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Abstract

Marstrand’s theorem states that applying a generic rotation to a planar set A before pro-
jecting it orthogonally to the x-axis almost surely gives an image with the maximal possible
dimension min (1, dim A). We first prove, using the transversality theory of Peres–Schlag
locally, that the same result holds when applying a generic complex linear-fractional trans-
formation in PSL(2, C) or a generic real linear-fractional transformation in PGL(3, R). We
next show that, under some necessary technical assumptions, transversality locally holds for
restricted families of projections corresponding to one-dimensional subgroups of PSL(2, C)
or PGL(3, R). Third, we demonstrate, in any dimension, local transversality and result-
ing projection statements for the families of closest-point projections to totally-geodesic
subspaces of hyperbolic and spherical geometries.

2020 Mathematics Subject Classification: 28A75, 28A78 (Primary)

1. Introduction

Research on projection theorems in various spaces has a long-standing tradition in geo-
metric measure theory. Perhaps the earliest work in the field is due to Besicovich [Bes39]
and Federer [Fed47], who characterised rectifiable sets in R

n in terms of the Hausdorff mea-
sure of their image under orthogonal linear projections. Inspired by their work, Marstrand
[Mar54] initiated a more extensive analysis of the effect of orthogonal linear projections on
the Hausdorff measure and dimension of Borel sets, showing that the image of a planar set
A under almost every orthogonal projection has the maximal possible Hausdorff dimension.
More precisely: let A be any Borel set, and consider, for each θ ∈ [0, 2π) the orthogonal pro-
jection Pθ (A) : R2 → Lθ , where Lθ is a line at angle θ to the x-axis. Since each Pθ is Lipschitz
into a 1-dimensional target space, dim (PθA) � min{1, dim A}. Marstrand’s Theorem states
that the upper bound is, in fact, attained for H 1-almost every angle θ , where H s denotes
the Hausdorff s-measure.

Marstrand’s planar result was subsequently generalised, in various respects, to orthogo-
nal projections of Rn onto m-planes by Kaufman [Kau68], Mattila [Mat75], and Falconer
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2 ANNINA ISELI AND ANTON LUKYANENKO

[Fal82]. More recently, these results have been generalised and extended to further spaces
with natural projection families, including the families of horizontal and vertical projections
in the Heisenberg groups [BFMT12, BDCF+13, Har20, Hov14], and certain families of
closest-point projections in hyperbolic n-space H

n and the 2-sphere S
2 [BI16, BI19].

It is often straightforward to extend projection theorems from a small projection family
to a larger one that contains it, see e.g. Proposition 2·10. Conversely, restricting projection
theorems to a measure-zero subfamily is not always possible (e.g. the family of orthog-
onal projections from R

3 to lines in the XY plane always maps the Z axis to a single
point). Järvenpää et al. [JJLL08] introduced the notion of restricted families of projec-
tions and provided conditions under which projection theorems hold for a one-dimensional
family of projections that is induced by a curve in the Grassmanian G(n,m) of m-planes in
R

n. Identifying more general conditions under which a restricted family retains projection
theorems remains an actively-studied task [Che18, FO14, Har21, OV18].

Marstrand’s original proof of his theorem used mainly methods from planar geometry.
The generalisations by Kaufman and Mattila employed potential theory. Some decades
later, a further developed version of such potential theoretic methods allowed Peres-Schlag
[PS00] to establish a powerful result that links dimension preservation for families of map-
pings with a more-easily verified (differentiable) transversality condition (see Section 2·2).
Establishing (local) transversality has become a standard method for proving projection the-
orems [BI16, Hov14, Mat19]. Theorem 2·2 below summarises the consequences of local
transversality in our setting. Furthermore, its control of the distortion of Sobolev dimension
of measures under the given family has been applied e.g. in the study of distance set prob-
lems [Mat04, section 5] and [PS00, section 8], intersections of Cantor sets [PSS03], and
Bernoulli convolutions [PS00, section 5].

Combining the above themes, we will be interested in using transversality to prove projec-
tion theorems for certain one-dimensional families of projections in a non-Euclidean setting.
Namely, we will replace the rotationally-symmetric projections in Marstrand’s Theorem
with projection families which arise from linear-fractional symmetries of the Riemann
sphere Ĉ and the real projective plane RP

2, and characterise the regions on which transver-
sality and projection theorems hold. Additionally, our use of projective geometry will allow
us to quickly obtain transversality and projection results in spherical and hyperbolic spaces,
extending the results of [BI16, BI19], see also [Duf18].

1·1. Projection families induced by group actions

Marstrand’s theorem fixes a set A ⊂R
2 and varies the mapping Pθ . Equivalently, one can

first rotate A by a rotation Rθ ∈ O(2) and then project it to R by the fixed mapping π(x, y) = x.
This phrasing emphasises the role of the rotation family O(2). We ask whether projection
theory extends to cases where O(2) is replaced with another group action that arises naturally
in a geometric setting.

We consider the following general framework:

Definition 1·1. Let N,M be smooth manifolds, S0 ⊂ N a closed subset, π : N → M a map-
ping (called a projection) with domain N \ S0, and G a group acting on N by (g, p) �→ g(p).
Then the projection family � induced by π and the action of G on N is given by

� : G × N −→ M, (g, p) �−→ π(g(p))
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on its domain (G × N) \ S, where S = {(g, p) : g(p) ∈ S0}. We refer to a family � arising in
this manner as induced by a group action. Such families are characterised by the condition
�(g, p) = �( Id, g(p)).

We will be predominantly interested in the case where N is R2 or its more symmetric com-
pactifications Ĉ and RP

2. We will analyse several classes of projection families induced by
group actions by establishing local transversality and, where it fails, using more direct argu-
ments that allow us to draw the same conclusions concerning dimension preservation. These
are stated in Theorem 2·2 and include the analogs of all classical results about orthogonal
projections in R

n such as the Marstrand and Besicovich–Federer projection theorems.

Definition 1·2. We say that a projection family � satisfies projection theorems if the
conclusions of Theorem 2·2 hold on the domain of �.

More generally, it is natural to ask under what conditions a family � induced by the
action of G on M and a mapping π : N → M is (locally) transversal or satisfies projection
theorems, when one equips N, M with Riemannian metrics and volume measures, and G with
its Haar measure. Clearly, if a fiber is G-invariant then projection theorems must fail along
this fiber; and it seems intuitively plausible that projection theorems should hold elsewhere.
However, as we show below, proving this intuition is not always straightforward even in
specific examples, and in fact, the intuition fails when applied to transversality.

1·2. Results

In this paper, we focus on planar projection theory, extended to two separate spaces:
Ĉ=C∪ {∞} with the group of complex linear-fractional mappings (Möbius transfor-
mations), or the projective plane RP

2 with the group of real linear-fractional mappings
(projective transformations). Additionally, the projective geometry perspective allows us to
quickly analyse closest-point projections in hyperbolic and spherical geometries.

We first study complex linear fractional transformations, denoted by Möb, acting on the
Riemann sphere Ĉ=C∪ {∞}, which is a natural family of motions to consider from the
viewpoint conformal geometry and complex analysis. Möbius transformations have the
form

z �−→ az + b

cz + d
, where a, b, c, d ∈C with ad − bc = 1,

and can be identified with the group of complex determinant-one matrices SL(2, C). Using
a decomposition of Möb into O(2) and a complementary manifold

1
, we establish:

THEOREM 1·3. The family � : Möb ×Ĉ→R given by �(g, z) = Re (g(z)) is locally
transversal and therefore satisfies projection theorems on its domain Möb ×Ĉ \
{(g, g−1(∞)) : g ∈ Möb}.

We ask what restricted families in � : Möb ×Ĉ→R satisfy projection theorems. For
some symmetric families the answer is well known: the family corresponding to the rotations
O(2) satisfies projection theorems, while families corresponding to dilations or translations

1 As a manifold, Möb globally decomposes as Möb = O(3) ×R×R
2 due to the Iwasawa decomposition,

which is then diffeomorphic to Möb = O(2) × S2 ×R
3.
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Fig. 1. Groups � in Möb, left picture, and in GL(3, R), right picture, illustrated via their orbits.
Projection theorems hold on the full domain of the associated family �, but transversality fails
at γ = Id along the dashed line L tangent to the thicker orbit �(∞) (resp., �(∞Y )), and more
generally on the set {(γ , p) : γ −1p ∈ L} ⊂ � × Ĉ (resp., � ×RP

2).

are non-transversal since they simply rearrange the fibres of the projection. For other fam-
ilies, such as (θ , z) �→ Re (cos (θ)z − sin (θ)/sin (θ)z + cos (θ)), the answer is not obvious.
We prove (see Figure 1, left):

THEOREM 1·4. Let � ⊂ Möb be a one-dimensional Lie subgroup, and � : � × Ĉ→R

the family given by �(γ , z) = Re (γ (z)). Then � satisfies projection theorems on its domain,
with the following natural exceptions:

(i) if � consists of Euclidean dilations and translations, then projection theorems fail
globally;

(ii) if the orbit �(∞) is a vertical line, then projection theorems fail along this line.

While the projection theorems confirm the expected behavior, the underlying transversal-
ity result has an artefact that we work around: transversality fails along a set corresponding
to the linearisation of �(∞), see Theorem 3·1.

We next consider real linear fractional (projective) transformations PGL(3, R) acting on
the real projective plane RP

2, which is the natural family of motions to consider from the
viewpoint of projective geometry. The projective plane RP

2 is a compactification of R
2

that distinguishes points at infinity corresponding to linear directions. In RP
2, the projection

π : (x, y) �→ (x, 0) can be interpreted as a linear point-source projection from the infinite point
∞Y in the Y direction, and naturally extends to a mapping π : RP2 →RP

1 =R∪ {∞X}.
Projective transformations have the form

(x, y) �→
(

a11x + a12y + a13

a31x + a32y + a33
,

a21x + a22y + a23

a31x + a32y + a33

)
, where (ai,j) ∈ GL(3, R).

We prove analogs of Theorems 1·3 and 1·4 (see Figure 1, right):

THEOREM 1·5. The family � : GL(3, R) ×RP
2 →RP

1 given by �(g, z) = π(g(z)) on
its domain (GL(3, R) ×RP

2) \ {(g, g−1(∞Y )) : g ∈ GL(3, R)} is locally transversal and
therefore satisfies projection theorems.
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THEOREM 1·6. Let � ⊂ GL(3, R) be a one-dimensional Lie subgroup, and let � : � ×
RP

2 →RP
1 the family given by �(γ , p) = π(γ (p)). Then � satisfies projection theorems

on its domain (GL(3, R) ×RP
2) \ {(g, g−1(∞Y )) : g ∈ GL(3, R)}, with the following natural

exceptions:

(i) if � consists of mappings of the form (x, y) �→
(

a11x+a13
a31x+a33

, a21x+a22y+a23
a31x+a32y+a33

)
, or, equiv-

alently, preserves the source ∞Y of the projection π , then projection theorems fail
globally;

(ii) if the orbit �(∞Y ) is a vertical line or the line at infinity, then projection theorems
fail along this line.

As for Theorem 1·4, the behaviour in Theorem 1·6 is expected, but transversality
fails along the linearisation of the orbit �(∞Y ), see Theorem 4·1. Importantly, this non-
transversality locus may be the line at infinity RP

2 \R2. In Example 4·5, we consider a
group � ⊂ GL(3, R) that is conjugate to O(2) by a mapping that sends π to the point-light-
source projection mapping, and the non-transversality at infinity for the family associated
to � turns into non-transversality along a line in R

2 that is tangent to the orbit of the light
source under O(2).

We finish by applying projective geometry to closest-point projections in hyperbolic
space H

n and spherical space S
n. In each of these spaces, we consider the families of

m-dimensional totally-geodesic subspaces through a fixed point, and the corresponding fam-
ilies of closest-point projections. (Note that each of these families can be identified with
the Grassmannian G(n,m) via the exponential mapping.) Finding an appropriate change of
coordinates based on projective geometry, we show that each of these families is, in fact,
equivalent to the Euclidean orthogonal projection families, and is therefore transversal:

THEOREM 1·7. Let X be hyperbolic space H
n or the sphere S

n, and p a point in
X. In the spherical case, let Sn−1 ⊂ S

n denote the great sphere perpendicular to p. Let
� : G(n, m) × X →R

m be the family of nearest-point projections onto m-dimensional totally
geodesic subspaces of X through p. Then � is locally transversal and satisfies projection
theorems on all of Hn, respectively on S

n \ Sn−1.

See Theorem 5·1 for a more precise phrasing of this result.
Previously to this work, transversality was known for H2 and S

2 [BI16], and projection
theorems [BI19] and a weaker version of transversality [Ise18] were known in H

n for n � 3
but not for Sn.

1·3. Methods

The proofs of the above results are based on direct calculations establishing transver-
sality, combined with appropriate geometric and Lie-theoretic considerations for Möb and
GL(3, R). We establish the following auxiliary results to aid with the calculations, which are
of independent interest and rely on our strong regularity and symmetry assumptions:

(i) Lemma 2·3 allows us to change coordinates and reparametrise C2 projection fami-
lies, in particular allowing us to speak of local transversality in coordinate charts of
manifolds, as in the definition of projection families induced by group actions;
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(ii) Lemma 2·9 allows us to check transversality of symmetric C2 projection families
� : G × N →R only along the identity of G rather than in specified neighbourhoods;

(iii) Proposition 2·10 shows that transversality persists when one enlarges the parameter
space of a symmetric C2 projection family, putting a special focus on identifying
minimal transversal families and leads into our study of symmetric projection families
with one-parameter symmetry groups.

1·4. Future directions

Our results can be seen as a first step in the study of projection theory for projection
families induced by group actions. There are several immediate generalisations one can
ask about, by working with new projections (e.g. point-source or ultraparallel), new groups
(e.g. quasi-conformal), and new spaces (e.g. Rn, complex hyperbolic space, or Heisenberg
groups). In higher-dimensional spaces, this would require, in view of Proposition 2·10,
understanding minimal transversal families. In Heisenberg groups, projection theorems gen-
erally fail for the projection family generated by isometries and either vertical or horizontal
projections, but can be expected to hold for the group of Möbius transformations.

1·5. Structure of the paper

The paper is structured as follows: Section 2 is for preliminaries. In Section 2·1, we recall
some basics on Lie groups and Grassmannians. This subsection can safely be skipped by
readers who are familiar with the terminology of Lie groups. In Subsections 2·2 - 2·5, we
recall the formal definition of transversality and its implications. Moreover, we prove prelim-
inary results for families of of projections induced by group actions. In particular, we prove
that transversality can be lifted to families of projections induced by larger Lie groups. In
Section 3, we study projection theory in the plane for projections induced by Möbius trans-
formations. In particular, we prove Theorems 1·3 and 1·4. In Section 4, we study projection
theory in the plane for projections induced by real projective transformations. In particu-
lar, we prove Theorems 1·5 and 1·6. In Section 5, we consider closest-point projections in
spherical and hyperbolic geometry, proving Theorem 1·7.

2. Preliminaries
2·1. Lie groups and Grassmannians

We now briefly recall the basic structure and introduce the notation for Lie groups, their
quotients, and the particular case of the orthogonal group and Grassmannians. For a detailed
account, see the textbooks [Kna02, Lee13] and [Mat95, chapter 3].

A Lie group G is a smooth manifold with a group structure such that the product mapping
G × G → G and the inversion mapping G → G are C∞-mappings. As a Lie group, G pos-
sesses a unique (up to rescaling) measure that is invariant under left multiplication, called
the (left) Haar measure. Likewise, we have an (effectively) unique Riemannian metric on
G, given by choosing an inner product on the tangent space of the identity and translat-
ing it to the full tangent bundle by left translations; different choices of inner product yield
bi-Lipschitz metrics. Since the Haar measure is smooth (i.e. given in charts by integrating a
smooth function), it agrees with the Hausdorff measure of the appropriate dimension, and the
notion of zero-measure is compatible with Lebesgue measure when G is viewed in charts.

The exponential map exp : TIdG → G is a smooth mapping that relates the Lie algebra
structure of the tangent space at the identity with the Lie group structure of G. For matrix
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groups, the exponential map can be written explicitly using the Taylor expansion of ex,
interpreted appropriately for matrices. On a small neighbourhood of 0, exp is a diffeomor-
phism onto an open neighbourhood of Id ∈ G. Via an identification of TIdG with R

n, this
provides exponential coordinates on G near Id. Further composing with any element g ∈ G
provides exponential coordinates near g.

A Lie subgroup � ⊂ G is a subset that is both an immersed submanifold and a subgroup
of G. Connected one-dimensional subgroups are images of lines through the origin in TIdG
under the exponential map. In studying quotients of G by �, one often imposes the condition
that � is closed as a subset of G (non-closed examples such as the irrational line on the
torus do not behave well in charts and do not provide good quotient spaces). In exponential
coordinates, one locally sees � as a linear subspace of G, concluding that the inclusion
ι : � ↪→ G is a smooth embedding. Translates of this subspace under the action of G provide
a smooth foliation, and a smooth section of this foliation provides a coordinate chart for
the quotient (coset) space G/�. One concludes that G/� is a manifold, and obtains in
particular a smooth family of mappings g ∈ G that relate each point of G/� to the basepoint
[ Id ] ∈ G/�.

The orthogonal group O(n) consists of matrices M satisfying MTM = Id, with Lie alge-
bra o(n) consisting of skew-symmetric matrices. The standard basis elements of o(n) are
the matrices Ai,j for i < j with a 1 in the (i,j) entry, a (−1) in the (j,i) entry, and 0s else-

where. Under the exponential mapping, the mapping Ri,j
θi,j

= exp (θi,jAi,j) acts by rotation on
span (ei, ej) ⊂R

n, and by identity on the remaining basis vectors of Rn.
The Grassmannian G(n,m) consists of all m-dimensional subspaces (m-planes) through

the origin in R
n. Fixing a specific m-plane V0 (say, spanned by the first m basis vectors),

one observes that mappings in O(n) send V0 to other elements of G(n,m) and that the orbit
of V0 under O(n) is all of G(n,m). One can then identify G(n,m) with the quotient space
O(n)/(O(m) × O(n − m)) by observing that O(m) × O(n − m) is the maximal subgroup that
leaves V0 in place. One can give G(n,m) a manifold structure explicitly by considering the
possible basic rotations near the identity. Note first that the rotations Ri,j

θi,j
for i, j � m rotate

V0 within itself, the rotations Ri,j
θi,j

for i, j > m leave V0 pointwise-invariant, and each of the

remaining basic rotations Ri,j
θi,j

moves V0 into a new direction.
Let W = {(θi,j)i,j ∈ o(n) : θi,j = 0 if i, j � m or i, j > m} ⊂ o(n). The exponential map iden-

tifies a neighbourhood of W near the identity with a neighbourhood of V0 ∈ G(n, m), and the
mapping exp ((θi,j)i,j) ∈ O(n) provides a smoothly-varying identification of exp ((θi,j)i,j)V0

with V0. One may further identify V0 with R
m to obtain a local smoothly-varying

identification of elements of G(n,m) with R
m.

We comment further that the exponential mapping on a Riemannian manifold M based at
a point p ∈ M identifies the Grassmannian G(n,m) with a family of smooth submanifolds of
M meeting at p, by a C∞ mapping that is a priori only locally defined. In CAT(0) spaces
such as real hyperbolic space, the exponential mapping is in fact a diffeomorphism between
the tangent space and the manifold.

2·2. Transversality and projection theorems

We now define transversality and state the primary consequences of transversality for
projection theory, phrased in a language suitable for geometric applications. For details, see
[PS00, theorem 4·9], [Mat04, chapter 5] and [Mat15, chapters 5,18].
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Let n, m, k ∈N with k � m. A (k-parameter) family of mappings, is a continuous mapping
� : 	 × 
 →R

m where 
 ⊂R
n is open and 	 ⊂R

k is open.We assume, furthermore, that
� is CL-smooth for some L � 2. We denote individual mappings in the family by �λ(ω) =
�(λ, ω) and refer to 	 as the parameter space of the family. As is common in the field, we
will refer to the mappings �λ as projections and to � as a projection family.

Definition 2·1. Let � : 	 × 
 →R
m be a family of mappings that is CL-smooth for some

L � 2. For λ ∈ 	 and v 	= w ∈ 
, define


(λ, v, w) = �(λ, v) − �(λ, w)

|v − w| . (2·1)

The family � is transversal on 	 × 
 if there exists C > 0 such that for all λ ∈ 	 and all
v 	= w ∈ 
 we have:

if |
(λ, v, w)|� C then
∣∣∣det dλ
(λ, v, w)(dλ
(λ, v, w))T

∣∣∣� C2, (2·2)

where (dλ
(λ, v, w))T denotes the transpose of the (m × k)-matrix dλ
(λ, v, w).
The family � is locally transversal if 	 × 
 can be covered by neighbourhoods such that

the restriction of � to each of these neighbourhoods is transversal.
In the case m = 1, the transversality condition (2·2) can be rewritten as:

if |
(λ, v, w)|� C then max
j∈{1,...,k}

∣∣dλj
(λ, v, w)
∣∣� C. (2·3)

For m = k = 1, it further reduces to:

if |
(λ, v, w)|� C then |dλ
(λ, v, w)|� C. (2·4)

The basic intuition for the relation between projection theory and the transversality con-
dition is as follows. Projection theorems fail for a family �(λ, ω) if big parts of R

n are
collapsed by many projections in the family. The if-side of (2·2) detects this collapse for a
given value of λ. The then-side then guarantees that two points u,v that were collapsed under
�λ move apart quickly if the value of λ is varied. (2·4).

The following theorem combines [PS00, theorem 4·9] and [HJJL12, theorem 1·2].

THEOREM 2·2. Let n, m, k ∈N with k � m and let L � 2. Let � : 	 × 
 →R
m be a

locally transversal, CL-smooth family of mappings, then for all Borel sets A ⊂ 
:

(i) if dim A � m, then:

(a) dim (�λA) = dim A for H k-a.e. λ ∈ 	;
(b) for 0 < α � dim A, dim ({λ ∈ 	 : dim (�λA) < α}) � (n − m − 1)m + α;

(ii) if dim A > m, then:

(a) H m(�λA) > 0 for H k-a.e. λ ∈ 	;
(b) dim ({λ ∈ 	 :

mathscrL m(�λA) = 0}) � (n − m)m + m − min{dim A, L − 1};
(iii) if dim A > 2m, then:

(a) �λA ⊂R
m has non-empty interior for H k-a.e. λ ∈ 	;

(b) dim ({λ ∈ 	 : (�λA)◦ 	=∅}) � (n − m)m − ( min{dim A, L − 1} − 2m)(1 + m
L )−1;
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Projection theorems for linear-fractional families of projections 9

(iv) if H m(A) < ∞, then A is purely m-unrectifiable if and only if H m(�λ(A)) = 0 for
H k-a.e. λ ∈ 	.

2·3. Preservation of transversality under coordinate changes

We now show that transversality property is locally-preserved by pre- and post- compo-
sition with C2-diffeomorphisms. This assumption aligns with our standing assumption that
projection families are C2-smooth.

LEMMA 2·3. Let L � 2 be an integer, and consider the following change of coordinates,
where 	, 	̃ ⊂R

k, 
, 
̃ ⊂R
n, and U, Ũ ⊂R

m are open domains, f : 	 → 	̃, g : 
 → 
̃,
and h : U → Ũ are CL-diffeomorphisms, and �̃ is given by �̃(f (λ), g(ω)) = h(�(λ, ω)).

If � is CL-smooth and locally transversal, then so is �̃.

We will prove a quantitative version of the transversality assertion in Lemma 2·2 (the
preservation of smoothness under composition is a standard fact):

LEMMA 2·4. Under the assumptions and in the notation of Lemma 2·3, let (λ0, ω0) ∈
	 × 
. Then, there exists a neighbourhood 	0 × 
0 ⊂ 	 × 
 of (λ0, ω0) and a constant
C0 > 0 such that: whenever � satisfies the transversality condition (2·2) for some constant
C > 0 for a triple (λ, v, w) ∈ 	0 × 
2

0, then �̃ satisfies (2·2) with constant CC0 > 0 for the
triple (f (λ), g(v), g(w)).

Furthermore, C0 depends only on the local bilipschitz constants of f, g, h and bounds on dh
and df −1. Furthermore, C0 approaches 1 as f and g approach the identity and h approaches
a linear mapping, in terms of these constants.

For a matrix M, let ρ(M) = det [MMT]1/2. Note that this determinant is always non-
negative (cf. the Gram determinant). We will need the following composition result:

LEMMA 2·5. There is a continuous positive function σ : GL(k, R) →R satisfying
σ ( Id ) = 1 such that for all A ∈ Mm×k and B ∈ GL(k, R)one has ρ(AB) � ρ(A)σ (B).

Proof. If k < m, then the statement is trivial, as both sides of the equality are zero.
Consider first the function τ : GL(k, R) × G(k, m) →R which maps a pair (M,V) to the

volume distortion of the mapping M|V : V → M(V). The function τ varies smoothly with M
and V (indeed, it can be written down explicitly using Gram matrices and an identification
of V with R

k). Noting that G(k,m) is compact, set σ (B) = minV∈G(k,m) τ (BT, V)2. Clearly, σ

is continuous and σ ( Id ) = 1.
Consider now an arbitrary pair A,B as in the statement of the lemma, and write a = AT

and b = BT. We then need to show that det ((ab)T(ab)) � det (aTa)1/2σ (B). The lemma
follows immediately from the fact that det (aTa)1/2 computes the m-volume distortion
induced by a : Rm →R

k and det ((ab)T(ab))1/2 computes the m-volume distortion induced
by ab : Rm →R

k.
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10 ANNINA ISELI AND ANTON LUKYANENKO

Proof of Lemma 2·4. Let (λ0, ω0) ∈ 	 × 
 and let 	0 × 
0 ⊂ 	 × 
 be a neighbour-
hood of (λ0, ω0) that is sufficiently small so that the specific Lipschitz and co-Lipschitz
constants that we will explicitly define in the sequel of this proof exist. Furthermore,
we write U0 = �(	0 × 
2

0) and �(λ, v, w) := �(λ, v) − �(λ, w) as well as �̃(λ̃, ṽ, w̃) :=
�̃(λ̃, ṽ) − �̃(λ̃, w̃) for points (λ, v, w) ∈ 	 × (
)2 resp. (λ̃, ṽ, w̃) ∈ 	̃ × (
̃)2.

Now, let (λ, v, w) ∈ λ0 × 
2
0 be a fixed triple and set (λ̃, ṽ, w̃) = (f (λ), g(v), g(w)). Let C >

0 a constant. We assume that the transversality condition (2·2) for the family � holds for
(λ, v, w) with constant C, that is,

if
|�(λ, v, w)|

|v − w| � C then

∣∣det [dλ�(λ, v, w)(dλ�(λ, v, w))T]
∣∣

|v − w|2 � C2. (2·5)

We analyse pre-composition (with f and g) and post-composition (with h) separately.
For pre-composition, we assume h is the identity. Let C1 > 0 be the co-Lipschitz constant

of g on 
0 and assume that �̃ satisfies the if-part of the transversality condition (2·2) with
constant CC1 for the triple (λ̃, ṽ, w̃), that is,

|�̃(λ̃, ṽ, w̃)|
|ṽ − w̃| � CC1. (2·6)

By definition of C1 and since �(λ, u, v) = �̃(λ̃, ṽ, w̃) by definition, equation (2·6) implies
the if-part of equation (2·5). Hence also the then-part of equation (2·5) follows.

Notice that since �̃(λ̃, ṽ, w̃) = �(f −1(λ̃), g−1(ṽ)), g−1(w̃)), by chain rule for differentia-
tion we can write

dλ̃�̃(λ̃, ṽ, w̃) = dλ�(f −1(λ̃), g−1(ṽ)), g−1(w̃)) · df −1(λ̃). (2·7)

Let C2 := min{σ (df −1(λ̃)) : λ̃ ∈ f (	0)} where σ is as in Lemma 2·4. Then

|det
[
dλ̃�̃(λ̃, ṽ, w̃)dλ̃�̃(λ̃, ṽ, w̃)T

]
|

|ṽ − w̃|2 � C2(C1C2)2. (2·8)

Choosing C0 := min{C1, C1C2} concludes the proof for precomposition.
For post-composition, we assume that f and g are the respective identity mappings. Let

C3 be the co-Lipschitz constant of h on U0. Recall that here �̃(λ, v, w) = h(�(λ, v)) −
h(�(λ, w)) and assume that

|h(�(λ, v)) − h(�(λ, w))|
|v − w| � CC3K, (2·9)

where 0 < K � 1 is a constant that will be explicitely defined later. (K will be independent
of the constant C as well as independent of the choice of the points λ, v, w.) By equation
(2·9) and the choice of C3 it follows that

|�(λ, v) − �(λ, w)|
|v − w| � KC � C (2·10)

and by (2·5)

|det
[
(dλ�(λ, v, w))(dλ�(λ, v, w))T

] |
|v − w|2 � C2. (2·11)
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Projection theorems for linear-fractional families of projections 11

Hence by the chain rule for differentiation:

dλ�̃(λ, v, w) = dh(�(λ, v)) · dλ�(λ, v) − dh(�(λ, w)) · dλ�(λ, w) (2·12)

= dh(�(λ, v)) · [dλ�(λ, v, w)] (2·13)

+ [dh(�(λ, v)) − dh(�(λ, w))] · dλ�(λ, w). (2·14)

To abbreviate the notation in the following computations, we denote the product of matri-
ces on line (2·13) by A and the product of matrices on line (2·14) by B. So, in particular
dλ�̃(λ, v, w) = A + B. We will now show that the determinant of A is big and that B is small
in a suitable sense. To this end, let C4 := min{|det dh(u)| : u ∈ U0}. Since dh(u) for u ∈ U is
a square matrix and by (2·11), we have

det [AAT]

|v − w|2 = det [dh(�(λ, v))]2 det
[
dλ�(λ, v, w)dλ�(λ, v, w)T

]
|v − w|2 � C2

4C2. (2·15)

Notice that in the case where h is a linear mapping, then we have B = 0 and thus (2·15)
concludes the proof for postcomposition (choose K = 1 and C0 = min{C3, C4}). However,
we may in general not assume that h is linear. Let C5 � 0 be the local Lipschitz constant of
the mapping dh : U0 →R

m×m in terms of the Euclidean norm | · | on U0 and the supremum
norm ‖ · ‖∞ (i.e. absolute value of maximal entry) on the space R

m×m of square matrices.
(Notice that C5 = 0 is the case where h is linear). By definition of C5 and by (2·10)
we have

‖dh(�(λ, v)) − dh(�(λ, w))‖∞
|v − w| � C5

|�(λ, v) − �(λ, w)|
|v − w| � C5CK. (2·16)

It is an easy to check fact that the supremum norm for matrices has the following property:
For matrices M ∈R

m×m and N ∈R
m×l (where l ∈ N), ‖MN‖∞ � m‖M‖∞‖N‖∞. Define

C6 := sup{‖dλ�(λ, ω)‖∞ : ω ∈ 
0}. Combining this fact with equation (2·16) yields

||B||∞
|v − w| � m

‖dh(�(λ, v)) − dh(�(λ, w))‖∞
|v − w| ‖dλ�2‖∞ � mC5KC6C. (2·17)

Now consider the function ρ : Rm×k →R defined by ρ(M) = det [MMT]
1
2 . We equip

R
m×k with the supremum norm and R with the Euclidean norm. Then ρ is continuous on

R
m×k and it is Lipschitz on compacta in R

m×k \ ρ−1({0}). By continuity of ρ and by choos-
ing K sufficiently small, employing equations (2·15) and (2·17), it follows that for all point
triples λ ∈ λ0, v, w ∈ 
0, the matrices A and A + B live in a compactum in R

m×k \ ρ−1({0}).
Set C7 > 0 to be the Lipschitz constant of ρ on said compactum with respect to the metric
‖ · ‖∞ on R

m×k and | · | on R. Hence,

|det [(A + B)(A + B)T]
1
2 − det [AAT]

1
2 |� C7‖(A + B) − A‖∞ � ‖B‖∞ (2·18)

and finally

det [dλ�̃(dλ�̃)T]
1
2

|v − w| � det [AAT]
1
2

|v − w| − C7
‖BBT‖∞
|v − w| � (C4 − mKC5C6C7)C. (2·19)
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12 ANNINA ISELI AND ANTON LUKYANENKO

We choose 0 < K < C4/mC5C6C7 (resp. K = 1 in the case when C5 = 0, see below equation
(2·15)) and set C0 := min{KC3, C4 − mKC5C6C7}. Then the assumption (2·9) together with
the conclusion in equation (2·19) conclude the proof for postcomposition.

Remark 2·6.

(i) A slightly more general form of Lemma 2·2 is true with the same proof. Namely, we
may assume that the parameter variable λ depends on both the new λ̃ and ω̃ variables.
However, making the parameter λ depend on the choice of the point ω̃ does not seem
like a natural scenario in the setting of projections. Moreover, notice that we cannot
generally allow the space variable ω to depend on both λ̃ and ω̃. Lemma 2·3 may
indeed fail in that case.

(ii) In [PS00] and [Mat04] the regularity assumptions are much weaker: they assume the
differentiability of �(λ, ω) in λ and the boundedness of (all orders of) derivatives
dλ (locally) uniformly in 
. In our smooth geometric settings these technicalities
can be avoided. If we disregard differentiability of � on the product space and are
only interested in the preservation of transversality in Lemma 2·4, then it suffices to
assume C1-smoothness for the diffeomorphisms f ,g,h and the existence of the con-
stants C2, C4, and C5 in the proof, defined in terms of the differentials of f and h. This
makes Lemma 2·4 applicable in more general settings where much weaker regularity
is assumed for projection families.

2·4. Local transversality for projection families on manifolds

In view of Lemma 2·3, we may speak of local transversality for a projection family whose
domain, parameter space, and/or target are smooth manifolds, by working in coordinates.

Let n, m, k ∈N with k � m. Let N, M, and 	 be manifolds of dimension n, m, and k
respectively.

As in the Euclidean case (beginning of Section 2·2) we refer to a continuous mapping
� : 	 × N → M as a family of projections with parameter space 	 and we denote individual
mappings in the family by �λ(p) = �(λ, p).

Definition 2·7. Let L � 2. We call � a CL-smooth projection family if the following reg-
ularity assumptions hold: 	, N, and M are each equipped with a CL-smooth atlas and � is
CL-smooth.

Definition 2·8. A CL-smooth projection family � is called locally transversal if
Definition 2·1 is satisfied in terms of the CL-smooth local coordinates of 	, N and M.

2·5. Transversality for families induced by group actions

Recall that an action of a Lie group � on a manifold N is smooth if the corresponding
mapping � × N → N is smooth.

We first show that transversality is easier to check for families induced by group actions:

LEMMA 2·9. Let N be a smooth manifold, � a Lie group acting smoothly on N, and S0 ⊂
N a closed subset. Let S = {(γ , p) ∈ � × N : γ (p) ∈ S0}. For a projection family � : � × N →
M with domain (� × N) \ S induced by the action of � on N, the following are equivalent:
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(i) (local transversality) the family � is locally transversal;

(ii) (local transversality near the identity) for every point (γ , v) in the domain with γ = Id,
there exists a neighbourhood in � × N so that � restricted to that neighbourhood is
transversal;

(iii) (local transversality at the identity) there exists a neighbourhood U in (N \ S0) and
a constant C > 0 such that the transversality condition (2·2) holds for all triples
( Id, v, w) in the domain satisfying v, w ∈ U. (By the requirement that triples ( Id, v, w)
should lie in the domain, we mean that ( Id, v), ( Id, w) ∈ (� × N) \ S).

Proof. It is immediate from the definition of local transversality that (i) implies (ii) and
that (ii) implies (iii).

To prove that (ii) implies (i), suppose that (γ0, v0) ∈ (� × N) \ S. By the assumption of
(ii), the projection family � is transversal in a neighbourhood of ( Id, γ0v0). By Lemma
2·2, the projection family �̃(γ , v) := �(γ γ −1

0 , γ0v) is transversal in a neighbourhood of
(γ0, v0). Observe that by the definition of projection families induced by group actions, we
have �(γ γ −1

0 , γ0v) = π((γ γ −1
0 )γ0v) = π(γ v) = �(γ , v). Hence, the family � is transversal

in a neighbourhood of (γ0, v0).
We now show that (iii) implies (ii). Suppose we are interested in checking the transversal-

ity condition (2·2) for a triple (γ0, v, w). By Lemma 2·4, it suffices to check transversality for
the family �̃(γ , v) := �(γ γ −1

0 , γ0v) at the corresponding triple ( Id, γ0v, γ0w). Furthermore,
since the distortion of the transversality condition in Lemma 2·3 vanishes when the variable
γ approaches the identity, transversality of � for triples of the form ( Id, v, w) in fact implies
transversality of � for triples of the form (γ , v, w) (v, w ∈ U) for γ in neighbourhood V of
Id in �. Hence V × U ⊂ � × N is the neighbourhood for (ii).

Lastly, we show that, for projection families induced by group actions, it suffices to check
transversality on a smaller family that is induced by the action of a closed subgroup.

PROPOSITION 2·10. Let G be a Lie group acting on a manifold N, � ⊂ G a closed Lie
subgroup of G, M a manifold, and π : N → M a smooth projection. If the projection family
� : � × N → M given by �(γ , p) = π(γ (p)) is locally transversal, then so is the projection
family �̃ : G × N → M given by �̃(g, p) = π(g(p)).

Proof. We first prove the theorem in the case of a one-dimensional target (which is the
only case we will use).

By Lemma 2·9, it suffices to prove transversality at the identity. That is, we need to show
that for some C > 0:

if
|π(v) − π(w)|

|v − w| � C, then

∣∣∣∣dg|g=Id
π(gv) − π(gw)

|v − w|
∣∣∣∣� C. (2·20)

Now, since � ⊂ G is a closed Lie subgroup, by the Homogeneous Space Construction
Theorem and Quotient Manifold Theorem [Lee13, theorems 21·17 and 21·10] we have that
the quotient space H = G/� (consisting of �-cosets of G) is a manifold; indeed, around any
point of G there is a chart on G with coordinates (�x, �y) such that �x represents points in �

and �y represents points in H. Using such a coordinate chart at the identity of G, we see G
locally as a product of � and H; in particular, taking 0H to be the �-coset passing through
the identity of G, we can write IdG = ( Id� , 0H). We can then vary g either along � or along
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14 ANNINA ISELI AND ANTON LUKYANENKO

H, so that dg|g=Id can be decomposed as (dγ |γ=Id� , dh|h=0H ). By transversality of the �-
based projection family �, we know that

∣∣dγ |γ=Id� (π(γ v) − π(γ w))/|v − w|∣∣� C, which
then immediately gives the then-side of (2·20), completing the proof for one-dimensional
targets.

For higher-dimensional targets, one uses the more general Definition 2·2 of transversality,
and end of the proof relies on the following lemma from linear algebra.

LEMMA 2·11. Let M = (A B) be a real block matrix. Then det MMt � det AAt.

Proof. Let α = At:Rc →R
a, β = Bt:Rc →R

b, and μ = [α
β

] = Mt:Rc →R
(a+b). We need

to show det μtμ� det αtα. It is a standard fact2 that for any matrix T:Rc →R
d, the quantity

det TtT is the distortion of the c-dimensional volume element. Thus, we are trying to show
that for any Borel set A ⊂R

c, H c(μ(A)) �H c(α(A)). This follows immediately from the
fact that α(A) = π(μ(A)) for the standard projection π : R(a+b) →R

a.

Remark 2·12. The lemma fails over C if we take A = 1 and B = i, so that AAt + BBt = 0.
This explains the need for a geometric argument.

To illustrate Proposition 2·10, consider the following simple case:

Example 2·13. Let N =R
2 be Euclidean space, and π : R2 →R given by π(x, y) = x. It

is well-known that the family of projections associated with the group � = O(2) of rota-
tions around the origin is transversal. One can enlarge � to several reasonable choices of G,
such as the isometry group Isom (R2) which adds translations, the similarity group Sim (R2)
which adds aspect-preserving dilations, the linear group GL(2, R), or the group of affine
motions Aff (R2) that includes all above motions. By Proposition 2·6, each of these groups
will give rise to transversal families of projections.

3. Möbius transformations

In this section, we prove Theorems 1·3 and 1·4 concerning families of projections induced
by subgroups of Möb. We then apply Theorem 1·4 to specific projection families. Theorem
1·3 follows immediately from Proposition 2·10 and either Theorem 1·4 or the well-known
transversality of the family of orthogonal projections onto lines in R

2.
To prove Theorem 1·2, we will analyse transversality more carefully for an arbitrary one-

dimensional subgroup � ⊂ Möb. We will think of � as the image under the exponential map
of a line in the Lie algebra of Möb. To this end, we identify Möb with SL(2, C) and its Lie
algebra with the algebra sl(2, C) of traceless 2-by-2 complex matrices.

THEOREM 3·1. Let � ⊂ Möb be an arbitrary one-dimensional Lie subgroup,
parametrised as � = {γt = exp (At) : t ∈R} for some non-zero A = (aij) ∈ sl(2, C). Define:

(i) S0 = {∞} ⊂ Ĉ and S = {(γ , z) : γ (z) = ∞} ⊂ � × Ĉ;

(ii) L0 = {z: Im (a11 − a21z) = 0} ⊂C and L = {(γ , z) : γ (z) ∈ L0} ⊂ � × Ĉ;

(iii) K0 = L0 ∪ S0 ⊂ Ĉ and K = L ∪ S ⊂ � × Ĉ.

2 For square matrices, this is can be seen by decomposing T into a product of elementary matrices; while
for non-square matrices this can be seen by an appropriate change of coordinates.
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Then the projection family � : � × Ĉ→R given by (γ , z) �→ Re (γ (z)) is defined on the
domain (� × Ĉ) \ S and is locally transversal on (� × Ĉ) \ K.

For a geometric description of the sets L0 and K0, see the proof of Theorem 1·4 below.

Proof. Linearising at t = 0, we have γt = Id +At + O(t2) =
(

1 + a11t a12t
a21t 1 − a11t

)
+ O(t2)

and

�(t, z) = Re

(
(1 + a11t)z + a12t + O(t2)

a21tz + (1 − a11t) + O(t2)

)
. (3·1)

Noting that Re commutes with differentiation with respect to the real variable t, we have

dt|t=0�(t, z) = Re
(

a12 + 2a11z − a21z2
)

. (3·2)

In order to show locally transversality away from K, by Lemma 2·9, it suffices to check
the transversality condition (2·4) at t = 0 locally for (v,w), that is: around every (v0, w0) ∈C

2

with v0, w0 /∈ K0 there exists a neighbourhood U ⊂C
2 and a constant C > 0 such that

if
|�(0, v, w)|

|v − w| C then
|dt|t=0�(t, v, w)|

|v − w| > C (3·3)

for all v, w ∈ U, where for �(t, v, w) := �(t, v) − �(t, w).
Let (v0, w0) ∈C

2, U ⊂C
2 an open neighbourhood around (v0, w0), C > 0 a small positive

constant, and (v, w) ∈ U. We write v and w in terms of their real and imaginary parts: v =
(x + �x) + (y + �y)i and w = x + yi, and note that �(0, v, w) = Re (v − w) = �x. Assume
that the if-side of (3·3) holds, that is, assume that

|�x|
|v − w| < C. (3·4)

Let C1 > 0 such that C−1
1 (|�x| + |�y|) � |v − w|� C1(|�x| + |�y|) for all (v, w) ∈ U (i.e.

C1 is the local bi-Lipschitz constant for Euclidean norm and the 1-norm). Hence it follows
that

�y

|v − w| �
1 − C

C1
. (3·5)

First applying (3·2) and then writing out all parts in terms of x, y, �x, �y, we have

|dt|t=0�(t, v, w)|
|v − w| =

∣∣∣∣Re
(a12 + 2a11v − a21v2) − (a12 + 2a11w − a21w2)

|v − w|
∣∣∣∣ (3·6)

=
∣∣∣∣Re

2a11(v − w) + a21( − v2 + w2)

|v − w|
∣∣∣∣ (3·7)

=
∣∣∣∣Re (p(x, y, �x, �y))

�x

|v − w| + Re (2a11i− a21(2wi− �y))
�y

|v − w|
∣∣∣∣ , (3·8)

where p(x, y, �x, �y) is a polynomial in the variables x, y, �x and �y. Hence the abso-
lute value of p is bounded from above by a finite constant C2 > 0 depending on the
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neighbourhood U. Combining this with (3·4) and (3·5) yields

|dt|t=0�(t, v, w)|
|v − w| � 1 − C

C1
|Re (2a11i− a21(2wi)) − �y)| − C2C (3·9)

� 1 − C

C1
|Re (2a11i− a21(2wi)))| − 1 − C

C1
diam (U) − C2C. (3·10)

Assuming that v0, w0 /∈ S0 and that diam U and C are both sufficiently small, we have

|dt|t=0�(t, v, w)|
|v − w| � C

for all (v, w) ∈ U, as desired.
Now it remains to prove that transversality fails on K. It clearly suffices to consider a finite

point w0 ∈ K0. Notice that all computations and estimates up until equation (3·10) are still
valid under this assumption on w0, and choose w = w0, v = w0 + �yi (i.e. �x = 0). By the
definition of K0 and (3·8) it follows that

|dt|t=0�(t, v, w)|
|v − w| =

∣∣∣∣a21(�y)2

|v − w|
∣∣∣∣� |a21||�y|,

which for small �y cannot be bounded away from zero and transversality fails, unless
a21 = 0. In this remaining case, we either have that Im (a11) 	= 0 in which case L0 = ∅,
or Im (a11) = 0, in which case � acts by translations and transversality clearly fails on
L0 =C.

We can now derive Theorem 1·4 from Theorem 3·1:

Proof of Theorem 1·4. Combining Theorem 3·1 and Theorem 2·2, projection theorems
hold wherever we have Im (a11 − a21z) 	= 0, where A = (aij) ∈ sl(2, C) is the Lie algebra of
�. It remains to describe this set geometrically.

If a21 = 0, then � preserves ∞. If, furthermore, Im (a11) 	= 0, Im (a11 − a21z) 	= 0 holds
for all z and we obtain transversality on all of � ×C. Conversely, if Im (a11) = 0, then
transversality fails everywhere; exponentiating the matrix explicitly, one sees that the group
is, in fact, either a translation z �→ z + a12t if a11 = 0 or a dilation centered at −a12/(2a11)
if a11 	= 0. So projection theorems fail everywhere.

If a21 	= 0, then the set L0 = {z: Im (a11 − a21z) = 0} is a line, and one shows using the
linearisation of γt that L0 is tangent to the infinite orbit �(∞) at t = 0, see Figure 1.

In most cases, projection theorems can be recovered despite the lack of transversality
along L0. There are three cases:

(1) (bad case) L0 is a vertical line and K0 = �(∞). In this case, projection theorems
fail for subsets of L0 since they are inevitably projected to a single point, but hold
elsewhere;

(2) (good case) L0 is a non-vertical line and K0 = �(∞). In this case, the restriction of
the projection to L0 is a similarity mapping, so Hausdorff dimension and positivity of
the Hausdorff measure are preserved by the projection π along L0;

(3) (artifact case) K0 	= �(∞). In this case, any set of sufficiently small diameter inside L0

will be moved away from L0 by γt after some time. Indeed, the orbits of � are analytic
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Fig. 2. Two ways of seeing a Möbius motion-projection family. In the two pictures, the same pro-
jection is shown via its fibers (solid curves) and target (perpendicular to the fibers). The rotation
family is illustrated via its orbits (dashed). In the picture on the left, the projection is normalised
to (x, y) �→ (x, 0) (at the expense of complicating the motions). In the picture on the right, the
rotation family is normalised to z �→ eiθ z (at the expense of complicating the projection). The
two pictures are related by a Möbius transformation that sends the two dots on the left to 0 and
∞ on the right and the point ∞ to (0,1).

away from their endpoints and therefore cannot overlap K0 in a relatively-open set
without forcing K0 to be an orbit. Projection theorems following from transversality
then apply.

This completes the proof of Theorem 3·1.
We finish the section with some examples of Möbius projection families.

Example 3·2. Classical projection theory focuses on the group O(2) = {z �→ eitz:t ∈R}
corresponding to Lie algebra element A =

(
i/2 0
0 −i/2

)
. We recover the well-known

transversality result for this family.

Example 3·3. Compact one-parameter families � of Möb are conjugate to O(2) by some
M ∈ SL(2, C) (one sees this by putting the generator A of � in Jordan canonical form). The
group � then fixes two points, M(0) and M(∞). If one of these is infinite, then � simply
rotates around the other point. If both are finite, we may use a translation and dilation to nor-
malise the two points to lie on the unit circle, see the left side of Figure 2. Transversality fails
along the linear orbit of ∞, but projection theorems are recovered as long as the orbit is not
vertical. Conjugating the projection family by M yields a “circular point-source projection”
shown on the right in Figure 2.

Example 3·4. Lastly, consider a loxodromic motion, shown in Figure 1. This motion is
conjugate, by some M ∈ Möb, to a mapping of the form z �→ e(a+ib)tz. The orbit of ∞ is
non-linear in this case, but transversality nonetheless fails along its tangent line T at ∞.
Projection theorems hold in this case, even if the linearisation is vertical, since any subset of
T moves out of it under the action of �.

https://doi.org/10.1017/S0305004123000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004123000373


18 ANNINA ISELI AND ANTON LUKYANENKO

4. Real projective transformations

In this section, we repeat the analysis from Section 3 within the framework of projective
geometry. That is, we prove Theorems 1·5 and 1·6 and then apply Theorem 1.6 to specific
projection families. Recall that our basic projection is now the mapping π : (RP2 \ ∞Y ) →
RP

1 =R∪ ∞X , which restricts to R
2 as the familiar projection (x, y) �→ x and also sends

the infinite points to ∞X . Writing points of RP2 and RP
1 in homogeneous coordinates

3
, π

is given simply by π(x:y:z) = (x:z).
Theorem 1·5 takes an additional consideration not needed for Theorem 1·1: namely, the

family O(2) is transversal on R
2 ⊂RP

2, but not on RP
2 \R2. Indeed, projection theorems

fail for subsets of RP2 \R2.
Proof of Theorem 1·5. Since the family induced by O(2) is transversal on R

2, we
obtain by Proposition 2·10 that the family induced by GL(3, R) is transversal on the set
{(g, p) : g−1(p) ∈R

2}.

Let M =
⎛
⎝0 0 −1

0 1 0
1 0 0

⎞
⎠ ∈ GL(3, R), which preserves the point ∞Y and sends the extended

X-axis to itself. In particular, we have that π commutes with M. Applying Lemma 2·3 to
the group � = MO(2)M−1, we have that the family induced by � is transversal away from
M(RP2 \R2), which is the closure Ŷ of the Y-axis. Combining this with Proposition 2·10, we
have that the family induced by GL(3, R) is transversal on the set {(g, p) : g−1(p) ∈RP

2 \ Ŷ}.
Combining the two transversality results, we have that � : GL(3, R) ×RP

2 →RP
1 is

transversal away from the set {(g, p) : g−1p = ∞Y}, as desired.

The proof of Theorem 1·6 is analogous to that of Theorem 1·4, once we prove our next
Theorem 4·1, which parallels Theorem 3·1. Recall that the Lie algebra gl(3, R) of GL(3, R)
consists of arbitrary 3-by-3 real matrices.

THEOREM 4·1. Let � ⊂ GL(3, R) be a one-dimensional Lie subgroup parametrised as
� = {γt = exp (At) : t ∈R} for some non-zero A = (aij) ∈ gl(3, C). Define:

(i) S0 = {∞Y} ⊂RP
2 and S = {(γ , p) : γ (p) = ∞Y} ⊂ � ×RP

2;

(ii) L0 =

⎧⎪⎨
⎪⎩

{(x, y) : a32x = a12} ⊂R
2 if a32 	= 0

RP
2 \R2 if a32 = 0 and a12 	= 0

RP
2 if a32 = 0 and a12 = 0

;

(iii) L = {(γ , p) : γ (p) ∈ L0} ⊂ � ×RP
2;

(iv) K0 = L0 ∪ S0 ⊂RP
2 and K = L ∪ S ⊂ � ×RP

2.

Then the projection family � : � ×RP
2 →RP

1 given by (γ , p) �→ π(γ (p)) is defined on
the domain (� ×RP

2) \ S and is locally transversal on (� ×RP
2) \ K.

Proof. As in the proof of Theorem 1·5, we will first check transversality at finite points
following the steps of the proof of Theorem 1·4. Then we check transversality at the infinite
points by linking it to transversality at finite points.

3 A homogeneous coordinate (x:y:z) ∈RP
2 = (R3 \ {0})/R∗ corresponds either to a finite point (x/z, y/z) if

z 	= 0, or represents an infinite point if z = 0. Unlike in the case of the Riemann sphere Ĉ=CP
1, in RP

2

there are infinitely many infinite points. We distinguish two infinite points of interest: ∞X = (1:0:0) and
∞Y = (0:1:0). Matrices in GL(3, R) act on homogeneous coordinates as they would on vectors.
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We have exp (At) = Id +At + O(t2), where O(t2) refers to higher-order terms in t, so that

�(t, (x, y)) = (1 + a11t)x + a12ty + a13t + O(t2)

a31tx + a32ty + (1 + a33)t + O(t2)
. (4·1)

Differentiating at zero, we have

dt|t=0�(t, (x, y)) = a11x + a12y + a13 − x(a31x + a32y + a33).

We assume that the left-hand side of the transversality condition holds for a pair of points
(x + �x, y + �y) with constant C > 0. Hence, |�x|/|(�x, �y)|� C and |�y|/|(�x, �y)| is
large in terms of C (this is analogous to equations (3·4) and (3·5)). One can now compute
and simplify |dt|t=0�(t, v, w)|/|v − w| analogous to equations (3·6) through (3·8). The
analog of the right-hand term here equals

(a12 − a32x) |�y|
|(�x,�y)| . (4·2)

The analog of the left-hand term (containing |�x|/|(�x, �y)| as a factor) is small compared
to C and hence negligible (see equations (3·9) and (3·10)). Hence, in the finite part of RP2,
we have local transversality at t = 0 if and only if a12 − a32x 	= 0 in R

2 ⊂RP
2.

In order to check transversality on the infinite part of RP2, we conjugate A and � by the
matrix M used in the proof of Theorem 1·6, giving

MAM−1 =
⎛
⎝ a33 −a32 −a31

−a23 −a22 a21

−a13 a12 a11

⎞
⎠ .

The family associated to M�M−1 is then transversal at points (x’,y’) where −a32 − a12x′ 	=
0. By Lemma 2·3, local transversality of � at a non-vertical infinite point with homogeneous
coordinates (x:y:0) is equivalent to local transversality of the family associated to M�M−1 at
M(x:y:0) = (0:y: − x) = (0: − y/x:1) = (0, −y/x). Here, the transversality condition −a32 −
a12x′ 	= 0 reduces to a32 	= 0, as desired.

Example 4·2. The classical transversality result for orthogonal linear projections is encoded

by the Lie algebra element A =
⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ = dt|t=0

⎛
⎝cos t − sin t 0

sin t cos t 0
0 0 1

⎞
⎠. Transversality and

projection theorems hold away from the line at infinity, where they both fail.

Example 4·3. Curiously, for the purpose of projection theorems the rotations are equiva-

lent to the group generated by the matrix A =
⎛
⎝0 −1 0

0 0 0
0 0 0

⎞
⎠, which gives the group of shears

γt(x, y) = (x + yt, y). Again, we have transversality away from the line at infinity.

Example 4·4. Transversality and projection theorems fail globally for all groups
that preserve the point ∞Y , since they commute with the projection. These
include translations, dilations, and vertical shears. They also include Z-shears
of the form (x, y) �→ (x/1 + xt, y/1 + xt) and Z-rotations of the form (x, y) �→
((cos (t)x − sin (t)/sin (t)x + cos (t)), (y/sin (t)x + cos (t))).
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Example 4·5. The family of point-source projections from a finite light source (say, (0,1))
can likewise be encoded in our framework by conjugating the standard rotation family O(2)

by a mapping that sends the light source to ∞Y , say N =
⎛
⎝1 0 0

0 0 −1
0 1 0

⎞
⎠.

Conjugating the standard rotations by N and differentiating gives the Lie algebra gen-

erator

⎛
⎝0 0 −1

0 0 0
1 0 0

⎞
⎠. One concludes that point-source projections satisfy projection theorems

but have artifact non-transversality along the line tangent to the unit circle at rotation angle
θ = 0, and corresponding points at other values of θ .

Example 4·6. Lastly, we consider the group shown in Figure 1, where transversality fails
along the linearisation of the orbit �(∞Y ). The group in this case is conjugate by an ele-
ment of GL(3, R) to motions of the form (x, y) �→ (e2tx, e3ty), which has non-linear orbits.
Conjugating such that one of these orbits passes through ∞ provides a desired example.

5. Spherical and hyperbolic projections

We now provide transversality results for closest-point projections onto totally-geodesic
subspaces in the hyperbolic space H

n and sphere S
n. Previously, transversality for those

projections was known for H2 and S
2 [BI16], and projection theorems [BI19] as well as

a weaker version of transversality [Ise18] were known in H
n for n � 3 but not for Sn. Our

results in S
n are new for n � 2, and in H

n we provide a stronger transversality result (higher
regularity).

We first frame the transversality statements on H
n and S

n by viewing them as abstract
Riemannian manifolds. We will then work with concrete models of Hn and S

n, as is per-
mitted by Lemma 2·3. Let X be H

n or Sn, and fix a point p ∈ X. The exponential mapping
expp : TpX → X maps each m-dimensional subspace of TpX to a totally-geodesic subspace
of X. Hence, expp induces an identification between the set of m-dimensional subspaces
of TpX (that is, the Grassmannian G(n,m)) and the set of totally-geodesic subspaces of X
containing p. By further identifying each element of G(n,m) with R

m (see Section 2), we
may then speak of the family of closest-point projections � : G(n, m) × X →R

m. Note that
closest-point projections are defined globally in H

n. In S
n, they are defined away from two

points (depending on the element of G(n,m)) in the equator S0 dual to p.

THEOREM 5·1. Let X be hyperbolic space Hn or the complement Sn \ S0 of the equator S0

in the sphere Sn, and m < n. Then the closest-point projection family � : G(n, m) × X →R
m

is locally transversal and therefore satisfies projection theorems.

Proof. In view of Lemma 2·3, transversality in any model of X passes to all C2-equivalent
models, so we may work with any standard model of each space.

We first consider the sphere S
n ⊂R

n+1, see Figure 3, with p at the north pole. Recall
that totally geodesic subspaces of Sn correspond exactly to intersections of Sn with linear
subspaces V of Rn+1. Furthermore, given a point q ∈ S

n, one can rotate both V and q into
a normalised position to show that the projection of q to S

n ∩ V is given by perpendicular
projection of q to V followed by rescaling to norm 1.
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Fig. 3. Closest-point projections to a totally geodesic subspace (solid curve) in the sphere and
hyperbolic space, shown via the dashed fibers, and the corresponding orthogonal projections in
R

2. The correspondence is given by radial projection from the origin (center of the sphere on the
left, dot on the right) to the planes z = −1 and z = 1, respectively.

Let f (x1, . . . , xn+1) = (x1/xn+1, . . . , xn/xn+1) be the projectivization mapping, sending
each half-sphere of Sn \ S0 diffeomorphically to R

n. The point p is sent to the origin, and
each totally geodesic subspace V ∩ S

n of Sn is sent to a linear subspace of Rn, namely to
f (V) = V/ span (en+1). Furthermore, f trivially conjugates the rotation family O(n) × Id to
the family O(n) in R

n.
We now show that f conjugates closest-point projections on S

n to orthogonal projections
in R

n, even though f |Sn is not a conformal mapping. Note first that f is dilation-invariant,
so that instead of working with closest-point projections from S

n to S
n ∩ V , we may

work with orthogonal projections from R
n+1 to V . Next, rotate V using an element of

O(n) × Id so that it is spanned by e1, . . . , em and en+1, and therefore f (V) is the sub-
space span (e1, . . . , em). Perpendicular projection onto V is then given by (q1, . . . , qn+1) =
(q1, . . . , qm, 0, . . . , 0, qn+1). Conjugating by f , we obtain a well-defined mapping

(q1, . . . , qn) �−→ (q1, . . . , qm, 0, . . . , 0)

by choosing any preimage of q under f , projecting perpendicularly to V , and then apply-
ing f again to return to R

n. We thus have that, under conjugation by f , the family of
closest-point projections onto totally geodesic subspaces of dimension m passing through
p in S

n is equivalent to the family of orthogonal projections to m-planes passing through the
origin in R

n. By Lemma 2·3 and transversality of the Euclidean family of projections, we
obtain the spherical part of the theorem.

The claim for hyperbolic space could be performed in the same way by starting the
hyperboloid model of Hn and projectivising to observe the Klein model of Hn. We instead
work directly in the Klein model of Hn (cf. the analogous description in [BI19]). That is,
we view H

n as the unit ball in R
n with a Riemannian metric that is invariant under real

linear-fractional transformations preserving the ball. We will be interested in two types of
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isometries: the rotations O(n) and the hyperbolic transformation given by

(x1, . . . , xn) �−→
(

x1 cosh (t) + sinh (t)

x1 sinh (t) + cosh (t)
,

x2

x1 sinh (t) + cosh (t)
, . . . ,

xn

x1 sinh (t) + cosh (t)

)
.

We start by normalising the basepoint p to be the origin: starting with any p, we can use
a rotation in O(n) to normalise p = (p1, 0, . . . , 0) and then a hyperbolic transformation to
furthermore take p = 0. It is easy to see that geodesics in H

n passing through 0 are straight
lines, and therefore each m-dimensional totally geodesic subspace in H

n passing through
0 is simply a restriction of an m-dimensional linear space W passing through 0. We may
therefore identify this set with the Grassmannian G(n,m), with the same action of O(n) in
both cases.

It therefore suffices to show that nearest-point projection in H
n to a subspace W ∩H

n is
given by orthogonal projection. As before, we may normalise W using an element of O(n)
so that W is spanned by e1, . . . , em. Given a point q = (q1, . . . , qn) we may rotate along
W and perpendicular to it to normalise q = (q1, 0, . . . , 0, qm+1, 0, . . . , 0). Furthermore, we
may apply a hyperbolic transformation to normalise q = (0, . . . , 0, qm+1, 0, . . . , 0). The line
segment joining the origin to q is a geodesic, and so q projects to 0 under closest-point
projection. Note that the last normalisation of q using the hyperbolic transformation does not
preserve Euclidean angles, but it does preserve orthogonal projection to W, so the closest-
point projection to W ∩H

n is indeed given by orthogonal projection to W.
Thus, in the Klein model, we see that the family of closest-point projections to m-

dimensional totally geodesic subspaces through the origin coincides with the family of
Euclidean orthogonal projections onto m-dimensional subspaces, and therefore by Lemma
2·3 transversality passes over to hyperbolic space, as desired.
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