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Abstract

In this paper, class operators are used to give a complete listing of distinct base radical and semisimple
classes for universal classes of finite associative rings. General relations between operators reveal that the
maximum order of the semigroup formed is 46. In this setting, the homomorphically closed semisimple
classes are precisely the hereditary radical classes and hence radical–semisimple classes, and the largest
homomorphically closed subclass of a semisimple class is a radical–semisimple class.
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1. Introduction

A number of papers on radical theory begin by citing the work of Wedderburn [15]
concerned with a class of finite-dimensional algebras over fields, where the collection
of nilpotent algebras forms what we would now call a radical class. In the century
since, the theory established in classes of associative rings [1, 7] has been extended
using notions appropriate to the setting (for example, radical classes in categories [3]
and connectedness and disconnectedness in topology [2]) and much of radical theory
has been described in a very general way [8]. We have set this work in the universal
class of finite associative rings to describe various compositions of class operators
which have become essential for working in this area and to uncover more of the
duality lost along the way [4]. Our main results include a complete listing of distinct
class operators that generate base radical and semisimple classes for any subclass of the
universal class of finite associative rings. In the universal class of all associative rings,
it is well known that a homomorphically closed semisimple class is a radical class [16],
but, among other results, we show that for the finite case, the homomorphically closed
semisimple classes are precisely the hereditary radical classes and hence radical–
semisimple classes (as is the case for classes of finite groups [6]) and that the largest
homomorphically closed subclass of a semisimple class is a radical–semisimple class.
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2. Background preliminaries

For background material on the radical theory of associative rings not mentioned
here, we refer the reader to the text by Gardner and Wiegandt [5]. Classes are denoted
by calligraphic font such as X and elements of a class by uppercase letters such as A.
A class X is hereditary if, for all A ∈ X, every ideal I of A (denoted I / A) is in X, and
X is homomorphically closed if, for all A ∈ X, I / A implies the homomorphic image
A/I ∈ X. A class X is closed under extensions if X has the property that whenever I
is an ideal of a ring A and both I and A/I are elements of X, then A ∈ X. A universal
class is hereditary and homomorphically closed. In what follows, 0 is sometimes used
to represent the class {0} when the context is clear.

If A is nonzero with no nonzero proper ideals, then A is simple. Define a subring J to
be an accessible subring of a ring A if there is a finite chain J = Jn / Jn−1 / · · · / J0 = A.
The class operators U and S acting on subclasses X ofA are defined by

U(X) = {A ∈ A | A has no nonzero homomorphic image in X}

and
S(X) = {A ∈ A | A has no nonzero accessible subring in X}.

For the trivial classes in A, U(0) = S(0) = A and U(A) = S(A) = 0 and, for all
subclasses X ⊆ A, we have X ∩ U(X) = X ∩ S(X) = 0. We can often interchange the
operators U and S to produce meaningful outcomes called dual results. The proof
arguments are said to be dualised and are only sometimes included.

The base radical operator US and base semisimple operator SU are then US(X) =

{A ∈ A | every nonzero homomorphic image of A has a nonzero accessible subring
in X} and SU(X) = {A ∈ A | every nonzero accessible subring of A has a nonzero
homomorphic image in X} [9]. A class X ⊆ A is a base radical class if and only
if X = US(X) and, dually, X is a base semisimple class if and only if X = SU(X) [10].
Some of the arguments to follow require the image to be nonzero but many comments
still hold for the zero image and the zero accessible subring, so we omit this word when
appropriate. A class X is called radical–semisimple if X is both a radical class and a
semisimple class. For classes of associative rings, Kurosh–Amitsur radical classes are
precisely base radical classes and, in this setting, Kurosh–Amitsur semisimple classes
are hereditary, so their respective semisimple classes coincide [10].

The notion of generating an operator semigroup through repeated application of
the U and S operators on all subclasses X ⊆ A was introduced in [9] and some
general properties of this semigroup and its possible orders in a more general setting,
which includes finite associative rings, were detailed in [14]. The semigroup,
denoted RTA with order |RTA|, contains all distinct operators composed of U and
S which can act on subclasses of a universal class A. For all P,Q ∈ RTA, P = Q
if and only if P(X) = Q(X) for all X ⊆ A. For example, the universal class of
finite associative ringsA1 = {0,Z4,Z2,Z

0
2} has associated operator semigroup RTA1 =

{U,S,UU,US,SU,SS,UUU,USS,USU,SUS,SSS,USSS} with |RTA1 | = 12 [14].
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We include an additional class operator ¬ for a richer treatment; it is defined for all
subclasses X ⊆ A by ¬(X) = {A ∈ A | A < X} and we denote the operator semigroup
formed by operators U, S and ¬ by RT ∗

A
using an equivalent definition for element

equality. If the class X is homomorphically closed, then X = U¬(X) ⊆ US(X), S(X)
is a semisimple class and hence S(X) = SUS(X). Dually, if X is hereditary, then
X = S¬(X) ⊆ SU(X), U(X) is a radical class and so U(X) = USU(X).

From here on, A denotes the universal class of all finite associative rings and
mention of radical and semisimple classes refers to base radical and base semisimple
classes, respectively. For every nonzero A ∈ A, A has a simple accessible subring and a
simple homomorphic image inA. Indeed, for all subclasses X ⊆ A, US(X) is nonzero
if and only if X contains a simple ring.

The following results are used extensively in the proofs to come.

Theorem 2.1 [11, Corollary 1]. For all subclasses X ⊆ A, S¬US(X) is a radical class.
That is, the largest hereditary class contained in a radical class is a radical class.

Theorem 2.2 [9, Lemma 4.5, Theorems 2.1(4), 2.1(5) and 4.3]. For all subclasses
X ⊆ A:

(i) S¬U¬S(X) = U¬S¬U(X) = S¬U(X);
(ii) U¬U(X) = U(X) and S¬S(X) = S(X);
(iii) UUUU(X) = UU(X) and SSSS(X) = SS(X);
(iv) S¬U(X) ⊆ U¬S(X).

When every homomorphic image of each accessible subring of A ∈ A is isomorphic
to an accessible subring of a homomorphic image of A, the dual of Theorem 2.2(iv)
holds and S¬U(X) = U¬S(X) [9].

Adjusting from a more general setting [14] to universal classes of finite associative
rings gives the results collected in the next two theorems.

Theorem 2.3 [14, Theorem 1, Remark 6, Proposition 1 and Theorem 2]. For all
subclasses X ⊆ A:

(i) if X is hereditary, then S(X) is a semisimple class and, if X is homomorphically
closed, then U(X) is a radical class;

(ii) for all A ∈ A, A ∈ UU(X) if and only if B ∈ X for every simple homomorphic
image B of A; dually, A ∈ SS(X) if and only if C ∈ X for every simple accessible
subring C of A;

(iii) USSS(X) ⊆ US(X) ⊆ UU(X) and SUUU(X) ⊆ SU(X) ⊆ SS(X);
(iv) UUS(X) = UUU(X) and SSU(X) = SSS(X).

While U(X) is not always a radical class and S(X) is not always a semisimple class,
it follows from Theorem 2.3(i) that classes of the form UU(X) and UUU(X) will be
radical classes. Dually, SS(X) and SSS(X) are semisimple classes.
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Consider two properties a class X ⊆ A may have:

(1∗) if A ∈ X and A , 0, then A has a simple homomorphic image in X;
(2∗) if A ∈ X and A , 0, then A has a simple accessible subring in X.

Theorem 2.4 [14, Proposition 8]. A class X ⊆ A satisfies (1∗) if and only if U(X) =

UUU(X). Dually, X satisfies (2∗) if and only if S(X) = SSS(X).

3. On radical and semisimple operators

In this section a number of general relations between the elements of the semigroup
RT ∗
A

are described for the universal class of finite associative rings. The relations are
then used to give a complete listing of elements in the operator semigroup and identify
the operators that always generate radical and semisimple classes. The results that
follow rely on containment arguments and so work more generally for subclasses of
the universal classA as well as in the semigroup itself.

Theorem 3.1. For all subclasses X ⊆ A :

(i) UU¬S(X) = US¬U(X) = UUU¬(X) = UU(X);
(ii) SS¬U(X) = SU¬S(X) = SSS¬(X) = SS(X).

Proof. (i) Since X ⊆ ¬S(X), UU(X) ⊆ UU¬S(X). Let A ∈ UU¬S(X). Then every
simple homomorphic image of A is in ¬S(X) by Theorem 2.3(ii) and therefore in X.
Hence, A ∈ UU(X) and so UU¬S(X) = UU(X).

From Theorem 2.2(iv), U(U¬S(X)) ⊆ U(S¬U(X)) and so UU(X) ⊆ US¬U(X).
Now, X ⊆ ¬U(X) and so US(X) ⊆ US¬U(X). By Theorem 2.3(iii), US(¬U(X)) ⊆
UU(¬U(X)) and UU¬U(X) = UU(X) by Theorem 2.2(ii). Hence, US¬U(X) = UU(X).

To prove the final equality, note that since U¬(X) ⊆ X, then UUU¬(X) ⊆ UU(X).
Suppose that A ∈ UU(X). By Theorem 2.3(ii), every simple homomorphic image B
of A is in X and hence B ∈ U¬(X). So, A ∈ UU(U¬(X)), UUU¬(X) = UU(X) and
UU¬S(X) = US¬U(X) = UUU¬(X) = UU(X).

(ii) The dual arguments of Theorem 3.1(i) show that SS¬U(X) = SSS¬(X) =

SS(X). From Theorem 2.2(iv), S(U¬S(X)) ⊆ S(S¬U(X)) = SS(X). Since SS(X) ⊆
¬S(X), it follows that SU(SS(X)) ⊆ SU(¬S(X)). Since S(X) is hereditary, then,
by Theorem 2.3(i), S(S(X)) = SUS(S(X)) and so SS(X) ⊆ SU¬S(X), showing that
SU¬S(X) = SS(X), which completes the proof. �

The following lemmas identify conditions on a subclass X which ensure that the
largest hereditary or homomorphically closed subclass is a semisimple class or a
radical class, respectively.

Lemma 3.2. If a subclass X ⊆ A is closed under extensions, then SU(X) = S¬(X).

Proof. Since U(X) ⊆ ¬(X) for all subclasses X of A, then S¬(X) ⊆ SU(X). Let X
be closed under extensions and consider a nonzero A ∈ SU(X) but A < X. Then A is
not simple and it has an ideal I1 , A such that A/I1 is in X. As X is closed under
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extensions, I1 is not in X. But I1 is in SU(X), so it in turn is neither simple nor zero
and has an ideal I2 < X with I1/I2 ∈ X.

Repeating this argument yields In / In−1 / · · · / I2 / I1/ I0 = A, an arbitrarily long
series with I0, I1, . . . , In not in X, but all with a nonzero homomorphic image in X.
This means that I1, . . . , In are not simple. But every chain of this kind descending
from A must reach a simple ring. From this contradiction, we conclude that there
is no such A and thus SU(X) ⊆ X. Thus, SU(X) is a hereditary subclass of X, so
SU(X) ⊆ S¬(X) ⊆ SU(X) and SU(X) = S¬(X). �

As an accessible subring of a ring may not be an ideal of the ring, we adjust the
definition of closed under extensions to obtain the dual result.

Lemma 3.3. For a subclass X ⊆ A, US(X) = U¬(X) whenever X satisfies the
condition: if C is an accessible subring of an ideal I of A and both C and A/I are
in X, then A ∈ X.

Proof. Let a subclass X of A satisfy the condition described and A be a nonzero
element of US(X). Then A has a nonzero accessible subring in X, say C. If
C = A, then A ∈ X and US(X) ⊆ X. If C , A, then C is the accessible subring of a
maximal ideal B of A such that B , A. The homomorphic image A/B is simple and in
US(X) and hence in X. Therefore, A must be in X, showing that US(X) ⊆ X. Now,
U¬(X) ⊆ US(X) ⊆ U¬(X) ⊆ X and US(X) = U¬(X). �

Necessary and sufficient conditions for a class of associative rings to be semisimple
are that the class be hereditary, closed under subdirect sums and closed under
extensions [12]. In this finite setting we need only two of these three conditions.
If X is hereditary and closed under extensions, then, from Lemma 3.2, X = S¬(X) =

SU(X) and X is a semisimple class. For classes closed under extensions, the dual
of Lemma 3.2 holds when the property of being an ideal is transitive. If X is
homomorphically closed and satisfies the condition in Lemma 3.3, then X = U¬(X) =

US(X) and X is a radical class.
It has been observed that, in general, homomorphically closed semisimple classes

are rare [17]. The following theorem shows that in this finite setting, every subclass
X ⊆ A can generate a homomorphically closed semisimple class.

Theorem 3.4. For all subclasses X ⊆ A, SUU(X) is a radical–semisimple class and
SUU(X) = USS(X).

Proof. The class SUU(X) is semisimple by definition. By Theorem 2.3(i), UUU(X)
is a radical class for all X ⊆ A and hence closed under extensions. Lemma 3.2 gives
SU(UUU(X)) = S¬(UUU(X)) and, by Theorem 2.2(iii), SUU(X) = S¬UUU(X). By
Theorem 2.2(i), S¬UUU(X) is homomorphically closed and, since any homomor-
phically closed semisimple class is a radical class [16], SUU(X) is a radical–
semisimple class. It follows that SUU(X) = US(SUU(X)) and, by Theorem 2.3(iv),
US(SUU(X)) = USSSU(X) = USSSS(X). From Theorem 2.2(iii), USSSS(X) =

USS(X), showing that SUU(X) = USS(X). �
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Corollary 3.5. If a subclass X ⊆ A satisfies condition (2∗), then US(X) is a radical–
semisimple class. Dually, if X satisfies condition (1∗), then SU(X) is radical–
semisimple.

Proof. Let a subclass X of A satisfy condition (2∗). By Theorem 2.4, S(X) =

SSS(X) and therefore US(X) = USSS(X), which is a radical–semisimple class as a
consequence of Theorem 3.4. The dual argument proves the second part. �

The following corollaries reveal a range of radical–semisimple classes with
implications for the corresponding operators.

Corollary 3.6. For all subclasses X ⊆ A, SUU(X) = S¬USS(X) = S¬USU(X) =

S¬US¬(X) = S¬UUU(X) = U¬SUU(X) = U¬SUS(X) = U¬SU¬(X) = U¬SSS(X) =

USS(X).

Proof. First note that for a subclass X of A, if A ∈ US¬(X), then A has no simple
homomorphic image in X and so A ∈ UUU(X). Dually, SU¬(X) ⊆ SSS(X). From
Theorem 2.3(iii), SU(X) ⊆ SS(X) and therefore USS(X) ⊆ USU(X) ⊆ US¬(X) ⊆
UUU(X) and similarly SUU(X) ⊆ SUS(X) ⊆ SU¬(X) ⊆ SSS(X). Since USS(X) is
hereditary as a consequence of Theorem 3.4, USS(X) = S¬USS(X) ⊆ S¬USU(X) ⊆
S¬US¬(X) ⊆ S¬UUU(X). From Theorem 2.2(iv), it follows that S¬U(UU(X)) ⊆
U¬S(UU(X)) ⊆ U¬SUS(X) since US(X) ⊆ UU(X) by Theorem 2.3(iii), and
U¬SUS(X) ⊆ U¬SU¬(X) ⊆ U¬SSS(X) ⊆ USSSS(X) = USS(X), showing that all
classes are equal. Also, as a consequence of Theorem 3.4, SUU(X) = U¬SUU(X),
which completes the proof. �

Corollary 3.7. For all subclasses X ⊆ A, SUUU(X) = S¬USSS(X) = S¬USU¬(X)
= S¬US(X) = S¬UU(X) = U¬SUUU(X) = U¬SUS¬(X) = U¬SU(X) = U¬SS(X) =

USSS(X).

Proof. Using Theorem 3.1 for the subclass ¬X of A, UUU¬(¬X) = UU¬(X), which
implies that UUU(X) = UU¬(X) and dually SSS(X) = SS¬(X). Similarly, using
¬X for Corollary 3.6, SUU(¬X) = S¬USS(¬X) = S¬USU(¬X) = S¬US¬(¬X) =

S¬UUU(¬X) = U¬SUU(¬X) = U¬SUS(¬X) = U¬SU¬(¬X) = U¬SSS(¬X)
= USS(¬X). Therefore, combining with Theorem 2.2(iii), SUUU(X) = S¬USSS(X) =

S¬USU¬(X) = S¬US(X) = S¬UU(X) = U¬SUUU(X) = U¬SUS¬(X) = U¬SU(X) =

U¬SS(X) = USSS(X). �

As a summary for the later discussion on RTA and RT ∗
A

, we present Theorem 3.1
and Corollaries 3.6 and 3.7 in terms of class operators.

Theorem 3.8. The following hold for any universal class of finite associative rings:

(i) UU¬S = US¬U = UUU¬ = UU;
(ii) SS¬U = SU¬S = SSS¬ = SS;
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(iii) SUU = S¬USS = S¬USU = S¬US¬ = S¬UUU = U¬SUU = U¬SUS = U¬SU¬
= USS;

(iv) SUUU = S¬USSS = S¬USU¬ = S¬US = S¬UUU = U¬SUUU = U¬SUS¬ =

U¬SU = USSS.

The presence of simple rings in radical and semisimple classes ensures the presence
of radical–semisimple subclasses. For a subclass X ⊆ A, let Xs be any collection of
simple rings contained in X. Then Xs is hereditary and homomorphically closed and
generates coinciding radical and semisimple classes.

Proposition 3.9. For any subclass X ⊆ A, US(Xs) = SU(Xs).

Proof. Since Xs is homomorphically closed, Xs ⊆ UU(Xs) and SU(Xs) ⊆ SUUU(Xs).
From Theorem 2.3(iii), SUUU(Xs) ⊆ SU(Xs) and so SU(Xs) = SUUU(Xs).

The dual argument uses the hereditariness of Xs and Corollary 3.7. The class
US(Xs) = USSS(Xs) = SUUU(Xs) and so US(Xs) = SU(Xs). �

As is the case in the universal class of finite groups [6], more of the duality for U
and S and its consequences is preserved for finite associative rings.

Theorem 3.10. The following conditions on a subclass X ⊆ A are equivalent:

(i) X is a hereditary radical class;
(ii) X is a homomorphically closed semisimple class;
(iii) X is a radical–semisimple class.

Proof. If a subclass X of A is a hereditary radical class (i), then X = US(X) =

S¬(US(X)). By Corollary 3.7, S¬US(X) = SUUU(X) = USSS(X), so X is radical–
semisimple, showing (ii) and (iii). The dual argument shows that (ii) implies (i) and
(iii). That (iii) implies (i) and (ii) follows from the properties of radical and semisimple
classes. �

Weaker conditions than homomorphically closed for semisimple classes and
hereditary for radical classes suffice to ensure that a class is radical–semisimple.

Theorem 3.11. For all subclasses X ⊆ A, the following are equivalent:

(i) X = US(X) = SU(X);
(ii) X = USSS(X) = SUUU(X);
(iii) X is a radical class with condition (2∗);
(iv) X is a semisimple class with condition (1∗).

Proof. For all subclasses X ⊆ A, given (i) it follows that X = US(X) = US(SU(X)) =

USSS(X) by Theorem 2.3(iv) and, dually, X = SU(US(X)) = SUUU(X), which is (ii).
That (i) implies (iii) and (iv) follows from X being hereditary and homomorphically
closed, respectively, and similarly for (ii) implying (iii) and (iv). That (ii) implies
(i) follows from the definition of radical–semisimple. If X is a radical class with
(2∗), which is (iii), then X = U(S(X)) = U(SSS(X)) by Theorem 2.4 and USSS(X) =
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SUUU(X) by Corollary 3.7, which is (ii). The dual argument shows that given (iv),
X is a semisimple class with condition (1∗); then X = S(U(X)) = S(UUU(X)) by
Theorem 2.4 and SUUU(X) = USSS(X) again by Corollary 3.7, which is (ii). �

For the universal class of all associative rings the ‘concrete radical classes’, which
includes the Jacobson radical, are all hereditary [5] and it follows from Theorem 3.10
that these are all radical–semisimple classes in this setting.

Corollary 3.12. A radical class R is hereditary if and only if R is of the form USS(X)
for some subclass X ofA.

Proof. If a radical class R is hereditary, then condition (2∗) holds and, by
Theorem 3.11, R = USS(S(R)) and so R is of the form USS(X). The converse is
clear since USS(X) is a radical class for all subclasses X of A by definition, and
USS(X) = S¬USS(X) by Corollary 3.6. �

Corollary 3.13. If condition (2∗) holds for a subclass X ⊆ A, then the radical class
US(X) is a radical–semisimple class. Dually, if condition (1∗) holds for a subclass
X ⊆ A, then the semisimple class SU(X) is a radical–semisimple class.

Proof. Let X be a subclass of A where condition (2∗) holds. From Theorem 2.4,
S(X) = SSS(X) and so US(X) = USSS(X), a radical–semisimple class by Corollary 3.7.
The dual argument proves the second part. �

In this finite setting we can extend Theorem 2.1 to the following result and its dual.

Theorem 3.14. The largest hereditary subclass of a radical class is a radical–
semisimple class.

Proof. Let R be a radical class and so R = US(R). By Theorem 2.1, S¬(R) is a radical
class and, since R is closed under extensions, S¬(R) = SU(R) by Lemma 3.2. Hence,
S¬(R) is a radical–semisimple class. �

Corollary 3.15. The largest homomorphically closed subclass of a semisimple class
is a radical–semisimple class.

Proof. LetS be a semisimple class. Then the largest homomorphically closed subclass
of S is U¬(S) = U¬SU(S). By Corollary 3.7, U¬SU(S) = USSS(S) = SUUU(S),
showing that U¬(S) is radical–semisimple. �

For any subclass X ⊆ A, S(X) is a semisimple class when X is homomorphically
closed [10] or hereditary (by Theorem 2.3(i)). We can strengthen this result for classes
of finite associative rings.

Proposition 3.16. For a subclass X ⊆ A, if X ⊆ SU(X), then S(X) is a semisimple
class.
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Proof. If a subclass X ofA is contained in SU(X), then SSU(X) ⊆ S(X). If A ∈ S(X),
then A has no nonzero accessible subring in X and hence A has no nonzero accessible
subring in SS(X). Therefore, S(X) ⊆ SSS(X) = SSU(X) by Theorem 2.3(iv). Hence,
S(X) = SSU(X) and, by Theorem 2.3(i), S(X) is a semisimple class. �

Every accessible subring of a homomorphic image of A ∈ A is a homomorphic
image of an accessible subring of A [9, Lemma 4.1]. We can dualise this result to an
extent for finite associative rings as follows.

Proposition 3.17. For all A ∈ A, every simple homomorphic image of an accessible
subring of A is a simple accessible subring of a homomorphic image of A.

Proof. As the relations ‘is an accessible subring of’ and ‘is a homomorphic image
of’ are reflexive, the case for the simple accessible subring of any A in A follows
directly. Now, from Theorem 2.3(ii), A ∈ ¬UUU(X) if and only if A has a nonzero
homomorphic image B such that every simple homomorphic image of B is in X if and
only if A has a simple homomorphic image in X. Dually, A ∈ ¬SSS(X) if and only if
A has a simple accessible subring in X. If C is a simple homomorphic image of an
accessible subring of A, then A ∈ ¬S(¬UUU({C})). Suppose that C is not the simple
accessible subring of a homomorphic image of A. Then A < ¬U(¬SSS({C})) and hence
¬S¬UUU({C}) , ¬U¬SSS({C}), which is a contradiction by Corollary 3.6. �

Whether the requirement that a homomorphic image of an accessible subring is
simple can be removed, extending Proposition 3.17 to all homomorphic images of
accessible subrings of A ∈ A, that is, S¬U(X) = U¬S(X), is not known to the authors.
It is true that for all X ⊆ A, S¬UU(X) = U¬SS(X).

The following two propositions use properties of the universal class elements to
help determine an upper bound for the order of the semigroup RT ∗

A
. Let A′ be a

subuniversal class ofA.

Proposition 3.18. For all subclasses X ⊆ A′, ¬UUU(X) = UU(X) if and only if every
A ∈ A′ has a single simple homomorphic image. Dually, ¬SSS(X) = SS(X) for all X
if and only if all A have a single simple accessible subring.

Proof. Suppose that some A ∈ A′ has both B and C as simple nonisomorphic
homomorphic images. Then A ∈ ¬U(UU({B})) but A < UU({B}). Conversely, if
¬UUU(X) , UU(X) for all X ⊆ A′, then as UU(X) ⊆ ¬UUU(X), there exists some
nonzero A ∈ ¬UUU(X) which is not in UU(X). That is, some nonzero A has a
homomorphic image in UU(X) and so A has a simple homomorphic image in X.
However, A < UU(X) and so A must have at least one other simple homomorphic
image that is not in X, showing that A must have more than one simple homomorphic
image.

The dual argument proves the second part. �

Proposition 3.19. If X is a subclass ofA such that for all A ∈ X, every nonzero proper
ideal B of A is simple, then US(X) = USU¬(X) and SU(X) = SUS¬(X).
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Proof. For all subclasses X ⊆ A, suppose that A ∈ X is such that every nonzero proper
ideal B of A is simple. Then every nonzero proper homomorphic image of A is also
simple. If A ∈ US(X), then all simple homomorphic images of A are in US(X) and
hence in U¬(X). If A < X, then A has a nonzero accessible subring B in X. Since B is
simple, B ∈ U¬(X). Therefore, A ∈ US(U¬(X)).

If A ∈ X, then A ∈ U¬(X) and, again, A ∈ USU¬(X), showing that US(X) ⊆
USU¬(X). Since USU¬(X) is always contained in US(X), the two classes are equal.
The dual argument shows that SUS¬(X) = SU(X). �

The maximum order of RTA and RT ∗
A

for the universal class of finite associate rings
can now be determined with a complete listing of possible radical and semisimple class
operators.

Theorem 3.20. The operator semigroup RTA has at most 12 elements.

Proof. Starting with the classes U(X) and S(X) and applying operators U and S to
each in turn generates UU(X), US(X), SU(X) and SS(X). Repeating generates classes
UUU(X), SUU(X), USU(X), SUS(X) and SSS(X), as the three other possibilities
are not distinct under Theorem 2.2(iii), Theorem 2.3(iv) and Corollary 3.6. Using
Theorem 2.3(i) and (iv) with Corollary 3.7, a further application of U and S to each
of these five classes gives the last distinct class USSS(X) = SUUU(X). In summary,
RTA = {U, S,UU,US, SU, SS,UUU, SUU, USU, SUS, SSS, SUUU} and the order of
RTA is at most 12. �

This is the semigroup mentioned in the background for the universal class A1.
The operators UU,US,UUU,USS(= SUU),USU and USSS(= SUUU) will always
generate radical classes, and the operators SU,SS,SUU,SUS,SSS and SUUU generate
semisimple classes for any subclass X. Using a similar proof strategy we can
determine an upper bound for the order of the semigroup generated by U,S and ¬.

Theorem 3.21. The operator semigroup RT ∗
A

has at most 46 elements.

Proof. Beginning with the three classes U(X), S(X) and ¬(X) and applying operators
U, S and ¬, we obtain UU(X), SU(X), ¬U(X), US(X), SS(X), ¬S(X), U¬(X), S¬(X)
and ¬¬(X) = X.

Repeating this process and using Theorems 2.3(iv) and 3.1 and Corollaries 3.6
and 3.7 as appropriate, additions are UUU(X), SUU(X), ¬UU(X), USU(X), SSS(X),
¬SU(X), S¬U(X), SUS(X), ¬US(X), ¬SS(X), U¬S(X), SU¬(X), ¬U¬(X), US¬(X)
and ¬S¬(X). In the next round SUUU(X), ¬UUU(X), ¬SUU(X), ¬USU(X),
¬SSS(X), ¬S¬U(X), ¬SUS(X), ¬U¬S(X), USU¬(X), ¬SU¬(X), S¬U¬(X),
SUS¬(X), ¬US¬(X) and U¬S¬(X) are generated. Lastly, one further application gives
distinct classes ¬SUUU(X), ¬USU¬(X), ¬S¬U¬(X), ¬SUS¬(X) and ¬U¬S¬(X).

This gives RT ∗
A

= {U, S, ¬,UU, SU, ¬U,US, SS, ¬S, U¬, S¬, ¬¬, UUU, SUU,
¬UU, USU, SSS, ¬SU, S¬U, SUS, ¬US, ¬SS, U¬S, SU¬, ¬U¬, US¬, ¬S¬, SUUU,
¬UUU, ¬SUU, ¬USU, ¬SSS, ¬S¬U, ¬SUS, ¬U¬S, USU¬, ¬SU¬, S¬U¬, SUS¬,
¬US¬, U¬S¬, ¬SUUU, ¬USU¬, ¬S¬U¬, ¬SUS¬, ¬U¬S¬}, at most 46 elements. �
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In addition to the six radical operators listed above for RTA, we gain an extra two
operators which always generate radical classes, namely USU¬ and US¬. Dually, the
two extra operators which always generate semisimple classes are SUS¬ and SU¬.

For the universal class A1 = {0, Z4, Z2, Z
0
2}, every homomorphic image of each

accessible subring of A ∈ A1 is an accessible subring of a homomorphic image
of A and so for all subclasses X ⊆ A1, S¬U(X) = U¬S(X). The equalities in
Propositions 3.18 and 3.19 hold and RT ∗

A1
= {U, S,¬,UU, SU, ¬U,US, SS, ¬S, U¬,

S¬, ¬¬, UUU, SUU,USU, SSS, ¬SU, S¬U, SUS, ¬US, ¬U¬, ¬S¬, SUUU,¬SUU,
¬USU, ¬S¬U,¬SUS, S¬U¬, ¬SUUU, ¬S¬U¬} with |RT ∗

A1
| = 30. Note that RT ∗

A1

has the same six radical operators and corresponding semisimple operators as RTA1 .
In this universal class, {0,Z0

2} is nil and USSS({0,Z0
2}) = SUUU({0,Z0

2}) = {0,Z0
2}.

This is a smaller radical–semisimple class than the universal class itself, which is
expected in the universal class of all associative rings [13]. What is emerging are
radical and semisimple classes which account for the properties of the radical ideal in
terms of the substructure of the class elements rather than a property that the elements
of the ideal might have [18].
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