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Numerical simulations of multiphase flows are crucial in numerous engineering
applications, but are often limited by the computationally demanding solution of the
Navier–Stokes (NS) equations. The development of surrogate models relies on involved
algebra and several assumptions. Here, we present a data-driven workflow where a
handful of detailed NS simulation data are leveraged into a reduced-order model for a
prototypical vertically falling liquid film. We develop a physics-agnostic model for the
film thickness, achieving a far better agreement with the NS solutions than the asymptotic
Kuramoto–Sivashinsky (KS) equation. We also develop two variants of physics-infused
models providing a form of calibration of a low-fidelity model (i.e. the KS) against a
few high-fidelity NS data. Finally, predictive models for missing data are developed,
for either the amplitude, or the full-field velocity and even the flow parameter from
partial information. This is achieved with the so-called ‘gappy diffusion maps’, which
we compare favourably to its linear counterpart, gappy POD.
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1. Introduction

The study of multiphase flows is often limited by the computational effort involved
in solving the Navier–Stokes (NS) equations (Glasser, Kevrekidis & Sundaresan 1997).
One such example, the flow of thin films of liquid on inclined planes, has fascinated
researchers not only because of the wide range of industrial applications but also because
of the interesting dynamics of the liquid–air interface (Kalliadasis et al. 2012). The NS
equations accurately describe the fluid motion and also the evolution of the surface but
suffer from a high computational cost (Pettas et al. 2019a,b). To this end, significant
effort has led to several approximate interface evolution equations that are much simpler to
solve but are nevertheless valid under specific assumptions and limitations. Beyond their
limits of validity, it is often found that they yield non-physical solutions, or even blow
up (Kalliadasis et al. 2012), posing significant restrictions to their applicability. In more
recent studies, weighted integral boundary layer models are found to compare favourably
to NS simulations for moderate Reynolds numbers and even three-dimensional flows
(Dietze et al. 2014). These surrogate models are very economical and are included even
in open source codes (Rohlfs, Rietz & Scheid 2018), showing remarkable accuracy even
in flow regimes exhibiting highly nonlinear waves (Chakraborty et al. 2014). Alternatives
to models that solve partial differential equations (PDEs) are also available that compute
the film height by numerical integration based on the aggregation of droplets (Bharadwaj
et al. 2022).

The evolution of successful surrogate models has taken place over the past decades and
relies on significant subject matter expertise to form meaningful assumptions and involved
algebra. Our goal here is to develop novel, robust and efficient data-driven/data-assisted
models, not restricted to applications of thin film flow, that combine physical and
mathematical insight with machine learning strategies, in order to drastically enable
computational fluid dynamics and break new barriers in flow control, uncertainty
quantification and shape optimization.

The implementation of data-driven methods is gaining popularity in diverse
fluid-related applications. Recently, nonlinear manifold learning and specifically isomap
(Balasubramanian & Schwartz 2002) was implemented to derive a low-dimensional
description of an ensemble of flow field snapshots as an alternative to proper
orthogonal decomposition (POD), ultimately aiming at developing an economical
surrogate (Farzamnik et al. 2023). Deep learning has been proposed in order to produce
closures of large-eddy simulations (LES) and Reynolds-averaged NS models, by adding
neural network-derived terms into the governing equations (Sirignano & MacArt 2023).
Data-driven viscous damping terms have been estimated for sloshing a rectangular tank
(Miliaiev & Timokha 2023), where machine learning is implemented in conjunction
with an appropriately formulated loss function that relies on experimental measurements.
Machine learning is implemented to derive multifidelity models (Rezaeiravesh, Mukha &
Schlatter 2023), and an ensemble of neural networks is applied to develop a wall model for
LES based on the assumption that the flow can be thought of as a combination of blocks
(Lozano-Durán & Bae 2023). Flow control is also a popular field where machine learning
is implemented (Sonoda et al. 2023; Zhang, Fan & Zhou 2023). Recently, artificial neural
network–based nonlinear algebraic models were presented for the LES of compressible
wall-bounded turbulence (Xu et al. 2023). A model based on a convolutional neural
network is proposed so as to reconstruct the three-dimensional turbulent flows beneath
a free surface using surface measurements, including the surface elevation and surface
velocity (Xuan & Shen 2023). Also, data-driven modelling has recently been proposed in
the context of unsteady wall pressure fields (Meloni et al. 2023).
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Physics-agnostic and physics-infused machine learning for thin films flows

This work presents a methodology for deriving data-driven PDEs for the film amplitude,
based on a collection of NS simulation data that are not subject to restrictions and
assumptions for the flow and, hence, are more general. Our work falls in the category
of dynamical system identification (Rico-Martínez et al. 1992; Krischer et al. 1993;
González-García, Rico-Martínez & Kevrekidis 1998; Kemeth et al. 2022). Recently
increased interest in PDE identification has led to the development of alternative
algorithmic tools, such as sparse identification of nonlinear dynamical systems using
dictionaries (Brunton, Proctor & Kutz 2016; Rudy et al. 2017), PDE-net (Long et al.
2018), physics-informed neural networks (Raissi, Perdikaris & Karniadakis 2019) and
others (Chen et al. 2018; Vlachas et al. 2018, 2022). Our algorithmic approach can be
implemented on data from detailed PDE simulations (Psarellis et al. 2022), agent-based
modelling (Arbabi & Kevrekidis 2021; Lee et al. 2022) or lattice Boltzmann simulations
(Lee et al. 2020; Galaris et al. 2022), among others. Extensions of PDE identification
including grey box or closure identification (such as those explored in our work) have been
studied in the context of various applications (Parish & Duraisamy 2016; Pan & Duraisamy
2018; Duraisamy, Iaccarino & Xiao 2019; Lee et al. 2019; Lee et al. 2022; Psarellis et al.
2022; Kemeth et al. 2023). In the relevant literature, the Kuramoto–Sivashinsky (KS)
equation, selected in this work as a low-fidelity counterpart of the NS equations, has
served as a benchmark case study, due to its wealth of dynamic responses and highly
nonlinear nature (González-García et al. 1998; Raissi & Karniadakis 2017; Vlachas et al.
2018; Floryan & Graham 2022; Linot et al. 2023).

The results of the learned PDE are compared with the ground-truth NS results and also
the results of the KS equation. It is expected that past a certain limit, the KS equation
will perform poorly and produce non-physical solutions. Yet it is still useful in the context
of learning an accurate amplitude PDE, as will be shown, in two different ways. In the
first ‘grey box’ model approach, an additive correction of the KS equation can be learned
from NS data as a sort of calibration of the low-fidelity model against high-fidelity data.
In this context, the data-driven model provides a measure of the discrepancy between the
approximate equation and the ground truth, and serves to inform as to the actual limits of
applicability of the KS equation in terms of the flow parameter, here the Reynolds number.
In the second approach, which we call the ‘functional correction grey box model’, certain
observations of the KS formula, such as the value of its right-hand side, its derivatives or
even values in specific nearby time instances or nearby points in space, are used as inputs
to the learned model.

In addition, reduced representations of the NS data, including full velocity fields and
fluid film height, are further exploited for out-of-sample predictions from partial data at
the small data limit. Nonlinear manifold learning, specifically diffusion maps (DMAPs)
and linear methods, i.e. POD, are initially implemented in order to derive a low-order
description of the high-dimensional dataset. It is then shown that efficient interpolation in
the reduced space can help recover entire sets of data from partial information. Specifically,
it will be demonstrated that full velocity profiles, parameter values and film height
measurements can be predicted given a handful of values for the film height at specific
locations. The advantages of ‘gappy’ diffusion maps over its linear counterpart, gappy
POD, are discussed in relation to the parsimony of the description of the manifold that
contains the data and to the location of the known measurements.

2. Governing equations: ground truth and surrogate model

The flow of a liquid film on an inclined plane (see figure 1) is described, in two
dimensions, by conservation equations for mass and momentum, written in dimensionless
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Figure 1. Cross-section of a film flowing on a plane, inclined with respect to the horizontal by angle θ . Here
H = 1 is the dimensionless Nusselt film height.

form as
∇ · u = 0,

R
∂u
∂t

= −R(u · ∇u)− ∇P + ∇2u + Fg,

}
(2.1)

where u = (ux, uy)
T and P are the dimensionless velocity vector and pressure, respectively,

and ∇ = (∂x, ∂y) denotes the gradient operator for Cartesian coordinates. We also define
the unit gravity vector g = (sin θ,− cos θ)T. Using the characteristic Nusselt scales for the
velocity vector and all lengths,

UN =
(

Q2ρg sin(θ)
3μ

)1/3

, HN =
(

3μQ
ρg sin(θ)

)1/3

, (2.2a,b)

the dimensionless groups that emerge are the Reynolds number R, the Weber number W
and the Stokes number F, defined as

R = ρQ
μ
, W = σ

ρgH2
N
, F = 3

sin θ
. (2.3a–c)

Here, ρ, μ and σ are the liquid density, the viscosity and the liquid–air surface tension,
respectively, while Q denotes the volumetric flow rate per unit length normal to the
cross-section.

Along the liquid–air interface, a normal stress balance between capillary force and
viscous stress is applied,

n · T = WFκn. (2.4)

Here, the total stress tensor is defined as T = −PI + (∇u + (∇u)T), n is the unit vector
normal to the interface, outward with respect to the film. Note that in (2.4) the ambient
pressure has been set equal to zero (datum pressure) without loss of generality. The mean
curvature is κ = −∇s · n , with ∇s = (I − nn) · ∇. The rest of the boundary conditions
include the no-slip condition at the liquid–solid plane interface (denoted as AB in figure 1)
and periodic boundary conditions at the lateral domain boundaries (AD and BC in
figure 1).

The kinematic boundary condition, which specifies that the velocity of the interface
that is normal to the boundary is equal to the velocity of the fluid that is normal to the
boundary, ensuring no mass transfer through the interface, completes the set of governing
equations

n · (htey) = n · u. (2.5)

The NS data, which consist our ground truth, are derived by solving the time-dependent
equations in an Eulerian frame, discretized with the finite element method, using
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COMSOL Multiphysics®. We consider the flow over a vertical plane, schematically
presented in figure 1, i.e. θ = 90◦ with a domain of dimensionless length, l = L/HN =
95; L denotes the dimensional length of the domain. The value of the Weber number
used in the simulations is W = 278. We start our simulations from an initial condition
corresponding to a flat film perturbed by a sinusoidal perturbation with amplitude ∼3 %
of the dimensionless Nusselt film height, H = 1. The height of the film, h(x, t), is collected
at each time step until a steady travelling wave is formed.

2.1. Surrogate model – the KS equation
The single-equation surrogate of the amplitude, selected in this study, is the KS equation.
Assuming the flow over a vertical plane, the KS equation can be written as

φτ = −α(φφξ + φξξ )− 4φξξξξ for ξ ∈ [0, 2π],

α = 8
5

RF
ε2W

.

⎫⎬⎭ (2.6)

The detailed derivation of the KS equation from NS equations can be found in Shlang
& Sivashinsky (1982), Chang (1986) and Brown (1992) and it is summed up here for
completeness. It is based on the following assumptions.

(i) The film is thin, ε = 2πHN/L � 1.
(ii) The waves are long, ∂h/∂x � 1.

(iii) The mean height of the film is much larger than the deviation from the mean.

Under these assumptions, it is possible to exploit the small parameter ε and employ a
perturbation expansion for all dependent variables, i.e. velocities, pressure and interfacial
height; e.g. the interfacial height is given by h ≈ 1 + εη + O(ε2), where η denotes the
deviation from the mean film height. Restricting to the case of laminar flow with R = O(1),
F = O(1) and W = O(ε−2) and neglecting higher-order terms, the kinematic condition
(written in terms of the deviation, η) may be reduced to ηt + Fηx = 0, indicating that
waves travel with speed F. Taking this into account, a new variable ξ = ε(x − Ft) can
be introduced to obtain constant shape waves travelling with speed F. Moreover, the
amplitude is rescaled according to φ = (15/RF)η. Finally, since it is known that the wave
amplitude varies on a slow time scale compared with the travelling motion, a change in
the time variable is introduced, i.e. τ = (ε4WF/12)t. In the end, the KS equation (2.6) is
obtained as a function of the new defined variables.

2.2. The NS vs KS equation: bifurcation diagram
The KS equation will be used extensively in the discussion that will follow mostly in terms
of the derivation of variations of the data-driven model. Therefore, it would be useful to
briefly discuss the limitations of the KS equation before proceeding with the presentation
of our results. Even though it is well known that the KS equation is valid for Reynolds
number values of O(1), to the best of our knowledge, there is no direct comparison in the
literature of the KS equation to the NS equation results. To clearly present the limitations
of the KS equation, here we plot in figure 2 the norm of the amplitude distribution, ‖η‖,
with respect to both the Reynolds number and the KS parameter α.

Both equations predict very similar results for 1 ≤ R ≤ 3.4 (or 4 ≤ α ≤ 13.43). In this
range of parameter values the solution of the KS equation is a stationary wave (in a
co-moving frame with speed c = 3), whereas the NS equation, solved in an Eulerian frame
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Figure 2. Bifurcation diagram of the NS and KS equations.

evolves into a travelling wave with a steady and unchanged shape and speed c = 3. Past that
point (R = 3.4 and α = 13.43), the speed of the wave becomes larger than 3 and, hence,
the solution of the KS equation is also travelling (with speed c − 3). Up to approximately
R = 4.3 (α = 16.5) the KS solution gradually deviates from the NS solution. For higher
values of α, i.e. α > 16.998, the solution of the KS equation is a so-called ‘pulsing’ wave,
as described in detail in Kevrekidis, Nicolaenko & Scovel (1990). The pulsing waves
oscillate between two waveforms that are π periodic in space and are π/2 shifts of each
other. Such a solution has not been reported for the NS equations.

3. Physics-agnostic and physics-infused data-driven models

3.1. Black box model: learning the PDE
Here the goal is to use data from the NS simulations to learn a PDE of the general form

∂η

∂t
= f (η, ηx, ηxx, ηxxx, ηxxxx,R). (3.1)

The function f is approximated by a feed forward neural network with two hidden layers
with 15 neurons and a tanh activation function, implemented in Tensorflow (Abadi et al.
2015). The mean squared error is used as a loss function along with the Adam optimizer.
The inputs to the neural network are the amplitude and four spatial derivatives of the
amplitude, along with the R value, as extracted from the NS simulations. Specifically,
the NS model is implemented for 20 parameter values, and snapshots, i.e. time instances
of the film surface evolution are collected in equally sized time steps (dt = 1 is the
dimensionless time unit). The spatial derivatives, up to fourth order are computed using
Fourier transforms, in each point in space and time. The output of the neural network is
the time derivative of the amplitude, which can be extracted directly from the NS code
(although it can also be easily computed, e.g. with finite differences).

In total, 75 000 data points (pairs of local values of the inputs and output) per parameter
value are used to train the neural network and once this is done, the right-hand side of the
PDE in (3.1) can be used in conjunction with any method of integration in time, such as
the Runge–Kutta method. The attractors that correspond to a steady travelling wave that
resulted from the integration of the learned PDE are shown in figure 3 for a representative
selection of parameter values. The attractor of the neural network-derived PDE, shown in
black, is almost a perfect match with the ground-truth results of the NS (dashed line).
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Figure 3. ‘Black box’ model performance. Attractors for different R numbers derived by (i) the NS equation
(dashed line), (ii) the KS equation (grey) and (iii) the NN-derived PDE (black); all results are rescaled in the
NS scaling. (a) R = 1.45, (b) R = 1.95, (c) R = 3.30, (d) R = 3.70, (e) R = 4.20 and ( f ) R = 5.20.

For reference and comparison, the KS results (appropriately rescaled according to the
scaling factors detailed in Appendix A) are shown in the same plot (grey line). The KS
equation performs well for small values of the R number (R < 3.3), but then progressively
start to deviate quantitatively for increasing values of R. This is shown in figure 4, where
a snapshot of the amplitude derived by the KS equation, the NS equations and the ‘black
box’ model are shown alongside the corresponding phase portraits for R = 1.95 and R =
4.2. This figure also shows the error along time integration, which illustrates the fact that,
on average, the small numerical error remains constant. These two R values are chosen
to demonstrate that the black box model outperforms the KS equation even in parameter
values where the latter is inaccurate (R = 4.2). Despite the apparent failure of the KS
equation to capture the wave dynamics accurately, it still yields qualitatively good results.

It is important to note here that the black box model methodology yields accurate
data-driven models, also in different flow regimes such as in the case of solitary waves,
appearing in larger domains for larger Reynolds numbers (cf. figure 5). Specifically,
results are presented for a flow with R = 20, Ca = 0.00952, domain length L = 300
and inclination angle θ = 6.4◦, exhibiting excellent performance, even in the region
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by the NS equation (dashed line), the KS equation (grey line) and the NN-derived PDE (black line); (c, f ) error.
Results are shown for (a–c) R = 1.95, (d–f ) R = 4.2; all results are rescaled in the NS scaling.
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Figure 5. Black box model performance in the case of a solitary wave (R = 20, L = 300, θ = 6.4◦).
(a) Attractors for R numbers derived by (i) the NS equation (dashed line), (ii) the NN-derived PDE (black); all
results are rescaled in the NS scaling. (b) Amplitude of the NS equation (dashed line) and the black box model
derived at the same time instance. (c) Blow-up of the amplitude comparison in the capillary ripples region.

where capillary ripples develop (cf. figure 5). This shows that the applicability of the
method is not restricted to low Reynolds numbers, but rather it can be applied to various
flow regimes. Nevertheless, in the analysis that follows, the applications are limited to
flow regimes where the KS equation is valid or mildly inaccurate, because we exploit
the qualitatively good performance of the KS equation and we want to infuse physical
information into the data-driven amplitude equation. This is discussed in the following
paragraphs.

3.2. Grey box model I: learning an additive correction to the KS equation
Instead of training a neural network to learn the right-hand side of a PDE as a black box,
i.e. without any physical intuition about the function, the KS equation (the approximate
analytical model) is used as a foundation upon which a correction is added to make it
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Figure 6. Additive grey box model comparison to ground truth, R = 4.2; attractors (a); wave amplitude in a
specific time step (b); absolute error at each point in space and time between grey box I model and ground
truth.

more accurate. This correction is discovered in a data-driven way, using the same data as
in the black box model (described in the previous paragraph) and also the same network
architecture. In this case though, the output of the neural network is not the time derivative
of the amplitude but rather the difference between the actual time derivative and the time
derivative of the KS equation, i.e.(

∂η

∂t

)NS

−
(
∂η

∂t

)KS

= f additive (η, ηx, ηxx, ηxxx, ηxxxx,R) , (3.2)

which can then be thought of as a ‘residual network’ (ResNet) (He et al. 2016).
This approach maintains the physical insight already offered by the approximate

equations, but improves its accuracy in a data-driven fashion. The predictions of this
corrected model, referred to as an additive grey box model, to contrast with the black box
model presented before, are visually very close to the ground truth as shown in figure 6
for R = 4.2. This demonstrates the accuracy of the correction achieved in a parameter
value where the KS equation is inaccurate. Nevertheless, the accuracy of the approximate
equation (the KS equation here) is not a prerequisite for the additive grey box approach to
work. This is demonstrated in figure 7 where we examine the case of a travelling solitary
wave (the approximate KS equation is not applicable in this regime) and find an excellent
agreement between the grey box model and ground truth. This is not surprising, as the
neural network architecture is the same: instead of learning the right-hand side of a PDE, it
learns the difference between the ‘truth’ and the approximate equation. The benefit of this
approach is that, on top of deriving an accurate amplitude equation, it offers a measure of
the deviation from other approximate models that can potentially help determine the limits
of approximate equations in different applications.

3.3. Grey box model II: a functional correction
Exploiting further the physical insight of the KS equation, even in parameter ranges
where it is inaccurate, it is possible to use local, in space and/or in time, values of the
right-hand side of the KS function, evaluated using the NS data as inputs to the function,
to approximate the ‘correct’ right-hand side of the data-driven PDE. Now, a neural network
is trained to predict the time derivative of the amplitude, given a few locally nearby
evaluations of the function of the KS time derivative, denoted by f KS in (3.3), using
ground-truth data from the NS simulations as inputs. Alternatively, a few of its derivatives
with respect to the dependent variable, η, or a few nearby values of its spatial partial
derivatives, e.g. ηx, ηxx, evaluated on NS data, can also be used as inputs to the functional
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Figure 7. Additive grey box model performance in the case of a solitary wave (R = 20, L = 300, θ = 6.4◦).
(a) Amplitude of the NS equation (dashed line) and the grey box model derived at the same time instance (all
results are rescaled in the NS scaling). (b) Absolute error at each point in space and time. (c) Blow-up of the
amplitude comparison in the capillary ripples region.

model. Several flavours of this approach are implemented, i.e.(
∂η

∂t

)NN

= f functional
1 ( f KS, ∂f KS/∂η, ∂f KS/∂ηx,R),(

∂η

∂t

)NN

= f functional
2 (∂f KS/∂η, ∂f KS/∂ηx, ∂f KS/∂ηxx,R),(

∂η

∂t

)NN

= f functional
3 ( f KS

j , f KS
j−1, f KS

j+1,R),(
∂η

∂t

)NN

= f functional
4 ( f KS

t , f KS
t−1, f KS

t−2,R).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

In the last two examples the subscripts j, j − 1, j + 1 signify points in space where the
value of the right-hand side of the KS equation, f KS, is taken in the same time step;
whereas the subscripts t, t − 1, t − 2 stand for different nearby points in time, where the
value is taken at the same point in space. In every one of the cases mentioned, the same
network architecture is implemented in Tensorflow, consisting of two hidden layers with
20 neurons, the tanh activation function, the mean squared error loss function and the
Adam optimizer.

This idea is inspired by the Takens embedding theorem (Whitney 1936; Takens 1981),
which allows us to recover missing variables and reconstruct the dynamics of a system,
given a short time history of the variables that can be measured. Here, this short time
history is replaced by values of f KS and some of its partial derivatives, e.g. ∂f KS/∂η and
∂f KS/∂ηx. Alternatively, one can consider the value of f KS at the same point in time but
in three different nearby spatial points, or in the same point is space but in three different
nearby time steps.

The performance of the alternative functional models is shown in figure 8 for the same
parameter value, R = 4.2. The error is within the same order of magnitude as in the
previous case of the additive residual model.

4. Nonlinear manifold learning for predictions from small data

The focus here is shifted to exploiting NS data to recover missing information.
Missing data is a critical problem in applications in flow measurement and monitoring.
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Figure 8. ‘Functional grey box’ model, R = 4.2 (cf. (3.3)) comparison to ground truth. (a) Functional model 1,
(b) functional model 2, (c) functional model 3 and (d) functional model 4. (left) Attractor comparison; (centre)
wave comparison at a specific time step; (right) absolute error at each point in space and time.

For example, in film flow applications it is often easy for an experimentalist to measure
the film height, whereas being able to evaluate the detailed underlying flow field is a
significantly more difficult task, if not impossible in the case of opaque liquids. The goal
here is to exploit NS data to derive a predictive tool, e.g. for the full velocity field or even
the flow parameter, the Reynolds number, from only partial information. More importantly,
to be able to do so as efficiently as possible and without having to care too much about the
sensor positions.

The proposed approach is inspired by gappy POD (Everson & Sirovich 1995), according
to which it is possible to recover missing information from a vector that we know belongs
to the subspace spanned by a few predetermined POD modes, by performing efficient
interpolation in this reduced subspace. Here, the same concept is demonstrated, but also
the notion of deriving a reduced description of the data with nonlinear manifold learning,
in this case with diffusion maps (Coifman & Lafon 2006; Nadler et al. 2006; Coifman
et al. 2008) (details about diffusion maps and gappy POD can be found in Appendix B).
The added benefit is twofold: first, diffusion maps identify a parsimonious parametrization
of the reduced subspace, which requires significantly less modes than POD, especially if
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Figure 9. Schematic representation of the gappy DMAPs workflow: the DMAP coordinates of the full dataset
are discovered. Then from partial data, the corresponding latent (DMAP) variables are inferred and, from them,
it is possible to map back to the complete data.

the data belong to a curved manifold. The second benefit is related to the fact that in gappy
POD the accuracy of the method is critically influenced by the ‘location’ of the known
elements of the vector. The reason is purely numerical, and has to do with the condition
number of the gappy matrix M = (m·Φ)′·(m·Φ) (cf. Appendix B.4 for details), withΦ the
selected POD basis and m the mask matrix that defines which elements of the vector are
known.

4.1. Out-of-sample predictions: a gappy DMAP approach
The implementation of gappy diffusion maps, schematically represented in figure 9, is
presented in detail in Koronaki et al. (2023) and summarized here for completeness.

The workflow starts by identifying a parametrization of the manifold, where the original,
full dataset belongs. In this implementation, for every value of the parameter R, each
data point contains the wave amplitude distribution and the velocity distributions of the
fluid, perpendicular to the solid–liquid interface at different points along its length l
(schematically represented with grey arrows in figure 1). Here for comparison purposes,
80 % of the dataset is used for training and the rest for testing. To derive a parsimoniously
low-dimensional description of the data, the diffusion maps algorithm is implemented, as
detailed in Appendix B.1. It is found by implementing the local linear regression algorithm
introduced in Dsilva et al. (2018) and summarized in Appendix B.1, that three diffusion
coordinates are enough to describe any vector in the dataset.

Then, a second round of diffusion maps is implemented, in conjunction to geometric
harmonics interpolation (details can be found in Appendix B and in Evangelou et al. 2022),
in order to map from any point on the reduced space to the high-dimensional ambient
space.

Having established the methods for mapping between the ambient and reduced space,
it is now possible, given partial information, to find first the corresponding reduced
coordinates and then the entire ambient vector, including the missing information.

The accurate performance of this workflow is demonstrated in figure 10, where three
cases are examined: (i) 80 points along the interface are known, from which the velocity
and parameter value is recovered, with a maximum error of 4 %; (ii) 8 points, evenly
distributed along the interface are known, from which again the velocity values and the
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Figure 10. Double DMAPS; R = 3.5. Each column of figures presents the actual velocity contours (a–c),
predicted velocity contours (d–f ) and error (g–i). The dots in the top figures signify points where the value of
the amplitude is considered known. (a,d,g) The value of the amplitude at 80 points is considered known and
the maximum error is 4 %. (b,e,h) The value at 8 equidistant points is considered known and the maximum
error is 4 %. (c, f,i) The value at 40 points in the first half of the wave is considered known and the maximum
error is again close to 4 %.

parameter is recovered with a maximum error of 4 %; (iii) 40 points are known belonging
to only half of the interface shape, leading to prediction of the velocities and the parameter
with a 4 % error.

The same computational experiments are conducted with gappy POD and the results are
shown in figure 11. First, a POD basis is determined, based on the error (1.5 %, the same as
the reconstruction error achieved by DMAPs) between the reconstructed and the original
test dataset, which leads to a basis with six POD vectors. The number of POD vectors
required to describe the data is double the number of DMAP coordinates, suggesting
that the underlying manifold is curved. The same points along the interface as before are
considered known: (i) with 80 points along the interface, the maximum prediction error for
the unknown velocity and parameter values is 10 %; (ii) with 8 equidistant points along the
interface, the maximum prediction error is approximately the same; (iii) when 40 points
along half of the interface are considered, then the maximum error soars to 35 % and the
predicted wave shape and velocity distribution is visibly inaccurate.

Gappy DMAPs are also successfully implemented in the case of a travelling solitary
wave (R = 20, Ca = 0.00952, L = 300 and θ = 6.4◦) (cf. figure 12). Due to the
complicated surface geometry of the solitary wave, with the presence of capillary
ripples at the leading edge of the main humb, the dimensionality of the latent space,
parameterized by the diffusion coordinates, is larger (four DMAPs) than in the low
Reynolds case. Once the low-dimensional representation of the data is determined, it is
possible to map between partial observations (i.e. interface height measurements) and the
high-dimensional ambient space that includes the velocity distribution of the fluid. The
prediction accuracy for the solitary wave is comparable to the low Reynolds case, leading
to a maximum 1.5 % error, when 80 equidistant points are considered on the surface, which
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Figure 11. Gappy POD; R = 3.5. Each column of figures presents the actual velocity contours (a–c), predicted
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Figure 12. Gappy DMAPS; R = 20, Ca = 0.00952, L = 300, θ = 6.4◦. Each column of figures presents the
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maximum error is 1.5 %. (b,e) The value at 40 equidistant points is considered known and the maximum error
is 3 %. (c, f ) The value at 40 points in the first half of the wave is considered known and the maximum error is
again close to 7 %.

rises to 3 % when 40 equidistant points are considered known. When 40 points along half
of the domain are considered known, then the error increases to 7 %.

5. Discussion

In this work, three different strategies for deriving accurate and economical surrogates are
presented along with their application to the amplitude evolution of falling thin films.
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The first option is purely data driven and physics agnostic, and relies on learning, as a
black box, an amplitude PDE from observed NS data over a range of R values. In essence,
the right-hand side of the PDE is substituted by an artificial neural network, which can then
be integrated in time for various times, different initial conditions and parameter values.

As an alternative, we propose using a low-fidelity model, here the KS equation, in order
to infuse physical intuition into the learned model. This is achieved in two different ways:
the first, the additive grey box approach, uses a few high-fidelity data (results of the NS) to
calibrate the KS equation, by learning an additive correction, by way of a neural network,
rather than the entire right-hand side.

The second strategy, the so-called functional grey box approach, is inspired by Takens’
embedding theory, and proposes learning the accurate amplitude dynamics from a few
observations of the right-hand side of an innacurate equation, such as the KS equation.
Four different options are presented, utilizing either the right-hand side of the KS equation
and some of its derivatives, or the value of the right-hand side operator at three points
in space (at the same time instance) or in time (for the same point in space). This last
approach is a demonstration of how a model that is qualitatively close to the ground truth,
but quantitatively off, can be leveraged, in the data-driven era, into a more accurate and
efficient learned model.

Finally, we presented a gappy DMAP methodology, the nonlinear counterpart of gappy
POD, which allows us to infer quantities that are inaccessible to measuring devices, such
as the velocity profile of the fluid below the surface, when only some measurements are
known, such as the height of the thin film at certain points. This may be trivial for low
R values, since the interface height is ‘slaved’ to the velocity. Nevertheless, for slightly
higher R values, the amplitude is no longer a function of just the position; hence, surrogate
models with more than one equation become necessary in this flow regime (Chang 1986;
Oron & Gottlieb 2002; Kalliadasis et al. 2012; Shklyaev & Nepomnyashchy 2017).

The benefits of the proposed approach are twofold: nonlinear manifold learning
methods, such as DMAPs, yield a more parsimonious description of the manifold,
requiring only a few coordinates to accurately reconstruct the original data. In contrast, we
demonstrate that gappy POD requires higher-dimensional hyperplanes to span the data.
The second advantage of gappy DMAPs is related to the choice of known values. Some
consideration is necessary for choosing points that contain rich enough information in
order to achieve accurate reconstruction; it is, nevertheless, less sensitive to the position of
the provided measurements than its linear counterpart.
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Appendix A. Transformations between NS and KS equations scales

The (x, t) NS frame of reference is mapped on the KS (ξ, τ ) through the expressions

ξ = ε(x − Ft) and τ = ε4WF
12

t, (A1a,b)

while the interfacial height, h(x, t), is related to the amplitude φ(ξ, τ ) as

h(x, t) ≈ 1 + ε
RF
15
φ(ξ, τ ). (A2)

To be able to compare the results between NS and KS equations, we employ the chain
rule and derive the appropriate transformations for the time and spatial derivatives. To
transform NS data to the KS formulation, the following expressions can be used:

∂βφ

∂ξβ
= 1
εβ+1

15
RF

∂βh
∂xβ

,

∂φ

∂τ
= 180
ε5WRF2

∂h
∂t

+ 180
ε5WRF

∂h
∂x
.

⎫⎪⎪⎬⎪⎪⎭ (A3)

Inversely, to map KS data to the NS formulation, the following expressions can be used:

∂βh
∂xβ

= εβ+1 RF
15
∂βφ

∂ξβ
,

∂h
∂t

= −ε
2RF2

15
∂φ

∂ξ
+ ε5WRF2

180
∂φ

∂τ
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (A4)

Appendix B. Diffusion maps and gappy POD

B.1. Diffusion maps
Diffusion maps (Coifman & Lafon 2006; Nadler et al. 2006; Coifman et al. 2008) are
a framework that can (based upon diffusion processes) facilitate discovering meaningful
low-dimensional intrinsic geometric descriptions of datasets, even when the data are high
dimensional, nonlinear and/or corrupted by (relatively small) noise. The method is based
on the construction of a Markov transition probability matrix, corresponding to a random
walk, on a graph whose vertices are the data points, with transition probabilities being
the local similarities between pairs of data points. The leading few eigenvectors of the
Markov matrix can be used as data-driven coordinates that provide a reparametrization of
the data. To construct a low-dimensional embedding for a dataset X of M individual points
(represented as d-dimensional real vectors x1, . . . , xM), a similarity measure dij between
each pair of vectors xi, xj is computed. The standard Euclidean distance or the Euclidean
norm may be considered to this end. By using this similarity measure, an affinity matrix
is constructed. A popular choice is the Gaussian kernel

w(i, j) = exp

[
−

(‖xi − xj‖
εδ

)2
]
, (B1)

where εδ defines a scale hyperparameter that quantifies the local similarity for each data
point. To recover a parametrization regardless of the sampling density, the normalization

W̃ = P−αW P−α (B2)
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is performed, where Pii = ∑M
j=1 Wij and α = 1 to factor out the density effects. A second

normalization applied on W̃ ,

K = D−1W̃ , (B3)

gives a M × M Markov matrix K , where D is a diagonal matrix, collecting the row sums of
matrix W̃ . The stochastic matrix K has a set of real eigenvalues 1 = λ1 ≥ · · · ≥ λM with
corresponding eigenvectors φi. To check if model (variable) reduction can be achieved, the
number of retained eigenvectors has to be appropriately truncated. In practice, it is useful to
consider that not all obtained eigenvectors parametrize independent directions, but rather
most of them can be considered as spanning the same directions with different frequencies.
Eigenvectors that parametrize the same directions in this context are called harmonics and
those that parametrize independent directions non-harmonics. A minimal representation
of the DMAP space is made possible by carefully selecting the non-harmonic coordinates,
which do not necessarily correspond to the most dominant eigenmodes of the Markov
matrix. This is a stark difference between diffusion maps and its linear counterpart, POD
or principal component analysis, where the dominant modes are retained for the truncated
representation of the data. If the number of the non-harmonic eigenvectors is less than the
number of ambient space dimensions, then model (variable) reduction is achieved.

A proposed algorithm for identifying the non-harmonic eigenvectors is presented in
Dsilva et al. (2018), based on local linear regression. In a nutshell, a local linear function
is used in order to fit the DMAP coordinate φk as a function, f , of the previous vectors
Φ̃k−1 = [φ1, φ2, . . . , φk−1]. If φk can be accurately expressed as a function of the other
DMAP coordinates, then it does not represent a new direction on the dataset, and is omitted
for dimensionality reduction. On the contrary, if φk cannot be expressed as a function
of the previous eigenvectors then φk is a new independent eigendirection that must be
retained for a parsimonious representation of the data. To quantify the accuracy of the fit,
the following metric is used:

rk =

√√√√√√√√√√
n∑

i=1

(φk(i)− f (Φ̃k−1(i)))2

n∑
i=1

(φk(i))2)

. (B4)

A small value of rk is associated with a φk that is a harmonic function of the previous
eigenmodes, whereas a higher value of rk signifies that φk is a new independent direction
on the data manifold. It has been shown in Dsilva et al. (2018) that selecting only the
eigenvectors that correspond to higher values of rk leads to a parsimonious representation
of the data. Eventually, the vector xi is mapped to a vector whose first component is the ith
component of the first selected non-trivial eigenvector, whose second component is the ith
component of the second selected non-trivial eigenvector, and so on.

To map a new point, xnew, from the ambient space to DMAP space, a mathematically
elegant approach known as the Nyström extension, introduced in (Coifman & Lafon 2006)
is used, summarized here for completeness. The starting point of the Nyström extension is
to compute the distances, d(·, xnew), between the new point, xnew, and the M data points in
the original dataset, the same normalizations used for DMAP need to also be applied here.
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The Nyström extension formula reads

φj(xnew) = λ−1
j

M∑
i=1

k̃(xi, xnew)φj(xi), (B5)

where λj is the jth eigenvector and φj(xi) is the ith component of the jth eigenvector.

B.2. Geometric harmonics
Geometric harmonics was introduced in Coifman & Lafon (2006), inspired by the Nyström
extension as a scheme for extending functions defined on data X , f (X ) : X → R, for
xnew /∈ X . This out-of-sample extension is achieved by using a particular set of basis
functions called geometric harmonics. These functions are computed as eigenvectors of
the symmetric M × M W matrix. The eigendecomposition of the symmetric and positive
semidefinite matrix W leads to a set of orthonormal eigenvectors ψ1, ψ2, . . . , ψM with
non-negative eigenvalues σ1 ≥ σ2 ≥ · · · ≥ σM ≥ 0.

From this set of eigenvectors, to avoid numerical issues, we consider a truncated subset
Sδ = (α : σα ≥ δσ1)where δ > 0. The extension of f for a new point xnew is accomplished
by first projecting the function of interest in the (truncated) computed set of eigenvectors

f → Pδf =
∑
α∈Sδ

〈 f , ψα〉ψα (B6)

and then extending the function f for xnew /∈ X ,

(Ef )(xnew) =
∑
α∈Sδ

〈 f , ψα〉Ψα(xnew), (B7)

where

Ψα(xnew) = λ−1
α

M∑
i=1

w(xnew, xi)ψα(xi) (B8)

and

w(xnew, xi) = exp

[
−

(
di

ε̃

)2
]
, di = ‖xnew − xi‖2. (B9)

B.3. Double diffusion maps and their latent harmonics
A slight twist of the geometric harmonics (Evangelou et al. 2022) is presented in this
section. As discussed above, geometric harmonics constructs an input–output mapping
between the ambient coordinates X and a function of interest f defined on X . However,
it is possible, if the data are lower dimensional, to construct a map in terms of only
the non-harmonic eigenvectors. This is achieved similar to the traditional geometric
harmonics, by firstly constructing an affinity matrix

w̄(i, j) = exp

[
−

(‖φi − φj‖
ε�

)2
]
. (B10)

In this case, the affinity matrix is constructed in terms of only the non-harmonic
DMAPs coordinates. To distinguish the notation between geometric harmonics and double
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diffusion maps, we will use ψ̄ . As in the traditional geometric harmonics, the function f
is projected to a truncated set of the obtained eigenvectors

f → Pδf =
∑
β∈Sδ

〈 f , ψβ〉ψβ. (B11)

The extension of f for φnew is achieved by firstly extending the values of the geometric
harmonic functions Ψβ for φnew,

Ψ β(φnew) = σ−1
β

M∑
i=1

w̄(φnew, φi)ψβ(φi), (B12)

and then estimating the value of f at φnew,

(Ef )(φnew) =
∑
β∈Sδ

〈 f , ψβ〉Ψ β(φnew). (B13)

B.4. Gappy POD
In this section the gappy POD method is summarized for completeness. Consider a dataset
X of M vectors (represented as d-dimensional real vectors x1, . . . , xM). A POD basis,
Φ ∈ �N×M , of X is computed, such that X can be approximated as a linear combination
of p vectors, i.e.

X̃ =
p∑

j=1

c jΦ j (B14)

or in matrix-vector format,

X̃ = Φ·c. (B15)

The size of the truncated POD basis Φ is selected based on the error between the actual
vector X and the reconstructed approximation X̃ ,

Reconstruction error = ‖X − X̃‖. (B16)

Consider now a vector X′ that is spanned by the same basis Φ and that only m values of
this vector are known, so that the partial vector X′

partial can be defined as

X′
partial = m·X′,m ∈ �m×N . (B17)

The goal is to find coefficients c′, such that an approximation X̃′ of the vector X′ can be
defined as

X̃′ = X′·c′; (B18)

then
X′

partial ≈ m·X′·c′. (B19)

Finding the values of c′ that satisfy the above leads to an optimization problem solved
through the linear system

M·c′ = (m·Φ)′·X′
partial, (B20)

with M = (m·Φ)′·(m·Φ).
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