective and projective, assuming
the axiom of choice for projectivity. In the category of left R-modules for R
an associative ring with unit, projectivity and injectivity are precisely defined
as in homological algebra. Examples of projective modules are free modules
or R-modules of the form Re, where e is an idempotent element of R, that
is, e2 = e. Injective Z-modules, that is, injective abelian groups, are divisible
abelian groups. These are abelian groups A, such that n A = A for all natural
numbers n �= 0. Thus, Q and the discrete circle Q/Z are injective abelian
groups.

Exercise 1.3.13 Show that in the category of divisible abelian groups, the
canonical projection map Q → Q/Z is a monomorphism.

Projectivity and injectivity are preserved by passing to retracts.

Proposition 1.3.14 If P is a projective object of a category C and if i : U → P
is a monomorphism in C with a retraction r : P → U, then U is projective.
Similarly, if i : J → I is a monomorphism with retraction r : I → J and I is
injective, then J is injective.

Proof Let f : M → Q be an epimorphism. If U maps to Q via g, then P
maps to Q via g ◦ r . Thus, there is a morphism ξ : P → M with f ◦ ξ = g ◦ r ,
and therefore, ξ ◦ i satisfies f ◦ ξ ◦ i = g ◦ r ◦ i = g.

In the second case, if U maps to M via the monomorphism f and j : U →
J , then i ◦ j : U → I has an extension ζ : M → I with ζ ◦ f = i ◦ j , and
hence, r ◦ ζ is the required extension of j to M . �

We also get certain splitting properties for injective and projective objects.

Proposition 1.3.15 If q : Q → P is an epimorphism and if P is projective,
then q has a section. Dually, if j : I → J is a monomorphism and I is injective,
then j has a retraction.
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18 Basic Notions in Category Theory

Proof We show the second claim and leave the first claim as an exercise.
Consider the diagram

I

I

1I

j
J

ζ

By the injectivity of I , we get an extension of 1I to J , ζ , satisfying ζ ◦ j = 1I .
Thus, ζ is a retraction for j . �

1.4 Subcategories and Functors

Definition 1.4.1 Let C be a category. A subcategory D of C consists of a sub-
collection of objects and morphisms of C, called the objects and morphisms
of D, such that

• for all objects D1, D2 of D, there is a set of morphisms D(D1, D2) ⊂
C(D1, D2);

• if f ∈ D(D1, D2), then D1, D2 are objects of D;
• for all objects D of D, the identity morphism 1D is an element of D(D, D);

and
• if f ∈ D(D1, D2), g ∈ D(D2, D3), then the composition of f and g in C

satisfies g ◦ f ∈ D(D1, D3).

Hence, a subcategory of a category is a subcollection of objects and mor-
phisms of the category that is closed under composition, identity morphisms,
and source and target. Note that a subcategory again forms a category.

Definition 1.4.2 A subcategory D of C is called full if for all objects D, D′

of D
D(D, D′) = C(D, D′).

The category of abelian groups is a full subcategory of the category of
groups. However, the category I of finite sets and injections is not a full
subcategory of the category of finite sets. We restricted the morphisms.

Definition 1.4.3 A functor F from a category C to a category D
• Assigns to every object C of C an object F(C) of D.
• For each pair of objects C,C ′ of C, there is a function of sets

F : C(C,C ′)→ D(F(C), F(C ′)), f �→ F( f ).
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1.4 Subcategories and Functors 19

• The following two axioms hold:

F(g ◦ f ) = F(g) ◦ F( f ) for all f ∈ C(C,C ′), g ∈ C(C ′,C ′′),

F(1C) = 1F(C)

for all objects C of C.

Like for morphisms, we use the arrow notation F : C → C ′ to indicate a
functor.

Examples 1.4.4
(1) The inclusion of a subcategory into its ambient category defines a functor.
(2) The identity map on objects and morphisms of a category C define the

identity functor

IdC : C → C.
(3) Let (−)ab : Gr → Ab be the functor that assigns to a group G the fac-

tor group of G with respect to its commutator subgroup: G/[G,G]. The
resulting group is abelian, and the functor is called the abelianization.

(4) Often, we will consider functors that forget part of some structure. These
are called forgetful functors. For instance, we can consider the underlying
set U (X) of a topological space X , and this gives rise to the forgetful
functor

U : Top → Sets.

Similarly, if K is a field, then every K -vector space V has an underlying
abelian group U (V ), and this gives rise to a forgetful functor

U : K -vect → Ab.

Here, we used that continuous maps are in particular functions of sets
and that K -linear maps are morphisms of abelian groups.

You should come up with at least five more examples of such forgetful
functors.

(5) To a pair of topological spaces (X, A) and to a fixed n ∈ N0, you can
assign the nth singular homology group of (X, A), Hn(X, A). Then, this
defines a functor from the category of pairs of topological spaces to
abelian groups.

(6) If you consider topological spaces with a chosen basepoint and if you
assign to such a space (X, x) its fundamental group with respect to
the basepoint x , π1(X, x), then this defines a functor from Top∗ to the
category of groups

π1 : Top∗ → Gr.
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(7) A functor F : [0] → C corresponds to a choice of an object in C, namely
F(0).

(8) A functor F : [1] → C corresponds to the choice of two objects in C,
F(0) and F(1), and a morphism between them, F(0 < 1):

F(0)
F(0<1)

F(1).

(9) Let E be the category with two objects 0 and 0′ and an isomorphism
between them, that is, a morphism f ∈ E(0, 0′) and a morphism g ∈
E(0′, 0), such that g ◦ f = 10 and f ◦ g = 10′ . Then, a functor F from
E to any category C picks an isomorphism in C between F(0) and F(0′).
The category E is therefore often called the wandering isomorphism.

(10) A functor F : [2] → C corresponds to the choice of a composable pair of
morphisms in C, so F(0 < 2) = F(1 < 2) ◦ F(0 < 1).

F(0)
F(0<1)

F(0<2)

F(1)

F(1<2)

F(2)

(11) We can assign to a set S the free group generated by S, Fr(S). A function
of sets f : S → T induces a group homomorphism

Fr( f ) : Fr(S)→ Fr(T )

and hence Fr is a functor from the category of Sets to the category of
groups.

(12) Similarly, we can send a set S to the free abelian group generated by S,
Fra(S). This assignment is a functor as well.

(13) An innocent-looking but very important example of a functor is the
(covariant) morphism functor: For an arbitrary category C and any object
C0 of C, we can consider the map

C �→ C(C0,C)

that sends an object C of C to the set of morphisms from C0 to C in C.
This defines a functor

C(C0,−) : C → Sets.

(14) Another important functor that is crucial for the discussion of limits and
colimits later is the constant functor. Consider two arbitrary nonempty
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categories C and D and choose an object D of D. The constant functor
from C to D with value D is

�D : C → D, �D(C) = D, �D( f ) = 1D

for all objects C in C and all f ∈ C(C1,C2).
(15) Let M be a smooth manifold and let C(M) be the real vector space of

all smooth real-valued functions on M . We denote by Sm the category
of smooth manifolds and smooth maps. The assignment M �→ C(M)
defines a functor from the dual category of Sm to the category of real
vector spaces

C : Smo → R-vect.

(16) Let X be a topological space, and let C be an arbitrary category. As dis-
cussed earlier, U(X) denotes the category of open subsets of X . Its objects
are the open subsets of X , and if U and V are objects of U(X) with
U ⊂ V , then there is a morphism i V

U : U → V.
A presheaf F on X is a functor F : U(X)op → C.
Often, the morphisms F(i V

U ) : F(V ) → F(U ) are called restriction
maps and are denoted by resV,U . The property of F to being a functor is
then equivalent to requiring that resU,U = idU for all objects U of U(X),
and for open subsets U ⊂ V ⊂ W in X , it doesn’t matter whether you
restrict from W to V and then from V to U or you restrict directly from
W to U :

resW,U = resV,U ◦ resW,V .

Typical examples of presheaves are sets of functions on a topological
space X , such as the continuous functions from X to the reals. If p : E →
M is a smooth vector bundle on a smooth manifold M , then setting F(U )
to be the set of smooth sections of p on the open subset U ⊂ M defines
a presheaf.

If C is a concrete category (see 5.1.12), then the elements of F(U ) are
called sections of F on U , and F(X) are the global sections. Sometimes,
these notions are also used for general C.

Remark 1.4.5 If F : C → D is a functor, then of course you can collect all
objects of the form F(C) for objects C of C and all morphisms F( f ) for f a
morphism in C, but beware that the image of a functor is not a subcategory of
D in general.
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Take, for instance, C as the category that consists of two disjoint copies of
the poset [1]:

C : C0
f

C1 C ′
0

f ′
C ′

1

and let D be the category [2]. Then, we can define a functor from C to D by
declaring that F( f ) = (0 < 1), F( f ′) = (1 < 2). As f cannot be composed
with f ′ in C, the composition (0 < 2) is not in the image of C under F [Sch70,
I.4.1.4].

Functors F : C → D are often called covariant functors, whereas functors
F : Co → D are called contravariant functors from C to D. Thus, these are
assignments from the class of objects in C to the class of objects in D, so that
on the level of morphism sets, we get

F : C(C,C ′)→ D(F(C ′), F(C))

with F(g ◦ f ) = F( f ) ◦ F(g) and F(1C) = 1F(C).
Singular cochains (or singular cohomology groups) define a contravariant

functor from the category of topological spaces to the category of cochain
complexes (or graded abelian groups).

If you assign to a vector space its dual vector space, then for every K -linear
map f : V → W , you get a K -linear map f ∗ : W ∗ → V ∗, which is defined as
ϕ �→ ϕ ◦ f

V
f

ϕ◦ f

W

ϕ

K

This turns the process of building the dual of a vector space into a contravariant
functor from the category of K -vector spaces to itself.

Example 1.4.6 Contravariant functors from the fundamental groupoid of a
space X , 	(X), to the category of abelian groups, G : 	(X)o → Ab, are
called (abelian) bundles of groups on X or a system of local coefficients on X .
This can be used to define homology with local coefficients (see, for instance,
[Ste43], [Wh78, Chapter VI], or [DK01, Chapter 5]).

For every point x ∈ X , we get an abelian group G(x), and for every
homotopy class [w] of a path from x to y, there is a group homomorphism
G([w]) : G(y)→ G(x). Note that the G([w])s are automatically isomorphisms
with inverse G([w̄]), where w̄ is the time-reversed path of w.
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Exercise 1.4.7 Consider two groups G,G ′ and the corresponding categories
CG and CG′ with one object and morphisms G and G ′. Show that functors
F : CG → CG′ correspond to group homomorphisms f : G → G ′.

Exercise 1.4.8 Let (S,≤) and (T,≤) be two posets. A morphism of posets
is an order-preserving function f : S → T , that is, if s1 ≤ s2 in S, then
f (s1) ≤ f (s2) in T . Show that functors from the category S to the category T
are precisely morphisms of posets.

Let C be a category, and let C be an object in C. We can use the functors
C(C,−) and C(−,C) for testing whether C is projective or injective. The fol-
lowing criterion is a direct consequence of the definitions, bearing in mind that
epimorphisms in the category Sets are precisely surjective functions.

Proposition 1.4.9
• The object C is projective if and only if C(C,−) : C → Sets preserves

epimorphisms.
• The object C is injective if and only if C(−,C) : Co → Sets sends

monomorphisms to epimorphisms.

Functors can be used to compare categories.

Definition 1.4.10
• A functor F : C → D is an isomorphism of categories if there exists a

functor G : D → C with the properties F ◦ G = IdD and G ◦ F = IdC .
In particular, F induces a bijection between the classes of objects of C and

D and on the morphism sets.
• A functor is full if the assignment

F : C(C,C ′)→ D(F(C), F(C ′)), f �→ F( f ) (1.4.1)

is surjective for all pairs of objects C,C ′ of C.
• A functor is faithful if the assignment in (1.4.1) is injective for all pairs of

objects C,C ′ of C.
• A functor is fully faithful if the assignment in (1.4.1) is a bijection for all

pairs of objects C,C ′ of C.
• A functor F : C → D is essentially surjective if for all objects D of D, there

is an object C of C, such that F(C) is isomorphic to D.

Exercise 1.4.11 Let R be an associative ring with unit and denote by Rop

the ring that has the same underlying abelian group as R but whose multi-
plication is reversed. Show that the categories of left R-modules and of right
Rop-modules are isomorphic.
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Exercise 1.4.12 Recall the join of categories from Definition 1.1.7. Show that
there is an isomorphism of categories between (C ∗ D)o and Do ∗ Co.

Prove that there is an isomorphism between the categories [0] ∗ [0] and [1].
Show that [i] ∗ [ j] is isomorphic to [i + j + 1].

Exercise 1.4.13 Let F : C → D be a faithful functor. Show that F detects
monomorphisms, that is, if F( f ) is a monomorphism, then f is a monomor-
phism. Do full functors detect epimorphisms?

Remark 1.4.14
• Faithful functors can forget structure. For instance, the forgetful functor

from groups to sets is faithful.
• There are examples of functors that are fully faithful but not isomorphisms

of categories. The important point is that full faithfulness does not imply that
the functor is essentially surjective, and it does not rule out that the functor
maps different objects to the same image.

• If D is a subcategory of C, then there is an inclusion functor I : D → C. The
category D is a full subcategory of C if the inclusion functor is a full functor.

We can compose functors, and we have identity functors; thus, categories
behave like objects in a category. This can be made precise.

Definition 1.4.15 We denote by cat the category whose objects are all small
categories and whose morphisms between a category C and a category D are
all functors from C to D.

Why do we restrict to small categories? We insisted on the morphisms
between two objects forming a set. Take, for instance, the category of sets.
The functors from Sets to itself contain the constant functors, so for each set,
there is a constant functor, with that set as its value. This would already be a
proper class of functors.

For a small category, we can define a suitable notion of connectedness.

Definition 1.4.16 Let C be a small category. Two objects C1 and C2 are said
to be equivalent if there is a morphism in C between C1 and C2. We consider
the equivalence relation generated by this relation. Thus, two objects C, C̃ are
equivalent if there is a finite zigzag of morphisms of C connecting C and C̃ :

C1 C2 CN

C C ′
1 . . . C̃
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If every object of C is connected to any other object in C, that is, if there is
just one such equivalence class, then we call the category C connected.

1.5 Terminal and Initial Objects

Some categories possess special objects.

Definition 1.5.1
• An object t of a category C is called terminal if there exists a unique

morphism fC : C → t in C from every object C of C to t .
• Dually, an object s is called initial if there exists a unique morphism

f C : s → C in C from s to every object C of C.
• An object 0 is a zero object in C if it is terminal and initial.

Remark 1.5.2 If t is terminal, then the endomorphisms of t consist only of
the identity map of t , and dually, the set of endomorphisms of an initial object
is {1s}.

A small category that possesses an initial or a terminal object is connected.
Terminal and initial objects are unique up to isomorphism. If C has a zero

object 0, then for all pairs of objects C,C ′ in C, there is the unique morphism

C
fC

0
f C ′

C ′.

This is often called the zero morphism and is denoted by 0: C → C ′.

Exercise 1.5.3
• Show that any composite of a morphism with the zero morphism is zero.
• If f : C → C ′ is a monomorphism and if the composition f ◦ g is the zero

morphism, then g = 0.

Examples 1.5.4
• In the category of sets Sets, the empty set is the initial object and any set

with one element is terminal. There is no zero object in Sets. This changes
if we consider the category of pointed sets, Sets∗. The objects of Sets∗ are
sets with a chosen basepoint, and morphisms are functions of sets that map
the basepoint in the source to the basepoint in the target. In this example,
every set with one element is a zero object.

• Let R be an associative ring with unit. The category of left R-modules has
a zero object, and this is the zero module 0. For R = Z, we obtain that the
trivial group is a zero object in the category of abelian groups Ab.
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• This also applies to the category of groups: the trivial group is an initial
object, and it is also terminal.

• Let G be a group. In the translation category EG , every object is initial and
terminal.

Exercise 1.5.5 Let X be a partially ordered set. What does it say about the
partial order relation on X if X has a terminal or initial object? When does X
possess a zero object?

Exercise 1.5.6 Let C be an arbitrary category. Show that the join of C with [0],
C ∗ [0], has 0 as a terminal object and that [0] ∗ C has 0 as an initial object.

Definition 1.5.7 The category C ∗ [0] is the inductive cone with base C, and
[0] ∗ C is the projective cone with base C.
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