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ON FRACTIONAL INTEGRALS EQUIVALENT 
TO A CONSTANT 

BY 

K. L. R O B E R T S 

ABSTRACT. The paper is concerned with the Liouville-Riemann 
and Weyl fractional integrals. Necessary and sufficient conditions 
are obtained for a function to have a fractional integral which is 
equivalent to a constant. 

1. Introduction. Suppose A > 0 and / is a measurable function defined on 
(0, oo) and Lebesgue integrable on finite intervals (0, t). The Ath order 
Liouville-Riemann integral of /, denoted Ikf, is given by 

(1) / x / ( 0 = p ^ < [ ( t - s ) x - 1 / ( s ) d s , 

for t > 0 , whenever this expression exists as a Lebesgue integral. It is known 
that, if 0 < A < 1, Ikf(t) exists for almost all f > 0 , and if A > 1, Ikf(t) exists for 
all f>0 . It is also known that, for A > 0 and JLL>0, h(IJ)(t) = Ik+J(t), 
whenever the latter integral exists ([4], pp. 177-179). 

Suppose h is a measurable function defined on (1, oo) and J7 u x _ 1 \h(v)\ dv < 
00. The Ath order Weyl integral of h, denoted Wkh, is given by 

(2) WMu) = fk)\ {v~u)"~lhMdv^ 
for u>l, whenever this expression exists as a Lebesgue integral. If 0 < A < 
1, Wkh(u) exists for almost all u > 1, and if A > 1, Wkh(u) exists for all u > 1 
(see Lemma 1 below). 

Taking A = 1, Ii/(t) = Jo f(s) ds, the ordinary Lebesgue integral. It is a well-
known result of Lebesgue ([2], Theorem 95) that, for almost all £>0, the 
derivative (d/dt)I1/(f) exists and equals /(f). Consequently, if I1/(f) = c, a 
constant, for all f > 0 , then /(f) = 0 for almost all t > 0 , and c = 0. That is, the 
equation Ii/(f) = c has an essentially unique solution when c = 0, and no 
solution when c ^ 0 . 

In this note we consider the analogous questions for the Liouville-Riemann 
and Weyl integrals. What are the solutions of the equations Ikf(t) = c, for 
almost all t > 0 , and Wkh(u) = c, for almost all u>\l We prove the following 
two theorems. 

Received by the editors September 4, 1980. 
1980 Mathematics Subject Classification: 26A33. 

335 

https://doi.org/10.4153/CMB-1982-046-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1982-046-6


336 K. L. ROBERTS [September 

THEOREM 1. Suppose A > 0 , c is a constant, f is a measurable function defined 
on (0, °°) and Lebesgue integrable on finite intervals (0, t), and 

(3) IJ(t)=—-\(t-s)x~1f(s)ds = c, for almost all f>0 . 
1 (À) J0 

If 0 < À < 1, then f(s) = (c/T(l - \))s~k for almost all s > 0. If A > 1, then /(s) = 0 
/or almost all s > 0, and c = 0. 

THEOREM 2. Suppose À > 0, c is a constant, h is a measurable function defined 

on ( l ,0 0) , J T ^ - 1 |h(u)l du<°°, and 

I f 0 0 

(4) Wr
xh(w) = = ^ - (u —w)x 1h(v)dv = c, for almost all u>\. 

Then h(u) = 0 for almost all v>l, and c = 0. 

2. Liouville-Riemann integral (Proof of Theorem 1). Case (a): Suppose 
À = 1. Then (3) becomes 

(5) J f(s) = c, for almost all t > 0 . \tf(s) = c, 

The integral in (5) is absolutely continuous, so (5) holds for all t > 0. Taking 
the derivatives of both sides gives /(s) = 0 for almost all s > 0 . Hence c = 0. 

Case (b): Suppose 0 < À < 1. Taking the (1 — A)th integral of both sides of (3), 
we get 

,« I-"')-I»^)")-nfeôl'('-)''d-(i-A)m-A)'" 
for all f > 0 . 

Taking the derivative of both sides of (6) gives f(s) — (c/T(l - A))s - \ for almost 
all s > 0 . 

Case (c): Suppose A > 1 . Equation (3) can be written as I1(Ik_1f)(t) = c, for 
almost all t > 0. From case (a), we conclude that lk_1f(t) = 0 for almost all t > 0, 
and c =0. From case (b) we then conclude that f(s) = 0 for almost all s > 0 . 

This completes the proof of Theorem 1. 

If c = 0, Theorem 1 is a special case of the following theorem of Titchmarsh 
([3], Theorem 152). 

THEOREM 3. Suppose f and g are integrable on finite intervals (0, t), and 
Jo g(t-s)f(s) ds = 0 for almost all t>0. Then either f(s) = 0 for almost all s, or 
g(s) = 0 for almost all s. 

Theorem 1 for arbitrary c, and 0 < A < 1, can be deduced from Theorem 3 by 
considering the function f(s) — (c/T(l — A))s~\ 
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3. Weyl integral. The following lemma establishes the existence of the Weyl 
integral Wxh(u), for almost all u>\. 

LEMMA 1. Suppose A>0 , h is a measurable function defined on ( l ,0 0), and 
iivk^ |h(u)|<oo. If 0 < A < 1 , then Wkh(u), given by (2), exists for almost all 
u>l. If A > 1, then Wkh(u) exists for all u>l. 

Proof. If A > 1, the absolute convergence of the integral in (2) follows from 
iu(v-u)k~1\h(v)\dv^JZvK~1\h(v)\dv<^. If 0 < A < 1 , we consider 

(7) 

/• oo •* /*oo /*oo 

u-2Wk\h\(u)du=——\ u~2du\ (v-uf^Hv^dv 
h I (A) J\ Ju 

"F(Â)J l h ( t ; ) l d i ; J (v-uf^u^du, 

by Fubini's theorem. Letting a =max(l , v/2), the inner integral in (7) can be 
written as J? (v — M) X _ 1 M - 2 du +$v

a (v — w) x - 1u - 2 du, whereupon it is seen to be 
< H u x ~ \ for a suitable constant H independent of v. The lemma follows. 

A Weyl integral may be transformed into a Liouville-Riemann integral by 
the following substitution (cf. [1], p. 175). 

LEMMA 2. Suppose A > 0 , h is a measurable function defined on (l ,0 0), and 
ft vk~x \h(v)\ dv<™. Define f(u) = u-k-1h(llu), for 0 < u < l . ThenfeL(0, l) 
and 

(8) Ix/(0 = tx"1Wxh(y), for 0 < t < l , 

whenever either integral exists. 

Proof. Making the substitution u = 1/v, we have 

f \f(u)\du= f u-*-1 \h(-)\du= f t?*"1 |h(u)| dv«*>, and 
Jo JO I \w / I J\ 

= (x"1Wxh x *t 

We can now prove Theorem 2. 

Proof of Theorem 2. Case (a): Suppose 0 < A < 1 . Define f(u) = 
w~x_1h(l/iO, for 0 < w < l , so that (8) holds. Equation (4) then becomes 
hf(t) = ctK~1 for almost all t satisfying 0 < f < l . Taking the ( l -A) th integral 
gives 

(9) IJ(t) = —^—\\t-urKux-1du = cnk\ for 0<t<l. 
1 U - A j J0 

https://doi.org/10.4153/CMB-1982-046-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1982-046-6


338 K. L. ROBERTS 

Differentiating (9) gives f(t)--=0 for almost all t satisfying 0 < f < l , whence 
h(u) = 0 for almost all u > 1, and c = 0. 

Case (b): Suppose A = 1. Equation (4) becomes $2 h(v) dv = c, for almost all 
u > l , and hence for all u>\ by (absolute) continuity. The result follows by 
differentiating. 

Case (c): Suppose A > 1 . Differentiating equation (4), we obtain 

(10) -fTT—77 (v-uf~2h(v)dv=0, for almost all u > l , 
1 (A — 1) Ju 

and the result follows by induction from cases (a) and (b). 
This completes the proof of Theorem 2. 
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