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ON EXACT SAMPLING OF NONNEGATIVE
INFINITELY DIVISIBLE RANDOM VARIABLES
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Abstract

Nonnegative infinitely divisible (i.d.) random variables form an important class of random
variables. However, when this type of random variable is specified via Lévy densities
that have infinite integrals on (0,∞), except for some special cases, exact sampling is
unknown. We present a method that can sample a rather wide range of such i.d. random
variables. A basic result is that, for any nonnegative i.d. random variable X with its
Lévy density explicitly specified, if its distribution conditional onX ≤ r can be sampled
exactly, where r > 0 is any fixed number, then X can be sampled exactly using rejection
sampling, without knowing the explicit expression of the density of X. We show that
variations of the result can be used to sample various nonnegative i.d. random variables.
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1. Introduction

Nonnegative infinitely divisible (i.d.) random variables are important in many regards;
however, their sampling in general is an involved issue. By the Lévy–Khintchine formula,
a nonnegative i.d. random variable can be represented as a series of jump times of a Poisson
process [4], [33]. On the one hand, the series representation is the basis of many exact or
approximate sampling methods [3], [8], [11], [32]. On the other hand, if an i.d. random variable
has an infinite Lévy measure on (0,∞) then, with probability 1, its series representation has
infinitely many positive random terms, which cannot be summed in closed form but have to
be added one by one. This rules out exact sampling of the random variable in a finite number
of steps.

Conceptually, it is important and interesting to see which nonnegative i.d. random variables
can be sampled exactly. There are actually many such random variables, the most familiar being
gamma, Pareto, Fisher, F , Gumbel, Weibull, log-normal, and half-Cauchy variables [33]–[35].
It is known that positive random variables which have log-convex densities or are mixtures
of gamma random variables with the same shape parameter in (0, 2] are i.d. [6], [33], [35].
Since these random variables have analytically tractable density functions, they can be sampled
exactly. A special class of i.d. random variables, known as Vervaat perpetuities, can also
be sampled exactly by carefully exploiting their structures [15]–[17], [22]. It is also well
known that nonnegative stable random variables and their exponentially tilted versions can be
sampled exactly [8], [10], [13], [20], [21], [32]. These random variables not only have explicit
density functions, but explicit Lévy measures as well. Generally speaking, in view of the
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Lévy–Khintchine formula, it is natural to specify an i.d. random variable via its Lévy measure;
however, other than the aforementioned cases and perhaps a few others, for variables specified
in this way, exact sampling is lacking.

In this paper we show that sampling is achievable for a rather wide range of nonnegative
i.d. random variables specified via Lévy measures. Henceforth, by sampling we mean exact
sampling, and we shall speak interchangeably of the sampling for a Lévy density, the sampling
from the i.d. distribution with the Lévy density, and the sampling of an i.d. random variable
with the Lévy density. To start with, suppose that we wish to sample a nonnegative i.d. random
variable X with an upper truncated Lévy density λ(x)1{x ≤ r}, where r > 0 is fixed and λ
itself is a Lévy density on (0,∞). Many functional relationships between the distribution ofX
and that associated with λ are known, which can be used to evaluate the (probability) density
of X [11]. However, it is practically (and conceptually) more satisfactory if sampling can be
done without the numerical evaluation of density functions [10]. With this in mind, our goal is
to sample X without knowing its density explicitly.

Our approach starts with the following simple observation: if Y ≥ 0 is an i.d. random
variable with Lévy density λ then X conditional on X ≤ r and Y conditional on Y ≤ r are
identically distributed. To be sure, represent Y as X + Z, where Z consists of jump times
greater than r . Because Z is compound Poisson and independent of X, P{Z = 0} > 0 and
P{X ≤ x | X ≤ r} = P{X ≤ x, Z = 0 | X ≤ r, Z = 0}. Since, for any x ≤ r , the events
{X ≤ x, Z = 0} and {Y ≤ x} are the same, we obtain P{X ≤ x | X ≤ r} = P{Y ≤ x | Y ≤ r}.
Consequently, if we can choose λ appropriately so that we know how to sample Y , then we can
sample X conditional on X ≤ r by sampling Y conditional on Y ≤ r , using, say, the rejection
method (cf. [13], [18], [19], and [27]).

The above observation is crucial; however, it cannot singularly lead to the sampling of X.
There are two issues. First, P{X ≤ r} is often unknown, and, hence, the density of X on (0, r]
is known only up to a multiplicative factor. The second issue appears to be more serious. That
is, there is little direct knowledge about the density of X on (r,∞). Since X consists of only
jump times less than r , we have little use of the density of Y on (r,∞), as it involves large jump
times nonexistent in X. Instead, we need to rely on certain relations between the density of X
on (0, r] and its density on (r,∞) that are applicable for sampling.

To address the issues, in Section 3 we establish an integral series expansion of the density
ofX on (r,∞) in terms of its density on (0, r] and Lévy density. While the expansion contains
infinitely many integrals, it allows exact sampling. In Section 4, a general procedure that
applies rejection sampling to the integral series expansion is presented. Together, the two
sections deliver the following method to sample a nonnegative i.d. random variable. First,
decompose its Lévy density into ϕ + χ such that, on some (0, r] �= ∅, ϕ is identical to a Lévy
density λ which we know how to sample for, and χ ≥ 0 is integrable. Indeed, for ϕ, we need
only ϕ(t) = [1 +O(t)]λ(t) as t → 0. Once such a decomposition is found, we can sample for
ϕ using the procedure in Section 4. Meanwhile, since the i.d. distribution with Lévy density χ
is compound Poisson, its sampling is more or less standard, although efficient algorithms can
be found for special cases [13], [18]. The sum of the values independently sampled from the
two i.d. distributions then follows the i.d. distribution we wish to sample.

We note that rejection sampling has long been used to sample i.d. random variables (cf. [12],
[13], and [15]). However, unlike in the procedures of the above-cited works, we do not rely
on explicit approximations to distributions. More precisely, if sampling for a Lévy density is
available then it can be incorporated into our procedure to sample for a whole class of Lévy
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densities without the need to derive new formulae for the densities. Therefore, our procedure
is complementary to available sampling procedures, such as those in [10], [13], and [18].

In Sections 5 and 6 we consider two general designs for our procedure and illustrate them
with examples. The first example deals with the Lévy density ϕ(t) = ct−α−11{0 < t ≤ r} with
α ∈ (0, 1) and r ∈ (0,∞). While the sampling for the stable Lévy density ct−α−11{t > 0} is
well known [10], [13], [21], [32], to the best of the author’s knowledge, the sampling for ϕ is
unknown. We will utilize the sampling of the stable distribution to sample for ϕ. As a more
concrete example, we next consider the Lévy density ϕ(t) = ψ(t)(et − 1)−1−α1{t > 0} with
α ∈ (0, 1) and ψ(t) = 1 +O(t) as t → 0. When ψ(t) = eβt with β < α+ 1, ϕ gives rise to a
Lamperti-stable distribution [9], [25]. In the third example, we apply the procedure to gamma
distributions. Since efficient sampling of gamma distributions has long been known (cf. [13]
and [18]), the point here is that the procedure can be exploited to get some interesting theoretical
results. The above examples are used to illustrate the first design. For the second design, we
give two examples. In the first example, we consider the sampling of Vervaat perpetuities.
Recently, efficient sampling procedures for Vervaat perpetuities have been discovered [16],
[17], [22]. These procedures employ sophisticated coupling techniques for Markov chains and,
depending on the parameter value of the distribution being sampled, their expected numbers
of iterations range from 1 to ∞. We show that, for any parameter value of the distribution,
by using the second design, the expected number of iterations can be arbitrarily close to 1. In
the second example, we consider the Lévy density ce−t (1 − ta)1{0 < t ≤ r}/[t ln(1/t)]. We
show that its sampling can be done by incorporating the sampling of Vervaat perpetuities and
the trick of subordination. In all but the theoretical example, we provide some analysis on the
complexity of the procedure.

Finally, for the integral series expansion in Section 3, local boundedness of the probability
density is a required condition. Section 7 gives a simple criterion to check the condition.

2. Preliminaries

2.1. Notation

Henceforth, by Lévy densities we mean those of nonnegative i.d. random variables, which
coincide with measurable functions ϕ ≥ 0 with support in [0,∞) and

∫
(1 ∧ t)ϕ(t) dt < ∞

(cf. [4] and [33]). By i.d. random variable with Lévy density ϕ, we mean specifically a random
variable X with Laplace transform E(e−θX) = ∫

(e−θt − 1)ϕ(t) dt, θ > 0. We denote by
ID(ϕ) the distribution with the Laplace transform. We callX strictly positive if P{X > 0} = 1.
Under this setup, X ∼ ID(ϕ) is strictly positive if and only if

∫
ϕ = ∞ [11], [30], and in this

case,X has a density with support being the entire [0,∞) [33, Theorems 24.10 and 27.10]. On
the other hand, if

∫
ϕ < ∞ then X ∼ ID(ϕ) is compound Poisson, with P{X = 0} > 0.

For brevity and when there is no possibility of confusion, a probability density will be referred
to as a density. Denote by Unif(0, 1) the uniform distribution on (0, 1), and, for r > 0, a > 0,
and b > 0, denote by Gamma(a, r) the distribution with density xa−1e−x/r1{x > 0}/[ra�(a)]
and by Beta(a, b) the distribution with density xa−1(1 − x)b−11{0 < x < 1}/B(a, b), where
B(a, b) = �(a)�(b)/�(a+ b). Also, denote Gamma(1, r) by Exp(r). For p ∈ (0, 1), denote
by Binomial(n, p) the law of the sum of n independent and identically distributed (i.i.d.) ξi
with P{ξi = 0} = 1 − P{ξi = 1} = 1 − p.

2.2. Decomposition and exponential tilting

Sampling for a Lévy density can often be built upon the sampling for other Lévy densities.
Suppose that we know how to sample for a Lévy density ϕ. If a Lévy density ϕ1 can be
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decomposed into ϕ+χ , with χ ≥ 0 being integrable, then we can sample for ϕ1 by generating
X + ξ , where X ∼ ID(ϕ) and ξ ∼ ID(χ) are independent. A standard method to sample
for χ is as follows. Sample a Poisson process with intensity χ , which has a finite number of
points with probability 1. The sum of the coordinates of the points then follows ID(χ) (cf. [13]
and [18]).

On the other hand, if ϕ1 ≤ ϕ then even if χ = ϕ − ϕ1 is integrable, in general, it is unclear
how to sample for ϕ1 based on ϕ. However, suppose that, for some b > 0, ϕ1(t) = e−btϕ(t),
i.e. ϕ1 is an exponentially tilted version of ϕ. It is a standard result that exponential tilting of a
Lévy density induces the same exponential tilting of the corresponding i.d. distribution (up to
a normalizing constant; cf. [1], [4], [8], and [20]). We state the result for later use.

Lemma 2.1. Let ϕ and ϕ1 be two Lévy densities such that, for some b > 0, ϕ1(t) = e−btϕ(t).
Then, for X1 ∼ ID(ϕ1) and X ∼ ID(ϕ), P{X1 ∈ dx} = e−bx P{X ∈ dx}/E(e−bX).

The sampling of exponentially tilted distributions is well known (cf. [18]). More generally,
suppose that, for some b ≥ 0, e−btϕ(t) ≤ ϕ1(t) ≤ ϕ(t). Let χ(t) = ϕ1(t) − e−btϕ(t). We
have χ ≥ 0 and, by χ(t) ≤ (1 − e−bt )ϕ(t) ≤ [(bt)∧ 1]ϕ(t), χ ∈ L1(0,∞). Then ID(ϕ1) can
be sampled as follows.

1. Keep sampling (U,X) until U ≤ e−bX, where U ∼ Unif(0, 1) and X ∼ ID(ϕ) are
independent.

2. Sample ξ ∼ ID(χ). Return X + ξ .

3. An integral series expansion of the density

In this section, let ϕ be a Lévy density with
∫
ϕ = ∞. From Section 2, we know that ID(ϕ)

has a density that has the entire [0,∞) as support. We shall derive an integral series expansion
that expresses the density of ID(ϕ) on (r,∞) for a given r > 0 in terms of its density on (0, r]
and Lévy density. Denote by g the density of ID(ϕ), and let 
(t) = tϕ(t)1{t > 0}.
3.1. Main result

Recall that a function is said to be locally bounded on A ⊂ R if it is uniformly bounded on
any compact subset of A.

Theorem 3.1. Fix r > 0. Suppose that, for some M > r , g is locally bounded on (0,M).
Define

h(v, x) = 1{x > 0}
(x − v)

x

and, for each k ≥ 1,

hk(v, x) =
∫

1{v1 > r}h(v, v1)h(v1, v2) · · ·h(vk, x) dv1 · · · dvk.

Then, for x ∈ (r,M),

g(x) =
∫ r

0
g(v) dv

[
h(v, x)+

∞∑
k=1

hk(v, x)

]
. (3.1)

Remark. From h(v, x) = 0 for x < v, it follows that hk(v, x) = 0 for k ≥ 1 and x ≤ r .
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To prove Theorem 3.1, we need the following known result (see [33, Theorem 51.1] and [34,
Corollary 4.2.2]).

Lemma 3.1. For any x > 0, g(x) = ∫ x
0 g(v)h(v, x) dv.

Proof of Theorem 3.1. Equipped with Lemma 3.1, we first show that, given x ∈ (r,M), for
each n ≥ 1,

g(x) =
∫ r

0
g(v) dv

[
h(v, x)+

n∑
k=1

hk(v, x)

]
+ Rn(x), (3.2)

with

Rn(x) =
∫

1{v > r}g(v)h(v, v1)h(v1, v2) · · ·h(vn, x) dv dv1 · · · dvn.

By Lemma 3.1 and noting that h(v, x) = 0 for v > x,

g(x) =
∫ ∞

0
g(v)h(v, x) dv =

∫ r

0
g(v)h(v, x) dv +

∫ ∞

r

g(v)h(v, x) dv. (3.3)

For g(v) in the last integral, as v > r , expansion (3.3) can be iterated once to yield

g(x) =
∫ r

0
g(v)h(v, x) dv

+
∫ ∞

r

[∫ r

0
g(w)h(w, v) dw +

∫ ∞

r

g(w)h(w, v) dw

]
h(v, x) dv.

Making some changes in the variables and regrouping the integrals yields

g(x) =
∫ r

0
g(v) dv

[
h(v, x)+

∫ ∞

r

h(v, v1)h(v1, x) dv1

]

+
∫ ∞

r

∫ ∞

r

g(v)h(v, v1)h(v1, x) dv dv1

=
∫ r

0
g(v) dv[h(v, x)+ h1(v, x)] + R1(x),

which shows (3.2) for n = 1. In general, for g(v) in the integral expression of Rn(x), as v ≥ r ,
we can iterate expansion (3.3) to obtain

Rn(x) =
∫

1{v > r}
[∫ r

0
g(w)h(w, v) dw +

∫ ∞

r

g(w)h(w, v) dw

]
× h(v, v1)h(v1, v2) · · ·h(vn, x) dv dv1 · · · dvn

=
∫ r

0
g(w) dw

[∫
1{v > r}h(w, v)h(v, v1)h(v1, v2) · · ·h(vn, x) dv dv1 · · · dvn

]

+
∫
g(w)1{w > r}1{v > r}h(w, v)h(v, v1) · · ·h(vn, x) dw dv dv1 · · · dvn.

The right-hand side is exactly
∫ r

0 g(w)hn+1(w, x) dw + Rn+1(x). Then, by induction, (3.2)
holds.

By the expression for h(v, x),

Rn(x) ≤ sup
v∈[r,x]

g(v)× In(x), (3.4)
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where, writing v0 = v and vn+1 = x,

In(x) =
∫

1{r < v0 < v1 < · · · < vn < x}
n∏
i=0


(vi+1 − vi)

vi+1
dvi .

Let si = vi − vi−1 for i = 1, . . . , n+ 1. Then vi = x − si+1 − · · · − sn+1, i = 0, . . . , n, and
1{r < v0 < v1 < · · · < vn < x} = 1{all si > 0, s1 + · · · + sn+1 < x − r}. As a result,

In(x) ≤ r−n−1
∫

1{s1 + · · · + sn+1 < x − r}
n+1∏
i=1


(si) dsi .

Lettingµ = ∫ x−r
0 
,ψ(s) = 
(s)1{0 < s < x−r}/µ is a probability density. Let ξ , ξ1, ξ2, . . .

be i.i.d. ∼ψ . Then, by the above inequality and Markov’s inequality, for any t > 0,

In(x) ≤
(
µ

r

)n+1

P{ξ1 + · · · + ξn+1 < x − r}

≤
(
µ

r

)n+1

E[exp{t (x − r − ξ1 − · · · − ξn+1)}]

= et (x−r)
(
µE(e−tξ )

r

)n+1

.

Since E e−tξ → 0 as t → ∞, we can find t > 0 such that µE(e−tξ )/r < 1. Fixing such t
and letting n → ∞, we obtain In(x) → 0. By assumption, supv∈[r,x] g(v) < ∞, so, by (3.4),
Rn(x) → 0. This, together with (3.2) and monotone convergence, yields (3.1).

3.2. Formulation toward rejection sampling

Let g be locally bounded on (0,∞). By Theorem 3.1, for all x > 0,

g(x) = 1{x ≤ r}g(x)+ 1{x > r}
∫ r

0
g(v) dv

[
h(v, x)+

∞∑
k=1

hk(v, x)

]

=
∫ r

0
g(v) dv

[
δ(x − v)+ h(v, x)1{x > r} +

∞∑
k=1

hk(v, x)

]
,

where δ is the delta function and the second equality is due to the fact that hk(v, x) = 0
whenever x ≤ r . Suppose that we know how to sample X conditional on X ≤ r , i.e. from the
density

p(x) = a−1g(x)1{x ≤ r}, (3.5)

where a = ∫ r
0 g. The value of a is often unavailable. Since the support of g is [0,∞), the

conditional density is well defined. Using the above formula, we can rewrite g as

g(x) = a

∫
p(v) dv

[
δ(x − v)+ h(v, x)1{x > r} +

∞∑
k=1

hk(v, x)

]
. (3.6)

The question is how to use (3.6) to sample from g. In the expansion, δ and h should be easy
to handle; however, h1, h2, . . . are defined by integrals. In general, for sampling, it is desirable
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to avoid evaluating integrals. With this in mind, we shall first consider densities of the form

g(x) = a

∫
p(v) dv

[∑
i

∫
qi(v, x,wi)νi(dwi)

]
for some constant a > 0, (3.7)

where the sum on the right-hand side has at most countably many terms, the qi ≥ 0 are known
functions, and the νi are σ -finite measures on some measurable spaces that may be different
from each other. Besides including (3.6) as a special case, the expansion in (3.7) provides more
flexibility for sampling. For example, if the integral that defines hk in (3.6) is complicated
then we may consider using (3.7) to reformulate hk as the sum of several integrals over disjoint
regions that are easier to handle. This perspective will be incorporated into the following
discussion.

4. Rejection sampling

4.1. Procedures for general densities

Rejection sampling is an exact sampling method [13], [18], [19], [27]. Letπ be a density with
respect to a σ -finite measure ν. Suppose that π is specified as π ∝ q, where q ≥ 0 is a known
function. In standard rejection sampling, an ‘instrumental’ density function φ with respect to
ν and a constant C > 0 have to be identified, so that φ can be sampled and q(x) ≤ Cφ(x) for
all x. Then the sampling for π proceeds as follows.

• Keep samplingX ∼ φ andU ∼ Unif(0, 1) independently untilCUφ(X) ≤ q(X). Then
output X.

We now turn to the density in (3.7). Suppose that we can find constants Ci ≥ 0 and
instrumental functions φi(·, ·, ·) ≥ 0 such that, for all v with p(v) > 0 and i,

C :=
∑
i

Ci < ∞, qi(v, ·, ·) ≤ Ciφi(v, ·, ·),

and

φi(v, ·, ·) is a probability density with respect to �× νi,

where � is the Lebesgue measure on R. Under this setup, consider the procedure in the following
algorithm.

Algorithm 4.1. (Rejection sampling for densities of the form (3.7).)

1. Sample Z ∼ p and κ independently, with P{κ = i} = Ci/C.

2. Given Z and κ , sample (X,W) from the density φκ(Z, ·, ·) with respect to �× νκ .

3. Sample U ∼ Unif(0, 1). If CκUφκ(Z,X,W) ≤ qκ(Z,X,W) then output X and stop;
otherwise, go back to step 1 and start a new, independent iteration.

Proposition 4.1. Algorithm 4.1 eventually terminates with probability 1, and its random output
follows g in (3.7).
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Proof. First, by integrating (3.7) over x and Fubini’s theorem,

1 =
∫
g(x) dx

= a

∫
p(v) dv

[∑
i

∫
qi(v, x,wi) dxνi(dwi)

]

≤ a

∫
p(v) dv

[∑
i

Ci

∫
φi(v, x,wi) dx νi(dwi)

]

= aC.

Therefore, C > 0 and the sampling of κ in step 1 is well defined.
Given a measurable set A ⊂ R, for each iteration,

P{X ∈ A is output}
=

∫ ∑
i

P{Z ∈ dv, κ = i} P

{
X ∈ A, U ≤ qi(v,X,W)

Ciφi(v,X,W)

∣∣∣∣ Z = v, κ = i

}

=
∫
p(v) dv

∑
i

Ci

C

[∫
φi(v, x,wi)1{x ∈ A} dx νi(dwi)P

{
U ≤ qi(v, x,wi)

Ciφi(v, x,wi)

}]
.

Because qi(v, x,wi) ≤ Ciφi(v, x,wi), whether or not Ciφi(v, x,wi) is positive,

Ciφi(v, x,wi)P

{
U ≤ qi(v, x,wi)

Ciφi(v, x,wi)

}
= qi(v, x,wi).

As a result,

P{X ∈ A is output} = 1

C

∫
p(v) dv

[∑
i

∫
qi(v, x,wi)1{x ∈ A} dx νi(dwi)

]

= 1

C

∫
A

dx

{∫
p(v) dv

[∑
i

∫
qi(v, x,wi) νi(dwi)

]}

= 1

aC

∫
A

g,

where the last equality is due to (3.7). In particular, letting A = R, for each iteration, the
probability that X is output (and, hence, the procedure stops) is 1/(aC) > 0. This shows that,
on the one hand, in each iteration, P{X ∈ A | X is output} = ∫

A
g and, on the other hand, with

probability 1, the procedure eventually terminates. Because the iterations are independent,
P{X ∈ A at termination} = ∫

A
g. Since this is true for all measurable A, we obtain X ∼ g.

4.2. A procedure for positive i.d. random variables

Let ϕ be a Lévy density with
∫
ϕ = ∞ such that the density g of ID(ϕ) is locally bounded on

(0,∞). Our goal is to sample forϕ. We have in (3.6) an integral series expansion of g in terms of

(t) = tϕ(t) and its conditional version on some (0, r] �= ∅, i.e. p(x) = g(x)1{x ≤ r}/a, with
a = ∫ r

0 g. To apply Proposition 4.1 to the integral series expansion, our working hypothesis in
this section is: for a given r > 0, p can be sampled exactly.
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Observe that in the integral series expansion of g, given v, both h(v, x) and hk(v, x) are
defined in terms of the increments x − v, vi − vi−1. This suggests that we may sample X by
sampling the increments. As noted after (3.7), the domains of the increments may be partitioned
into subregions so that each can be treated conveniently in a certain way.

For k ≥ 1, let �k denote the Lebesgue measure on R
k . Suppose that, for k ≥ 1, we can

find constants Ck1, . . . , Cknk ≥ 0 and measurable instrumental functions φkj (·, ·) on R × R
k ,

j = 1, . . . , nk , such that the following conditions are satisfied. First,

∞∑
k=1

nk∑
j=1

Ckj < ∞. (4.1)

Second, for each v with p(v) > 0 and k ≥ 1,

φkj (v, ·) are probability densities with respect to �k such that {s : φkj (v, s) > 0},
j = 1, . . . , nk, are disjoint (4.2)

and

qk(v, s) := 1{s1 + v > r}
k∏
i=1


(si)

v + s1 + · · · + si
≤

nk∑
j=1

Ckjφkj (v, s). (4.3)

Owing to condition (4.3), φkj should be designed according to 
(s) = sϕ(s). Naturally, it is
desirable to have φkj that are easy to handle. Let

C0 = 1; Ck =
nk∑
j=1

Ckj , k ≥ 1; and C =
∞∑
k=0

Ck.

A rejection sampling procedure for g under this setup is given in the following algorithm.

Algorithm 4.2. (Rejection sampling for a positive i.d. random variable.)

1. Sample Z ∼ p and κ such that P{κ = k} = Ck/C, k ≥ 0.

2. If κ = 0 then output X = Z and stop; otherwise, sample η such that P{η = j} =
Cκj/Cκ, j = 1, . . . , nκ .

3. Given Z, κ , and η, sample S = (S1, . . . , Sκ) from the density φκη(Z, ·).
4. Sample U ∼ Unif(0, 1). If CκηUφκη(Z, S) ≤ qκ(Z, S) then output X = Z + S1 +

· · · + Sκ and stop; otherwise, go back to step 1 and start a new, independent iteration.

Theorem 4.1. Algorithm 4.2 terminates eventually with probability 1, and its random output
follows g in (3.6).

Proof. Given a measurable set A ⊂ R, in each iteration,

P{X ∈ A is output} = P{Z ∈ A, κ = 0} +
∫ ∞∑

k=1

nk∑
j=1

P{Z ∈ dv, κ = k, η = j}Qkj (v),

where

Qkj (v) = P

{
v + S1 + · · · + Sk ∈ A, U ≤ qk(v, S)

Ckjφkj (v, S)

}
, S ∼ φkj (v, ·).
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We have

P{Z ∈ A, κ = 0} = 1

C

∫
1{v ∈ A}p(v) dv

and, for each v with p(v) > 0, k ≥ 1, and j = 1, . . . , nk ,

P{Z ∈ dv, κ = k, η = j} = Ckj

C
p(v) dv.

By (4.2) and (4.3), for each s, if qk(v, s) > 0 then there is exactly one j ∈ {1, . . . , nk} such
that φkj (v, s) > 0, and, conversely, if φkj (v, s) > 0 for some j then qk(v, s) ≤ Ckjφkj (v, s)

and φkl(v, s) = 0 for all l �= j . Thus, if Ckj > 0 then

Qkj (v) =
∫
φkj (v, s)1{v + s1 + · · · + sk ∈ A} P

{
U ≤ qk(v, s)

Ckjφkj (v, s)

}
ds

= 1

Ckj

∫
qk(v, s)1{φkj (v, s) > 0}1{v + s1 + · · · + sk ∈ A} ds,

which leads to

P{Z ∈ dv, κ = k, η = j}Qkj (v)

= p(v) dv

C

∫
qk(v, s)1{φkj (v, s) > 0}1{v + s1 + · · · + sk ∈ A} ds.

If Ckj = 0 then P{Z ∈ dv, κ = k, η = j} = 0 and qk(v, s) = 0 for any s with φkj (v, s) > 0.
Therefore, the above equality still holds. As a result,∫ nk∑

j=1

P{Z ∈ dv, κ = k, η = j}Qkj (v)

= 1

C

∫
p(v) dv

∫
qk(v, s)

nk∑
j=1

1{φkj (v, s) > 0}1{v + s1 + · · · + sk ∈ A} ds

= 1

C

∫
p(v) dv

∫
qk(v, s)1{v + s1 + · · · + sk ∈ A} ds, (4.4)

where the last line is again due to conditions (4.2) and (4.3). Let x = v + s1 + · · · + sk , and,
for 1 ≤ i < k, let vi = v+ s1 + · · · + si . If k = 1 then q1(v, s) = 1{x > r}h(v, x) and, so, by
a change of variable and Fubini’s theorem, the iterated integral (4.4) is equal to

1

C

∫
1{x ∈ A}

[∫
p(v)1{x > r}h(v, x) dv

]
dx.

If k > 1 then it is easy to check that qk(v, s) = 1{v1 > r}h(v, v1) · · ·h(vk−2, vk−1)h(vk−1, x)

and, hence, by a change of variable and Fubini’s theorem, the iterated integral (4.4) is equal to

1

C

∫
p(v) dv

∫
1{x ∈ A}1{v1 > r}h(v, v1) · · ·h(vk−1, x) dv1 · · · dvk−1 dx

= 1

C

∫
1{x ∈ A}

[∫
p(v)hk−1(v, x) dv

]
dx.

Combining the above results and using (3.6), in each iteration, P{X ∈ A is output} =
(aC)−1

∫
A
g. The proof is then completed by following the same argument as in the proof of

Proposition 4.1.
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4.3. Conditional density versus upper truncated Lévy density

We consider several implications of the results in Section 4.2. The statement below follows
directly from Theorem 4.1.

Proposition 4.2. Let X be a strictly positive i.d. random variable with known Lévy density.
Given r > 0, if we can sample X conditional on X ≤ r then we can sample X using
Algorithm 4.2. Conversely, as is well known, if we can sample X then, for any r > 0, we
can sample X conditional on X ≤ r using rejection sampling.

Basically, Proposition 4.2 states that the sampling of an i.d. random variable boils down to
the sampling of its conditional density on some (0, r]. The questions are how to identify such
r and how to sample from the corresponding conditional density.

Proposition 4.3. Let ϕ1 and ϕ2 be Lévy densities with
∫
ϕi = ∞. Suppose that we can find an

r > 0 such that ϕ1 = ϕ2 on (0, r]. Then, provided that we can sample for one of them, we can
sample for the other using Algorithm 4.2.

Proof. By assumption, ϕ1 and ϕ2 share an upper truncated version ψ(t) = ϕ1(t)1{t ≤ r}.
Let Xi ∼ ID(ϕi), i = 1, 2, and Y ∼ ID(ψ). As noted in the introduction, for i = 1, 2, the
density of Xi conditional on Xi ≤ r is identical to that of Y conditional on Y ≤ r . Thus, the
conditional densities of Xi are equal to each other. If we can sample, say, X1, then we can
sample X1 conditional on X1 ≤ r , and, hence, sample X2 conditional on X2 ≤ r . Then from
Proposition 4.2 we can sample X2 by applying Algorithm 4.2 to ϕ2.

The above proof provides the following answer to the question raised before Proposition 4.3.
Given ϕ, find r > 0 and another Lévy density λ which we know how to sample for, such that
ϕ = λ on (0, r]. Sample X ∼ ID(λ) conditional on X ≤ r . The sampled value then follows
the conditional distribution of ID(ϕ) on (0, r].

As a further development along this line, suppose that, instead of sharing a common upper
truncated version, ϕ1 and ϕ2 satisfy

ϕ2(t) = [1 +O(t)]ϕ1(t) as t → 0+. (4.5)

Note that, under the much stronger condition e−b1t ϕ1(t) ≤ ϕ2(t) ≤ eb2t ϕ1(t) for some b1,
b2 ≥ 0, the methods in Section 2 can be used to sample for one ϕi based on the other.

Proposition 4.4. For Lévy densities ϕ1 and ϕ2 that satisfy (4.5) with
∫
ϕi = ∞, if we can

sample for one of them then we can also sample for the other using Algorithm 4.2, with possibly
an extra step of sampling from a compound Poisson distribution.

Proof. Since (4.5) is equivalent to ϕ1(t) = [1 + O(t)]ϕ2(t) as t → 0+, by symmetry,
assume without loss of generality that we can sample for ϕ1. We can find constants a1 ≥ 0,
a2 ≥ 0, and r0 > 0 such that (1 − a1t)ϕ1(t) ≤ ϕ2(t) ≤ (1 + a2t)ϕ1(t) for 0 < t ≤ r0. Fix
b ≥ a1 and 0 < r ≤ r0 such that e−bt ≤ 1 − a1t for 0 < t ≤ r . If a1 = 0, we can just let
b = 0 and r = r0. Define ψ(t) = e−btϕ1(t)1{t ≤ r}. Then it is straightforward to check that
ψ(t) ≤ ϕ2(t)1{t ≤ r}. Let χ(t) = ϕ2(t)− ψ(t). Consider the following procedure.

• Sample X ∼ ID(ψ) and ξ ∼ ID(χ) independently. Return X + ξ .
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From Proposition 4.3 we can sample for ϕ1(t)1{t ≤ r}. Then by exponential tilting we can
sample for ψ(t); see Section 2.2. On the other hand,

0 ≤ χ(t)

= ϕ2(t)1{t ≤ r} − ψ(t)+ ϕ2(t)1{t > r}
≤ (1 + a2t)ϕ1(t)1{t ≤ r} − ψ(t)+ ϕ2(t)1{t > r}
= (1 + a2t − e−bt )ϕ1(t)1{t ≤ r} + ϕ2(t)1{t > r}
≤ (a2 + b)tϕ1(t)1{t ≤ r} + ϕ2(t)1{t > r}.

Therefore, χ ∈ L1(0,∞), giving rise to a compound Poisson distribution.

Finally, note that if ϕ1(t) can be decomposed into

ϕ1(t) = [1 +O(t)]ϕ2(t)+ χ(t),

where ϕ2 is a Lévy density with
∫
ϕ2 = ∞ that we know how to sample for and χ ≥ 0 is

integrable, then by Proposition 4.4 we can also sample for ϕ1.
In subsequent sections, all examples are based on Propositions 4.3 and 4.4. In most of the

examples, the sampling for an upper-truncated Lévy density takes centre stage. This is natural.
A generic approach to the sampling for a Lévy density ϕ is by sampling for ϕ(t)1{t ≤ r}
and ϕ(t)1{t > r} independently. After all, it is ϕ(t)1{t ≤ r} that determines the conditional
density of ID(ϕ) on (0, r], whose sampling is the crucial starting point of Algorithm 4.2. On
the other hand, in principle, as long as we know how to sample from the conditional density,
Algorithm 4.2 can be used whether or not the Lévy density is upper truncated. This observation
is useful sometimes; see Section 5.4 for an example.

4.4. Some corollaries on complexity

The complexity of an algorithm can be measured in many ways (cf. [28]). ForAlgorithm 4.2,
a useful measure is the number of iterations it needs to generate one output.

Proposition 4.5. The number of iterations of Algorithm 4.2 follows the geometric distribution
with mean value C

∫ r
0 g.

Proof. From the last line of the proof of Theorem 4.1, at each iteration, P{X is output} =
(aC)−1 and, by (3.5), a = ∫ r

0 g.

The amount of time required to generate one output is an important measure of complexity (cf.
[13]). Denote by ω the vector of random values sampled in a single iteration of Algorithm 4.2,
including Z, κ , and, provided that κ ≥ 1, η, S, and U . Let D(ω) be the time taken to generate
and process ω. For example, the computations of φκη(Z, S) and qκ(Z, S) in step 4 are part
of the processing of ω. Note that whether or not the procedure stops after the iteration is
completely determined by ω.

Proposition 4.6. Let T denote the total time taken for Algorithm 4.2 to generate a random
output. Then E T = EN × E[D(ω)] = (C

∫ r
0 g)E[D(ω)].

Proof. For k ≥ 1, let ωk denote the vector of random values sampled in iteration k. Then

ωk are i.i.d. ∼ ω. Let N be the number of iterations. Then T = ∑N
k=1D(ωk). Since N is a

stopping time with respect to ω1, ω2, . . . , E T = E[D(ω)] × EN (cf. [7, p. 101]). Then the
result follows from Proposition 4.5.
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5. A general design

5.1. Description of the design

Let ϕ be a Lévy density such that
∫
ϕ = ∞ and the density of ID(ϕ) is locally bounded

on (0,∞). In order to use Algorithm 4.2 to sample for ϕ, we need to find constants Ckj and
instrumental functions φkj satisfying conditions (4.1)–(4.3) that are easy to compute and use.
The following design is immediate from Theorem 4.1.

Proposition 5.1. Let qk be the functions in (4.3). Suppose that there are constants bk ≥ 0 with∑∞
k=1 bk < ∞ and functions q̄k(·, ·) such that qk(v, ·) ≤ q̄k(v, ·) for each v with p(v) > 0 and

bk ≥ sup
p(v)>0

Qk(v) with Qk(v) =
∫
q̄k(v, s) ds.

Then in Algorithm 4.2, we can set nk = 1, Ck1 = bk , and φk1(v, ·) = q̄k(v, ·)/Qk(v) for k ≥ 1.

Remark. Under the above setup, step 4 of Algorithm 4.2 involves a comparison between
U ∼ Unif(0, 1) and ζ := [Qκ(Z)/bκ ]qκ(Z, S)/q̄κ (Z, S), which is hard if Qk(·) is difficult to
compute. However, given ζ , the whole purpose of the comparison is to stop the iteration with
probability ζ . As we show next, alternative methods to stop the algorithm can be found.

5.2. An example on the upper-truncated stable Lévy density

Let α ∈ (0, 1). We consider how to apply Proposition 5.1 to sample for the Lévy density

ϕ(t) = ct−α−11{0 < t ≤ r},
where c, r ∈ (0,∞). It can be shown that the density of ID(ϕ) is smooth and bounded on R

(cf. [33, p. 190]). Let X ∼ ID(ϕ). By the Laplace transform, X ∼ c1/αX′, where X′ has Lévy
density t−1−α1{0 < t ≤ rc−1/α}. Thus, without loss of generality, assume that c = 1 in the
following.

Let λ(t) = t−α−11{t > 0}. The sampling of ID(λ) is well known [10], [13], [21], [32]. This
combined with Proposition 5.1 leads to the following algorithm to sample for ϕ.

Algorithm 5.1. Set b0 = 1 and, for k ≥ 1, bk = αθk�(kα)/�(k) with θ = �(1 − α)/(rαα).

1. Sample Z ∼ ID(λ) conditional on Z ≤ r and κ such that P{κ = k} = bk/
∑
i≥0 bi,

k ≥ 0.

2. If κ = 0 then output X = Z and stop.

3. Sample T1 ∼ Beta(κα, 1 − α) conditional on T1 < Z/r . Set S1 = Z(1/T1 − 1). If
κ > 1 then, sequentially, for i = 2, . . . , κ , sample Ti ∼ Beta((κ − i + 1)α, 1 − α) and
set Si = (Z + S1 + · · · + Si−1)(1/Ti − 1).

4. Sample U ∼ Unif(0, 1) and T ∼ Beta(κα, 1 − α). If Si ≤ r for all i ≤ κ and
U ≤ [(r − rT )/(r − ZT )]α , then output X = Z + S1 + · · · + Sκ and stop; otherwise,
go back to step 1.

Remarks 5.1. (i) In step 3 of Algorithm 5.1, if an Si > r is generated at any time point, we
can immediately terminate the current iteration and start a new one. Although this modification
improves efficiency, for clarity, we do not implement it in what follows.
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(ii) Using the Laplace transform, if r ∈ (0, 1) thenX ∼ r(Y1+· · ·+Ym), wherem = r−α� ≥ 1
and Y1, . . . , Ym are i.i.d. with Lévy density t−α−11{0 < t ≤ r ′}, with r ′ = rm1/α ≥ 1. While
this suggests that it may suffice to consider only r ≥ 1, for now we shall consider any r > 0.

5.2.1. Justification. In step 1 of Algorithm 5.1, it is clear that Z conditional on Z ≤ r is
identically distributed as X conditional on X ≤ r . To justify the sampling of κ , we need some
calculations. For v ∈ (0, r] and s = (s1, . . . , sk), since 
(si) = siϕ(si) = 1{0 < si ≤ r}s−αi ,
by (4.3),

qk(v, s) = 1{s1 + v > r}
k∏
i=1

1{0 < si ≤ r}s−αi
v + s1 + · · · + si

.

To apply Proposition 5.1, let

q̄k(v, s) = 1{s1 + v > r}
k∏
i=1

1{si > 0}s−αi
v + s1 + · · · + si

.

Then qk(v, s) ≤ q̄k(v, s). To obtain Qk(v) = ∫
q̄k(v, s) ds, we use∫ ∞

0

s−α ds

(z+ s)1+β = z−α−β �(1 − α)�(α + β)

�(β + 1)
, z > 0, α ∈ (0, 1), β ≥ 0,

which can be verified by making the change of variable s = z(u−1 −1) and using the properties
of beta functions. Integrating over sk , sk−1, . . . , s1, we obtain, for k ≥ 1 and j = 1, . . . , k− 1,∫

q̄k(v, s) dsk · · · dsk−j+1 =
j∏
i=1

�(1 − α)�(iα)

�(1 + (i − 1)α)
1{s1 + v > r}

(k−j∏
i=1

1{si > 0}s−αi
v + s1 + · · · + si

)

× 1

(v + s1 + · · · + sk−j )jα
(5.1)

and

Qk(v) =
k−1∏
i=1

�(1 − α)�(iα)

�(1 + (i − 1)α)

∫
1{s1 + v > r} s−α1 ds1

(v + s1)1+(k−1)α

=
k−1∏
i=1

�(1 − α)�(iα)

�(1 + (i − 1)α)

∫ ∞

0

(r − v + u)−α du

(r + u)1+(k−1)α
, (5.2)

making the change of variable s1 = r − v + u. It follows that

Qk(v) ≤ Qk(r) = r−αk
k∏
i=1

�(1 − α)�(iα)

�(1 + (i − 1)α)
= r−αk[�(1 − α)]k�(kα)

αk−1�(k)
= αθk�(kα)

�(k)
.

Clearly, bk = Qk(r). As 0 < α < 1,
∞∑
k=1

bk =
∞∑
k=1

αθk

(k − 1)!
∫ ∞

0
xkα−1e−x dx

= α

∫ ∞

0
θxα−1e−x

∞∑
k=0

θkxαk

k! dx

= α

∫ ∞

0
θxα−1e−xeθx

α

dx
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=
∫ ∞

0
ez−(z/θ)1/α dz

=
∫ ∞

0
exp

{
z− r

[
αz

�(1 − α)

]1/α}
dz

< ∞. (5.3)

Then by Proposition 5.1 we obtain the sampling of κ in step 1.
Step 2 directly follows from the general procedure in Algorithm 4.2. To justify step 3,

according to Algorithm 4.2, given Z ∈ (0, r] and κ ≥ 1, we need to sample from the density

φκ(Z, s) = q̄κ (Z, s)

Qκ(Z)
= C1{s1 + Z > r}

κ∏
i=1

1{si > 0}s−αi
Z + s1 + · · · + si

,

where C is the normalizing constant. The exact value of C is not important and may change
from line to line in the following. Let S = (S1, . . . , Sκ) ∼ φκ(Z, ·). From (5.1), S1 has density
C1{x > r − Z}x−α(Z + x)−1−(κ−1)α at x ∈ R. By calculation, Z/(Z + S1) has density
C1{0 < x < Z/r}(1 − x)−αxκα−1, the same as that of T1 ∼ Beta(κα, 1 − α) conditional on
T1 < Z/r . Thus, S1 can be sampled as Z(1/T1 − 1). For i > 1, conditional on S1, . . . , Si−1,
it can likewise be seen that Si has density C1{x > 0}x−α(Z + S1 + · · · + Si−1 + x)−1−(κ−i)α
and, thus, can be sampled as (Z+S1+· · ·+Si−1)(1/Ti−1), withTi ∼ Beta((κ−i+1)α, 1−α).
Step 3 is then established.

Finally, as remarked after Proposition 5.1, given Z, κ , and S = (S1, . . . , Sκ), all we need
to do in step 4 is to stop the iteration with probability [Qκ(Z)/bκ ]qκ(Z, S)/q̄κ (Z, S), which
is equal to 1{all Si ≤ r}Qκ(Z)/Qκ(r). However, Qκ(Z) is not easy to compute. To get
around the problem, make the change of variable u = r(t−1 − 1) in (5.2). Then we obtain
Qκ(Z)/Qκ(r) = E ξ , where ξ = [(r − rT )/(r −ZT )]α with T ∼ Beta(κα, 1 −α). Note that
0 ≤ ξ ≤ 1. Since E ξ = P{U ≤ ξ} for any ξ independent of U with P{0 ≤ ξ ≤ 1} = 1, step 4
is justified.

5.2.2. Complexity. Let N be the number of iterations required by Algorithm 5.1 to sample one
X ∼ ID(ϕ). By Proposition 4.5, EN = P{X ≤ r} ∑

k≥0 bk . Let χ(t) = t−α−11{t > r} and
ξ ∼ ID(χ) be independent of X. Then Z ∼ X + ξ and P{X ≤ r} = P{Z ≤ r}/P{ξ = 0}.
The expression of P{Z ≤ r} is known [10], while P{ξ = 0} = exp{−∫ ∞

r
χ} = exp{−r−α/α}.

Together with (5.3) this gives

EN = exp

{
r−α

α

}
P{Z ≤ r}

(
1 +

∫ ∞

0
exp

{
z− r

(
αz

�(1 − α)

)1/α}
dz

)
.

By Proposition 4.6, E T = ED × EN , where T is the amount of time required to sample
one X ∼ ID(ϕ) and D is the amount of time required to complete a single iteration. Each
iteration has to sample (i) one Z ∼ ID(λ) conditional on Z ≤ r , (ii) one κ from a distribution
that depends on r , and (iii) provided that κ ≥ 1, one T1 ∼ Beta(κα, 1 − α) conditional on
T1 ≤ Z/r and, for each i = 1, . . . , κ , a value from Beta(iα, 1 − α). These samplings account
for most ofD. Denote byD1(r) the amount of time required for the conditional sampling ofZ,
by D2(r) the amount of time required for the sampling of κ , and, for k ≥ 1 and z ∈ (0, 1], by
D3(k, z) the amount of time required to sample ζ ∼ Beta(kα, 1 − α) conditional on ζ ≤ z. In
AppendixA we show that it is possible to bound ED1(r), ED2(r), and ED3(k, z) uniformly for
r > 0, k ≥ 1, and z > 0. Consequently, ED is of the same order as

∑
k≥0(1 + k)bk/

∑
k≥0 bk .
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It is easy to see that, as r → ∞, EN → 1 and E T → ED1(∞), the expected amount of time
to sample oneZ ∼ ID(λ). On the other hand, as r → 0, it can be shown that EN � exp{r−α/α},
where, for two functions f and g, f � g stands for f = O(g) and g = O(f ); see Appendix A.
Therefore, if we directly apply Algorithm 5.1 to ϕ(t) = t−α−11{t ≤ r} then EN is extremely
large for small r . However, by Remarks 5.1(ii) we can instead sample O(r−α) i.i.d. random
variables with Lévy density t−α1{t ≤ r ′} for some r ′ ≥ 1 and then take their weighted sum.
This way, both EN and E T are lowered to O(r−α).

5.3. An application to a class of i.d. distributions

As an application of the result in Section 5.2, consider Lévy densities of the form

ϕ(t) = ψ(t)(et − 1)−α−11{t > 0}, α ∈ (0, 1),

where ψ(t) ≥ 0 is a measurable function on (0,∞) such that
∫ ∞
c
ψ(t)e−(α+1)t dt < ∞ for

any c > 0 and ψ(t) = 1 +O(t) as t → 0+. An algorithm to sample for ϕ is as follows.

Algorithm 5.2. Set r ∈ (0,∞] and β < α + 1 such that ψ(t) ≥ eβt for t ∈ (0, r]. Note that
r can be ∞.

1. Keep sampling (U,Z) until U ≤ e(β−α−1)Z , where U ∼ Unif(0, 1) and Z ∼ ID(ϕ1)

with ϕ1(t) = t−α−11{t ≤ r} are independent.

2. Sample ξ ∼ ID(χ), with χ(t) = ϕ(t)− e(β−α−1)tϕ1(t) ≥ 0 being integrable. Return
X = Z + ξ .

If ψ(t) = ect , where c < α + 1, then ID(ϕ) belongs to Lamperti-stable distributions [9],
which arise from positive self-similar Markov processes and related processes (cf. [5], [9],
[24]–[26]). In this case, we can simply set r = ∞ and β = c. Although the sampling of
Lamperti-stable distributions with α ∈ (0, 1) is quite simple, somewhat surprisingly, it seems
that it has not been explicitly stated in the literature.

More generally, if there exists a c < α + 1 such that ect ≤ ψ(t) for all t > 0 then we can
set r = ∞ and β = c. However, it is easy to find simple functions ψ such that, for any c,
inf t>0[e−ctψ(t)] = 0; for example, e−t2 , et [1 − sin(t)], and (1 − t)2. For these functions, we
need to select r < ∞ and β < α + 1 accordingly.

5.3.1. Justification. Since ψ(t) = 1 +O(t) as t → 0+, we can indeed find r and β to meet the
requirement ofAlgorithm 5.2. From Section 2, the random variableZ sampled in step 1 has Lévy
density e(β−α−1)t t−α−11{t ≤ r}. From the choices of r and β, if t > r then χ(t) = ϕ(t) ≥ 0,
and if 0 < t ≤ r then, as 1 − e−t < t for all t > 0,

χ(t) = e−(α+1)t [ψ(t)(1 − e−t )−α−1 − eβt t−α−1]
≥ e(β−α−1)t [(1 − e−t )−α−1 − t−α−1]
> 0,

showing that χ is a Lévy density. Following the proof of Proposition 4.4, it can be shown that
χ is integrable. Thus, the correctness of step 2 is established.

5.3.2. Complexity. We consider steps 1 and 2 of Algorithm 5.2 separately. By Proposition 4.6,
the expected amount of time required to complete step 1 is E T ×EN , where T is the amount of
time taken to sample one observation from ID(ϕ1) and N is the total number of iterations
required by the step. The analysis on E T is identical to that given in Section 5.2. Although, since
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in each iteration the probability of acceptance is P{U ≤ e(β−α−1)Z} = E(e(β−α−1)Z) =
exp{∫ (e(β−α−1)t − 1)ϕ1(t) dt}, we have EN = exp{∫ r0 (1 − e(β−α−1)t )t−α−1 dt} ≤ exp{(α +
1 − β)r1−α/(1 − α)}.

In step 2, ξ can be sampled as the sum of the coordinates of the points in a Poisson process
with intensityχ . LetK be the number of points in the process. Then the expected amount of time
required to complete step 2 is of the same order as EK = ∫

χ = ∫
(ψ(t)− e(β−α−1)t t−α−1 ×

1{t ≤ r}) dt .

5.4. A theoretical application

As a theoretical application of Proposition 5.1, we evaluate, for c > 0 and r > 0,

B :=
∞∑
k=1

ck E

( k∏
i=1

1

r + S1 + · · · + Si

)
, S1, S2, . . . i.i.d. ∼ Exp(1).

Recall that the Gamma(c, 1) distribution has density g(x) = xc−1e−x1{x > 0}/�(c) and
Lévy density ϕ(t) = ct−1e−t1{t > 0} (cf. [30]). Using the design in Proposition 5.1 with

(t) = tϕ(t) = ce−t1{t > 0}, Algorithm 4.2 can be reformulated as follows.

Algorithm 5.3. Define, for k ≥ 1, 0 < v ≤ r , and s = (s1, . . . , sk), si > 0,

qk(v, s) = 1{s1 + v > r}
k∏
i=1


(si)

v + s1 + · · · + si
= 1{s1 + v > r}

k∏
i=1

ce−si1{si > 0}
v + s1 + · · · + si

.

Set φk(v, s) = qk(v, s)/Qk(v), where Qk(v) = ∫
qk(v, s) ds. Set b0 = 1 and, for k ≥ 1,

bk = Qk(r). (We will show that Qk(r) > Qk(v) for all v ∈ (0, r).)
1. Sample Z ∼ Gamma(c, 1) conditional on Z ≤ r and κ from {0, 1, 2, . . .} such that

P{κ = k} = bk/
∑∞
i=0 bi .

2. If κ = 0 then output X = Z and stop; otherwise, continue.

3. Given Z and κ ≥ 1, sample S = (S1, . . . , Sκ) from the density φk(Z, ·).
4. SampleU ∼ Unif(0, 1). If bkUφk(Z, S) ≤ qk(Z, S) then outputX = Z+S1 +· · ·+Sκ

and stop; otherwise, go back to step 1.

Algorithm 5.3 cannot be used to actually sample from Gamma(c, 1), since its step 1 relies
on the sampling from Gamma(c, 1) itself. Nevertheless, by Proposition 5.1, its random output
X follows Gamma(c, 1). We use this fact to compute B.

First, we need to obtain Qk(v). Let s′1 = s1 + v − r . Then

qk(v, s) = ck1{s′1 > 0, all si > 0}e−(r−v)−(s′1+s2+···+sk)
k∏
i=1

1

r + s′1 + s2 + · · · + si
.

Integrating over s′1, s2, . . . , sk , it follows that, for k ≥ 1,

Qk(v) = e−(r−v)Qk(r), with Qk(r) = ck E

( k∏
i=1

1

r + S1 + · · · + Si

)
. (5.4)
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In each iteration, if κ = 0 then the algorithm stops and outputs X = Z. This is the case
only where the algorithm outputs a value in (0, r]. If κ ≥ 1 then, in order for the algorithm
to stop, there has to be bκUφκ(Z, S) ≤ qκ(Z, S) in step 4. Since the event is equivalent to
U ≤ Qκ(Z)/bκ = Qκ(Z)/Qκ(r), by (5.4), it has probability e−(r−Z) conditional on Z and κ .
Observe that B = ∑∞

k=1Qk(r). Consequently,

P{X ≤ r} = P{κ = 0}
P{κ = 0} + ∑∞

k=1 P{κ = k} E(e−(r−Z) | Z ≤ r)
= 1

1 + B E(e−(r−Z) | Z ≤ r)
.

Since X ∼ Z, P{X ≤ r} = P{Z ≤ r}. Then, after some calculation,

B = P{Z > r}
E(e−(r−Z)1{Z ≤ r}) = c�(c)r−cer P{Z > r} =

∫ ∞

1
er(1−t1/c) dt.

6. Another general design

6.1. Description of the design

Let ϕ be a Lévy density such that
∫
ϕ = ∞ and the density of ID(ϕ) is locally bounded on

(0,∞). In this section we consider a design for Algorithm 4.2 that employs two φkj to handle
each qk, k ≥ 1. In contrast, the design in Section 5 uses one φkj for each qk . Let r > 0 be fixed
such that we know how to sample from the conditional density of ID(ϕ) on (0, r]. By upper
truncating ϕ if necessary, assume that

∫

 < ∞, where 
(t) = tϕ(t). Moreover, by decreasing

r if necessary, assume that
∫ r
v
ϕ > 0 for any v < r . Indeed,F(s) = ∫ r

s
ϕ is differentiable almost

everywhere and, as
∫ r

0 ϕ = ∞, the set of s ∈ (0, r] with F ′(s) = −ϕ(s) < 0 is nonempty [31].
We can reset r to any such s if necessary. Suppose that we can find a suitable Lévy density λ
with support in [0,∞) such that

ϕ(t) ≤ λ(t), M :=
∫
tλ(t) dt < ∞. (6.1)

While λ = ϕ clearly satisfies (6.1), to facilitate sampling, we sometimes need λ �= ϕ. Let

ψ(t) = tλ(t)

M
.

Then ψ is a probability density with support in [0,∞). With a little abuse of notation, for
a > 0, denote by ψ(· | V > a) the density of a generic variable V ∼ ψ conditional on V > a.
By the assumptions on ϕ and λ, for any a < r , P{V > a} > 0 and, hence, the conditional
density is well defined. For α ∈ (0, 1), denote by θα the αth quantile of the distribution with
density ψ . Then, for V ∼ ψ , P{V < θα} = α. Define mk = �k/2� for k ≥ 1.

Proposition 6.1. Fix α ∈ (0, 1
2 ] with 2(M/r)

√
α(1 − α) < 1. Define

N(s) =
k∑
i=2

1{si < θα}, s = (s1, . . . , sk), k ≥ 1.

Then Algorithm 4.2 can sample for ϕ if we set, given v ∈ (0, r), for k = 1 and s ∈ R,

n1 = 1, C1 = C11 = M

r
, φ11(v, s) = ψ(s | V > r − v), (6.2)
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and, for k > 1 and s = (s1, . . . , sk),

nk = 2, Ck1 =
(
M

r

)k
[4α(1 − α)]mk , Ck2 = (M/r)k(r/θα)

mk

mk! , (6.3)

φk1(v, s) = D−1
k1 ψ(s1 | V > r − v)

k∏
i=2

ψ(si)1{N(s) ≥ mk}, (6.4)

φk2(v, s) = D−1
k2 ψ(s1 | V > r − v)

k∏
i=2

ψ(si)1{N(s) < mk}, (6.5)

where Dk1 = P{ηk ≥ mk} and Dk2 = P{ηk < mk}, with ηk ∼ Binomial(k − 1, α).

Remarks 6.1. (i) In step 1 of Algorithm 4.2 we need to sample κ . From (6.2) and (6.3),
P{κ = 1 | mκ = 0} = 1 and, for k ≥ 1, P{κ = 2k | mκ = k} = 1 − P{κ = 2k + 1 | mκ =
k} = 1/(1+M/r). Therefore, oncemκ is sampled, κ can be sampled conditional onmκ . On the
other hand, mκ follows a mixture of the degenerate distribution at 0, a geometric distribution,
and a Poisson distribution, with the latter two conditional on positive integers. It is known
that, using rejection sampling, the distributions can be sampled with the expected number of
iterations uniformly bounded for all the parameters involved [13], [14], [19].

(ii) In step 3 of Algorithm 4.2 we need to sample from φkj . As seen below, h(s2, . . . , sk) =
D−1
k1

∏k
i=2 ψ(si)1{N(s) ≥ mk} is a density. Given v ∈ (0, r], to sample from φk1(v, ·), we can

sample S1 ∼ ψ(· | V > r − v) and T = (S2, . . . , Sk) ∼ h independently. To sample T , first
sample ηk ∼ Binomial(k − 1, α) conditional on ηk ≥ mk; then, given ηk , sample ξ1, . . . , ξk−1
independently such that ξi ∼ ψ(· | V < θα) for i ≤ ηk and ξi ∼ ψ(· | V ≥ θα) for i > η;
finally, set T as a random permutation of ξ1, . . . , ξk−1. We can sample from φk2(v, ·) similarly,
except that we should sample ηk ∼ Binomial(k − 1, α) conditional on ηk < mk instead.

(iii) In step 4 in Algorithm 4.2 we need to check whether, given U ∼ Unif(0, 1) and S ∼
φkj (v, ·), CkjUφkj (v, S) ≤ qk(v, S). It can be seen that the inequality is equivalent to

U ≤ Akj P{V > r − v}
k∏
i=1

rϕ(Si)/λ(Si)

v + S1 + · · · + Si
, (6.6)

where A11 = 1, Ak1 = Dk1[4α(1 − α)]−mk , Ak2 = Dk2mk! (θα/r)mk for k ≥ 2, and V ∼ ψ .
Note that, since S is a sampled value, factors such as 1{S1 > r − v} and 1{N(s) ≥ mk} are
unnecessary in (6.6) as they are equal to 1 (with probability 1).

(iv) Let N denote the number of iterations required by Algorithm 4.2 under the above design.
Then, by Proposition 4.5,

EN ≤ 1 + M

r
+

∞∑
k=2

((
M

r

)k
[4α(1 − α)]mk + (M/r)k(r/θα)

mk

mk!
)

=
(

1 + M

r

)(
4M2α(1 − α)/r2

1 − 4M2α(1 − α)/r2 + eM
2/(rθα)

)
. (6.7)

Proof of Proposition 4.1. We first check that φkj satisfies condition (4.2). The proof for φ11
is trivial. Let k ≥ 2. Since ψ(· | V > r − v) is a probability density and N(s) depends only
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on s2, . . . , sk ,

∫
ψk1(v, s) ds = D−1

k1

∫ k∏
i=2

ψ(si)1{N(s) ≥ mk} ds2 · · · dsk = D−1
k1 P{ζ ≥ mk},

where ζ = ∑k
i=2 1{Si < θα}, with Si i.i.d. ∼ ψ . Since ζ ∼ Binomial(k − 1, α), the above

integral is 1 and ψk1(v, ·) is a probability density. Similarly, ψk2(v, ·) is a probability density.
Since ψk1(v, s) and ψk2(v, s) clearly cannot both be positive, condition (4.2) is satisfied.

We now check that condition (4.3) is satisfied. By definition, 
(t) ≤ tλ(t) = Mψ(t). For
k = 1 and v with p(v) > 0, as v ≤ r ,

q1(v, s) = 1{s + v > r} 
(s)
v + s

≤ 1{s + v > r}
(s)
r

≤ M1{s > r − v}ψ(s)
r

≤ M

r
ψ(s | V > r − v).

Therefore, we can choose n1, C11, and φ11 as in (6.2). For k > 1, by (4.3),

qk(v, s) = 1{s1 + v > r}
k∏
i=1


(si)

v + s1 + · · · + si

≤ 1{s1 + v > r}
(s1)
r

k∏
i=2


(si)

r + s2 + · · · + si

≤ Mkψ(s1 | V > r − v)

r
ψ̄(s), (6.8)

where

ψ̄(s) =
k∏
i=2

ψ(si)

r + s2 + · · · + si
.

First, ifN(s) ≥ mk then, as ψ̄(s) ≤ r−k+1 ∏k
i=2 ψ(si)1{N(s) ≥ mk}, and by (6.4) and (6.8),

qk(v, s) ≤
(
M

r

)k
ψ(s1 | V > r − v)

k∏
i=2

ψ(si)1{N(s) ≥ mk} = Dk1

(
M

r

)k
φk1(v, s).

Since ηk ∼ Binomial(k − 1, α), by the Markov inequality, for t ≥ 0,

Dk1 = P{ηk ≥ mk} ≤ E(et (ηk−mk)) = (1 − α + αet )k−1e−tmk ≤ (1 − α + αet )2mke−tmk .

Letting t = ln(1/α− 1), which is nonnegative since α ≤ 1
2 ,Dk1 ≤ [4α(1 − α)]mk . Thus, with

Ck1 as in (6.3), qk(v, s)1{N(s) ≥ mk} ≤ Ck1φk1(v, s).
Second, suppose that N(s) < mk . For each i, r + s2 + · · · + si ≥ r + niθα , where ni is the

total number of 2 ≤ j ≤ i with sj ≥ θα . If the sij , j = 1, . . . , k− 1 −N(s), are the members
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among s2, . . . , sk that are no less than θα , then nij = j . As a result,

ψ̄(s) =
∏
si<θα

1

r + s2 + · · · + si

∏
si≥θα

1

r + s2 + · · · + si

k∏
i=2

ψ(si)

≤ r−N(s)
k−1−N(s)∏
j=1

1

r + jθα

k∏
i=2

ψ(si)

= r−(k−1)
k−1−N(s)∏
j=1

1

1 + jθα/r

k∏
i=2

ψ(si)

≤ r−(k−1)
mk∏
j=1

1

1 + jθα/r

k∏
i=2

ψ(si)

≤ r−(k−1)(r/θα)
mk

mk!
k∏
i=2

ψ(si),

where the second inequality follows since k − 1 −N(s) ≥ mk . Therefore, by (6.5) and (6.8),

qk(v, s) ≤ Mkψ(s1 | V > r − v)

r

r−(k−1)(r/θα)
mk

mk!
k∏
i=2

ψ(si) = Ck2Dk2φk2(v, s).

Since Dk2 ≤ 1, (4.3) is satisfied.
From the selection of α,

∑
k Ck1 < ∞. It is straightforward to verify that

∑
k Ck2 < ∞.

Therefore, (4.1) is satisfied. Thus, Algorithm 4.2 can be used to sample for ϕ.

6.2. An application to Vervaat perpetuity

We begin with some background. AVervaat perpetuity with parameter c > 0 is an i.d. random
variable Z with Lévy density ct−11{0 < t ≤ 1} (cf. [36]). From the Laplace transform, rZ
has Lévy density ct−11{0 < t ≤ r}. Efficient sampling methods for Vervaat perpetuities are
available [16], [17], [22]. For the algorithm in [17], it was shown that, as c → ∞, the expected
number of iterations is exp(c ln c + O(c)) as c → ∞, while, as c → 0, the expected number
of iterations tends to 1. In [16], for the special case c = 1, an algorithm was given whose
expected number of iterations was no greater than 2.32. These sampling procedures all use the
coupling-from-the-past paradigm for Markov chains [29]. Since a Vervaat perpetuity Z with
parameter c > 1 has the same distribution as the sum of �c� independent Vervaat perpetuities
with parameter 1 and, when c is noninteger, one independent Vervaat perpetuity with parameter
c − �c�, the results imply that Z can actually be sampled with the expected total number of
iterations no greater than 2.32�c� + c0, where c0 is a constant.

We show that, by using the design in Proposition 6.1, the expected number of iterations
required to sample a Vervaat perpetuity can be arbitrarily close to 1. As a trade-off, we have
to sample from an increasingly complicated compound Poisson distribution. However, the
treatment of the latter is standard.

The idea is quite simple. First, as noted above, to sample for ct−11{0 < t ≤ 1}, we can
instead sample for ct−11{0 < t ≤ r} and return ζ/r , where ζ is the sampled value. Here, the
artificial parameter r is introduced to control the expected number of iterations. Second, we
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decompose ct−11{0 < t ≤ r} = ϕ(t)+ χ(x), where

ϕ(t) = ct−1e−t1{0 < t ≤ r}, χ(t) = ct−1(1 − e−t )1{0 < t ≤ r}.
We then apply Proposition 6.1 to ϕ. It is perhaps not surprising that, when r is large, the
expected number of iterations needed is close to 1. Intuitively, this is because ID(ϕ) is so close
to Gamma(c, 1) that, with large probability, a single step to sample from Gamma(c, 1) would
be enough. The Lévy density χ on the other hand gives rise to a compound Poisson distribution.
The algorithm we shall verify is the following.

Algorithm 6.1. Set r = Lmax(c2, 1) and ϕ, χ accordingly, where L ≥ 1 is a parameter. Set

M = c(1 − e−r ), θ = ln 2 − ln(1 + e−r ).

Set C0 = 1, C1 = C11 = M/r , and, for k ≥ 2, set mk = �k/2� and

Ck1 =
(
M

r

)k
, Ck2 = (M/r)k(r/θ)mk

mk! , Ck = Ck1 + Ck2.

Set C = ∑∞
k=0 Ck . Set A11 = 1 and, for k ≥ 2, letting τ ∼ Binomial(k − 1, 1

2 ), set

Ak1 = P{τ ≥ mk}, Ak2 = P{τ < mk}mk!
(
θ

r

)mk
.

1. Sample Z ∼ Gamma(c, 1) conditional on Z ≤ r and κ such that P{κ = k} = Ck/C.

2. If κ = 0 then set X = Z and go to step 5. If κ = 1, set η = 1. Otherwise, sample
η ∈ {1, 2} such that P{η = j} = Cκj/Cκ .

3. Sample S1 ∼ Exp(1) conditional on S1 ∈ (r − Z, r). If κ > 1 then carry out the
following steps.

(a) If η = 1 then sample τ ∼ Binomial(κ − 1, 1
2 ) conditional on τ ≥ mκ ; otherwise,

sample τ ∼ Binomial(κ − 1, 1
2 ) conditional on τ < mκ .

(b) Sample S2, . . . , Sκ independently such that, for i ≤ τ , Si ∼ Exp(1) conditional
on Si < θ and, for i > τ , Si ∼ Exp(1) conditional on θ ≤ Si < r . Then randomly
permute S2, . . . , Sκ .

4. Sample U ∼ Unif(0, 1). If

U ≤ Aκη
eZ − 1

er − 1

κ∏
i=1

r

Z + S1 + · · · + Si

then set X = Z + S1 + · · · + Sκ ; otherwise, go back to step 1.

5. Sample ξ ∼ ID(χ). Then return (X + ξ)/r .

6.2.1. Justification. It suffices to show that steps 1–4 of Algorithm 6.1 indeed sample for ϕ. The
sampling of Z in step 1 follows from the fact that Gamma(c, 1) has Lévy density ct−1e−t ×
1{t > 0}. To implement the design in Proposition 6.1, let λ = ϕ in (6.1). Then tλ(t) =
ce−t1{0 < t ≤ r}, giving M = ∫

tλ(t) dt = c(1 − e−r ), as in the setup of the algorithm, and
ψ(t) = e−t1{0 < t ≤ r}/(1 − e−r ). Note that ψ is the density of W ∼ Exp(1) conditional
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onW ≤ r . By letting α = 1
2 , θ in the setup of the algorithm is the median θα of ψ . Moreover,

since 2(M/r)
√
α(1 − α) = M/r < c/r ≤ 1/L ≤ 1, (M, α) = (M, 1

2 ) satisfies the very first
assumption of Proposition 6.1. The values of Ck and Ckj are set according to (6.2) and (6.3).
Then steps 1 and 2 follow from the general procedure in Algorithm 4.2. By (6.2), for any
v ∈ (0, r) and s,

φ11(v, s) = 1{r − v < s < r}e−s

e−(r−v) − e−r ,

and, by (6.4) and (6.5), for k ≥ 2,

φk1(v, s) = D−1
k1 φ11(v, s1)

k∏
i=2

e−si1{0 < si ≤ r}
1 − e−r 1{N(s) ≥ mk},

φk2(v, s) = D−1
k2 φ11(v, s1)

k∏
i=2

e−si1{0 < si ≤ r}
1 − e−r 1{N(s) < mk},

whereDk1 = 1 −Dk2 = P{ηk ≥ mk} with ηk ∼ Binomial(k − 1, 1
2 ). From Remarks 6.1(ii), it

can be seen that step 3 samples from φ11(v, ·), φk1(v, ·), and φk2(v, ·). Finally, step 4 follows
from (6.6).

6.2.2. Complexity. We consider the samplings of X and ξ separately. Let N and T be
respectively the number of iterations and amount of time required to generateX. Since α = 1

2 ,
by (6.7),

1 ≤ EN ≤ C =
(

1 + M

r

)(
M2/r2

1 −M2/r2 + eM
2/(rθα)

)
.

From the facts that M/r < c/r ≤ 1/L and M2/(rθα) < c2/(rθα) < 1/(Lθα), it is seen that
EN → 1 as L → ∞.

By Proposition 4.6, E T = ED× EN , whereD is the amount of time required to complete
an iteration. Each iteration has to sample (i) one Z ∼ Gamma(c, 1) conditional on Z ≤ r ,
(ii) one κ , and (iii) provided that κ ≥ 1, κ observations from various conditional distributions
of Exp(1). Denote by Di, i = 1, 2, 3, the amounts of time required by the samplings. Then
D ≈ D1+D2+D3. First, if we use rejection sampling for (i), the expected number of iterations
is mc = 1/P{Z ≤ r}, with Z ∼ Gamma(c, 1). Since r ≥ max(c2, 1) and both the mean and
variance ofZ are equal to c, it is not hard to see thatmc is bounded for c > 0. On the other hand,
the expected amount of time required to sample one Z can be uniformly bounded for c [13].
Then ED1 = O(mc) = O(1). Second, the sampling of κ is standard, with ED2 uniformly
bounded; see Remarks 6.1(i). Finally, since ζ ∼ Exp(1) conditional on 0 ≤ a < ζ < b ≤ ∞
can be sampled as−ln[(1−U)e−a+Ue−b]withU ∼ Unif(0, 1), then E(D3 | κ) is proportional
to κ , and, thus, ED3 is of the same order as C1/C + ∑

k≥2 k(Ck1 + Ck2)/C, which is o(1) as
r → 0.

Now consider the sampling for χ . For t ∈ [0, 1], χ(t) ≤ c; for t ∈ [1, r], χ(t) ≤ c/t ; and,
for t > r , χ(t) = 0. It is then easy to sample a Poisson process with intensity χ . The sum of
the coordinates of the sampled points follows ID(χ). The number of points follows a Poisson
distribution with mean∫ r

0
χ(t) dt ≤

∫ 1

0
c dt +

∫ r

1
ct−1 dt = c(1 + ln r) = c[1 + lnL+ ln max(c2, 1)].

Therefore, even for quite large L and c, the amount of time required to sample for χ is
manageable.
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6.3. Another application

Fix c > 0. We now apply Proposition 6.1 to sample for the Lévy density

ϕa(t) = ce−t (1 − ta)1{0 < t ≤ r}
t ln(1/t)

, a > 0.

Based on the sampling for ϕa , we can sample for a variety of Lévy densities ϕ, such as ϕ(t) =
c(1−ta)1{0 < t ≤ r}/[t ln(1/t)], provided that ϕ−ϕa ≥ 0 is integrable. Also, for b ∈ (a,∞],

ϕb(t)− ϕa(t) = ce−t (ta−1 − tb−1)1{0 < t ≤ r}
ln(1/t)

is the Lévy density of a compound Poisson distribution. Therefore, if we can sample for ϕa for
0 < a ≤ 1 then we can do so for all 0 < a ≤ ∞. Thus, we shall consider only 0 < a ≤ 1.

For simplicity, let r ≤ e−c. This condition is restrictive if we directly sample for ϕa with
large c. However, note that ID(ϕa) can be represented by Y1 + · · · + Ym, where the Yi are i.i.d.
and each have Lévy density (c/m)e−t (1 − ta)1{0 < t ≤ r}/[t ln(1/t)]. By sampling instead
for the latter with large enough m, the condition on r becomes mild.

Let W be an i.d. random variable with Lévy density

ψ(t) = c�(t)1{0 < t ≤ a}.

We will see below that W can be sampled using the sampling of a Vervaat perpetuity. An
algorithm to sample for ϕa is given next.

Algorithm 6.2. Set cr = c/ln(1/r) and M = cr(1 − e−r ). Then set θ , Ck , Ckj , C, and Akj
exactly as in the algorithm in Section 6.2.

1. Keep sampling (W,Z) until Z ≤ r , where, conditional on W , Z ∼ Gamma(W, 1).
Sample κ such that P{κ = k} = Ck/C.

2. If κ = 0 then outputX = Z and stop. If κ = 1, set η = 1. Otherwise, sample η ∈ {1, 2}
such that P{η = j} = Cκj/Cκ .

3. Sample (S1, . . . , Sκ) exactly as in step 3 of Algorithm 6.1.

4. Sample U ∼ Unif(0, 1). If

U ≤ Aκη
eZ − 1

er − 1

κ∏
i=1

cr(1 − Sai )/ln(1/Si)

v + S1 + · · · + Si

then output X = Z + S1 + · · · + Sκ and stop. Otherwise, go back to step 1.

An algorithm to sample W is as follows. Recall that 0 < a ≤ 1.

1. Keep sampling (U, V ) until U ≤ e−3aV/2, where U and V are independent, such that
U ∼ Unif(0, 1) and V > 0 is a Vervaat perpetuity with parameter c.

2. Sample ξ ∼ ID(χ), with χ(t) = ψ(t)− ct−1e−3t/21{0 < t ≤ a}. Return aV + ξ .
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6.3.1. Justification. First, consider Algorithm 6.2. Let G(s) be a gamma process independent
of W with G(s) ∼ Gamma(s, 1), s > 0. Denote by gs the density of G(s). By the properties
of subordination (cf. [33]), G(W) is i.d. with Lévy density∫

gs(t)c�(s)1{0 < s ≤ a} ds = c

∫ a

0
t s−1e−t ds = ce−t (1 − ta)

t ln(1/t)
, t > 0.

Since Z ∼ G(W), the sampling of Z in step 1 follows. Since r ≤ e−c, by letting cr =
c/ln(1/r), we obtain ϕa(t) ≤ cr t

−1e−t1{0 < t ≤ r}. Then, to apply Proposition 6.1, set
λ(t) = cr t

−1e−t1{0 < t ≤ r} in (6.1) to obtain M = cr(1 − e−r ) and ψ(t) = e−t1{0 < t ≤
r}/(1 − e−r ). Since M/r = cr(1 − e−r )/r < 1, we can set α = 1

2 and obtain the same θα
and all other constants as in Algorithm 6.1, and execute its steps 2 and 3 without any change.
Finally, step 4 follows from (6.6).

To justify the algorithm for W , let ψ0(t) = ct−11{0 < t ≤ a}. From Section 6.2, if V is a
Vervaat perpetuity with parameter c then aV has Lévy densityψ0. Due to the exponential tilting
implemented in step 1, the value of aV it generates has Lévy density e−3t/2ψ0(t). However,
recall that �(t) is convex on (0,∞), �(t) ≤ �(1) = 1 for t ∈ [1, 2], and �′(1) = −γ , where
γ < 3

5 is Euler’s constant (cf. [2]). Then, as a ≤ 1, 0 ≤ ψ0(t)−ψ(t) = ct−1[1−�(1+t)]1{0 <
t ≤ a} ≤ γ tψ0(t), giving ψ0(t) ≥ ψ(t) ≥ (1 − γ t)ψ0(t) ≥ e−3t/2ψ0(t). From this, step 2
follows.

6.3.2. Complexity. First, consider Algorithm 6.2. Let N and T respectively be the number of
iterations and the amount of time required by the algorithm to generate an output. By (6.7),

1 ≤ EN ≤
(

1 + M

r

)[
M2/r2

1 −M2/r2 + eM
2/(rθ)

]
.

As r → 0, since M/r = cr(1 − e−r )/r = c(1 − e−r )/[r ln(1/r)] ∼ c/ln(1/r) and r/θ =
r/ln[2/(1 + e−r )] ∼ 2, we obtain EN → 1 as r → 0.

By Proposition 4.6, E T = EN×ED, whereD is the amount of time required by an iteration
in the algorithm. Let D1, D2, and D3 respectively be the amounts of time to sample (i) one
(W,Z) conditional on Z ≤ r , (ii) one κ , and (iii) provided that κ ≥ 1, S1, . . . , Sκ . Then
D ≈ D1 + D2 + D3. Let � be the amount of time taken to sample a pair (W,Z). Then
ED1 = E�/P{Z ≤ r}. A bound for E� will be given below. In Appendix B, it is shown
that, given c > 0, as r → 0, P{Z ≤ r} = (1 + o(1))e−cA[ln(1/r)]−c, where A = A(a)

is a constant. Then ED1 ∼ ecA[ln(1/r)]c E�. The sampling of κ is standard, with ED2
uniformly bounded; see Remarks 6.1(i). Finally, as in Section 6.2, ED3 is of the same order
as C11/C + ∑

k≥2 k(Ck1 + Ck2)/C. It follows that ED3 → 0 as r → 0.
Next, consider the algorithm to sampleW . Let TW be the time taken to generate one output.

If TV (c) denotes the amount of time required to sample a Vervaat perpetuity with parameter c
then the expected amount of time required by step 1 of the algorithm is

E TV (c)

E(e−3aV/2)
= exp

{
c

∫ 1

0
(1 − e−3at/2)t−1 dt

}
E TV (c) ≤ e3ac/2 E TV (c),

while the expected amount of time required by step 2 is of the same order as∫
χ = c

∫ a

0
[�(t)− t−1e−3t/2] dt ≤ c

∫ a

0
t−1(1 − e−3t/2) dt ≤ 3ac

2
.

As a result, E TW = E TV (c)/E(e−3aV /2)+O(
∫
χ) ≤ e3ac/2 E TV (c)+O(ac).
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We now can obtain a bound for E�. In order to sample one pair of (W,Z), we first sampleW
and then Z ∼ Gamma(W, 1). Since the expected amount of time to sample from �(r, 1) can
be uniformly bounded for r > 0 [13], this gives E� = E TW +O(1).

7. Conditions for local boundedness

Let ϕ be a Lévy density with
∫
ϕ = ∞. Recall that in order to obtain the integral series

expansion in Theorem 3.1, the density g of ID(ϕ) has to be locally bounded. In some cases,
the local boundedness can be directly checked using the explicit expression of g. Following
the same argument as in Section 1, if X ∼ ID(ϕ) with ϕ(t) = λ(t)1{t ≤ r}, where λ is a Lévy
density that gives rise to a locally bounded density, then the density of X is locally bounded in
(0, r]. This is the case in all the examples in Sections 5 and 6. Thus, to apply Algorithm 4.2
to X, all we need to do is to make sure its density is locally bounded outside (0, r]. The
following result provides a simple criterion for this.

Proposition 7.1. (Local boundedness of the density.) Let 0 < M < ∞. Suppose that 
(t) =
tϕ(t) is locally bounded on (0,M) and that g is locally bounded in (0, r] for some r > 0.

(a) g is locally bounded on (0,M). Moreover, if 
 is bounded on [a,∞) for any a > 0 then
g is bounded on [a,∞) for any a > 0.

(b) Under the extra assumption that 
 is continuous on (0,M), g is continuous on (0,M).

Proof. Without loss of generality, assume that r < M .
(a) Fix 0 < ε < r/2 with

∫ ε
0 
 < r/2. Fix c ∈ (r,M). By Lemma 3.1, for any x ∈ [r, c],

g(x) =
∫ x

0


(v)

x
g(x − v) dv ≤ 1

r

∫ x

0

(v)g(x − v) dv

≤ 1

r

∫ ε

0

(v)g(x − v) dv + 1

r
sup
v∈[ε,c]


(v)

∫ x

ε

g(x − v) dv

≤ 1

r

∫ ε

0

(v)g(x − v) dv + 1

r
sup
v∈[ε,c]


(v). (7.1)

Given h > 0, let gh(x) = h−1
∫ x
x−h g. Then gh is continuous on R and from (7.1), for x ∈ [r, c],

gh(x) ≤ 1

r

∫ ε

0

(v)gh(x − v) dv + 1

r
sup
v∈[ε,c]


(v).

Let S = {x ∈ [r, c] : gh(x) > gh(v) for all v ∈ [r − ε, x)}. If S �= ∅ then, for any x ∈ S and
v ∈ [0, ε], x − v ≥ r − ε, and so the above inequality yields

gh(x) ≤ gh(x)

r

∫ ε

0

 + 1

r
sup
v∈[ε,c]


(v) ≤ gh(x)

2
+ 1

r
sup
v∈[ε,c]


(v).

It follows that, for any x ∈ [r, c], gh(x) ≤ (2/r) supv∈[ε,c] 
(v). On the other hand, if
S = ∅ then, for h < r/6 and x ∈ [r, c], gh(x) ≤ supv∈[r−ε,r] gh(v) ≤ supv∈[r−ε−h,r] g(v) ≤
supv∈[r/3,r] g(v). In any case, for all small h > 0 and x ∈ [r, c],

gh(x) ≤ 2

r
sup
v∈[ε,c]


(v)+ sup
v∈[r/3,r]

g(v).
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Let h → 0. Since gh → g almost everywhere with respect to the Lebesgue measure, g is
bounded on [r, c] \ A for some set A that has zero Lebesgue measure. Then, by the integral
relation in Lemma 3.1, g is uniformly bounded on [r, c]. Since c ∈ (r,M) is arbitrary and, by
assumption, g is locally bounded on (0, r], g is locally bounded on (0,M). Furthermore, from
the above inequality, gh(x) ≤ (2/r) supv≥ε 
(v)+ supv∈[r/3,r] g(v) for x ≥ r . If 
 is bounded
on [a,∞) for any a > 0 then it is not hard to see that g is bounded on [a,∞) for any a > 0.

(b) Fix x ∈ (0,M). Given a ∈ (0,min(x,M − x)/2), by Lemma 3.1, for any δ ∈ (−a, a),

|(x + δ)g(x + δ)− xg(x)| =
∣∣∣∣
∫ x+δ

0

(v)g(x + δ − v) dv −

∫ x

0

(v)g(x − v) dv

∣∣∣∣
≤

∫ a+δ

0

(v)g(x + δ − v) dv +

∫ a

0

(v)g(x − v) dv

+
∣∣∣∣
∫ x+δ

a+δ

(v)g(x + δ − v) dv −

∫ x

a


(v)g(x − v) dv

∣∣∣∣
≤ 2 sup

|u−x|≤a
g(u)

∫ 2a

0

 +

∫ x

a

|
(v + δ)− 
(v)|g(x − v) dv.

By dominated convergence,

lim
δ→0

|(x + δ)g(x + δ)− xg(x)| ≤ 2 sup
|u−x|≤a

g(u)

∫ 2a

0

 ≤ 2 sup

u∈[x/2,(x+M)/2]
g(u)

∫ 2a

0

.

Since a is arbitrary, the limit is 0. As x > 0, this implies that g is continuous at x.

Appendix A

In Section 5.2, for fixed α > 0, we made the following claims.

(C1) ED1(r) is uniformly bounded for r > 0, with D1(r) the amount of time required to
sample Z ∼ ID(λ) conditional on Z ≤ r , with λ(t) = t−α−11{t > 0}.

(C2) ED2(r) is uniformly bounded for r > 0, with D2(r) the amount of time required to
sample κ from the probability mass function pk = bk/

∑
i≥0 bi, k ≥ 0, where b0 = 1,

and, for k ≥ 1, bk = αθk�(kα)/�(k) with θ = �(1 − α)/(rαα).

(C3) ED3(k, z) is uniformly bounded for k ≥ 1 and z ∈ (0, 1], where D3(k, z) denotes the
amount of time required to sample ζ ∼ Beta(kα, 1 − α) conditional on ζ ≤ z.

(C4) EN � exp{r−α/α} as r → 0, where N is the number of iterations of the algorithm in
the section.

As the proof of (C1) depends on part of the proof of (C4), we first establish (C2)–(C4).

Proof of (C2). Define pk = 0 for k < 0. All we need is pk to be log-concave, i.e. p2
k ≥

pk−1pk+1 for any k, as it allows rejection sampling of pk with no more than five iterations
on average [14], [19]. One issue here is the difficulty to evaluate the normalizing constant
C = C(r) = ∑

k bk . However, it is relatively easy to find Ci = Ci(r), i = 1, 2, such that
C1 < C < C2 and 0 < infr (C1/C) < supr (C2/C) < ∞. Then the rejection sampling can be
modified by using bk/C2 < pk < bk/C1, while still achieving a uniformly bounded expected
number of iterations. For example, the dominating function in Section 3 of [14] can be modified
to (bm/C1)min(1, e1−(bm/C2)(|x|−1/2)), where m = arg maxk bk .
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Let f (x) = �(αx)/�(x), x > 0. Since �(x) ∼ 1/x as x → 0+, f can be continuously
extended to 0 with f (0) = 1/α, yielding bk = αθkf (k) for all k ≥ 0. Thus, to show that
pk is log-concave, it suffices to show that (ln f )′′(x) < 0 for x > 0. We have (ln f )′′(x) =
α2ψ(αx)−ψ(x), whereψ is a polygamma function [2]. From the integral representation ofψ ,

(ln f )′′(x) =
∫ ∞

0

α2te−αxt dt

1 − e−t −
∫ ∞

0

te−xt dt

1 − e−t =
∫ ∞

0
te−xt

(
1

1 − e−t/α − 1

1 − e−t

)
dt,

which is indeed negative since α < 1.

Proof of (C3). The particular parametrization of the beta distributions is not important. Let
Ta,b(r) denote the amount of time taken to sample ζ ∼ Beta(a, b) conditional on ζ ≤ r .
Clearly, D3(k, r) = Tkα,1−α(r). Given a0 and b ∈ (0, 1), consider the following proce-
dure.

• Fix c ∈ (0, a0). If r ≥ 1 − c/a then keep sampling ζ ∼ Beta(a, b) until ζ ≤ r;
otherwise, keep sampling U , V i.i.d. ∼ Unif(0, 1) until V ≤ [(1 − r)/(1 − ζ )]1−b,
where ζ = rU1/a .

We show that E Ta,b(r) is uniformly bounded for a ≥ a0 and r ∈ (0, 1] by using this
procedure. First, it is clear that P{ζ ≤ 1 − c/a} is a positive continuous function in a ≥ a0. As
a → ∞, B(a, b) = �(a)�(b)/�(a + b) ∼ �(b)a−b, giving

P

{
ζ ≤ 1 − c

a

}
∼ ab

�(b)

∫ 1−c/a

0
xa−1(1 − x)b−1 dx

= 1

�(b)

∫ θ

c

(
1 − t

a

)a−1

tb−1 dt

→ 1

�(b)

∫ ∞

c

e−xtb−1 dt

> 0.

Thus, lettingp0 = infa≥a0 P{ζ ≤ 1−c/a}, we havep0 > 0. If r ≥ 1−c/a then in each iteration
of the rejection sampling the probability of acceptance is P{ζ ≤ r} ≥ P{ζ ≤ 1 − c/a} ≥ p0,
which leads to E Ta,b(r) ≤ p−1

0 E Ta,b(1). It is known that, using suitable rejection sampling,
supa,b E Ta,b(1) < ∞ [13]. As a result, E Ta,b(r) is bounded for a ≥ a0 and r ≥ 1 − c/a. On
the other hand, if r ∈ (0, 1 − c/a) then, as the density of rU1/a is 1{0 < t ≤ r}ata−1/ra , the
rejection sampling indeed generates ζ ∼ Beta(a, b) conditional on ζ ≤ r . In each iteration,
the probability of acceptance is

(1 − r)1−b
∫ 1

0
(1 − rt1/a)b−1 dt ≥ (1 − r)1−b

∫ 1

e−1
(1 − rt1/a)b−1 dt

≥ (1 − r)1−b(1 − e−1)(1 − re−1/a)b−1

≥ (1 − e−1)

(
c/a

1 − (1 − c/a)e−1/a

)1−b
.

The right-hand side is a positive continuous function of a ≥ a0 and can be shown to converge
to (1 − e−1)[c/(c + 1)]1−b > 0 as a → ∞. This implies that the probability of acceptance is
uniformly bounded away from 0 for a ≥ a0 and r ∈ (0, c/a). As a result, E Ta,b(r) is uniformly
upper bounded.
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Proof of (C4). The proof of the asymptotic of

EN = exp

{
r−α

α

}
P{Y ≤ r}

(
1 +

∫ ∞

0
ez−r[αz/�(1−α)]1/α

dz

)

as r → 0 is an exercise in the saddle point method [23]. Define ε = r[α/�(1 − α)]1/α and
M = (α/ε)α/(1−α). By the change of variable z = M(1 − t),∫ ∞

0
ez−r[αz/�(1−α)]1/α

dz =
∫ ∞

0
ez−εz1/α

dz

= M

∫ 1

−∞
eM(1−t)−εM1/α(1−t)1/α dt

= M

∫ 1

−∞
eM[(1−t)−α(1−t)1/α] dt.

The function f (t) = 1 − t − α(1 − t)1/α is smooth on (−∞, 1) and maximized uniquely at
t = 0 with f (0) = 1 −α and f ′′(0) = 1 − 1/α < 0. As r → 0,M → ∞. Then, by the saddle
point method,

M

∫ 1

−∞
eM[(1−t)−α(1−t)1/α] dt = M[1 + o(1)]

√
2π

M|f ′′(0)|eMf (0)

= [1 + o(1)]
√

2πM

1/α − 1
eM(1−α).

Next, since Y has Lévy density λ(t) = t−α−11{t > 0}, Y ∼ [�(1 − α)/α]1/αS, where S has
Laplace transform exp{−θα}. Then, by [10],

P{Y ≤ r} = P{S ≤ ε}
= 1

π

∫ π

0
exp{−ε−α/(1−α)h(t)} dt

= 1

π

∫ π

0
exp{−Mα−α/(1−α)h(t)} dt,

where h is a function defined as

h(0) = (1 − α)αα/(1−α), h(t) = sin((1 − α)t)[sin(αt)]α/(1−α)

(sin t)1/(1−α) 1{0 < t < π}, t �= 0.

By concavity, sin(at) > a sin(t) for a ∈ (0, 1) and t ∈ (0, π). Thus, h is minimized uniquely
at t = 0. Using sin t = t − t3/3! + · · · , it is straightforward to check that h ∈ C∞[0, π),
h′(0+) = 0, and h′′(0+) > 0. Noting that the integral for P{Y ≤ r} is over an interval to the
right of 0, by the saddle point method,

P{Y ≤ r} = [1 + o(1)]
√

αα/(1−α)
2πMh′′(0+)e−Mα−α/(1−α)h(0).

Since α−α/(1−α)h(0) = 1 − α, we then obtain EN � exp(r−α/α), as claimed.
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Proof of (C1). Let S be as above. By scaling, it suffices to show that the expected time to
sample S conditional on S ≤ r is uniformly bounded for r > 0. From [10], S can be embedded
into a random vector (ξ, S) such that ξ ∼ Unif(0, 1) and, conditional on ξ , P{S ≤ r | ξ} =
exp{−r−α/(1−α)h(ξ)} and S ∼ [h(ξ)/W ](1−α)/α , with W ∼ Exp(1). Therefore, to sample S
conditional on S ≤ r , we can first sample ξ conditional on S ≤ r , and then, given ξ , sample
W ∼ Exp(1) and set

S = r

[
h(ξ)

h(ξ)+Wrα/(1−α)

](1−α)/α
.

To establish (C1), it suffices to show that Kr , the expected number of iterations required to
sample ξ conditional on S ≤ r , is bounded for r > 0. By Bayes formula, conditional on
S ≤ r , the density of ξ is in proportion to qr(t) := exp{−r−α/(1−α)h(t)}. It is easy to see that,
using rejection sampling, we can have supr≥r0 Kr < ∞ for any fixed r0 > 0. Therefore,
we need to show only that supr≤r0 Kr < ∞ for small r0 > 0. From the proof of (C4),
there exists c > 1/h′′(0+) such that h(t) ≥ h(0) + t2/(2c) for all t ∈ (0, π). Consider
the following procedure: keep sampling X ∼ N(0, crα/(1−α)) and U ∼ Unif(0, 1) until
U ≤ exp{−r−α/(1−α)[h(|X|)− h(0)−X2/(2c)]} and then return ξ = |X|. This procedure
samples ξ conditional on S ≤ r . The probability of acceptance of each iteration is

1√
2πcrα/(1−α)

∫ ∞

−∞
exp{−r−α/(1−α)[h(|t |)− h(0)]} dt

= 1√
2πcrα/(1−α) [1 + o(1)]

√
2πrα/(1−α)
h′′(0+)

→ 1√
ch′′(0+)

> 0 as r → 0,

where the last three lines are due to the saddle point method. It is then easy to show that, using
the above procedure, Kr is uniformly bounded for all small r .

Appendix B

In Section 6.3 we made the following claim. Let λ(t) = ce−t (1 − ta)1{t > 0}/[t ln(1/t)]
with c > 0 and a > 0, and let Z ∼ ID(λ). Then, for a constant A = A(a), as r → 0 while c is
fixed,

P{Z ≤ r} = [1 + o(1)]e−cAa
[

ln

(
1

r

)]−c
.

To prove the claim, for any r < e−1,Z ∼ ηr +Xr +Y , where ηr ,Xr , and Y are independent
i.d. random variables with Lévy densities 1{t ≤ r}λ(t), 1{r ≤ t < e−1}λ(t), and 1{t >
e−1}λ(t), respectively. We seen that P{Z ≤ r} = P{ηr ≤ r} P{Xr = 0} P{Y = 0}. First, by
the Markov inequality, for any s > 0,

P{ηr > r} ≤ E(esηr /r−s)

= exp

{∫ r

0
(est/r − 1)

ce−t (1 − ta)

t ln(1/t)
dt − s

}

≤ exp

{
c

ln(1/r)

∫ r

0
t−1(est/r − 1) dt − s

}
.
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By the convexity of the exponential function,

P{ηr > r} ≤ exp

{
c

ln(1/r)

∫ r

0

s

r
est/r dt − s

}
= exp

{
c(es − 1)

ln(1/r)
− s

}
.

Letting r → 0 followed by s → ∞, we see that P{ηr > r} → 0 and, hence, P{ηr ≤ r} → 1.
Next, by the property of the Poisson process,

P{Xr = 0} = exp

{
−

∫ e−1

r

λ(t) dt

}
= ecI(r) exp

{
−

∫ e−1

r

c dt

t ln(1/t)

}
= ecI(r)

[
ln

(
1

r

)]−c
,

where

I (r) =
∫ e−1

r

1 − e−t (1 − ta)

t ln(1/t)
dt → I (0) =

∫ e−1

0

1 − e−t (1 − ta)

t ln(1/t)
dt < ∞.

Finally, P{Y = 0} = e−cJ , where J = ∫ ∞
e−1 λ < ∞. Combining the results, we obtain

P{Z ≤ r} ∼ ec(J−I (0))[ln(1/r)]−c, as claimed.
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