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Abstract

Let X be a locally convex space. Kluvanek associated to each X-valued countably additive vector measure
a conical measure on X; this can also be done for finitely additive bounded vector measures. We prove
that every conical measure uonX, whose associated zonoform Ku is contained in X, is associated to
a bounded additive vector measure a(u) defined on X, and satisfying a(u)(H) e H, for every finite
intersection H of closed half-spaces. When X is a complete weak space, we prove that a(u) is countably
additive. This allows us to recover two results of Kluvanek: for any X, every conical measure u on it
with Ku c X is associated to a countably additive X-valued vector measure; and every conical measure
on a complete weak space is localizable. When X is a Banach space, we prove that a (M) is countably
additive if and only if u is the conical measure associated to a Pettis differentiable vector measure.

2000 Mathematics subject classification: primary 46G10, 28B05, 47D50.
Keywords and phrases: vector measures, conical measures, ranges of vector measures, Pettis integral.

Introduction

In [Kl] Kluvanek introduced the concept of the conical measure associated to a
countably additive vector measure to characterize the closed convex hull of its range.
Many properties of a vector measure can be determined from the corresponding
associated conical measure. For instance, in the framework of Banach spaces, having
finite variation, having a -finite variation, having a Bochner derivative, or having p-
summing integration operator are properties of a vector measure characterized in terms
of its associated conical measure (see [RR], where these characterizations are used to
prove that these properties are determined by the range).
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[2] Conical measures and vector measures 11

Conversely, vector measures are used as a tool to study conical measures on a
locally convex space X; this is due to the fact, proved by Kluvanek [Kl], that every
conical measure u on X, whose associated zonoform Ku (see definition in Section 1)
is contained in X, is the associated conical measure to an X-valued vector measure F.
We prove this fact in Corollary 2.4; Kluvanek's proof is purely existential and does not
show any relationship between u and the vector measure F or the measurable space
where F is defined. Finding a more explicit construction of the vector measure F was
our first motivation for this work.

The most natural requirement for F is to define it on a a -algebra of subsets of X
containing the closed convex cones, and with the condition F(C) € C for every
closed convex cone C. This can be done in finite dimension, but it is not always
possible in general. Even if we consider the smaller o -algebra generated by the
closed half-spaces, we prove that there would exist only one way to construct such
an F (uniqueness in Theorem 1.2), and this way does not give countably additiveness in
general (Example 3.1). This is the reason why we consider finitely additive measures.

Using the same scheme as Kluvanek, we associate to every X -valued finitely
additive bounded measure F a conical measure A(F) on X with the property that the
closed convex hull of the range of F is the zonoform associated to A(F). This is
done in Section 1. The main effort in this section is devoted to obtaining a natural
converse of this result. In Theorem 1.2 we prove that, given a conical measure u on
X whose associated zonoform Ku is contained in X, there exists a bounded finitely
additive measure a (u), defined on the algebra of subsets of X generated by the closed
half-spaces, such that a(u)(H) G H U {0}, for every finite intersection H of closed
or open half-spaces.

In Section 2 we deal with the case where X is a weak complete space. Then
for every conical measure u on X, Ku c X, a(u) is defined, and moreover, a(u)
is countably additive (Theorem 2.3). This allows us to extend a(u) to a countably
additive measure on the a -algebra generated by the closed half-spaces. Corollary 2.4
is obtained considering, for any locally convex space, its weak completion. We finish
this section giving a new proof of another result of Kluvanek: every conical measure
on a weak complete space is localizable (Theorem 2.8).

In the last section we consider Banach spaces. We prove (Theorem 3.3) that, for
a Banach space X, o{u) is countably additive if and only if there exists a Pettis
differentiable X -valued measure F such that u is the conical measure associated to F.
An analogous condition (using the bidual X** of X) is obtained in Theorem 3.4 to
characterize when u is the conical measure associated to a vector measure with a-finite
variation.

Throughout the paper our locally convex space and measure theory terminology
follows [BB, C, DU]. We only consider real locally convex spaces. Let (Q, &) be a
pair, where & is a field of subsets of a set £2. We denote by ba(f2, &) the space of all
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12 L. Rodriguez-Piazza and M. C. Romero-Moreno [3]

bounded additive real-valued measures on & and by ca(fi, E) the space of countably
additive real-valued measures on a a -field E. If 11 is a measure in one of these spaces,
H > 0 means that /z(A) > 0 for every A s / (for every A € E). With this ordering
ba(ft, ^") and ca(ft, E) become vector lattices. In particular, the positive part of fi,
fi+, is given by

lx+(A) = sup{/z(fl) : B c A, B e ^"} for every A e ^

and the negative part \x~ by

= -inf{/x(B) : S c A, B € &} for every A e &.

The variation of /x, denoted by \fi\, is given by \fi\ = fi+ + fi~.
Let X be a Hausdorff locally convex space, with the topological dual space X*.

For us a vector measure is an additive function F: ^ —*• X defined on the space
(fi, «^) with values in X. If £ e &, the vector measure FE: & -*• X is defined by
FE(A) = F(E n A) for every A e ^ .

The range of F is denoted by rg F, that is, rg F = {F(A) : A € J^"}. We say that a
vector measure F is bounded \ix*F e ba(fi, «^) for every ** € X*, that is, if rg F is
a bounded set in X, thanks to the Mackey theorem.

By a countably additive vector measure F on an algebra & we understand a vector
measure such that F(U^1, An) = ]T^i F(An) for all sequences (AB) of pairwise
disjoint members of JF such that \J^=l An € &. This is equivalent to the following
condition: F is additive and if (An) is a sequence of sets in & decreasing to the
empty set, then F(An) converges to 0 in X. If in addition there exists a weakly
compact convex set W such that rgF c. W, then F has a (unique) countably additive
extension to the a -algebra E generated by &. To show this fact, apply the Hahn
extension theorem to each scalar measure x*F and extended it to a countably additive
measure fix.. Thanks to the weak compactness, it is easy to see that for every A € E
there is xA e W such that x*(xA) = fix*(A), for every x* € X*. The mapping
A H* xA is weakly countably additive and, by the Orlicz-Pettis theorem [KK, page 4],
it is countably additive (see also [DU, page 27] for the Banach space case).

If X is a Banach space, F is said to be strongly additive whenever given a sequence
(En) of pairwise disjoint members of &, the series Yl^Li F(En) converges in norm.
In this case, F is strongly additive if and only if co(rg F) is a weakly compact set in
X (see [DU, page 27]).

1. Conical measures and bounded vector measures

In [Kl ], Kluvanek introduced the conical measure associated to a countably additive
vector measure to study the closed convex hull of its range. We work in a wider context
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[4] Conical measures and vector measures 13

of vector measures which are bounded. Let us recall some basic facts and definitions
about conical measures.

Given a Hausdorff locally convex space X, h(X) stands for the smallest vector
lattice of functions on X with respect to the pointwise order and the linear operations
that contains X*. Every element of h(X) can be written in the form

m

- V
i=l i=n+l

where x* e X* for i = 1 , . . . , m, and v (A) denote the least upper (greatest lower)
bound in a lattice; which in this case is a pointwise maximum (minimum) of functions.

A conical measure on X is a positive linear functional on h(X). The set of all
conical measures over X is denoted M+(X). It is a complete lattice with respect
to the order v < u if u(z*) < u(z*), for every z* 6 fc(X), z* > 0. We refer to
[C, Sections 38-40] for these and more facts about conical measures. In particular,
we have the Riesz decomposition [C, 10.5]: given uu u2 and v in M+(X) such that
» < « i + u2, there exist V\ and v2 in M+(X) with v = î  + v2, v\ < MJ and v2 < u2.
On M+(X) we consider the topology of pointwise convergence, that is, a net (us)s in
M+(X) converges to u € M+(X) if us(z*) converges to u(z*) for every z* e /i(X).
For this topology, given u e M+(X), the set L = {v e M+(X) : 0 < v < «} is
compact.

In the sequel we also consider conical measures on the weak completion of X. This
weak completion, that we denote by X, turns out to be the algebraic dual of X*, that
is, X = {/ : X* ->• R,f linear}. When considering the weak topology a{X, X*), X
is a dense subset of X and (X)* = X*, so we can identify h(X) and h{X) and conical
measures are unaffected.

The resultant of a conical measure u is defined as the vector r(u) in X satisfying
u(x*) = x*(r(u)) for all x* e X*. The zonoform associated to u is the set in X,
Ku = [r(v) : v 6 M+(X), 0 < v < u}. By considering X, the existence of r(u) is
always ensured.

Let us suppose now that F: (£2, J?") —>• X is a bounded vector measure. It defines
a linear map from X* to ba(£2, &) sending each x* to x* F. This map can be extended
to a lattice homomorphism <E>F from h(X) to ba(£2, &), such that for every z* e /i(X)
of the form (1),

n m

^ F\Z ) y i y i *

i=l /=n+l

The conical measure A(F) associated to F is defined by

A(F)(z*) = <S>/r(z*)(Q), for every z* 6 ft(X).
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14 L. Rodnguez-Piazza and M. C. Romero-Moreno [5]

In this case, r(A(F)) = F(Q). The original definition of Kluvanek in [Kl] used the
lattice structure of ca(J2, E) for countably additive vector measures, instead of that of

Let us observe first that if F is a bounded vector measure with values in a locally
convex space X, if v € M+(X),0 < v < A(F), then the resultant of v always exists
as an element of X**, the topological bidual of X. To show this, observe that for every
x* € X*,

\v(x*)\ < v((x*)+) + v((*T) < A(F)((;t*)+) + A(F)((;tV)
(x*F)-(Q) < 2 s u p { | j t * ( x ) | : x e r g F).

This implies, since rg F is a bounded set, that r(v) is continuous for the topology
P(X*, X) in X*, that is, r(v) e X**. This means that KMF) is contained in X** in this
case. It is not a general fact for a conical measure u that r(u) € X** (see [C, vol. 3,
page 4]).

Kluvanek identified in [Kl] the closed convex hull of the range of F with the zono-
form associated to A(F) when F is countably additive. We show the corresponding
fact in the following result. We denote by x the weak topology a(X, X*) on X.

THEOREM 1.1. IfF: & —> X is a bounded vector measure with values in a locally
convex space X and A(F) is its associated conical measure, then cor(rg F) = KA(F).
In addition, KAiF) c X if and only if co(rg F) is weakly compact in X if and only if
there exists a weakly compact convex set W in X such that rg F c W.

PROOF. Let Z = cor(rgF). Take A e &. Then the vector measure FA :
(J2, &) -> X satisfies v = A(FA) < A(F) and F(A) = r(v). So, F(A) e KA(F). If
L — {v e M+(X) : 0 < v < A(F)}, then L is a compact convex set and the resultant
map r: M+(X) —*• X is linear and continuous when X is endowed with the weak
topology r (see [C, vol. 3, page 6]); so we get that KMF) is a r-compact convex set
and therefore Z c KMF).

Conversely, consider v e M+(X), v < A(F). Then for every x* € X*, we have

v(x*) < v((x*)+) < A(F)((x*)+) = sup x*(F(A)) =

and an application of the Hahn-Banach theorem for the topology r yields KAiF) c Z.
Last assertion in the theorem follows easily since the weak topology in X is the

restriction to X of the r-topology and cor (rg F) is r-compact due to the fact that rg F
is bounded. (X, r) is isomorphic to U.' for certain set / and then every closed bounded
set is compact. •

As a consequence of the last theorem, if X is a Banach space, KA{F) c X if and
only if F is strongly additive.
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[6] Conical measures and vector measures 15

A result also due to Kluvanek asserts that every zonoform is the closed convex
hull of the range of a vector measure; that is, given a conical measure u in a locally
convex space X whose associated zonoform Ku is contained in X, we can find an
X-valued countably additive vector measure F such that u = A(F) and, in particular,
Ku = co(rg F). The proof of Kluvanek is purely existential and does not show any
relationship between u and F. Theorem 1.2 is devoted to give a new proof of this fact
in the context of bounded measures. Our proof differs in some interesting details from
the one in [Kl] and [K2]; in particular, the measure F is defined on a very natural
algebra of sets of X which only depends on X and not on the conical measure u.

Let X be a Hausdorff locally convex space. We define for every x* € X*, the cones

Ax. = [x e X : x*(x) > 0} and Cx. = {x e X : x*(x) > 0}.

Let if = {Ax. : x* e X*} U {C,. : x* e X*} and jzfif (X) be the algebra generated by
the sets in if. Then every element in s/^iX) can be written as

(2) A

where / is a finite set and Hj is a finite intersection of elements in if; that is,

n (nc*-
for lj and Kj finite sets in X*. The sets in (3) are called elementary cones, that is, an
elementary cone is a finite intersection of closed and open halfspaces. In addition, the
sets Hj in (2) can be chosen pairwise disjoint.

If Z is now a linear subspace of X*, we denote by £/^(X, Z) the algebra of subsets
of X generated by the family [Ax. : x* e Z). £/tf(X, Z) is a subalgebra of tf<g(X),
and with this notation £/tf(X) = £/tf(X, X*). The elements of £/tf(X, Z) are
described in the same way as the elements of £f€{X) replacing X* by Z.

Our next aim is to define a finitely additive vector measure on sftfiX) whose
associated conical measure is u.

THEOREM 1.2. Let X be a Hausdorff locally convex space. Ifu is a conical measure
on X such that Ku C X, then there is a unique finitely additive bounded vector measure
a{u) : s/ViX) -> X satisfying:

(a) The conical measure associated to a(u) is u.
(b) a(u)(H) € H U [0}for every elementary cone H.
(c) For every finite dimensional subspace Z of X*, the restriction of a(u) to

, Z) is countably additive.
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16 L. Rodriguez-Piazza and M. C. Romero-Moreno [7]

To prove this theorem, we use several lemmas.

LEMMA 1.3. Let u be a conical measure on X such that Ku c X. Consider for
every JC* € X* the sets A = {x € X : x*(x) > 0} and C = {x € X : x£(x) < 0}.
Then there exists a unique decomposition ofu in the form u = uA + uc, where uA and
uc are conical measures such that ifv 6 M+(X) and v < uA, r(v) 6 A U {0}; and if
v < Uc, r(v) € C. In addition, ifv < uA and r(v) = 0, then v = 0.

PROOF. For every z* e h+(X) and every u e M+(X) we define uA(z*) and uc(z*)
as

uA(z*) -limu((nx* Az*)+);
n

uc{z*) = (II - uA){z*) = lim u(z* - (nx* A z*)+).
n

It is easy to prove that uA and uc defined as above and linearly extended to h(X) are
conical measures. For example, the additivity of uA on h+(X) can be deduced from
the following fact: if z*, z\ e h+(X), for every positive integer n we have

(nx* A (z* + z*))+ < (nx*0 A z*x)
+ + (nx*0 A z2*)+ < (2nx*0 A (z; + z2*))+;

which is easy to prove for real numbers and, consequently, for pointwise order of
functions.

Observe first that v < uc implies r(v) G C. Indeed, x^iriv)) = v(x%) =
+) ~ v((xo)~)- Then it is enough to show that v((Xg)+) = 0. Since 0 <
+) - uc((xo)+), we only have to show that MC((JC0*)+) — 0. This is obvious

since (nx* A (x*)+)+ = (x*)+ and uc((x*0)
+) = lim, u((x*)+ - (nx* A (x*)+)+) = 0.

A similar argument shows that if v < uA, then JCQCKW)) > 0. We prove that, if
in addition Xo(r(v)) = 0, then v = 0 and consequently, r(v) = 0. This means that
r(v) eA U{0}fori; < uA.

We prove first that if v < uA, then v = vA. It is easy to prove that (uA)A = uA. Let
z* e h+(X), then

(«A)A(Z*) = lim uA ((mx* A z*)+)

= limlim«((nj:o A ( m ^ A z*)+)+) = limM(0n;cQ A z*)+),
m n m

since (njCg A (mxg A z*)+)+ = (/nxg A z*)+ for every n > m. One must also observe
that (uA — v)A < uA — v, and uA < v; but these inequalities must be equalities since
«/t = (uA)A = ((uA -v) + v)A = (uA - v)A + vA < uA - v + v — uA. We deduce
that v = vA.

By the definition of uA, we have MA((XQ)") = 0; therefore, V((XQ)~) = 0, and
0 = x;(r(v)) = v(xZ) = v((x*)+). Thus U(|JC*|) = v((x*0)

+ + (**)-) = 0. This
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[8] Conical measures and vector measures 17

implies that v = vA = 0, since (nx^ A z*)+ < n\x£\ for z* € h+(X), and we have
vA(z*) = 0. This implies that vA = 0, and v = 0. This finishes the proof of the
existence of uA and uc as in the statement of this lemma.

To finish the proof of Lemma 1.3, let us prove the uniqueness of uA and uc.
Suppose there exist two decompositions u = uA + uc and u = u'A + u'c satisfying
KUA C.AU {0}, KU>A£AU {0}, Kuc c C and Ku'c c C. Consider the conical measure
u> = UAVU'A-UAAU'A. Observe that Kw c /i:^Vu! c KUA+< c (AU{0})+G4U{0}) =
A U {0}. On the other hand, as w — uc v M'C — MC A M'C, we deduce in the same
way that Kw c C. So, we have that Kw = {0}. We are going to prove that
this condition implies w = 0. For every x* e X*, as r(wAx.) = 0, we have that
u>((x*)+) = wAx,(x*) = x*(r(wA:i,)) = 0. Using the same argument with — x*, we
conclude that w(\x*\) = 0. If z* € h+(X) canbe written as z* = VLi *,* " V L + i *,*
and we have \z*\ < Yl?=i l-^/l' t n e n w(z*) = 0- Consequently, w = 0. Then
MA v u'A = uA A MA and this means that uA — u'A, uc = w'c. •

REMARK. It can be proved that uc coincides with the conical measure introduced
in [C, Volume II, page 194] for every closed cone C and defined for z* e h+(X) by

uc(z*) = inf (w(u>*) : w* € h+(X), w* > z* in C\.

We do not make use of this fact, so we do not include its proof.

LEMMA 1.4. Let u be a conical measure on X such that Ku c X. For every
elementary cone H there exists a unique conical measure uH which satisfies

(a) uH < u;
(b) KUH£HU {0};
(c) for every conical measure v with v < u and Kv c H U {0}, we have v < uH.

I/O £ H, we also have that v < uH and r(v) — 0 implies v = 0. If H = U*
a partition of H into elementary cones, then uH = Yfk=l uHk.

i

PROOF. The uniqueness of uH is obvious from condition (c). Every elementary
cone is the intersection of a finite family of closed or open halfspaces; that is, for
certain finite family {x*,..., x^} in X* and certain n e {0, 1 , . . . ,m)we can write

n m n m

H - f][x : x*{x) < 0} n p | [X : x*(x) > 0} = Q C_,; n f] Ax..
j = l j=n+i j = \ j=n+\

In order to simplify the notation, we write C;
+ = Ax- and CJ = C_,«. If e e {+, —}m

we denote by He = f)J=1 Cfj'. Then H = Heo for certain e° e '{+ , - } m . Using
Lemma 1.3, we define

«« = ( ( « < ? ) £ ? • • • ) < ? •
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18 L. Rodriguez-Piazza and M. C. Romero-Moreno [9]

By the same lemma, we have that ]T£
 ue = "• Also, since v < u this implies vc < uc,

VA < uA, and we always have uA < u, uc < u; we deduce that ue < uc', for every
j = 1 , . . . , m. We have then KUi c He U {0} for every £. If 0 £ He, for some j ,
Sj = + and Cfj' = A is open. We have that if v < uHc, r(v) = 0 that v < uA and
r(v) — 0; by Lemma 1.3, v = 0.

If H = #eo and uH = ue«, let us prove that uH satisfies (c). Let v < u be such
that £„ c H U {0}. Using the Riesz decomposition, we have v = £ £

 u£ with ue < ME

for every £. If £ ^ e°, since KVi c Kv, we have A"̂  c H U {0}. On the other hand,
ve < u£ and then KVe £ Hel) {0}. Since H D //£ = 0, we have ATU, = {0}; which
implies (see the proof of Lemma 1.3) that ve — 0. We conclude that v = veo < uH.

To finish the proof, if H = (J£=1 Hk is a partition of / / into disjoint elementary

cones, we can choose a certain finite family [x\,... ,**} in X* (the functional

defining H and every Hk) such that if, like before, we put C,+ — Ax>, CJ — C-x* and

Ce = 07=1 ^ f° r e v e r y £ e {+> ~)m w e have

/ / = ( J Q; H t = | J C , * = l , . . . , p .
C,CH C,CHt

Following the argument to prove that uH satisfies (c), one can see that the conical
measure £ c c w uCt also satisfies (a), (b) and (c); so, uH = J^c CH UQ af ld analogously
uHk — J2c c// MQ. for & = 1, • • • , P- From this fact we deduce that uH = £^t=i "//»•

D

REMARK. Suppose there exist a subset S of X, a a-algebra E on 5, and a positive
measure fx in E such that, for every z* e A(X), its restriction to S is measurable and
/x-integrable. Then u(z*) = fs z* d/x, for every z* 6 h(X), defines a conical measure
on X. It is easy to see that for this conical measure and for every elementary cone H,
the conical measure uH is given by

uH(z*) = / z*dix.
JsnH

For, by the definition of uH made in the proof of Lemma 1.4, one is reduced to the
case where H is a closed or open halfspace. For a halfspace H the above identity is
an easy application of the dominated convergence theorem to the definitions given at
the beginning of the proof of Lemma 1.3.

LEMMA 1.5. Suppose that H is an elementary cone and z*,z% G h(X) satisfy
z* — z* on H. Then uH(z*) = uH(zl).

PROOF. We can assume that z* < zl since z* A Z2* < z* < z* v z£ for i = 1,2 and
all of them coincide on H. Then we only have to prove that uH(z*) = 0 if z* > 0 and
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[10] Conical measures and vector measures 19

z* =_0 on H. If H ^ 0 and H = flLit* : *»(*) < °) n
 I X J + I { *

 : **(*) < 0},
then // = n L i { x : •**(*) - 0}- If we prove our assertion for //, it will also be true
for H since u-ff > uH.

So we assume that H = fXk=\ Ck, where Q = {x : x^(x) < 0}. We prove that
under this condition, if z* € h(X) and z* < 0 on H, then there exists a constant a > 0
such that

(4) Z*(JC) < aJ2(xD+(x)' for

k=l

Once (4) is proved, if z* = 0 on H and z* > 0, we would have
n n

0 < «w(z*) < a ^ « « ((x*k)
+) <aJ2»ct ((x*k)

+) = 0

and the proof would be finished.
To prove (4), suppose that z* = VLi a* ~ V/=i fe*> w h e r e e a c h a* e x * ' b* e ^*

and /, J are positive integers. Then

If z* < 0 on //, then each z* = /\J
=l (a* — b*) < 0 on H and it is enough to prove (4)

for z*. So we may assume without loss of generality that z* = A/=i y* wi{^ y* e ^*-
We assume that the following claim is true and we postpone its proof.

CLAIM. IfH = flLif* : xkM <0) and H Q [x e X : y*(x) < 0} for some
y* € X*, then y* € L, where L is the set defined by

(5) L = I Y^,akxl :ak > 0, 4 = 1 , . . . , n

The fact that z* = A/=i y* < 0 on // means that H n G = 0, where G is the open
cone G = f]Jj=l{x : y*(x) > 0}. If G = 0, there is nothing to prove. Otherwise,
G is a non-empty open cone disjoint from H. Then, by the Hahn-Banach theorem,
there is v* e X* such that G £ {x e X : y*(x) > 0} and H c {* € X : y*(x) < 0}.
Therefore, by application of our claim let us find ak > 0 with y* = Yll=] akxt and

^ > o with y* = Ylj=\ Piy*- S i n c e y* £ 0 ' t h e r e e x i s t s josucn t n a t fto > 0- Put
a = (maxi<t<n ak)/f}j0. Then, if x € X satisfies z*0c) < 0, there is nothing to prove
in (4); if z*(x) > 0, then y*(x) > 0 for every j = 1, . . . , n and

J * J I n n

z*(x) = /\y*(x) < yjo(x) < — X ^ / W = T ^atx*k(x) < a J>;)+(*).
7 = 1 PJ" y = l PJ° k=\ k=l

This concludes the proof of (4) and the proof of Lemma 1.5. •
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PROOF OF THE CLAIM. We first observe that y* e C, where C is the a(X*,X)-
closed cone generated by x{, k = 1 , . . . , n. If this is not true, an application of
the Hahn-Banach theorem, let us find an element x0 e X such that y*(x0) > 0 and
*t (*o) < 0 for k = 1 n. So x0 e H but *0 g {x e X : y*(;c) < 0} and this
contradicts our hypothesis. This shows that v* 6 C.

We next observe that L is a closed set for a{X*, X). This fact can be easily proved
by induction on n. For n — 1, it is obvious. Assuming this is true for n — 1, we prove
that L, defined as in (5), is closed. For s e ( l , . . . , n ) fixed, we define the set Ls by

Ls = I J2akXJ : ak - °' 7 = 1. • • • . «; a* = o
* = i

So, each set Lj is closed by our induction hypothesis. Let K be the convex hull of
the set [x*,... , x*}. If 0 e K, then 0 = Yll=i akxt where Yll=i a * = 1 a n d e a c n

a* > 0. If x = Yl"k=i Pk*t 1S a n element of L with every fik > 0, then either there
exists s e { 1 , . . . , n] with f$s = 0 and JC € Ls or we have /}t > 0, for each k. In this
latter case, taking k small enough, we obtain that x = £ t = i ( & — ^-a*)^* where for
each /t, ^ — Xak > 0 and for some s, fis — Xas = 0. Then x € Ls in this case, too.
So, if 0 e AT, L = U"_, £* which proves that L is closed in this case.

If 0 ^ K, we observe first that the closed linear span of L is finite dimensional, so
we can choose a norm in this space to define its topology. So there exists e > 0 such
that the ball B(0, s) for this norm does not intersect the compact set K. Let w* € L
and (w*)p be a sequence contained in L converging to w*, with w* = 5Zt=i a^.pxk'
otk.p > 0- Then there exists a constant M > 0 such that (w*)p c B(0, Ms). Assume
that there exists p such that y = YH=\ ak,P > M, then w*/y 6 K C\ B(0, e), which is
a contradiction. So £ ^ = 1 ctkiP < M, for every p, and this implies, by a compactness
argument, that u>* = YHc=\ akxt^ w ^ at - 0' and, in particular, w* € L. This shows
that L is closed, L = C and the claim follows. D

The proof of Lemma 1.5 could have been given using localization of conical
measures in finite dimension and observing that, in this case, if /x is a localization
of M, the restriction of /J, to H is a localization of uH.

PROOF OF THEOREM 1.2. Let u be a conical measure on X such that ^ c I . We
define for every elementary cone H in X, a(u)(H) = r(uH). The additivity of the
resultant and Lemma 1.4 let us extend a («) to -G^V(X), the algebra generated by the
elementary cones. Then cr(u) is a finitely additive vector measure whose range is
contained in Ku and such that a(u)(H) € H U {0} for every elementary cone H.

Let M be the conical measure associated to a(u). We have to show that u = u.

Let z* e h(X), z* = V"=i •*!*• There exists a partition of X into elementary cones
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X = U"=i Hj m s u c n a waY that z* = x* in Hj for j — 1 , . . . , n. It is enough to take

Hj: = {x € X : (x* - x*k)(x) > 0, for; < k, (x* - x*k){x) > 0, for k < j } .

By the definition of a(u), we have for every A € sftfiX) with A C. Hj, cr(u)(A) e
//, U {0}. This tells us that for & ^ y, the measure (x* — x\*) o o(u) is positive on the
sets of sftfiX) contained in Hj. Therefore, <&a(u)(z*)(A) = x* (a(u)(A)) for every
A c Hj and

last two equalities thanks to Lemma 1.5 and Lemma 1.4, respectively.
We postpone the proof that o (u) satisfies the condition (c) of the statement of this

theorem to the next section. In fact, we prove there that, when X is a complete weak
space, then o(\i) is countably additive on the whole algebra sftfiX). We deduce
the condition (c) from this fact in Corollary 2.5 in order to avoid repeating the same
arguments in both sections.

In order to prove the uniqueness of a(u), suppose that F: sftfiX) —> X is a finitely
additive bounded vector measure satisfying the same conditions. We are going to see
that then, for every elementary cone H, the conical measure A(FW) associated to FH

is the conical measure uH (remember that FH is defined by FH{A) = F{A n H) for
every A € nf&iX)). Then we have, by the definition of a(u),

a(u)(H) = r(uH) = r(A(FH)) = FH(X) = F{H),

and therefore F = o(u).
It is enough to prove A(FW) < uH for every elementary cone H. For given H, we

can construct a finite partition [Ho, Hu • • • , Hn}of X into elementary cones such that
H = Ho. Then we would have

thus we get the other inequality since
n

A(FW) = uH + J2 ("HJ - A(FW;)) > uH.
7 = 1

Using Lemma 1.4, being A(FW) < u, we only have to prove that the zonoform
KMFH) = co(rg FH) is contained in H U {0} to get A(FH) < uH. It suffices to prove
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co(rg FH) c HUjO) when H is a halfspace, since every elementary cone is a finite
intersection of halfspaces. The condition F(H) e H U {0}, for every elementary
cone H, easily implies that rg(Fw) c H U {0} for every elementary cone H, and that
co(rg FH) <z H when // is closed.

The problem is reduced to proving co(rgFA) c A U {0} when A is the open
halfspace A = [x e X : x*(x) > 0}, for certain x* e X*. Suppose y e co(rgFA),
y ^ 0, and x*(y) < 0. Clearly we have x*(y) = 0, and there exists y* € X* such
that j*(v) = 1. For every n e H, let y* = y* - nx*, En = [x e A : y*(x) > 0}, and
C = [x e A : y*(x) < 0). The sets En and Cn belong to . ^ ( X , Z) where Z is
the vector space spanned by x* and y*; &s(~)nEn — 0 we have limn y*(F(£n)) = 0.
We can choose m such that y*(F(Em)) < 1/2. Observe that y* o F and x ' o F are
positive measures inside Em and y^ o F is negative inside Cm. Then we have, for
every M e

1/2 > y*(F(Em)) > y*(F(£m n M)) > y*m(F{Em n M))

> y;(F(£m n M)) + y;(F(Cm n M)) = y:(F(A n M)),

which is a contradiction since y 6 co(rg F4), y^(y) = 1 and y (̂A:) < 1/2, for every
x e rg FA. This concludes the proof of Theorem 1.2. •

We have used condition (c) in order to obtain the uniqueness of a(u). This is
necessary, even for a finite dimensional space X, as the following example shows.

EXAMPLE 1.6. There exist two finitely additive bounded measures F and G defined
on £/^(K2) with values in IR2 such that F(H), G(H) e H U {0} for every elementary
cone H, A(F) = A(G), but F ^G.

PROOF. Let e be the vector in R\ e = (1, 0). For A € .£/#(R2), define F! (A) = e,
if e e A, and Fi(A) = 0, if e <£ A; and define Gi(A) = e, if e is an accumulation
point of A n {(*, y) 6 IR2 : y > 0}, and Gi(A) = 0, if not. Observe that, being,the
elements of ^/^(K2) finite unions of angles, G\{A) = e if and only if A contain some
open angle determined by the positive *-axis and a half-line contained in the upper
half-space {(x, y) e U2 : y > 0}. Then it is easy to see that G\ and F{ are bounded
vector measures having the same associated conical measure. F\ is countably additive,
but G] is not.

G\ satisfies G\(H) 6 H U {0} for every closed elementary cone H, but not for
every elementary cone. In order to achieve this condition we have to perturb G\. We
will make the same perturbation to Fx. Let C be the unit circle C = [(x, y) € K2 :
x2 + y2 = 1} and consider there the arc-length measure m. Define

= f
./Anc

F0(A) = f (x, y) dm(x, y), A e *rtf (K2).
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Observe that F0(H) e H for every open elementary cone H. Then it is easy to see
that F = Fo + Fi, and G = Fo + Gx satisfy the required properties. In particular the
conical measure u associated to them is given by u(z*) = fc z* dm + z*(e), for every
Z* € /l(R2). •

To finish this section, we collect some properties of the conical measure uc to be
used later.

PROPOSITION 1.7. Let u, v be conical measures on X such that Ku, Kv c X and

let C, C be elementary cones. Then

(a) (M + v)c = uc + vc.
(b) (M A V)C = uc A v = uc A vc.

(c) uc A uc = (uc)c = "cnc-
(d) 7/T is a subset ofM+(X), such that Ku c X for every u eT and inf T — v,

then vc = inf {uc '• u e I"1}.

PROOF, (a) easily follows from the definition of uc and vc. To prove (b), let
w = uc A v. As w < uc, we have w = wc since Kw c C U {0}. As u; < w and
ID < u, we get ID < (MAD) andu; = w c < (UAV)C- On the other hand, (UAV)C < uc

and (M A V)C < Vc, therefore (w A V)C < w.

As a consequence of (b), with v — uc, we have uc A uc = (« A M C )C = ("cOc-
The second equality of (c) follows easily from the definition in the proof of Lemma 1.4.
Let us show (d) now. If w — inf{ac : u e F}, then w < u for every M e T. So,
w < u. Since w < uc for some M e F, w = wc < vc. As v < u for every u G F,
Vc < Mc for every M e F. So u c < w. D

2. Conical measures on complete weak spaces

The bounded vector measure a (u) associated in Theorem 1.2 to the conical measure
u is not necessarily countably additive (see Section 3 for examples in the Banach space
setting). However, in this section we prove that if X is a complete weak space, o(u) is
always countably additive. This allows us to obtain a new proof of two results due to
Kluvanek: Corollary 2.4 and Theorem 2.8, and to complete the proof of Theorem 1.2
in Corollary 2.5.

If X is a complete weak space then there exists a set / such that, up to a topological
vector isomorphism, X = R'. For every a e I, let e*a be the projection of X onto
its a-th coordinate; that is, e*((x,),€/) = xa for every (jt;);e/ e X. Every x* € X*
is then a (finite) linear combination of the £*'s, and so, every z* e h{X), and every
A e srftfiX) depends upon a finite number of coordinates. Let us suppose that / is
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the disjoint union of N and another set / ' . Then we can write X = K' = 1 N x W.
With this notation, we can prove the following lemma.

LEMMA 2.1. Let u be a conical measure on X = R' = KN x K/#. Ife > 0, e* € X*

and C = {x 6 X : e*(x) > 0}, there exists a sequence of positive numbers {My};eN

with the following property: for every A e sie€(X') such that e*(a(u)(A D C)) > e
we have A n C n A" ̂  0 w/iere AT = f l j l i l * 6 X : \e*(x)\ < Mje*(x)}.

PROOF. Let us remark that, inside C, e*oa{u) is a finitely additive positive measure.
We prove first that if e*(a(u)(C)) > a for some a e R, then there exists M, such that
e*(a(u)(C n [x € X : |e*(jc)| < M;e*(x)})) > a. This will be clear once we have
proved that, for every conical measure u and j fixed,

lim e*(a(u)(Cn{x e X : \e*(x)\ < ke*(x)})) = e*(a(u)(Q).

Let Q = {x e X : \e*{x)\ < ke*(x)},xk = a(u)(Cn{x e X : e*(x) > ke*(x)}) and
yk = o(u)(Cn [x e X : e*(x) < -ke*(x)}). Since e*(a(u)(C)) = e*(a(u)(CD
Ck)) + e*(xk) + e*(yk), it is enough to show that e*(xk) ->• 0 and e*(yk) -+ 0 as
k —• oo. If e*(xk) does not converges to 0 as k —> co, there exists S > 0 such that
e*(xk) > <5 > 0, for any it. By the properties of a(u), xk e C n {x e X : e*(x) >
ke*(x)}, so e*(xk) > kS which implies that e* is not bounded on Ku, a contradiction.
In the same way we can prove that e*(yk) —>• 0 as k —>• oo.

Now we prove, by induction on j , that for any e > 0 there exists a sequence of
positive numbers {M;}; such that

e*(a(u)(cn (f]{x 6 X : |ej(jc)| < Mke*(x)}\\\ > e*(o(u)(C)) -e

for every j e N. Assume that we have chosen M,, . . . , Mj. An application of
the result of the previous paragraph to uHj, where //, = PlLi l* € % '• \e*k(

x)\ -
Mke*(x)}, lets us find a positive number MJ+i such that the condition

e*(a(u)(c n(f){x e X : \e*k(x)\ < Mke*}\\\ > e*(a(u)(C)) - £

is still satisfied. Observe that we have used that o(uA)(B) = a(u)(A ("I B) for A and
B elementary cones.

Let K be the set K = f l j l i ^ e X : |<?;(JC)| < M;e*(;c)} = H ^ i Hj. Suppose
that A e s^^(X) satisfies ^(CT(M)(A n C)) > e. Then e*(cr(«)(A D Hj)) > 0 for
every _/. We choose j 0 large enough such that A n C is independent of the coordinates
7 >jo,j ^ N. There is a point a e A n C n Hjo. Taking a point 6 such that
e*{a) = e*(b) f o r ; < j 0 , e*(b) = 0 for j > yo >7 6 N and e*(a) = e*(b) for / e / ' ,

we have /)6AnCn^and/inCn*:^0. D
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LEMMA 2.2. Let X be a locally convex Hausdorff space and u a conical measure
on X such that Ku C X. If e > 0, e* e X*, C = {x € X : e*(x) > 0}, and
A € tf^iX), then there exists A' € J&ViX), A' closed, such that C D A' c C n A

+ <?*(<r («)(C n A')) > e*(a(w)(C n A)).

PROOF. Let y* e X* and // = {x e X : *?*(*) > 0, y*(x) > 0}. If r > 0 we
take Hr = Hr(y*) = [x e X : e*(x) > 0,y*(x) > 0,y*(x) < re*(x)}. We prove
that e*(e(u)(Hr)) -> 0 as r —> 0+. If this is not true, there exists e > 0 such that
e*(o{u){Hr)) > s, for r > 0. Then yr = a(u)(Hr) e A"UHr c ifB(/ which is a weakly
compact set. Let y be any weak accumulation point of the net (yr)r- Therefore,
e*(y) > £ > 0. On the other hand, y*(yr) < re*(yr) < rsupxeK e*(x) and this
implies that y*(yr) -*• 0 as r -+ 0+. Then y e [x € X : y*(x) = 0}"n KUH = {0}, a
contradiction since e*(y) ^ 0.

Next we observe that it is enough to prove this lemma for A an elementary cone
since an arbitrary A e si/^iX) is a disjoint union of a finite family of elementary
cones. So we may assume that

A = f][x : x*(x) > 0} D f]{x : x*(x) > 0},

where / and J are finite sets. Taking

A' = f]{x : */(*) > re*(x)} fl f){x : x*(x) > 0}
ye/ ;e^

for r > 0 small enough, we obtain

e + e*(u(u)(Cn A')) > e*(a(i/)(C D A))

since (A n O \ (A' n C) c |J ; e / //,(,;). D

THEOREM 2.3. Ler X be a complete weak space. If u is a conical measure on X
then a(u) : gftfiX) —• X « countably additive.

PROOF. First of all, observe that if X is a complete weak space, the condition
in Theorem 1.2 is fulfilled, that is, Ku c X. We only have to show that given a
sequence {An} of sets in stf'&iX) that decreases to the empty set, then a(u)(An)
converges to 0. Keep in mind that every complete weak space X is isomorphic to
K' for some set / . We proceed by a way of contradiction. If o(u){An) does not
converges to 0, there is a coordinate functional e* such that e*(a(u)(An)) = uAn(e*)
does not converges to 0. Then either uAn((e*)+) does not converge to 0 or uAn((e*)~)
does not converge to 0. We can assume that uAn((e*)+) = e*(o(u){An n C)) does not
converge to 0, where C = [x e X : e*(x) > 0}. Then there is a number e > 0 such
that e*(a(u)(An fl C)) > £ for every n.
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Let us suppose that An — \Jk€Kn Ck where each Ck is an elementary cone and Kn is

a finite set for every n. If Ck = f l ; <=/,{* : XJ^ > °) n DyevJ* '• **(*) - °1 ' w h e r e

lk and Jk are finite sets, the collection {x* : j e IkUJk,k eM}U {e*} is countable, so
it spans a countable dimensioned subspace of X*. Then we can write R1 = RH x K''
where each e*, x* G (KN)*. So, we can consider that each An is independent of the
second variable.

We apply Lemma 2.2 to each An and obtain A'n e .ssV(X), AJ, closed, A'n n C c
A . f l C and e*(cr(M)(A; n C)) + e/2"+1 > e*(tr(«)(An n C)) for every n. Let
fin = A\ n • • • n A;,. Then e*(a(«)(Bn n Q ) > e/2 for every n. An application
of Lemma 2.1 lets us find a sequence of positive numbers {M,}; with the following
property: for every n, BnnCnK ^ 0 where K = D j l i l * 6 X '• \e*(x)\ < Mje*(x)}.
This implies that Kn = BnC\ K C\{x & X : e*(x) = 1} is not empty. Observe that Kn is
of the form Kn = Ln x 1R7' for a compact set Ln in KN. Since {Kn }„ is decreasing, there
is a point x e (~]n Kn c. p | n An, a contradiction. This shows that CT(M) is countably
additive. •

In the light of Theorem 2.3, if u is a conical measure on a complete weak space
X, one can consider the a-algebra generated by £/^(X) which will be denoted by
Y,C(X). Since a(u) is weakly countably additive and has relatively weakly compact
range, it has a unique extension to a countably additive vector measure on E C(X),
which we denote by CT(M) and still satisfies A(a(u)) = u.

If X is not weakly complete, the measure a (u) is not necessarily countably additive
even if u = A(F) for F a countably additive vector measure (see Section 3). Never-
theless, if u is a conical measure on any locally convex space X such that Ku c X,
as explained in Section 1, u can also be viewed as a conical measure on X, the weak
completion of X. In this setting we can consider the a -algebra HC(X) on which a{u)
is countably additive and has range inside Ku c X. So, if (A, ^Z) = (X, EC(X))
we get

COROLLARY 2.4. Let X be a Hausdorff locally convex space. There exists a mea-
surable space (A, ^) with the following property: if u is a conical measure on X
such that Ku C X, then there is a countably additive vector measure F : M -> X
whose associated conical measure is u.

This corollary contains the result of Kluvanek [Kl, Theorem 5] which states that
every conical measure u such that Ku c X is the conical measure associated to a
countably additive measure defined on a a-algebra. The improvement here is that the
measurable space is the same for every conical measure.

Using the same ideas we can finish the proof of Theorem 1.2. There is a natural iden-
tification between s/^iX) and srf'&iX) given by the Boolean isomorphism M \-+ M
defined by the property that, for every x* € X*, we have Ax. = [x e X : x*(x) > 0},
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if Ax. = [x € X : x*(x) > 0}. When considering a conical measure u on X such
that Ku c X, if we call u the conical measure u viewed on X, this identification
respects the construction of the measures associated to u in Theorem 1.2 in the sense
thatcr(M)(M) = <r(M)(M), for every M e £/V(X).

Despite o(u) being countably additive, cr(u) may not be so; the reason for this
is that there can exist a decreasing sequence (An) in g/tfiX) such that P|n An = 0,
but P)n An ,£ 0. This is impossible if the sequence (An) is contained in £/^{X, Z)
for some finite dimensional subspace Z of X*\ since if i : X* -*• K is a linear
function, there exists x € X such that x*(x) = x(x*) for every x* e Z, thus, if x
belongs to p|B An, we have JC e p)n An. Therefore, since a(u) is countably additive
in sftfiX, Z), we obtain

COROLLARY 2.5. Let X be a Hausdorff locally convex space. If u is a conical
measure on X such that Ku c X, ando(u) is the measure constructed in the proof of
Theorem 1.2, then, for every finite dimensional subspace Z ofX*, the restriction of
o(u) to gftfiX, Z) is countably additive.

The last aim of this section is to give a new proof of a localization theorem for
conical measures in complete weak spaces due to Kluvanek [K2]. We say that a
conical measure on X is localizable if there exist a subset 5 of X, a a-algebra E on
5, and a positive measure /x on E such that, for every z* e h{X), its restriction to S is
/z-integrable, and w(z*) = / 5 z* dfi. In this case we say that u is localized on (5, E),
and (i is a localization of u.

We use the following proposition about localization of u in a general locally convex
space X when a(u) is countably additive. In this case, o(u) can be extended as a
countably additive measure a(u) to the a-algebra EC(X) generated by sftfiX). If
XQ € X* and n = {x € X : -XQOO = 1}, the a-algebra in FI generated by the sets
{A n n : A e £/^(X)} is En = {C n n : C e EC(X)}, and coincides with the
CT-algebra generated in n by the elements of X* (or h(X)). Observe that, if x* € X*,
and a e K; then [x e n : x*(x) > a ) = n n ( i e J f : ( i ' - cor^Cx) > 0}. We have

PROPOSITION 2.6. Let X be a Hausdorff locally convex space and u € M+(X)
such that Ku C. X and o(u) is countably additive. For x^ 6 X*, let A be the cone
A = [x 6 X : XQ(X) > 0} and Tl = {x e X : x^(x) = I). There exists a positive
finite countably additive measure \x on En such that z* € L1(fj.) and

(6) uA (z*) = f z*dn, for every z* e h(X).
Jn

In this case, we have, for every x* e X*, and every C € E C(X),

(7) x*(d(u)(CnA))
Jcnn

= f
Jc

https://doi.org/10.1017/S1446788700002251 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002251


28 L. Rodriguez-Piazza and M. C. Romero-Moreno [19]

PROOF. Observe that the sets in EC(X) are also cones, and therefore Q D n =
C2 n n if and only if C, D A = C2 D A, for C,, C2 € E C(X). This allows us to define
fi(C fl n) = X*(CT(M)(C n A)), for every C e EC(X). It is easy to check that n is a
positive finite countably additive measure on S n .

Ifz* e /i(X), then the restriction of z* t o n is S n -measurable. Let us observe that it
is enough to prove (6) for z* e /i+(X). Moreover, thanks to the monotone convergence
theorem, we can assume that z* is bounded on n , since, for every z* e ft+(X),

M4 (z*) = lim H((/I;C* A Z*)+) = lim KA ((«JC* A Z*)+) ,

and 0 < ((nxy A z*)+) < n on n . For this z*, there exists {C,};ey a finite partition
of X into elementary cones, such that z* coincides with some y* e X* in C,. Since
UA = E ; («A)C, = E ; uAnq, it is enough to prove

Jnnc
(8) / y*dn = uc(y*)

Jnnc
for every elementary cone CCA, and every y* e X* which is bounded on C Pi n .
To show this fact, remember that uc(y*) = y*(r(uc)) = y*(a(u)(Q). So, (8) holds
for y* — XQ, since, for C c A,

(9) I x* d\i=\ dii= x*0(a(u)(Q) = uc(x*0).
Jnnc Jnnc

If C c A and y* is bounded on C Pi FI, take e > 0 and consider, for every j e 2,
the elementary cone

Cj = Cn[xeX:(j - l)ex*0(x) < y*(x) < j ex*0(x)}.

The family {C, } j e I is a partition of C. The boundedness of y* on C n n implies that
only finitely many C, 's are not empty, and we have uc(y*) = J^j uq (y*)- 0 ° Q. we

xQ — y* = \j sx^ — y*\, and, by Lemma 1.5 and (9),

uc, (y*) < jeuq (JC*) = j e I x*dn< I y* dn + s [ x*0 d^ .
JnnCj Jnncj Jnnq

Analogously one can prove

uq (y*) > y*dn-s x*odn,.
JnnCj JnnCj

Summing up for j G Z, we obtain

~ f
Jnnc

<e [ x*odn = efi(Tl n C),
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and (8) is proved since £ was arbitrary.
Let us prove the last assertion in the statement. Observe that both terms in equality

(7) define real measures on E C(X), so it is enough to prove (7) for C in nftfiX), an
algebra generating E C(X). Moreover, it suffices to consider that C is an elementary
cone. Thenx*(&(u)(Cn A)) = x*(a(u)(Cn A)) = ucnA(x*) = (uA)c(x*). Finally,
applying the remark after Lemma 1.4 to identity (6), we know that (uA)c(x*) =
fcnn x* dfj,, and the proof of (7) is finished. •

If £ is a linear subspace of the locally convex space X, it is clear that, for every
z* 6 h(X), the restriction z*\E belongs to h(E). Conversely, as a consequence of the
Hahn-Banach theorem, every / e h(E) can be extended to X as an element ofh(X).
In this way M+(E) can be viewed as a subset of M+(X). In the following lemma,
whose easy proof is left to the reader, this situation is explained.

LEMMA 2.7. Let X be a locally convex space, and E a linear subspace ofX. Given
a conical measure v e M+(E) and defining u(z*) = V(Z*\E) for every z* € h{X), we
obtain a conical measure u e M+{X).

Conversely, if u e M+(X) has the property that u(z*) = 0, for every z* 6 h(X)
such that Z*\E — 0, then there exists an unique conical measure's € Af+(£) such that
u(z*) = 'U(Z*\E), for every z* e h(X). Moreover, for every elementary cone A in X
we have uA = 1tAnE.

We can now give our proof of the next theorem due to Kluv£nek [K2]. We are
going to use the same measure space as Kluvanek uses to localize conical measures
on U.': the disjoint union £2 of certain measure spaces {£2a}o. We decompose first the
conical measure as a sum of conical measures ua such that each ua can be localized on
each £la. Here is the difference with Kluvanek's method: he first extends the conical
measure as a Daniell integral, then he decomposes this Daniell integral and localizes
each component on the spaces Qa. The decomposition of the conical measure is easier
since it is a functional acting on a smaller space of functions. The decomposition of
the Daniell integral is not so clear and the inductive arguments do not appear to be
completely correct in Kluvanek's paper.

Another proof of this result was given by Becker [B, Theorem 21]. We are indebted
to the referee for pointing out this reference to us.

THEOREM 2.8. Let X be a complete weak space. There exist a set Q C X, and a
a-algebra E on£l such that every conical measure on X can be localized in (£2, E).

PROOF. If X is a complete weak space then there exists an index set / such that,
up to topological vector isomorphism, X = R7. Without loss of generality, we can
assume that / is a closed interval of ordinal numbers with 0 as the least element, and
y as the greatest one; that is, I = {a ordinal: 0 < a < y).
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For every a e / , let e* be the a-th coordinate functional on X; that is, «*((*,),<=/) =
xa, for every (*,)/<=/ € X. We consider, for every a € / , the following subsets of X:

Ca = {x € X : e*a(x) = 0} , A+
a = {e*a > 0} , A~ = {< < 0} ,

£ a = P | Cfi = [x = (x,),e/ e X : x, = 0, for every i < a],

(where we understand £0 = X, and we also use EY+l = {0}),

n+ = n+n£ o , Q: = n-r\Ea, and no = n + u n ; .

On each fia we consider the cr-algebra Ea generated by X* (or by h(X), which is
the same); the least a-algebra on £2a for which, the restriction to £2a of every JC* e X*
is measurable. Observe that the sets £2a's are pairwise disjoint. Finally consider
€2 - \Jael fia, and the cr-algebra E = {B c fi : B n fia € Sa, for every a 6 /}
defined on Q.

We are going to prove that, given a conical measure u on X, there exists a family
{«„ : a € /} of conical measures such that,

(10) u(z*) = J2 ««(z*). for every z* e

and, for every a e I, there exists a finite positive measure fia on (£2O, Ea) such that

(11) ua{z*) = t z* dpia , for every z* e

Once this is done, we can define /x(B) = J^aei M«(^ n ^«) for fi € E, and it is clear,
since the series in (10) converges absolutely, that

«(z*) = f z*dn, for every z* e A(X).

Let us define first the conical measure wa, for a > 0, as the infimum in M+(X)

wa = inf{«c>,n...nc* : n e N, )8i,... , i8n < a } ,

and ioo = u. Observe that, as the set where we are taking infimum is directed, we
have for every z* e h+(X),

wa(z*) = inf{Mc,in...nc>ii(z*) : n e N, fa,... , pn < a].
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Finally, we define the conical measure

"a =

Inordertoprove(ll),letusseethatu;a(z*) = 0,ifz*(x) = Oforevery* € Ea. Pick
z* e h+(X); z* depends on a finite number of coordinates P\,... , pm, that we suppose
ordered so that px < • • • < pn < a < pn+i < • • • < pm. Take x € CPl n • • • n C^,
and define y = {yp)p € X by yp = xp, if y8 > a, and yp = 0, if P < a. We have
y € £a, so z*(y) = 0, but we also have Xp. = yps for every j = 1 , . . . , m, therefore
z*(x) = z*(y) = 0. We have proved that z* — 0 on the elementary cone Q, n • • • n Qn

which implies uCf n-ncfc(z*) = 0 and therefore wa(z*) = 0.
We are then in a position to apply Lemma 2.7: there exists a conical measure

wa e M+(£a), such that wa(z*) = wa(z*|Eo). Observe that Ea is a closed subspace,
so it is also a weak complete space and, by Theorem 2.3, o{wa) is countably additive.
We can use Proposition 2.6 for x£ = e*a and XQ = —e* to obtain a measure /za on Ea

such that

(wa)AinEa(f)= f d^a, for every f e h(Ea);

and the same with £2 .̂ By Lemma 2.7 we also know that

(W«)A+(Z*) = (wa),4+n£,,(z*lEj = / z* dixa , for every z* € /i(X),

Jnt
which yields (11).

An application of Proposition 1.7 (d) gives (u;a)Ca = wa+i for every a e I. Thus
we deduce

(12) wa = ua + wa+\.

Let us prove, by transfinite induction, that for every a < y + 1,

(13) u(z*) = J2 »fi(z") + wa(z*), for every z* € h+(X).

If a is an ordinal limit, (13) is a consequence of wa = inf{u^ : ft < a} and the
inductive hypothesis. If a = a' + 1, (13) is a consequence of (12) and the inductive
hypothesis.

To obtain (10) it remains to prove that wy+i = 0, since (13) applies for a = y + 1.
If z* € h+(X) it depends on a finite number of coordinates, this implies that there exist
Pu ... , 0m G / such that z*(x) = 0, if e*0j (x) = 0, for./ = 1,... ,n. Then z* = 0 on
Cft fl • • • n Cft, and, as /J, , . . . , pm are admissible in the infimum defining wY+x, we
have wy+1 (z*) < Mc^n-nc^(z*) = 0. D
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3. Conical measures on Banach spaces

In the rest of this paper we restrict ourselves to the case when X is a Banach space.
By Bx we denote the unit ball of X. If X is infinite dimensional, X does not coincide
with X and, in general, for a conical measure u on X, cr(u) is not countably additive.
In fact, we prove that this latter condition is equivalent to being the conical measure
associated to a Pettis differentiable measure (see Theorem 3.3).

In the following example we show a situation where a (u) is not countably additive.
Assume that the conical measure u is the conical measure associated to a countably
additive vector measure F : (£2, S) -*• X. Let A. be a control measure for F (that is, a
positive finite measure such that \(A) = 0 implies F(A) — 0 [DU, page 14]) and, for
x* € X*, let/*. = d(x*F)/dX be the Radon-Nikodym derivative of the real measure
x* o F with respect to X. If H = f]i€,{x* > 0} n (f]isK{x* > 0}) is an elementary
cone, let H e £ be the set

Then it is easy to show that uH = A(Ffj) ando(u)(H) = F(H).

EXAMPLE 3.1. A c0-valued countably additive vector measure F with bounded
variation such that er(A(F)) defined on sftf (c0) is not countably additive.

PROOF. Let m be the Lebesgue measure on [0, 1] and {/•„}„ the sequence of
Rademacher functions. Let {sn}n be the sequence of functions st = 1 and sn+l = rn,
for n > 1. We define the vector measure F on the a -algebra of Lebesgue measurable
sets of [0, l]by

f sn(t)dm(t)

We consider, for every integer n > 2, the set Cn € gftfico) defined by

Cn = {(xn)n € c 0 : x i > 0 , |x21 > x i , . . . , |*n| > x i } .

It is easy to show that f]n>2 Cn = 0 but Cn = [0, 1], for every n, since s\ — 1 and
1̂ 1 = 1 for every k, m-almost everywhere. Then a(A(F))(Cn) does not converges
to 0 and cr(A(F)) is not countably additive. •

LEMMA 3.2. Let X be a Banach space and u 6 M+(X) satisfying Ku c X. Then
there exists x£ e X* such that uc = 0 where C = {x e X : XQ(X) = 0}.
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PROOF. LetF: (£2, E) —> X be a countably additive vector measure on a a -algebra
E such that u = A(F) and k a control measure for F. For this vector measure, there
exists a Rybakov functional x£ e X* (see [DU, page 268]); that is, F is absolutely
continuous with respect to \x£F\. If A = {w € £2 : (d(x^F)/dk)(w) = 0}, then
FA = 0. But it is easy to show that uc = A(FA), so uc — 0. •

THEOREM 3.3. Let X be a Banach space and u € M+(X) satisfying Ku C X. The
following properties are equivalent:

(a) a (u) is countably additive.
(b) x* o cr(«) is countably additive for every x* e X*.
(c) There exists a measure space (£2, E, /x) and g: £2 -> X Pettis integrable such

that if G is the indefinite integral with respect to g, then A(G) = «.

In particular, any of the above conditions implies that CT(M) has a-finite variation.

PROOF. AS explained in the introduction, the equivalence of (a) and (b) is due to
the Orlicz-Pettis theorem and the fact that Ku is a weakly compact set.

To show that (a) implies (c), we first recall that a (u) has a countably additive exten-
sion CT(H) to EC(X). Take x£ as in previous lemma. If A+ = {x € X : x£(x) > 0},
A~ = {x e X : x*(x) < 0} and C = {x € X : x*(x) = 0], then u = uA+ + uA-.
Let n + = [x e X : x*(x) = 1}, 11" = [x e X : *•(*) = -I], A = A+ U A~ and
n = n + U n~. If ^(C n n ) = \x; o a{u)\{C n A) for every C e EC(X), using
Proposition 2.6, we get that for every z* e

«(Z*) = uA+(z*) + uA-(z*) = I z*dn
Jn

and that for every x* e X* and every C e E C(X),

cnn
If £2 = n , S is the <r-algebra E = {C D n : C € EC(X)} and G is the vector
measure on E defined by G(C n n) = &(u)(C DA) = a(u)(C), then g(x) = x is a
Pettis derivative of G with respect to n and A(G) = u.

Let us suppose now that (c) holds. In this case, it is easy to show that A(G)(z*) =
f z* o gd/x for every z* e h(X) and that (A(G))C = A(G \{g-<(O}) f°r every C e
^ ^ ( X ) . This implies that CT(M)(C) = G(g~l(C)). So if Cn is a sequence in jz/tfiX)
decreasing to the empty set, g~l(Cn) also decreases to the empty set and o(u)(Cn)
converges to 0. This shows (a).

To prove the last assertion of this theorem, remember that every Pettis differentiable
vector measure has cr-finite variation (see [M]). Then the vector measure defined in (c)
has a -finite variation. This shows that any other countably additive vector measure
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F satisfying A(F) = u, has CT-finite variation (see [RR]). In particular, CT(H) has

CT-finite variation. •

If (X, || • ||) is a Banach space with bidual X**, X is a dense subset of X** when
considering the weak* topology w* = a(X**, X*), so we can identify h(X, || • ||)
with h(X**, w*). Let u be a conical measure on X such that Ku c X. The same
construction of Theorem 1.2 is valid taking (X**, w*) instead of (X, || • ||). If we take
r(w)(A) = r(uA) for every A G stftfiX**, w*), then r(w) defines a finitely additive
vector measure with values in X. We prove in Theorem 3.4 that x(u) is countably
additive if and only if u is the conical measure associated to a countably additive
vector measure F on a CT-algebra with CT-finite variation.

Whenever T(M) is countably additive, we denote by f(«) the countably additive
extension of x(u) defined on the CT-algebra EC(X**, w*). There are examples of
countably additive vector measures F : & —*• X on a field & which do not have CT-
finite variation, but having an extension to the CT-algebra generated by & with CT-finite
variation (see [R]). This is the reason why we consider the vector measure x(u) in the
following lemma instead of T(K) .

Following the same line as Theorem 3.3 with x(u) instead of CT(K), we get the
following theorem.

THEOREM 3.4. Let X be a Banach space and u e M+(X) satisfying Ku c X. The

following properties are equivalent:

(a) x (u) is countably additive.
(b) x(u) IS countably additive and x(u) has a-finite variation.

(c) Every countably additive vector measure F ona a-algebra such that u = A(F)
has a-finite variation.
(c') There exists a countably additive vector measure F on a a-algebra such that
u = A(F) has a-finite variation.
(d) There exists a finite measure space (£2, E, /A), a countably additive vector mea-

sure F on (S2, E) with A(F) = u and f : SI -»• X** weak* integrable such that

(x*,F(A))= f x* of dn for every x* eX*.

PROOF. Let us suppose that (a) holds and that F : (£2, E) —• X is a countably
additive vector measure with non CT-finite variation such that u = A(F). Let X =
1*0 o F | be a control measure for it (where x£ is a Rybakov functional) and gx. =
d(x*F)/dX for x* € X*. We recall that a vector measure in those conditions has
CT-finite variation if and only if the lattice supremum sup^.eB , \gx-\ exists in L°(X).
Since F does not have CT-finite variation, there exists a set A e E with X(A) > 0 such
that, taking supremum in the lattice L°(X), supx.eB , \gx. \ = +oo on A.
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Then there is a sequence {**}n>i Q Bx. such that supn>, |#*;(*)I = +°° ^.-almost
everywhere on A. We set gn = gx., for n > 0. There exists an increasing sequence
of positive integers (nk)k such that if Bk = {co e Q : supl5l<n4 |g,(&>)| > it} and
B = p|£L, 5* then 0 < A(fl) = |** o F\(B). We can assume that (x* o F)+(B) > 0
(if not, consider — x£ instead of x£). Taking

Dt = {xe X** : x*0(x) > 0, sup{!*,•(*)|, |JC2*(JC)|, . . . , |<(x) |} > kx*(x)},

each D* belongs to the algebra generated by the elementary cones and Ck = P)Li A
is a decreasing sequence in that algebra with (~)kCk = 0 and f\ Ck — (f]kBk)r\[w e
n : (dxZF/dX)(w) > 0} which implies

k
lim x*0(r(A(F))(Ck)) = (x*0 o F)+(B) > 0.

We deduce that r(A(F)) = x(u) is not countably additive, a contradiction. This
shows that (a) implies (c).

Since (a) implies (c), we have that (a) implies (b), and it is clear that (b) implies (a).
It is obvious that (c) implies (c') using Corollary 2.4.
We show now that (c') implies (d). Suppose that there exists a countably additive

vector measure F: (£2, E) -> X such that u = A(F) and F has cr-finite variation.
Let n be a finite control measure for F. Without loss of generality we can assume that
(£2, E, ii) is a complete measure space. A result due to Rybakov in [Ry] (see also
[M, Theorem 0]) lets us find a weak* integrable function / : Q. -> X** such that

= / * '(x*, F(A)) = I x* of dti for every x* e X*.

This proves (d).
To show that (d) implies (a), we follow the same ideas as in Theorem 3.3. D

Since on every infinite dimensional Banach space there is a vector measure with
non cr-finite variation (see [JK]), we get that in every infinite dimensional Banach
space there is a conical measure u such that T(M) is not countably additive.

References

[B] R. Becker, 'Sur l'integrale de Daniell', Rev. Roumaine Math. Pures Appl. 26 (1981), 189-206.
[BB] K. P. S. Bhaskara Rao and M. Bhaskara Rao, Theory of charges (Academic Press, London, 1983).
[C] C. H. Choquet, Lectures on Analysis vol. I, II, III (Benjamin, New York, 1969).
[DU] J. Diestel and J. J. Uhl Jr., Vector Measures, Amer. Math. Soc. Surveys 15 (Amer. Math. Soc,

Providence, R. I., 1977).

https://doi.org/10.1017/S1446788700002251 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002251


36 L. Rodriguez-Piazza and M. C. Romero-Moreno [27]

[JK] L. Janicka and N. J. Kalton, 'Vector measures of infinite variation', Bull. Acad. Polon. Sci. Ser.
Sci. Math. Astron. et Phys. 25 (1977), 239-241.

[Kl] I. Kluvanek, 'Characterization ofthe closed convex hull of therangeof a vector measure', 7. Fund.
Anal. 21(1976), 316-329.

[K2] , 'Conical measures and vector measures', Ann. Inst. Fourier (Grenoble) 217 (1977),
83-105.

[KK] I. Kluvanek and G. Knowles, Vector measures and control systems (North-Holland, Amsterdam,
1975).

[M] K. Musial, 'The weak Radon-Nikodym property in Banach spaces', Studia Math. 64 (1979),
151-173.

[R] L. Rodriguez Piazza, Rango y propiedades de medidas vectoriales. Conjuntos p -Sidon p.s. (Ph. D.
Thesis, Universidad de Sevilla, 1991).

[RR] L. Rodriguez Piazza and M. C. Romero-Moreno, 'Conical measures and properties of a vector
measure determined by its range', Studia Math. 125 (1997), 255-270.

[Ry] V. I. Rybakov, 'On vector measures', hv. Vyssh. Uchebn. Zaved. Mat. 79 (1968), 92-101.

Departamento de Analisis Matematico
Facultad de Matematicas
Universidad de Sevilla
Aptdo. 1160
Sevilla 41080
Spain
e-mail: piazza@cica.es, mcromero@cica.es

https://doi.org/10.1017/S1446788700002251 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002251

