
Forum of Mathematics, Sigma (2025), Vol. 13:e176 1–42
doi:10.1017/fms.2025.10118

RESEARCH ARTICLE

The group of reversible turing machines: subgroups,
generators, and computability
Sebastian Barbieri 1, Ville Salo 2 and Jarkko Kari 3

1Universidad de Santiago de Chile, Chile; E-mail: sebastian.barbieri@usach.cl.
2University of Turku, Finland; E-mail: vosalo@utu.fi.
3University of Turku, Finland; E-mail: jkari@utu.fi (Corresponding author).

Received: 10 April 2025; Revised: 29 August 2025; Accepted: 29 August 2025

2020 Mathematics Subject Classification: Primary – 68Q04, 68Q80, 37B15; Secondary – 37B10, 37B51, 20F10

Abstract
We study an abstract group of reversible Turing machines. In our model, each machine is interpreted as a homeomor-
phism over a space which represents a tape filled with symbols and a head carrying a state. These homeomorphisms
can only modify the tape at a bounded distance around the head, change the state, and move the head in a bounded
way. We study three natural subgroups arising in this model: the group of finite-state automata, which generalizes
the topological full groups studied in topological dynamics and the theory of orbit-equivalence; the group of obliv-
ious Turing machines whose movement is independent of tape contents, which generalizes lamplighter groups and
has connections to the study of universal reversible logical gates, and the group of elementary Turing machines,
which are the machines which are obtained by composing finite-state automata and oblivious Turing machines.
We show that both the group of oblivious Turing machines and that of elementary Turing machines are finitely
generated, while the group of finite-state automata and the group of reversible Turing machines are not. We show
that the group of elementary Turing machines has undecidable torsion problem. From this, we also obtain that the
group of cellular automata (more generally, the automorphism group of any uncountable one-dimensional sofic
subshift) contains a finitely generated subgroup with undecidable torsion problem. We also show that the torsion
problem is undecidable for the topological full group of a full Z𝑑-shift on a nontrivial alphabet if and only if 𝑑 ≥ 2.

Contents

1 Introduction 2
1.1 Turing machines and their generalization . 2
1.2 Our results and comparisons with other groups . 3
1.3 Preliminaries . 5

2 Two models for Turing machine groups 6
2.1 The moving head model . 6
2.2 The moving tape model . 10
2.3 The uniform measure and reversibility. 13

3 Subgroups and generators 15
3.1 Definitions of subgroups . 15

3.1.1 Oblivious Turing machines . 15
3.1.2 Finite-state automata . 16
3.1.3 Elementary Turing machines . 18

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

doi:10.1017/fms.2025.10118
https://orcid.org/0000-0001-9567-2085
https://orcid.org/0000-0002-2059-194X
https://orcid.org/0000-0003-0670-6138
https://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2025.10118&domain=pdf
https://doi.org/10.1017/fms.2025.10118

2 S. Barbieri, V. Salo and J. Kari

3.2 The oblivious Turing machines are finitely generated 20
3.3 Generators for finite-state automata on any one-dimensional subshift 22
3.4 Elementary Turing machines are finitely generated . 27

4 Computability aspects 29
4.1 Basic decidability results . 29
4.2 The torsion problem of elementary Turing machines 30
4.3 The torsion problem of cellular automata . 33
4.4 The torsion problem of finite-state machines . 35

A Dictionary of groups and monoids 40
References 41

1. Introduction

This article is the extended version of the conference paper [4]. The main new results that did not
appear in the conference paper are that elementary Turing machines are finitely generated, and that
automorphism groups of uncountable sofic Z-shifts have finitely generated subgroups with undecidable
torsion problem.

1.1. Turing machines and their generalization

Turing machines have been studied since the 30s as the standard formalization of the abstract concept
of computation. However, more recently, Turing machines have also been studied in the context of
dynamical systems. In [27], two dynamical systems were associated to a Turing machine, one with a
“moving tape” and one with a “moving head.” After that, there has been a lot of study of dynamics
of Turing machines, see, for example, [12, 7, 25, 16, 15, 21, 17]. Another connection between Turing
machines and dynamics is that they can be used to describe “effectively closed” zero-dimensional
dynamical systems. A particularly interesting case is that of subshifts whose forbidden patterns are
enumerated by a Turing machine. These subshifts are called effectively closed, or Π0

1 subshifts, and
especially in multiple dimensions, they are central to the topic due to the strong links known between
SFTs, sofic shifts, and Π0

1-subshifts, see, for example, [20, 13, 3]. An intrinsic notion of Turing machine
computation for these subshifts on general groups was proposed in [2], and a similar study was performed
with finite state machines in [38, 37].

In all these papers, the definition of a Turing machine is (up to mostly notational differences and
switching between the moving tape and moving head model) the following: A Turing machine is a
function 𝑇 : ΣZ ×𝑄 → ΣZ ×𝑄 defined by a local rule 𝑓𝑇 : Σ ×𝑄 → Σ ×𝑄 × {−1, 0, 1} by the formula

𝑇 (𝑥, 𝑞) = (𝜎−𝑑 (𝑥), 𝑞′) if 𝑓𝑇 (𝑥0, 𝑞) = (𝑎, 𝑞′, 𝑑),

where 𝜎 : ΣZ → ΣZ is the shift action given by 𝜎𝑑 (𝑥)𝑧 = 𝑥𝑧−𝑑 , 𝑥0 = 𝑎 and 𝑥 |Z\{0} = 𝑥 |Z\{0}. In this
paper, such Turing machines are called classical Turing machines. This definition (as far as we know)
certainly suffices to capture all computational and dynamical properties of interest, but it also has some
undesirable properties: The composition of two classical Turing machines – and even the square of a
classical Turing machine – is typically not a classical Turing machine, and the reverse of a reversible
classical Turing machine is not always a classical Turing machine.

In this paper, we give a more general definition of a Turing machine, by allowing it to move the head
and modify cells at an arbitrary (but bounded) distance on each timestep. With the new definition, we
get rid of both issues. With our definition,
◦ Turing machines are closed under composition, forming a monoid, and
◦ reversible Turing machines are closed under inversion, forming a group.
We also characterize reversibility of classical Turing machines in combinatorial terms, and show what
their inverses look like. Our definition of a Turing machine originated in the yet unpublished work of

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

Forum of Mathematics, Sigma 3

M. Schraudner and the last author, where the group of such machines was studied on general subshifts
(with somewhat different objectives). The same definition was given in 1991 by Moore [33] under the
name “generalized shifts.”

These benefits of the definition should be compared to the benefits of allowing arbitrary radii in the
definition of a cellular automaton: If we define cellular automata as having a fixed radius of, say, 3, then
the inverse map of a reversible cellular automaton is not always a cellular automaton, as the inverse
of a cellular automaton may have a much larger radius; see [11]. Similarly, with a fixed radius, the
composition of two cellular automata is not necessarily a cellular automaton.

We give our Turing machine definitions in two ways, with a moving tape and with a moving head,
as done in [27]. The moving tape point of view is often the more useful one when studying one-step
behavior and invariant measures, whereas we find the moving head point of view easier for constructing
examples, and when we need to track the movement of multiple heads. The moving head Turing machines
are in fact a subset of cellular automata on a particular kind of subshift. The moving tape machine on the
other hand is a generalization of the topological full group of a subshift, which is an important concept
in particular in topological dynamics and the theory of orbit equivalence. For the study of topological
full groups of minimal subshifts and their interesting group-theoretic properties, see, for example,
[18, 19, 22]. The (one-sided) SFT case is studied in [32]. We shall show that our two Turing machine
models yield isomorphic monoids, and isomorphic groups in the case of reversible Turing machines.

1.2. Our results and comparisons with other groups

In Section 2, we define our models and prove basic results about them. In Section 2.3, we define a natural
uniform measure on these spaces and use it to show that injectivity and surjectivity are both equal to
reversibility in our model.

Our results have interesting counterparts in the theory of cellular automata: One of the main theorems
in the theory of cellular automata is that on a large class of groups (the surjunctive groups; see, for
instance, [9, Chapter 3]) injectivity implies surjectivity, and (global) bijectivity is equivalent to having
a cellular automaton inverse map. Furthermore, one can attach to a reversible one- or two-dimensional
cellular automaton its “average drift,” that is, the speed at which information moves when the map is
applied, and this is a homomorphism from the group of cellular automata to a subgroup of Q𝑑 under
multiplication (where d is the corresponding dimension), see [23]. In Section 3 we use the uniform
measure to define an analog, the “average movement” homomorphism for Turing machines.

In Section 3, we define some interesting subgroups of the group of reversible Turing machines.
First, we define the local permutations – Turing machines that never move the head at all –, and their
generalization to oblivious Turing machines where movement is allowed, but is independent of the tape
contents. The group of oblivious Turing machines can be seen as a kind of generalization of lamplighter
groups. It turns out that the group of oblivious Turing machines is finitely generated. Our proof relies
strongly on the existence of universal reversible logical gates; see [1].

We also define the group of (reversible) finite-state machines – Turing machines that never modify
the tape. This group is not finitely generated, but we give a natural infinite generating set for it. Finite-
state machines with a single state exactly correspond to the topological full groups of full shifts, and
in this sense our definition of a reversible finite-state machine can be seen as a generalization of the
topological full group on a full Z𝑑-shift.

Our original motivation for defining these subgroups – finite-state machines and local permutations –
was to study the question of whether they generate all reversible Turing machines. Namely, a reversible
Turing machine changes the tape contents at the position of the head and then moves, in a globally
reversible way. Thus, it is a natural question whether every reversible Turing machine can actually
be split into reversible tape changes (actions by local permutations) and reversible moves (finite-state
automata).

We call the join of finite-state machines and local permutations elementary Turing machines, and
show that not all Turing machines are elementary, as Turing machines can have arbitrarily small average

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

4 S. Barbieri, V. Salo and J. Kari

movement, but elementary ones have only a discrete sublattice of possible average movements. However,
we show that every reversible classical Turing machine (and thus all its iterates) is elementary.

A reason why elementary Turing machines are so interesting is that, while we show that the group
of reversible Turing machines is not finitely generated (Theorem 3.11), we have that the group of
elementary Turing machines on a one-dimensional tape is finitely generated, for any fixed alphabet size
and number of states.

Theorem 1.1. The group of elementary Turing machines on n symbols, k states and dimension 1 is
finitely generated for every 𝑛, 𝑘 ≥ 1.

In Section 4, we show that the group of Turing machines is recursively presented and has a decidable
word problem, but that its torsion problem (the problem of deciding if a given element has finite order)
is undecidable in all dimensions. In fact, we show that the finitely generated group of elementary Turing
machines has an undecidable torsion problem in the purely group-theoretic sense. The proof is based
on simulating classical Turing machines with elementary ones on a fixed alphabet and state set, with
a simulation that preserves finite orbits. The result follows because the periodicity of reversible Turing
machines is undecidable [25].

Theorem 1.2. The torsion problem of the group of elementary Turing machines on n symbols, k states
and dimension d is undecidable for every 𝑛 ≥ 2, 𝑘 ≥ 1 and 𝑑 ≥ 1.

As an application of the former result, we obtain that there is a finitely generated group of reversible
cellular automata on a full shift (thus on any uncountable sofic shift), which has undecidable torsion
problem. This follows from an “almost-embedding” of the group of Turing machines into the group
of cellular automata – there is no actual embedding for group-theoretic reasons, but we show that the
almost-embedding we construct preserves the decidability of the torsion problem.

Corollary 1.3. Let X be an uncountable sofic Z-subshift. Then there is a finitely generated subgroup of
Aut(𝑋) which has undecidable torsion problem.

For finite-state machines, we show that the torsion problem is decidable in dimension one, but is
undecidable in higher dimensions; again we construct a finitely generated subgroup where the problem
is undecidable. The proof in the one-dimensional case is based on a simple pigeonhole argument, while
in the higher-dimensional case undecidability is a corollary of the undecidability of the snake tiling
problem [24].

Theorem 1.4. Consider the group G of finite-state machines on 𝑛 ≥ 2 symbols, 𝑘 ≥ 1 states and
dimension 𝑑 ≥ 1,

1. The torsion problem of G is decidable if 𝑑 = 1.
2. G contains a finitely generated subgroup with undecidable torsion problem when 𝑑 ≥ 2.

Furthermore, we show that the decidability result holds for finite-state machines running on an
arbitrary sofic subshift and that in fact their finiteness problem is decidable, meaning we can decide
whether a given finitely generated subgroup is finite or not (which implies the decidability of their
torsion problem). As a special case of our results, we obtain the following statement about topological
full groups.

Corollary 1.5. Let 𝑑 ≥ 2. The topological full group of a full Z𝑑-shift on at least two symbols contains
a finitely generated subgroup with undecidable torsion problem.

We note that our group is very similar to the Brin-Thompson group 2V [6, 5], the main difference
being that elements of 2V can erase and add symbols to the tape; indeed, the group of reversible Turing
machines on an alphabet with 2 symbols and 1 state can be seen naturally as a subgroup of 2V, consisting
of elements that do not use this addional functionality. Our group is not isomorphic to any of the Brin-
Thompson groups nV, as they are finitely generated. Thompson’s V has a decidable torsion problem,
but that of 2V is not, also due to the undecidability of periodicity of reversible Turing machines.

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

Forum of Mathematics, Sigma 5

1.3. Preliminaries

In this section we present general definitions and fix the notation which is used throughout the article.
The review of these concepts will be brief and focused on the dynamical aspects. For a more complete
introduction the reader may refer to [30]. Throughout this article we shall define several monoids
and groups that come from Turing machines. In order to make it easier for the reader to recall these
notations, we have added a dictionary in Appendix 1, where these definitions can be found along with
short descriptions and references to where they are defined.

We restrict our setting to finitely generated and torsion-free abelian groups Z𝑑 , although, just like
with cellular automata [9], the idea of a Turing machine directly generalizes to general groups. All of
the results of this and the following section directly generalize for arbitrary countable groups G in place
of Z𝑑 .

Let A be a finite alphabet. The set AZ𝑑 = {𝑥 : Z𝑑 → A} equipped with the shift action
𝜎 : Z𝑑 ×AZ𝑑 → AZ𝑑 defined by (𝜎 �𝑣 (𝑥))�𝑢 = 𝑥 �𝑢−�𝑣 is a full shift. Thus 𝜎 �𝑣 shifts cell contents in direc-
tion �𝑣, or equivalently moves the origin of x to −�𝑣. The elements 𝑎 ∈ A and 𝑥 ∈ AZ𝑑 are called symbols
and configurations, respectively. Configuration 𝑥 ∈ AZ𝑑 is periodic if 𝜎 �𝑣 (𝑥) = 𝑥 for some nonzero
�𝑣 ∈ Z𝑑 , and it is eventually periodic if there exists a periodic configuration 𝑦 ∈ AZ𝑑 that differs from
x only in finitely many positions. The set of configurations AZ𝑑 endowed with the prodiscrete topology
(that is, the product topology obtained from taking the discrete topology on A) is a compact metrizable
space, a generating metric being given by 𝑑 (𝑥, 𝑦) = 2− inf { | �𝑣 | : �𝑣 ∈Z𝑑 , 𝑥 �𝑣≠𝑦 �𝑣 }, where |�𝑣 | is the taxicab
norm |�𝑣 | =

∑𝑑
𝑖=1 |�𝑣𝑖 |.

This topology has the sets [𝑎]�𝑣 = {𝑥 ∈ AZ𝑑 : 𝑥 �𝑣 = 𝑎 ∈ A} as a subbasis. A support is a finite subset
𝐹 ⊂ Z𝑑 . Given a support F, a pattern with support F is an element p of A𝐹 . The cylinder generated
by p in position �𝑣 is [𝑝]�𝑣 =

⋂
�𝑢∈𝐹 [𝑝 �𝑢]�𝑣+�𝑢 . For simplicity, we write [𝑝] = [𝑝]�0.

Definition 1.6. A subset X of AZ𝑑 is a subshift if it is topologically closed and 𝜎-invariant, that is, for
every �𝑣 ∈ Z𝑑 we have 𝜎 �𝑣 (𝑋) ⊂ 𝑋 .

Equivalently, X is a subshift if and only if there exists a set of patterns F that defines it:

𝑋 =
⋂

𝑝∈F , �𝑣∈Z𝑑
AZ𝑑 \ [𝑝]�𝑣 .

Any such F which defines X is called a set of forbidden patterns for X.
For a subshift 𝑋 ⊂ AZ𝑑 and a finite support 𝐹 ⊂ Z𝑑 we define the language 𝐿𝐹 (𝑋) of support F of

X as the set of patterns 𝑝 ∈ A𝐹 such that [𝑝] ∩ 𝑋 ≠ ∅. The language of X is the union 𝐿(𝑋) of 𝐿𝐹 (𝑋)
over all finite 𝐹 ⊂ Z𝑑 . We denote 𝑝 � 𝑋 iff 𝑝 ∈ 𝐿(𝑋). For an individual configuration 𝑥 ∈ AZ𝑑 we
denote 𝑝 � 𝑥 iff 𝑥 ∈ [𝑝]�𝑣 for some �𝑣 ∈ Z𝑑 , and we say that pattern p occurs in x.

Let 𝑋,𝑌 be subshifts over alphabets A and B, respectively. A continuous Z𝑑-equivariant (i.e., shift-
commuting) map 𝜙 : 𝑋 → 𝑌 between subshifts is called a morphism. A well-known theorem of Curtis,
Hedlund and Lyndon which can be found in full generality in [9] asserts that morphisms are equivalent
to maps defined by local rules as follows: There exists a finite 𝐹 ⊂ Z𝑑 and Φ : A𝐹 → B such that for
every 𝑥 ∈ 𝑋 , 𝜙(𝑥)�𝑣 = Φ(𝜎−�𝑣 (𝑥) |𝐹). If 𝜙 is an endomorphism (that is, 𝑋 = 𝑌) then we refer to it as
a cellular automaton. A cellular automaton is said to be reversible if there exists a cellular automaton
𝜙−1 such that 𝜙 ◦ 𝜙−1 = 𝜙−1 ◦ 𝜙 = id. It is well known that reversibility is equivalent to bijectivity; see
Section 1.10 of [9].

Throughout this article we use the following notation inspired by Turing machines. We denote by
Σ = {0, . . . , 𝑛−1} the set of tape symbols and 𝑄 = {1, . . . , 𝑘} the set of states. We also use the symbols
𝑛 = |Σ | for the size of the alphabet and 𝑘 = |𝑄 | for the number of states. Given a function of the form
𝑓 : Ω→ 𝐴1 × . . . × 𝐴𝑚 we denote by 𝑓𝑖 : Ω→ 𝐴𝑖 the projection of f to the i-th coordinate.

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

6 S. Barbieri, V. Salo and J. Kari

2. Two models for Turing machine groups

In this section we define our generalized Turing machine model, and the group of Turing machines. In
fact, we give two definitions for this group, one with a moving head and one with a moving tape as in [27].
We show that – except in the case of a trivial alphabet – these groups are isomorphic.1 Furthermore,
both can be defined both by local rules and “dynamically,” that is, in terms of continuity and the shift
action. In the moving tape model we characterize reversibility as preservation of a suitably defined
measure.

2.1. The moving head model

In the moving head model, we will represent our space as ΣZ
𝑑 × 𝑄 × Z𝑑 . That is, the product of the

set of configurations ΣZ𝑑 , a set of states Q, and the possible positions of a head Z𝑑 . The objects of this
space are therefore 3-tuples (𝑥, 𝑞, �𝑣). In order to write this in a shorter manner, we use the notation 𝑥 �𝑣𝑞
instead of (𝑥, 𝑞, �𝑣).

Given a function

𝑓 : Σ𝐹in ×𝑄 → Σ𝐹out ×𝑄 × Z𝑑 ,

where 𝐹in, 𝐹out are finite subsets of Z𝑑 , we can define a map 𝑇 𝑓 : ΣZ𝑑 × 𝑄 × Z𝑑 → ΣZ
𝑑 × 𝑄 × Z𝑑

as follows: given 𝑥 �𝑣𝑞 ∈ ΣZ
𝑑 × 𝑄 × Z𝑑 let 𝑝 = 𝜎−�𝑣 (𝑥) |𝐹in and 𝑓 (𝑝, 𝑞) = (𝑝, 𝑞, �𝑤). Then we define

𝑇 𝑓 (𝑥 �𝑣𝑞) = 𝑥 �𝑣+ �𝑤𝑞̃ where for �𝑢 ∈ Z𝑑:

𝑥 �𝑢 =

{
𝑥 �𝑢 if �𝑢 − �𝑣 ∉ 𝐹out,

𝑝 �𝑢−�𝑣 if �𝑢 − �𝑣 ∈ 𝐹out.

Definition 2.1. A function T for which there is an 𝑓 : Σ𝐹in × 𝑄 → Σ𝐹out × 𝑄 × Z𝑑 such that 𝑇 = 𝑇 𝑓 is
called a moving head (Z𝑑 , 𝑛, 𝑘)-Turing machine, and f is its local rule. If there exists a (Z𝑑 , 𝑛, 𝑘)-
Turing machine 𝑇−1 such that 𝑇 ◦ 𝑇−1 = 𝑇−1 ◦ 𝑇 = id, we say T is reversible.

This definition corresponds to classical Turing machines with the moving head model when 𝑑 = 1,
𝐹in = 𝐹out = {�0} and the third component of 𝑓 (𝑥, 𝑞) is in {−1, 0, 1} for all 𝑥, 𝑞. An illustration of how a
moving head Turing machine acts can be seen in Figure 1. Note that 𝜎−�𝑣 (𝑥) |𝐹 is the F-shaped pattern
“at �𝑣.” We do not write 𝑥 | �𝑣+𝐹 because we want the pattern we read from x to have F as its domain.

Note that one of these machines could be defined by several different local functions f, and that the
projection to the third coordinate 𝑓3 of f has finite range. Also, given 𝑓 : Σ𝐹in × 𝑄 → Σ𝐹out × 𝑄 × Z𝑑

Figure 1. The action of a moving head machine 𝑇 𝑓 .

1Note that the dynamics obtained from these two definitions are in fact quite different, as shown in [27, 28].

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

Forum of Mathematics, Sigma 7

we can define 𝐹 = 𝐹in ∪ 𝐹out ∪ 𝑓3(Σ𝐹in ×𝑄) and 𝑓 ′ : Σ𝐹 ×𝑄 → Σ𝐹 ×𝑄 × 𝐹 such that 𝑇 𝑓 = 𝑇 𝑓 ′ . This
motivates the following definition: The minimal neighborhood of T is the minimum set for inclusion
F for which there is 𝑓 : Σ𝐹 × 𝑄 → Σ𝐹 × 𝑄 × 𝐹 such that 𝑇 = 𝑇 𝑓 . This minimum always exists as the
set of finite subsets of Z𝑑 which work for this definition is closed under intersections.

As Z𝑑 is finitely generated, we can also use a numerical definition of radius in place of the neighbor-
hood: Let 𝐵(�𝑣, 𝑟) be the set of �𝑢 ∈ Z𝑑 such that | �𝑢 − �𝑣 | ≤ 𝑟 . By possibly changing the local rule f, we
can always choose 𝐹in = 𝐵(�0, 𝑟𝑖) and 𝐹out = 𝐵(�0, 𝑟𝑜) for some 𝑟𝑖 , 𝑟𝑜 ∈ N, without changing the Turing
machine 𝑇 𝑓 it defines. The minimal such 𝑟𝑖 is called the in-radius of T, and the minimal 𝑟𝑜 is called
the out-radius of T. We say the in-radius of a Turing machine is −1 if there is no dependence on input,
that is, the neighborhood 𝐵(0𝑑 , 𝑟𝑖) can be replaced by the empty set. The maximum value of |�𝑣 | for all
�𝑣 ∈ 𝑓3(Σ𝐹 × 𝑄) is called the move-radius of T. Finally, the maximum of all these three radii is called
the radius of T. In this terminology, classical Turing machines are those with in- and out-radius 0, and
move-radius 1.

Definition 2.2. We denote by TM(Z𝑑 , 𝑛, 𝑘) the set of (Z𝑑 , 𝑛, 𝑘)-Turing machines and RTM(Z𝑑 , 𝑛, 𝑘)
the set of reversible (Z𝑑 , 𝑛, 𝑘)-Turing machines.

In some parts of this article we just consider 𝑑 = 1. In this case we simplify the notation and just
write RTM(𝑛, 𝑘) = RTM(Z, 𝑛, 𝑘) and TM(𝑛, 𝑘) = TM(Z, 𝑛, 𝑘). Of course, we want TM(Z𝑑 , 𝑛, 𝑘) to
be a monoid and RTM(Z𝑑 , 𝑛, 𝑘) a group under function composition. This is indeed the case, and
one can prove this directly by constructing local rules for the inverse of a reversible Turing machine
and composition of two Turing machines. However, it is easier to extract this from the following
characterization of Turing machines as a particular kind of cellular automaton.

Let 𝑋𝑘 be the subshift with alphabet 𝑄 ∪ {0} such that in each configuration the number of nonzero
symbols is at most one.

𝑋𝑘 = {𝑥 ∈ {0, 1, . . . , 𝑘}Z𝑑 : 0 ∉ {𝑥 �𝑢 , 𝑥 �𝑣 } =⇒ �𝑢 = �𝑣}.

In the case where 𝑘 = 1 this subshift is often called the sunny-side-up subshift. The name comes from
[34] as a reference to the shape of an egg prepared in that manner. We note that 𝑋1 is also called the
“at-most-one-one-subshift” in [10]. Notice that 𝑋0 = {0Z𝑑 } consists of a single configuration and for
non-negative integers 𝑖 < 𝑗 we have 𝑋𝑖 � 𝑋 𝑗 . Let also 𝑋𝑛,𝑘 = ΣZ

𝑑 × 𝑋𝑘 , where recall that we always
set Σ = {0, . . . , 𝑛 − 1}. For the case 𝑑 = 1, configurations in 𝑋𝑛,𝑘 represent a bi-infinite tape filled with
symbols in Σ possibly containing a head that has a state in Q. Note that there might be no head in a
configuration.

More precisely, we interpret 𝑋𝑛,𝑘 as the compactification of ΣZ
𝑑 × 𝑄 × Z𝑑 by identifying 𝑥 �𝑣𝑞 =

(𝑥, 𝑞, �𝑣) ∈ ΣZ
𝑑 × 𝑄 × Z𝑑 with the point (𝑥, 𝑦) ∈ 𝑋𝑛,𝑘 , where 𝑦 �𝑣 = 𝑞 and 𝑦 �𝑢 = 0 for �𝑢 ≠ �𝑣. In other

words, we add the possibility of having no head. We can now interpret Turing machines as functions on
𝑋𝑛,𝑘 in the following way: For (𝑥, 𝑦) ∈ 𝑋𝑛,𝑘 , if there is no �𝑣 ∈ Z𝑑 such that 𝑦 �𝑣 ≠ 0 then 𝑇 (𝑥, 𝑦) = (𝑥, 𝑦).
Otherwise apply T through the natural bijection.

For a subshift X, we denote by End(𝑋) the monoid of endomorphisms of X and Aut(𝑋) the group
of automorphisms of X. Next we will argue that Turing machines with n symbols and k states can be
seen as endomorphisms of 𝑋𝑛,𝑘 . Continuity follows essentially from the fact that Turing machines only
modify configurations near the head based on the symbols around it. Furthermore, since the shift moves
both the configuration and the head by the same amount, it follows that Turing machines commute with
the shift. For the convenience of the reader, we provide a formal proof in the following lemma.

Lemma 2.3. Every 𝑇 ∈ TM(Z𝑑 , 𝑛, 𝑘) induces a continuous and shift-invariant map on 𝑋𝑛,𝑘 .

Proof. Let 𝑇 ∈ TM(Z𝑑 , 𝑛, 𝑘) and let 𝑓 : Σ𝐹 × 𝑄 → Σ𝐹 × 𝑄 × 𝐹 be such that 𝑇 = 𝑇 𝑓 . Clearly T
commutes with the shift on 𝑋𝑛,0 since it acts as the identity map. Let then 𝑥 �𝑣𝑞 ∈ 𝑋𝑛,𝑘 \ 𝑋𝑛,0.

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

8 S. Barbieri, V. Salo and J. Kari

Let 𝑝 = 𝜎−�𝑣 (𝑥) |𝐹 and 𝑓 (𝑝, 𝑞) = (𝑝, 𝑞, �̃𝑢). Then by the definition of 𝑇 𝑓 we have 𝑇 𝑓 (𝑥 �𝑣𝑞) = 𝑥 �𝑣+ �̃𝑢𝑞̃
where

𝑥 �𝑢 =

{
𝑥 �𝑢 if �𝑢 − �𝑣 ∉ 𝐹

𝑝 �𝑢−�𝑣 if �𝑢 − �𝑣 ∈ 𝐹

Now, let us consider the application of 𝑇 𝑓 to 𝜎 �𝑤 (𝑥 �𝑣𝑞). By the definition of 𝜎 we have 𝜎 �𝑤 (𝑥 �𝑣𝑞) =
𝜎 �𝑤 (𝑥) �𝑣+ �𝑤𝑞 . Let 𝑦 = 𝜎 �𝑤 (𝑥) and �𝑣′ = �𝑣 + �𝑤 so that 𝑇 𝑓 (𝜎 �𝑤 (𝑥 �𝑣𝑞)) = 𝑇 𝑓 (𝑦 �𝑣

′
𝑞). Let 𝑝′ = 𝜎−�𝑣

′ (𝑦) |𝐹 and
note that

𝑝′�𝑢 = 𝜎−�𝑣
′ (𝑦)�𝑢 = 𝑦 �𝑢+�𝑣′ = 𝜎 �𝑤 (𝑥)�𝑢+�𝑣′ = 𝑥 �𝑢+�𝑣′− �𝑤 = 𝑥 �𝑢+�𝑣 = 𝜎−�𝑣 (𝑥)�𝑢

for all �𝑢 ∈ 𝐹 so 𝑝′ = 𝑝. We have thus 𝑓 (𝑝′, 𝑞) = 𝑓 (𝑝, 𝑞) = (𝑝, 𝑞, �̃𝑢). Then by definition we have
𝑇 𝑓 (𝑦 �𝑣

′
𝑞) = 𝑦̃ �𝑣

′+ �̃𝑢
𝑞̃ where

𝑦̃ �𝑢 =

{
𝑦 �𝑢 if �𝑢 − �𝑣′ ∉ 𝐹

𝑝 �𝑢−�𝑣′ if �𝑢 − �𝑣′ ∈ 𝐹

We have to show that

𝑦̃ �𝑣
′+ �̃𝑢

𝑞̃ = 𝜎 �𝑤 (𝑥 �𝑣+ �̃𝑢𝑞̃) = 𝜎 �𝑤 (𝑥) �𝑣+ �̃𝑢+ �𝑤𝑞̃ .

By definition, �𝑣′ + �̃𝑢 = �𝑣 + �𝑤 + �̃𝑢. We now show 𝑦̃ = 𝜎 �𝑤 (𝑥), that is, 𝑦̃ �𝑢 = 𝑥 �𝑢− �𝑤 for all �𝑢 ∈ Z𝑑 .
Let �𝑢 ∈ Z𝑑 . First suppose �𝑢 − �𝑣′ ∉ 𝐹. Then 𝑦̃ �𝑢 = 𝑦 �𝑢 = 𝑥 �𝑢− �𝑤 . On the other hand 𝜎 �𝑤 (𝑥)�𝑢 = 𝑥 �𝑢− �𝑤 =

𝑥 �𝑢− �𝑤 where the last equality follows from the definition of 𝑥 because �𝑢 − �𝑤 − �𝑣 = �𝑢 − �𝑣′ ∉ 𝐹.
Suppose then that �𝑢 − �𝑣′ ∈ 𝐹. Then 𝑦̃ �𝑢 = 𝑝 �𝑢−�𝑣′ . As above, by the definition of 𝑥 we have �𝑢 − �𝑤 − �𝑣 =

�𝑢 − �𝑣′ ∈ 𝐹 so 𝑥 �𝑢− �𝑤 = 𝑝 �𝑢− �𝑤−�𝑣 = 𝑝 �𝑢−�𝑣′ . This concludes the proof that 𝑇 𝑓 commutes with the shift.
Take 𝑚 ≥ 1 and choose some r such that 𝐹 ⊂ [−𝑟, 𝑟]𝑑 . Given any (𝑥, 𝑐) ∈ 𝑋𝑛,𝑘 , we have by definition

of 𝑇 𝑓 that the values 𝑇 𝑓 (𝑥, 𝑐) |[−𝑚,𝑚]𝑑 depend exclusively on the values of (𝑥, 𝑐) in [−𝑚, 𝑚]𝑑 + 𝐹 ⊂
[−𝑚−𝑟, 𝑚+𝑟]𝑑 , from where it follows that 𝑑 (𝑇 𝑓 (𝑥, 𝑐), 𝑇 𝑓 (𝑥 ′, 𝑐′)) ≤ 2−𝑚 whenever 𝑑 ((𝑥, 𝑐), (𝑥 ′, 𝑐′)) ≤
2−(𝑚+𝑟) , thus 𝑇 𝑓 is continuous. �

From the previous argument it follows that Turing machines are cellular automata on 𝑋𝑛,𝑘 . We can
make this identification precise if we add the property that “the configurations are only modified near a
head.” This is the content of the following proposition.

Proposition 2.4. Let 𝑛, 𝑘 be positive integers and 𝑌 = 𝑋𝑛,0. Then:

TM(Z𝑑 , 𝑛, 𝑘) = {𝜙 ∈ End(𝑋𝑛,𝑘) : 𝜙|𝑌 = id, 𝜙−1(𝑌) = 𝑌 }
RTM(Z𝑑 , 𝑛, 𝑘) = {𝜙 ∈ Aut(𝑋𝑛,𝑘) : 𝜙|𝑌 = id}.

Proof. Consider a Turing machine 𝑇 ∈ TM(Z𝑑 , 𝑛, 𝑘) seen as a function on 𝑋𝑛,𝑘 . By Lemma 2.3 we
have that 𝑇 ∈ End(𝑋𝑛,𝑘). Also, T acts trivially on 𝑋𝑛,0 so 𝑇 |𝑌 = id and if a configuration has a head, it
can only be shifted but not disappear, thus 𝑇−1 (𝑌) = 𝑌 . Moreover, if 𝑇 ∈ RTM(Z𝑑 , 𝑛, 𝑘), then T has a
Turing machine inverse, thus a cellular automaton inverse, and it follows that 𝑇 ∈ Aut(𝑋𝑛,𝑘).

Conversely, let 𝜙 ∈ End(𝑋𝑛,𝑘), so that 𝜙(𝑥, 𝑦)�𝑣 = Φ(𝜎−�𝑣 (𝑥, 𝑦) |𝐹) for some local rule Φ : (Σ ×
{0, . . . , 𝑘})𝐹 → Σ × {0, . . . , 𝑘} where 𝐹 is a finite subset of Z𝑑 , and where we may suppose �0 ∈ 𝐹.

As 𝜙|𝑌 = id, we can deduce that Φ(𝑢, 𝑣) = (𝑢, 𝑣)�0 if 𝑣 = 0𝐹 . Therefore if (𝑥, 𝑦) ∈ 𝑋𝑛,𝑘 , 𝑦 �𝑣 ≠ 0 and
we define 𝑊�𝑣 = {�𝑢 : �𝑣 ∈ �𝑢 + 𝐹} = �𝑣 − 𝐹 we get that 𝜙(𝑥, 𝑦) |Z𝑑\𝑊�𝑣 = (𝑥, 𝑦) |Z𝑑\𝑊�𝑣 . We extend Φ to
Φ̃ : (Σ × {0, . . . , 𝑘})𝑊�0+𝐹 → (Σ × {0, . . . , 𝑘})𝑊�0 by pointwise application of Φ. Note that 𝑊�0 = −𝐹.

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

Forum of Mathematics, Sigma 9

We can then define 𝑓𝜙 : Σ𝐹−𝐹×𝑄 → Σ−𝐹×𝑄×Z𝑑 by using Φ̃ as follows: We set 𝑓𝜙 (𝑝, 𝑞) = (𝑝′, 𝑞′, �𝑢)
if, after defining 𝑟 ∈ {0, . . . , 𝑘}𝐹−𝐹 such that 𝑟�0 = 𝑞 and 0 elsewhere, we have Φ̃(𝑝, 𝑟) = (𝑝′, 𝑟 ′) and
𝑟 ′ ∈ {0, . . . , 𝑘}−𝐹 contains the symbol 𝑞′ ≠ 0 in position �𝑢 (there is always a unique such position �𝑢 as
𝜙−1(𝑌) = 𝑌). It can be verified that the Turing machine 𝑇 𝑓𝜙 is precisely 𝜙; therefore 𝜙 ∈ TM(𝐺, 𝑛, 𝑘).

If 𝜙 ∈ Aut(𝑋𝑛,𝑘) then 𝜙−1(𝑌) ⊃ 𝑌 is implied by 𝜙|𝑌 = id, and since the inverse automorphism
𝜙−1 satisfies 𝜙−1 |𝑌 = id as well, we also have 𝜙−1(𝑌) ⊂ 𝑌 . Thus, 𝜙 is a Turing machine. Similarly, the
inverse map 𝜙−1 is a Turing machine. Thus, in this case 𝜙 ∈ RTM(Z𝑑 , 𝑛, 𝑘). �

Alternatively, in the previous statement we can just write TM(Z𝑑 , 𝑛, 𝑘) = {𝜙 ∈ End(𝑋𝑛,𝑘) | 𝜙|𝑌 =
id, 𝜙−1(𝑌) ⊂ 𝑌 }, since 𝜙−1(𝑌) ⊃ 𝑌 is implied by 𝜙|𝑌 = id.

Corollary 2.5. Let 𝜙 ∈ TM(Z𝑑 , 𝑛, 𝑘). We have that 𝜙 ∈ RTM(Z𝑑 , 𝑛, 𝑘) if and only if 𝜙 is bijective.

Readers familiar with the theory of cellular automata may wonder if injectivity is enough, since
injective cellular automata on full shifts are surjective. This is not a priori clear since cellular automata
on nontransitive sofic shifts (such as 𝑋𝑛,𝑘) can be injective without being surjective. We will, however,
later prove the stronger result that both injectivity and surjectivity are equivalent to bijectivity.

Clearly, the conditions of Proposition 2.4 are preserved under function composition and inversion.
Thus:

Corollary 2.6. Under function composition, (TM(Z𝑑 , 𝑛, 𝑘), ◦) is a monoid and (RTM(Z𝑑 , 𝑛, 𝑘), ◦) is
a group.

We usually omit the function composition symbol and use the notations TM(Z𝑑 , 𝑛, 𝑘) and
RTM(Z𝑑 , 𝑛, 𝑘) to refer to the corresponding monoids and groups.

An important corollary of Proposition 2.4 is that every result we prove about Turing machine groups
says something about cellular automata. In particular, if a group H embeds into RTM(Z, 𝑛, 𝑘), then
H also embeds into Aut(𝑋𝑛,𝑘), which implies that there exists a one-dimensional sofic subshift whose
automorphism group contains H.2

Before defining the second model for Turing machines, we introduce an extended model which will
be occasionally used in what follows. Given a subshift 𝑋 ⊂ ΣZ

𝑑 we denote the set of moving-head
(Z𝑑 , 𝑛, 𝑘)-Turing machines f which satisfy 𝑓 (𝑋 × 𝑋𝑘) ⊂ 𝑋 × 𝑋𝑘 by TM(𝑋, 𝑘) (where we omit the
group from the notation, since it is determined by X). And the set of reversible ones by RTM(𝑋, 𝑘).
This change basically amounts to replacing the full shift ΣZ𝑑 in the definition by an arbitrary subshift X.
This will be used to make explicit which properties from X are required for our results, though our focus
is on the case where 𝑋 = ΣZ

𝑑 in which RTM(ΣZ𝑑 , 𝑘) = RTM(Z𝑑 , 𝑛, 𝑘) for |Σ | = 𝑛. Proposition 2.4 is
still valid in this extended context.

One use of this generalization is that it allows us to study Turing machines on a more robust class
of subshifts than just full shifts. For example, when studying Turing machines on transitive SFTs rather
than full shifts only, states can be eliminated, due to the following lemma.

Definition 2.7. Let 𝑋 ⊂ ΣZ be a subshift and # ∉ Σ. Write 𝑛
√
𝑋 for the shift space with points

{𝑥 ∈ (Σ ∪ {#})Z : there are 𝑘 ∈ {0, . . . , 𝑛 − 1} and 𝑦 ∈ 𝑋 such that for every 𝑚 ∈ Z,
(𝑥𝑚𝑛+𝑘 = 𝑦𝑚 and for every 𝑗 ∈ {0, . . . , 𝑛 − 1} \ {𝑘} we have 𝑥𝑚𝑛+ 𝑗 = #)}.

The subshift 𝑛
√
𝑋 is the space of configurations on Zwhere some configuration of X occurs on a coset

of 𝑛Z and the rest of the positions are filled with a special symbol #.

Lemma 2.8. Let 𝑋 ⊂ 𝐴Z be a subshift. Then TM(𝑋, 𝑘) is isomorphic to TM(𝑘
√
𝑋, 1) as a monoid and

RTM(𝑋, 𝑘) is isomorphic to RTM(𝑘
√
𝑋, 1) as a group.

2In Section 4.3, we show that RTM(Z, 𝑛, 𝑘) also “almost” embeds into Aut(ΣZ) .

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

10 S. Barbieri, V. Salo and J. Kari

Proof. As the monoid of Turing machines can be seen as a submonoid of endomorphisms of a subshift,
it follows that they commute with the shift. More precisely, for each machine T and �𝑚 ∈ Z if we interpret
T acting on 𝑋 × 𝑋𝑘 by endomorphisms, then we have that 𝜎 �𝑚 ◦ 𝑇 ◦ 𝜎− �𝑚 = 𝑇 . In particular, as non-#
symbols appear at a bounded distance in each configuration of TM(𝑘

√
𝑋, 1), it suffices to define a Turing

machine in (𝑘
√
𝑋 \ [#]0) × {1} × Z to completely determine its action over 𝑘

√
𝑋 × {1} × Z.

Let 𝜓 : 𝑋 → 𝑘
√
𝑋 be defined by

𝜓(𝑥)𝑖 =
{

#, if 𝑖 � 0 mod 𝑘, and
𝑥𝑖/𝑘 , otherwise.

Note that 𝜓 defines a 1-to-1 map onto 𝑘
√
𝑋 \ [#]0.

Also, define 𝜂 : Z × 𝑄 → Z by 𝜂(�𝑣, 𝑞) = 𝑘�𝑣 + 𝑞 − 1 which is clearly bijective. We can thus finally
define a bijection 𝛿 : 𝑋 ×𝑄 × Z→ (𝑘

√
𝑋 \ [#]0) × {1} × Z by 𝛿(𝑥 �𝑣𝑞) = 𝜓(𝑥)𝜂 (�𝑣,𝑞)

1 .
Now, given a machine 𝑇 ∈ TM(𝑘

√
𝑋, 1) we define 𝜑(𝑇) ∈ TM(𝑋, 𝑘) by 𝜑(𝑇) = 𝛿−1 ◦ 𝑇 ◦ 𝛿. Note

that this is well-defined since 𝑇 ∈ TM(𝑘
√
𝑋, 1) implies that 𝑇 (𝑘

√
𝑋 \ [#]0 × 𝑋1) = 𝑘

√
𝑋 \ [#]0 × 𝑋1 again

because non-#-symbols appear with bounded gaps, and since T is the identity map on points where the
head does not appear. By definition it is then clear that 𝜑(𝑇 ◦ 𝑇 ′) = 𝜑(𝑇) ◦ 𝜑(𝑇 ′) and that 𝜑 is 1-to-1.
We only need to show that 𝜑(𝑇) ∈ TM(𝑋, 𝑘) and that 𝜑 is onto.

Firstly, it is clear that 𝛿−1 ◦ 𝑇 ◦ 𝛿 maps 𝑋 ×𝑄 × Z to itself; therefore, the head cannot disappear. We
have that 𝛿 ◦ 𝜎 �𝑚 = 𝜎

�𝑘𝑚 ◦ 𝛿 and thus 𝜑(𝑇) is shift commuting.

𝜑(𝑇) ◦ 𝜎 �𝑚 = 𝛿−1 ◦ 𝑇 ◦ 𝛿 ◦ 𝜎 �𝑚

= 𝛿−1 ◦ 𝑇 ◦ 𝜎 �𝑘𝑚 ◦ 𝛿

= 𝛿−1 ◦ 𝜎 �𝑘𝑚 ◦ 𝑇 ◦ 𝛿
= 𝜎 �𝑚 ◦ 𝛿−1 ◦ 𝑇 ◦ 𝛿
= 𝜎 �𝑚 ◦ 𝜑(𝑇).

Since 𝛿 and T are continuous, and 𝛿−1 is continuous on the image of 𝛿, we have that 𝜑(𝑇) is continuous
and shift invariant and therefore defines an endomorphism of 𝑋 × 𝑋𝑘 which is an element of TM(𝑋, 𝑘).
Conversely, an analogous argument shows that for each 𝑇 ∈ TM(𝑋, 𝑘) then the map 𝑇 ′ defined as
𝑇 ′ = 𝛿 ◦𝑇 ◦ 𝛿−1 on 𝑘

√
𝑋 \ [#]0 × {1} ×Z (and by conjugating with a suitable power of 𝜎 on other points)

is in TM(𝑘
√
𝑋, 1) and thus 𝜑(𝑇 ′) = 𝑇 , showing that 𝜑 is onto.

Finally, if 𝑇 ∈ RTM(𝑘
√
𝑋, 1) then 𝜑(𝑇) ◦ 𝜑(𝑇−1) = id and thus 𝜑(𝑇) ∈ RTM(𝑋, 𝑘). �

2.2. The moving tape model

Even though the moving head model is helpful when building examples, it has a fundamental
disadvantage: the space on which the machines act is not compact. From an intuitive point of view,
it means that a sequence of Turing machines could potentially move the head to infinity and make it
disappear. Or alternatively, in the point of view of seeing Turing machines as endomorphisms as in
Proposition 2.4 (which usually, e.g., in Kůrka [27], is directly what the moving head model refers to),
the space is compact, but there are uncountably many points that do not quite represent Turing machine
configurations.

It’s also possible to consider the position of the Turing machine as fixed at �0, and move the tape
instead, to obtain the moving tape Turing machine model. In [27], where Turing machines are studied
as dynamical systems, the moving head model and moving tape model give nonconjugate dynamical
systems. However, the abstract monoids defined by the two points of view turn out to be equal, and we
obtain an equivalent definition of the group of Turing machines.

As in the previous section, we begin with a definition using local rules.

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

Forum of Mathematics, Sigma 11

Figure 2. The action of a moving tape machine 𝑇 𝑓 .

Given a function 𝑓 : Σ𝐹in×𝑄 → Σ𝐹out×𝑄×Z𝑑 , where 𝐹in, 𝐹out are finite subsets ofZ𝑑 , we can define a
map 𝑇 𝑓 : ΣZ𝑑 ×𝑄 → ΣZ

𝑑 ×𝑄 as follows: If 𝑓 (𝑥 |𝐹in , 𝑞) = (𝑝, 𝑞′, �𝑣), then 𝑇 𝑓 (𝑥, 𝑞) = (𝜎−�𝑣 (𝑦), 𝑞′) where

𝑦 �𝑢 =

{
𝑥 �𝑢 , if �𝑢 ∉ 𝐹out
𝑝 �𝑢 , if �𝑢 ∈ 𝐹out,

Definition 2.9. Any function 𝑇 : ΣZ𝑑 ×𝑄 → ΣZ
𝑑 ×𝑄 for which there is an f as above such that 𝑇 = 𝑇 𝑓

is called a moving tape (Z𝑑 , 𝑛, 𝑘)-Turing machine and f is its local rule. If there exists a (Z𝑑 , 𝑛, 𝑘)-
Turing machine 𝑇−1 such that 𝑇 ◦ 𝑇−1 = 𝑇−1 ◦ 𝑇 = id we say T is reversible.

These machines also have the following characterization with a slightly more dynamical feel to it.
Say that two configurations x and y in ΣZ

𝑑 are asymptotic (also called homoclinic in the literature),
and write 𝑥 ∼ 𝑦, if there exists a finite 𝐹 ⊂ Z𝑑 such that 𝑥 |Z𝑑\𝐹 = 𝑦 |Z𝑑\𝐹 . In order to be more specific,
we write 𝑥 ∼𝐹 𝑦 to claim that a particular choice of F satisfies the property.

Lemma 2.10. Let 𝑇 : ΣZ𝑑 × 𝑄 → ΣZ
𝑑 × 𝑄 be a function. Then T is a moving tape Turing machine if

and only if it is continuous, and there exist a continuous function 𝑠 : ΣZ𝑑 ×𝑄 → Z𝑑 and a finite 𝐹 ⊂ Z𝑑

such that 𝑇1 (𝑥, 𝑞) ∼𝐹 𝜎𝑠 (𝑥,𝑞) (𝑥) for all (𝑥, 𝑞) ∈ ΣZ𝑑 ×𝑄.
Proof. It is easy to see that 𝑇 𝑓 for any local rule 𝑓 : Σ𝐹in × 𝑄 → Σ𝐹out × 𝑄 × Z𝑑 is continuous. The
projection to the third component of f gives the function −𝑠, and one can take F as the minimal
neighborhood of 𝑇 𝑓 .

For the converse, since s is a continuous function from a compact space to a discrete one we conclude
that the image of s is bounded. Furthermore it only depends on a finite set 𝐹0 of coordinates of x. Since
T is continuous, 𝑇 (𝑥, 𝑞) |

𝐹+𝑠 (ΣZ𝑑×𝑄) depends only on a finite set of coordinates 𝐹1 of x. It is then easy
to extract a local rule

𝑓 : Σ𝐹0∪𝐹1 ×𝑄 → Σ𝐹−𝑠 (ΣZ𝑑×𝑄) ×𝑄 × Z𝑑 ,

for T. �

We call the function s in the definition of these machines the shift indicator of T, as it indicates how
much the tape is shifted depending on the local configuration around �0. In the theory of orbit equivalence
and topological full groups, the analogs of s are usually called cocycles. Note that in the definition using
local functions, the third coordinate of the image indicates how much the head moves, while the shift
indicator shows how the configuration shifts, hence the minus sign next to s in the above proof.

Remark 2.11. In the previous lemma it is not enough that𝑇1 (𝑥, 𝑞) ∼ 𝜎𝑠 (𝑥,𝑞) (𝑥) for all (𝑥, 𝑞) ∈ ΣZ𝑑 ×𝑄;
we need the configurations to be uniformly asymptotic to each other (with a fixed 𝐹 ⊂ Z𝑑). Indeed, let
𝑄 = {1} and consider the function 𝑇 : ΣZ ×𝑄 → ΣZ ×𝑄 defined by (𝑇1 (𝑥, 1))𝑖 = 𝑥−𝑖 if 𝑥 [−|𝑖 |+1, |𝑖 |−1] =
02𝑖−1 and {𝑥𝑖 , 𝑥−𝑖} ≠ {0}, and (𝑇1 (𝑥, 1))𝑖 = 𝑥𝑖 otherwise. Clearly this map is continuous, the constant
map 𝑠(𝑥, 𝑞) = �0 gives a shift-indicator for it and 𝑇1 (𝑥, 𝑞) ∼ 𝑥 for every 𝑥 ∈ ΣZ

𝑑 . However, T is not
defined by any local rule since it can modify the tape arbitrarily far from the origin.

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

12 S. Barbieri, V. Salo and J. Kari

As for moving head machines, it is easy to see (either by constructing local rules or by applying the
dynamical definition) that the composition of two moving tape Turing machines is again a moving tape
Turing machine. This allows us to proceed as before and define their monoid and group.

Definition 2.12. We denote by TMfix (Z𝑑 , 𝑛, 𝑘) and RTMfix (Z𝑑 , 𝑛, 𝑘) the monoid of moving tape
(Z𝑑 , 𝑛, 𝑘)-Turing machines and the group of reversible moving tape (Z𝑑 , 𝑛, 𝑘)-Turing machines,
respectively.

Now, let us show that both models are equivalent in group-theoretical terms. First, we define the
natural monoid epimorphism Ψ : TM(Z𝑑 , 𝑛, 𝑘) → TMfix (Z𝑑 , 𝑛, 𝑘) that shifts the configurations so that
the head remains at the origin:

Definition 2.13. Let 𝑇 ∈ TM(Z𝑑 , 𝑛, 𝑘). We define Ψ(𝑇) ∈ TMfix (Z𝑑 , 𝑛, 𝑘) as the moving tape Turing
machine such that

Ψ(𝑇) (𝑥, 𝑞) = (𝜎−�𝑣 (𝑦), 𝑟) when 𝑇 (𝑥�0𝑞) = 𝑦 �𝑣𝑟 .

In other terms, define the shift equivalence relation ≡ on the moving head space ΣZ
𝑑 × 𝑄 × Z𝑑 by

𝑥 �𝑢𝑞 ≡ 𝜎 �𝑣 (𝑥) �𝑢+�𝑣𝑞 for all 𝑥 ∈ ΣZ
𝑑 , 𝑞 ∈ 𝑄 and �𝑢, �𝑣 ∈ Z𝑑 . Then for 𝑇 ∈ TM(Z𝑑 , 𝑛, 𝑘), Ψ(𝑇) is the action

induced by T on the quotient ΣZ𝑑 ×𝑄×Z𝑑/≡. Note that for any two ≡-classes U and V, if𝑇 (𝑈) ⊂ 𝑉 then
𝑇 |𝑈 : 𝑈 −→ 𝑉 is a bijection. As we shall see, this shows that Ψ preserves injectivity and surjectivity of
Turing machines.

Proposition 2.14. T is injective (surjective) if and only if Ψ(𝑇) is injective (surjective, respectively).

Proof. If T is not injective, then 𝑇 (𝑐1) = 𝑇 (𝑐2) for some 𝑐1 ≠ 𝑐2. Because T is injective in each
≡-class, 𝑐1 � 𝑐2. Hence there are two distinct ≡-classes with the same image so that Ψ(𝑇) is not
injective. Conversely, if Ψ(𝑇) maps two distinct ≡-classes into the same class, there are 𝑐1 � 𝑐2 such
that 𝑇 (𝑐1) ≡ 𝑇 (𝑐2). Because T is surjective in ≡-classes, there is 𝑐′1 ≡ 𝑐1 such that 𝑇 (𝑐′1) = 𝑇 (𝑐2), so T
is not injective.

If T is surjective, then clearly every ≡-class has a preimage so that Ψ(𝑇) is surjective. And if Ψ(𝑇)
is surjective then every ≡-class has a preimage, and because T is surjective in ≡-classes, every element
of every ≡-class has a preimage, that is, T is surjective. �

The function Ψ is clearly always a monoid epimorphism. It is not injective in the trivial case
𝑛 = 1. Indeed, we have that RTMfix (Z𝑑 , 1, 𝑘) is isomorphic to the symmetric group on k symbols,
and TMfix (Z𝑑 , 1, 𝑘) is isomorphic to the monoid of all functions from {1, . . . , 𝑘} to itself, that is, the
symmetric monoid on {1, . . . , 𝑘}. Therefore both of these groups are finite when 𝑛 = 1. On the other
hand, clearly Z𝑑 embeds into RTM(Z𝑑 , 1, 𝑘) and TM(Z𝑑 , 1, 𝑘) as the shifts are nontrivial elements of
these monoids. Next, we show that in most other cases Ψ is injective.

Intuitively, in order to also have Z𝑑 embed into the monoid of moving tape Turing machines, we
need the configuration space to admit configurations with a certain degree of aperiodicity. We shall see
that this is indeed the only obstruction and obtain as a corollary that for every 𝑛 ≥ 2 the map Ψ is an
isomorphism.

Definition 2.15. A subshift 𝑋 ⊂ ΣZ
𝑑 is said to be locally aperiodic if for every 𝑥 ∈ 𝑋 , every finite

𝐹 ⊂ Z𝑑 and every nonzero �𝑣 ∈ Z𝑑 there exists 𝑦 ∈ [𝑥 |𝐹] such that 𝑦 �𝑢 ≠ 𝑦 �𝑣+�𝑢 for some �𝑢 ∈ Z𝑑 .

For example, the sunny-side-up subshift 𝑋1 ⊂ {0, 1}Z is locally aperiodic because every nonempty
cylinder contains a configuration with exactly one occurrence of 1, and such a configuration is non-
periodic. But this means that the morphism Ψ of Definition 2.13 is not necessarily injective even on
reversible Turing machines over locally aperiodic subshifts. Consider, for example, the single state ma-
chine 𝑇 ∈ TM(𝑋1, 1) that maps, for some fixed �𝑣 ∈ Z,

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

Forum of Mathematics, Sigma 13

𝑥
�0
1 ↦→

{
𝑥
�0
1, if 𝑥0 = 0,
𝜎 �𝑣 (𝑥) �𝑣1 , if 𝑥0 = 1.

This machine shifts the configuration and the position by �𝑣 if the cell under the head contains the unique
1 of the configuration, and does not do anything if the cell contains symbol 0. The Turing machine is
clearly reversible, and Ψ(𝑇) is the identity regardless of the choice of vector �𝑣.

To guarantee injectivity of Ψ we define an even more restrictive variant of local aperiodicity:

Definition 2.16. A subshift 𝑋 ⊂ ΣZ
𝑑 is strongly locally aperiodic if for every 𝑥 ∈ 𝑋 , every finite

𝐹 ⊂ Z𝑑 and every nonzero �𝑣 ∈ Z𝑑 there exists 𝑦 ∈ [𝑥 |𝐹] such that 𝑦 �𝑢 ≠ 𝑦 �𝑢+�𝑣 for some �𝑢 such that
�𝑢, �𝑢 + �𝑣 ∉ 𝐹.

Obviously 𝑋 = {0, . . . , 𝑛 − 1}Z𝑑 is strongly locally aperiodic whenever 𝑛 ≥ 2. With this definition
we have the following.

Lemma 2.17. Let 𝑋 ⊂ ΣZ
𝑑 be strongly locally aperiodic. We have that

TMfix (𝑋, 𝑘) � TM(𝑋, 𝑘)
RTMfix (𝑋, 𝑘) � RTM(𝑋, 𝑘).

Proof. Consider again the epimorphism Ψ : TM(Z𝑑 , 𝑛, 𝑘) → TMfix(Z𝑑 , 𝑛, 𝑘) and suppose there exists
a pair 𝑇 ≠ 𝑇 ′ in TM(𝑋, 𝑘) such that Ψ(𝑇) = Ψ(𝑇 ′). Let 𝑥�0𝑞 be such that 𝑇 (𝑥�0𝑞) ≠ 𝑇 ′(𝑥�0𝑞). Denoting by
𝑊 = 𝐹 ∪ 𝐹 ′ the union of the neighborhoods F of T and 𝐹 ′ of 𝑇 ′ we get that T and 𝑇 ′ can be described
by rules of the form 𝑓𝑇 (𝑥 |𝑊 , 𝑞) = (𝑝, 𝑟, �𝑣) and 𝑓𝑇 ′ (𝑥 |𝑊 , 𝑞) = (𝑝′, 𝑟 ′, �𝑣′). Denote by 𝑥 [𝑝] and 𝑥 [𝑝′] the
configuration where the symbols of x in the support W have been replaced by p and 𝑝′, respectively.
Clearly Ψ(𝑇) = Ψ(𝑇 ′) implies that 𝑟 = 𝑟 ′ and 𝜎−�𝑣 (𝑥 [𝑝]) = 𝜎−�𝑣

′ (𝑥 [𝑝′]).
If �𝑣 = �𝑣′ then also 𝑥 [𝑝] = 𝑥 [𝑝′] , which contradicts 𝑇 (𝑥�0𝑞) ≠ 𝑇 ′(𝑥�0𝑞). So we must have �𝑣 ≠ �𝑣′.

As X is strongly locally aperiodic, there exists 𝑦 ∈ [𝑥 |𝑊] such that 𝑦 �𝑢 ≠ 𝑦 �𝑢+ �𝑣′−�𝑣 for some position
�𝑢 that satisfies �𝑢, �𝑢 + �𝑣′ − �𝑣 ∉ 𝑊 . As 𝑦 |𝑊 = 𝑥 |𝑊 , we have that Ψ(𝑇) (𝑦, 𝑞) = (𝜎−�𝑣 (𝑦 [𝑝]), 𝑟) and
Ψ(𝑇 ′) (𝑦, 𝑞) = (𝜎−�𝑣′ (𝑦 [𝑝′]), 𝑟 ′). Then Ψ(𝑇) = Ψ(𝑇 ′) implies that 𝑦 [𝑝] = 𝜎 �𝑣−�𝑣

′ (𝑦 [𝑝′]), which is not
true in position �𝑢. �

A nontrivial full shift ΣZ𝑑 is strongly locally aperiodic, and thus Lemma 2.17 gives the following
corollary.

Corollary 2.18. If 𝑛 ≥ 2 then:

TMfix(Z𝑑 , 𝑛, 𝑘) � TM(Z𝑑 , 𝑛, 𝑘)
RTMfix(Z𝑑 , 𝑛, 𝑘) � RTM(Z𝑑 , 𝑛, 𝑘).

The previous result means that apart from the trivial case 𝑛 = 1 where the tape plays no role, we can
study the properties of these groups using any model.

2.3. The uniform measure and reversibility.

Consider the space ΣZ
𝑑 × 𝑄. Let 𝜇 be the product of the uniform Bernoulli measure on ΣZ

𝑑 and the
uniform discrete measure on Q. That is, 𝜇 is the measure such that for every finite 𝐹 ⊂ Z𝑑 and 𝑝 ∈ Σ𝐹 ,
we have

𝜇([𝑝] × {𝑞}) = 1
𝑘𝑛 |𝐹 |

.

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

14 S. Barbieri, V. Salo and J. Kari

Theorem 2.19. Let 𝑇 ∈ TMfix (Z𝑑 , 𝑛, 𝑘). Then the following are equivalent:

1. T is injective.
2. T is surjective.
3. 𝑇 ∈ RTMfix(Z𝑑 , 𝑛, 𝑘).
4. T preserves the uniform measure (𝜇(𝑇−1 (𝐴)) = 𝜇(𝐴) for all Borel sets 𝐴 ⊂ ΣZ

𝑑 ×𝑄).
5. 𝜇(𝑇 (𝐴)) = 𝜇(𝐴) for all Borel sets 𝐴 ⊂ ΣZ

𝑑 ×𝑄.

Proof. Let T be arbitrary, and let F be its minimal neighborhood. Consider the cylinders𝐶𝑖 = [𝑝𝑖] ×{𝑞}
where 𝑝𝑖 ∈ Σ𝐹 , 𝑞 ∈ 𝑄. These cylinders form a clopen partition of ΣZ𝑑 × 𝑄 into 𝑘𝑛 |𝐹 | cylinders of
measure 1

𝑘𝑛|𝐹 |
.

Now, because F is the minimal neighborhood of T, T is a homeomorphism from 𝐶𝑖 onto 𝐷𝑖 = 𝑇 (𝐶𝑖),
and 𝐷𝑖 is a cylinder set of the form [𝑝′] × {𝑞′} for some 𝑝′ ∈ Σ �𝑣+𝐹 , 𝑞′ ∈ 𝑄, which must be of the
same measure as 𝐶𝑖 as the domain �𝑣 + 𝐹 of 𝑝′ has as many coordinates as the domain F of p. Note that
𝐷𝑖 is not necessarily a cylinder centered at the origin, and the offset �𝑣 is given by the shift-indicator.
Now, observe that injectivity is equivalent to the cylinders 𝐷𝑖 = 𝑇 (𝐶𝑖) being disjoint. Namely, they
must be disjoint if T is injective, and if they are disjoint, then T is injective because 𝑇 |𝐶𝑖 : 𝐶𝑖 → 𝐷𝑖 is a
homeomorphism. Surjectivity, on the other hand, corresponds to the equality ΣZ

𝑑 × 𝑄 =
⋃

𝑖 𝐷𝑖 , since⋃
𝑖 𝐷𝑖 =

⋃
𝑖 𝑇 (𝐶𝑖) = 𝑇 (ΣZ𝑑 ×𝑄).

Now, it is easy to show that injectivity and surjectivity are equivalent. If T is injective, then the 𝐷𝑖

are disjoint, and 𝜇(
⋃

𝑖 𝐷𝑖) =
∑

𝑖 𝜇(𝐷𝑖) = 1, so we must have
⋃

𝑖 𝐷𝑖 = ΣZ
𝑑 × 𝑄 because ΣZ

𝑑 × 𝑄 is
the only clopen set of full measure. If T is not injective, then for some 𝑖 ≠ 𝑗 we have 𝐷𝑖 ∩ 𝐷 𝑗 ≠ ∅.
Then 𝐷 = 𝐷𝑖 ∩𝐷 𝑗 is a nonempty clopen set, and thus has positive measure. It follows that 𝜇(

⋃
𝑖 𝐷𝑖) ≤∑

𝑖 𝜇(𝐷𝑖) − 𝜇(𝐷) < 1, so
⋃

𝑖 𝐷𝑖 � ΣZ
𝑑 ×𝑄. Of course, since injectivity and surjectivity are equivalent,

they are both equivalent to bijectivity and thus to reversibility of T by Corollary 2.5.
The argument given above in fact shows that reversibility is equivalent to preserving the uniform

Bernoulli measure in the forward sense – if T is reversible, then 𝜇(𝑇 (𝐴)) = 𝜇(𝐴) for all clopen sets A,
and thus for all Borel sets, while if T is not reversible, then there is a disjoint union of cylinders 𝐶 ∪ 𝐷
such that 𝜇(𝑇 (𝐶 ∪ 𝐷)) < 𝜇(𝐶 ∪ 𝐷).

For measure-preservation in the usual (backward) sense, observe that the reverse of a reversible Turing
machine is reversible and thus measure-preserving in the forward sense, so a reversible Turing machine
must itself be measure-preserving in the traditional sense. If T is not reversible, then 𝜇(𝑇 (𝐶 ∪ 𝐷)) <
𝜇(𝐶 ∪ 𝐷) for some disjoint cylinders C and D large enough that 𝑇 |𝐶 and 𝑇 |𝐷 are measure-preserving
homeomorphisms. Then for 𝐸 = 𝑇 (𝐶)∩𝑇 (𝐷) we have 𝜇(𝑇−1 (𝐸)) ≥ 𝜇((𝑇−1 (𝐸)∩𝐶)∪(𝑇−1 (𝐸)∩𝐷)) =
2𝜇(𝐸). �

Remark 2.20. The proof is based on showing that every Turing machine is a local homeomorphism
and preserves the measure of all large-radius cylinders C in the forward sense 𝜇(𝑇 (𝐶)) = 𝜇(𝐶). Note
that preserving the measure of large-radius cylinders in the forward sense does not imply preserving the
measure of all Borel sets (or even all cylinders), in general. For example, the machine with 𝑛 ≥ 2, 𝑘 = 1
which turns the symbol in 𝐹 = {�0} to 0 without moving the head satisfies 𝜇([𝑝]) = 𝜇(𝑇 [𝑝]) for any
𝑝 ∈ Σ𝑆 with 𝑆 ⊃ 𝐹. But 𝜇(ΣZ𝑑 ×𝑄) = 1 and 𝜇(𝑇 (ΣZ𝑑 ×𝑄)) = 𝜇([0]) = 1/2.

Remark 2.21. Using Proposition 2.14 and Theorem 2.19 we see that also under the moving head model
injectivity and surjectivity are equivalent.

We can also use the uniform measure to define the average movement of a Turing machine.

Definition 2.22. Let 𝑇 ∈ TMfix (Z𝑑 , 𝑛, 𝑘) with shift indicator function 𝑠 : ΣZ𝑑 ×𝑄 → Z𝑑 . We define the
average movement 𝛼(𝑇) ∈ R𝑑 as

𝛼(𝑇) = E𝜇 (𝑠) =
∫
ΣZ𝑑×𝑄

𝑠(𝑥, 𝑞)𝑑𝜇,

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

Forum of Mathematics, Sigma 15

where 𝜇 is the uniform measure on ΣZ
𝑑 × 𝑄. For T in TM(Z𝑑 , 𝑛, 𝑘), we define 𝛼 as the application to

its image under the canonical epimorphism Ψ from Definition 2.13, that is, 𝛼(𝑇) = 𝛼(Ψ(𝑇)).

Of course, as 𝑠(𝑥, 𝑞) depends only on finitely many coordinates of x, this integral is actually a finite
sum over the cylinders 𝑝 ∈ Σ𝐹 for some finite 𝐹 ⊂ Z𝑑 , and thus we have 𝛼(𝑇) ∈ Q𝑑 for all T. The
following lemma shows that in fact 𝛼 is a homomorphism.

Lemma 2.23. The map 𝛼 : RTMfix(Z𝑑 , 𝑛, 𝑘) → Q𝑑 is a group homomorphism.

Proof. If 𝑇1, 𝑇2 ∈ RTMfix(Z𝑑 , 𝑛, 𝑘), then since reversibility implies measure-preservation, we have

𝛼(𝑇1 ◦ 𝑇2) = E𝜇 (𝑠𝑇1◦𝑇2)
= E𝜇 (𝑠𝑇1 ◦ 𝑇2 + 𝑠𝑇2)
= E𝜇 (𝑠𝑇1 ◦ 𝑇2) + E𝜇 (𝑠𝑇2)
= E𝜇 (𝑠𝑇1) + E𝜇 (𝑠𝑇2)
= 𝛼(𝑇1) + 𝛼(𝑇2),

where E𝜇 (𝑠𝑇1◦𝑇2) = E𝜇 (𝑠𝑇1 ◦ 𝑇2 + 𝑠𝑇2) holds because 𝑠𝑇1◦𝑇2 (𝑥, 𝑞) = 𝑠𝑇1 (𝑇2 (𝑥, 𝑞)) + 𝑠𝑇2 (𝑥, 𝑞) for all
(𝑥, 𝑞) ∈ ΣZ𝑑 ×𝑄. �

3. Subgroups and generators

In this section we study several subgroups of RTM(Z𝑑 , 𝑛, 𝑘). The main result of this section is that there
is a finitely generated subgroup of “elementary Turing machines.” In the following sections, we show
that in pure computability terms, these are able to simulate general Turing machines.

The group of elementary Turing machines EL(Z𝑑 , 𝑛, 𝑘) is the subgroup of reversible Turing machines
which is generated by the union of two natural subgroups: LP(Z𝑑 , 𝑛, 𝑘), the group of local permutations,
and RFA(Z𝑑 , 𝑛, 𝑘), the group of reversible finite-state automata. These two groups separately capture
the dynamics of changing the tape and moving the head. We also define the group of oblivious Turing
machines OB(Z𝑑 , 𝑛, 𝑘) as an extension of LP(Z𝑑 , 𝑛, 𝑘) where arbitrary tape-independent moves are
allowed.

We recall that for the convenience of the reader, a dictionary of these groups can be found in
Appendix 1.

The main results we prove about these subgroups are the following, when 𝑛 ≥ 2:

◦ RFA(Z𝑑 , 𝑛, 𝑘) is not finitely generated (Theorem 3.5),
◦ RTM(Z𝑑 , 𝑛, 𝑘) is not finitely generated (Theorem 3.11).
◦ RFA(𝑋, 1) is generated by “orbitwise shifts” and “controlled position swaps” for any one-dimensional

subshift X (Theorem 3.28),
◦ OB(Z𝑑 , 𝑛, 𝑘) is finitely generated (Theorem 3.18),
◦ EL(Z, 𝑛, 𝑘) is finitely generated (Theorem 1.1).

For the definitions of “orbitwise shifts” and “controlled position swap’, see Section 3.3. For any class
CL(Z𝑑 , 𝑛, 𝑘) of Turing machines with moving head we denote by CLfix (Z𝑑 , 𝑛, 𝑘) the corresponding class
of moving tape machines, that is, the image of the class under the morphism Ψ from Definition 2.13.

3.1. Definitions of subgroups

3.1.1. Oblivious Turing machines
For �𝑣 ∈ Z𝑑 , define the machine𝑇�𝑣 which does not modify the state or the tape, and moves the head by the
vector �𝑣 on each step. Denote SHIFT(Z𝑑 , 𝑛, 𝑘) = 〈{𝑇�𝑣 }�𝑣∈Z𝑑 〉. Clearly SHIFT(Z𝑑 , 𝑛, 𝑘) � Z𝑑 . Define
also SP(Z𝑑 , 𝑛, 𝑘) as the state-permutations: Turing machines that never move and only permute their
state as a function of the tape.

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

16 S. Barbieri, V. Salo and J. Kari

Definition 3.1. We define the group LP(Z𝑑 , 𝑛, 𝑘) of local permutations as the subgroup of Turing
machines in RTM(Z𝑑 , 𝑛, 𝑘) whose shift-indicator is trivial, that is, the constant function 𝑥 ↦→ �0.

We define also OB(Z𝑑 , 𝑛, 𝑘) = 〈SHIFT(Z𝑑 , 𝑛, 𝑘),LP(Z𝑑 , 𝑛, 𝑘)〉, the group of oblivious Turing
machines.

In other words, LP(Z𝑑 , 𝑛, 𝑘) is the group of reversible machines that do not move the head, and
OB(Z𝑑 , 𝑛, 𝑘) is the group of reversible Turing machines whose head movement is independent of the
state and the tape contents. Note that in the definition of both groups, we allow changing the state as a
function of the tape, and vice versa, thus SP(Z𝑑 , 𝑛, 𝑘) � LP(Z𝑑 , 𝑛, 𝑘).

Remark 3.2. The restricted wreath products 𝐻 � Z𝑑 , where H is a finite group, are sometimes called
generalized lamplighter groups, the original lamplighter group being Z/2Z � Z. Thus, OB(Z𝑑 , 𝑛, 𝑘)
can be seen as a doubly generalized lamplighter group, since the subgroup of OB(Z𝑑 , 𝑛, 𝑘) generated
by the local permutations LP(Z𝑑 , 𝑛, 1) with radius 0 and SHIFT(Z𝑑 , 𝑛, 1) is isomorphic to the wreath
product 𝑆𝑛 � Z𝑑 of the symmetric group 𝑆𝑛. Further on we show that, similar to lamplighter groups,
OB(Z𝑑 , 𝑛, 𝑘) is also finitely generated.

3.1.2. Finite-state automata
Definition 3.3. We define the group RFA(Z𝑑 , 𝑛, 𝑘) of reversible finite-state automata as the group of
reversible (Z𝑑 , 𝑛, 𝑘)-Turing machines that do not change the tape. That is, the local rules are of the form
𝑓 (𝑝, 𝑞) = (𝑝, 𝑞′, �𝑣) for all entries 𝑝 ∈ Σ𝐹 , 𝑞 ∈ 𝑄.

Similarly, for a subshift 𝑋 ⊂ ΣZ
𝑑 we let RFA(𝑋, 𝑘) be the subgroup of elements in RTM(𝑋, 𝑘) that

act without modifying the tape.
This group is “orthogonal” to OB(Z𝑑 , 𝑛, 𝑘) in the following sense,

RFA(Z𝑑 , 𝑛, 𝑘) ∩ LP(Z𝑑 , 𝑛, 𝑘) = SP(Z𝑑 , 𝑛, 𝑘),
RFA(Z𝑑 , 𝑛, 𝑘) ∩ OB(Z𝑑 , 𝑛, 𝑘) = 〈SP(Z𝑑 , 𝑛, 𝑘), SHIFT(Z𝑑 , 𝑛, 𝑘)〉.

Remark 3.4. It follows directly from the definitions that the group RFA(Z𝑑 , 𝑛, 1) is isomorphic to the
topological full group of the full Z𝑑-shift on n symbols as defined in [18]. Similarly, if we fix a subshift
X, then RFAfix (𝑋, 1) is isomorphic to the topological full group of the shift action on X. The subscript
“fix” is only needed when X is not strongly locally aperiodic, see Lemma 2.17.

As usual, the case 𝑛 = 1 is not particularly interesting, and we have that RFA(Z𝑑 , 1, 𝑘) =
RTM(Z𝑑 , 1, 𝑘). In the general case the group is more interesting.

Theorem 3.5. Let 𝑛 ≥ 2. Then RFA(ΣZ𝑑 , 𝑛, 𝑘) is not finitely generated.

Proof. We prove this in the moving-tape model. For �𝑣 ∈ Z𝑑 , let Per�𝑣 (ΣZ
𝑑) be the set of configurations

of ΣZ
𝑑 whose stabilizer under the shift action contains �𝑣Z𝑑 . Let Z≥2 be the set of integers 𝑡 ≥ 2.

Let 𝜙 : RFAfix (ΣZ
𝑑
, 𝑛, 𝑘) → (Z/2Z)Z≥2 be the parity homomorphism where 𝜙(𝑇)𝑡 is the sign of the

permutation that T performs on the finite set Per(𝑡 ,𝑡 ,...,𝑡) (ΣZ
𝑑) ×𝑄.

As the image of a finitely generated group under a homomorphism is also finitely generated, it
suffices to show that 𝜙(RFAfix (ΣZ

𝑑
, 𝑛, 𝑘)) is not finitely generated. It suffices thus to prove that for any

finite 𝑚 ≥ 2 the restriction of 𝜙(RFAfix (ΣZ
𝑑
, 𝑛, 𝑘)) to (Z/2Z) {2,...,𝑚} is surjective. From here it clearly

follows that 𝜙(RFAfix (ΣZ
𝑑
, 𝑛, 𝑘)) is not finitely generated.

Let 𝑡 ≥ 2 and �𝑣 = (𝑡, 𝑡, . . . , 𝑡) ∈ Z𝑑 . Let 𝑇𝑡 be the machine which in state 𝑞 ≠ 1 acts trivially, and if
𝑞 = 1 does the following: Let �𝑒 = �𝑒1 = (1, 0, . . . , 0, 0) be the first canonical basis vector. For �𝑢 ∈ Z𝑑 let
𝐴�𝑢 = �𝑢 + {0, . . . , 𝑡 − 1} × · · · × {0, . . . , 𝑡 − 1}. Then, on configuration 𝑥 ∈ ΣZ𝑑 ,

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

Forum of Mathematics, Sigma 17

◦ if the restriction of x to 𝐴�0 contains a unique 1 which is at �0, and is otherwise identically zero, shift
the configuration by −�𝑒,

◦ if the restriction of x to 𝐴�𝑒 contains a unique 1 which is at �𝑒, and is otherwise identically zero, shift
the configuration by �𝑒,

◦ otherwise do nothing.

The machine𝑇𝑡 is an involution and thus is reversible. From this construction it follows that 𝜙(𝑇𝑡)𝑡 = 1
and 𝜙(𝑇𝑡)𝑡′ = 0 for all 2 ≤ 𝑡 ′ < 𝑡.

Now, let 𝑦 ∈ (Z/2Z) {2,...,𝑚}. Let 𝑀1 = id. Iteratively for 2 ≤ 𝑗 ≤ 𝑚 construct

𝑀 𝑗 =

{
𝑀 𝑗−1 if 𝑦 𝑗 = 𝜙(𝑀 𝑗−1) 𝑗
𝑇𝑗 ◦ 𝑀 𝑗−1 if 𝑦 𝑗 ≠ 𝜙(𝑀 𝑗−1) 𝑗

As 𝜙 is a homomorphism it follows that 𝜙(𝑀𝑚) = 𝑦 and therefore the restriction of
𝜙(RFAfix(ΣZ

𝑑
, 𝑛, 𝑘)) to (Z/2Z) {2,...,𝑚} is surjective. �

We shall introduce a new point of view on finite-state machines, which we call the permutation
model. This model will be helpful in the upcoming proof that elementary Turing machines are finitely
generated. In this model, we associate to every Turing machine in RFAfix (Z𝑑 , 𝑛, 𝑘) an automorphism of
(Σ × (Z/2Z)𝑄)Z𝑑 . The main idea behind this correspondence is that given 𝑇 ∈ RFAfix (Z𝑑 , 𝑛, 𝑘), every
configuration 𝑥 ∈ ΣZ

𝑑 induces an action over Z𝑑 × 𝑄, namely, a head pointing at some position in Z𝑑

in state q would move to a new pair (position, state) in Z𝑑 × 𝑄 after applying T. As T is reversible,
this induces a permutation over Z𝑑 ×𝑄 which can be applied simultaneously to an arbitrary number of
heads, which can in turn be represented as a configuration in ((Z/2Z)𝑄)Z𝑑 . We make this embedding
precise in the proof of the following proposition.

Proposition 3.6. The group RFAfix(Z𝑑 , 𝑛, 𝑘) embeds into Aut(𝐴Z𝑑) for |𝐴| = 𝑛2𝑘 .

Proof. Note that any pair (𝑇, 𝑥) ∈ RFAfix (Z𝑑 , 𝑛, 𝑘) × ΣZ
𝑑 induces a permutation 𝜎𝑇 ,𝑥 over Z𝑑 × 𝑄.

Namely, let s be the shift-indicator of T, and let

𝜎𝑇 ,𝑥 (�𝑣, 𝑞) = (�𝑣 − 𝑠(𝜎−�𝑣 (𝑥), 𝑞), 𝑇2 (𝜎−�𝑣 (𝑥), 𝑞))

We identify A as the alphabet Σ × (Z/2Z)𝑄 and thus the configurations of 𝐴Z𝑑 can be seen as pairs
(𝑥, 𝑦) ∈ ΣZ𝑑 × ((Z/2Z)𝑄)Z𝑑 .

Finally, let 𝜑 : RFAfix (Z𝑑 , 𝑛, 𝑘) → Aut(AZ𝑑) be the map defined by 𝜑(𝑇) = 𝜙𝑇 where:

(𝜙𝑇)1(𝑥, 𝑦)�𝑣 = 𝑥 �𝑣 ,

(𝜙𝑇)2(𝑥, 𝑦)𝜎𝑥,𝑇 (�𝑣,𝑞) = 1 if and only if 𝑦 (�𝑣,𝑞) = 1.

That is, 𝜙𝑇 does not modify the ΣZ𝑑 tape, and for every position (�𝑣, 𝑞) ∈ Z𝑑 ×𝑄 marked with a one,
we interpret it as a Turing machine head in state q in position �𝑣 and mark in the image the state and
position it would end up after applying T. This is clearly a cellular automaton on ΣZ

𝑑 × ((Z/2Z)𝑄)Z𝑑

as the shift indicator of T has a finite radius.
We claim 𝜑 is an embedding. A direct computation shows that the permutation induced by 𝑇1 ◦ 𝑇2

is just 𝜎𝑇1 ,𝑥 ◦ 𝜎𝑇2 ,𝑥 thus showing that 𝜑 is a homomorphism. Now, if 𝑇1 ≠ 𝑇2 there is some pair (𝑥, 𝑞)
where they act differently. If we consider the configuration (𝑥, 𝑦) where 𝑦0𝑑 ,𝑞 = 1 and 0 elsewhere.
Clearly 𝜙𝑇1 (𝑥, 𝑦) ≠ 𝜙𝑇2 (𝑥, 𝑦). Therefore 𝜑 is injective. �

Definition 3.7. For any 𝑇 ∈ RFAfix(Z𝑑 , 𝑛, 𝑘) the automorphism 𝜙𝑇 ∈ ΣZ
𝑑 × (Z/2Z)Z𝑑×𝑄 obtained by

applying the embedding of the previous proof is called the permutation model of T.

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

18 S. Barbieri, V. Salo and J. Kari

The permutation model has the remarkable property of being linear in the second component.
Namely, given 𝑇 ∈ RFAfix(Z𝑑 , 𝑛, 𝑘) and its permutation model 𝜙𝑇 , we have that for any 𝑥 ∈ ΣZ

𝑑 and
𝑦, 𝑧 ∈ (Z/2Z)Z𝑑×𝑄:

𝜙𝑇 (𝑥, 𝑦 + 𝑧) = (𝑥, (𝜙𝑇)2(𝑥, 𝑦) + (𝜙𝑇)2(𝑥, 𝑧)),

where the sum is computed coordinate-wise.
It is known that the automorphism group of any nontrivial full shift embeds into the automorphism

group of any uncountable sofic shift [35]. Thus we have the following corollary:

Corollary 3.8. If X is an uncountable sofic Z-subshift, then RFA(Z, 𝑛, 𝑘) embeds into Aut(𝑋). In par-
ticular RFA(Z, 𝑛, 𝑘) embeds into Aut(AZ) for any |A| ≥ 2.

3.1.3. Elementary Turing machines
Definition 3.9. The group of elementary Turing machines EL(Z𝑑 , 𝑛, 𝑘) is the group generated by
finite-state machines and local permutation, that is

EL(Z𝑑 , 𝑛, 𝑘) = 〈RFA(Z𝑑 , 𝑛, 𝑘),LP(Z𝑑 , 𝑛, 𝑘)〉.

The group of elementary Turing machines is generated by machines which either do not change the
tape or do not move the head, and its aim is to approximate the group RTM(Z𝑑 , 𝑛, 𝑘) using simple
building blocks. In other words, it can be understood as a sufficiently rich class of Turing machines
which can be constructed from simple atoms. For instance, Langdon’s ant [29] is an example of a
machine in EL(Z2, 2, 4).

Clearly the group LP(Z𝑑 , 𝑛, 𝑘) is not finitely generated because it is locally finite and infinite. We
have also shown that RFA(Z𝑑 , 𝑛, 𝑘) is not finitely generated and will soon show that RTM(Z𝑑 , 𝑛, 𝑘) is
not finitely generated either. However, we are later going to show that both OB(Z𝑑 , 𝑛, 𝑘) and EL(Z, 𝑛, 𝑘)
are finitely generated.

Before studying these machines, we show that RTM(Z𝑑 , 𝑛, 𝑘) is not finitely generated. This proof
uses the average movement homomorphism 𝛼 defined in Section 2.3.

Lemma 3.10.

𝛼(RTM(Z𝑑 , 𝑛, 𝑘)) =
〈 𝑒𝑖

𝑘𝑛 𝑗
: 𝑗 ∈ N, 𝑖 ∈ {1, . . . , 𝑑}

〉
� (Q𝑑 , +)

Proof. Consider the (Z, 𝑛, 𝑘)-Turing machine 𝑇SURF,𝑚 given by the local function 𝑓 : Σ{0,...,𝑚} × 𝑄 →
Σ{0,...,𝑚} ×𝑄 × Z which is defined as follows: For 𝑎 ∈ Σ and 𝑞 < 𝑘 let 𝑓 (0𝑚𝑎, 𝑞) = (0𝑚𝑎, 𝑞 + 1, 0) and
𝑓 (0𝑚𝑎, 𝑘) = (𝑎0𝑚, 1, 1). Otherwise 𝑓 (𝑢, 𝑞) = (𝑢, 𝑞, 0). This machine is reversible, and satisfies that
𝛼(𝑇SURF,𝑚) = 1/𝑘𝑛𝑚. This machine can easily be extended to a (Z𝑑 , 𝑛, 𝑘)-Turing machine with average
movement (1/𝑘𝑛𝑚, 0, . . . , 0), and an analogous construction yields a Turing machine with the exact
same movement in other coordinates. Thus we obtain that〈 𝑒𝑖

𝑘𝑛 𝑗
: 𝑗 ∈ N, 𝑖 ∈ {1, . . . , 𝑑}

〉
� 𝛼(RTM(Z𝑑 , 𝑛, 𝑘)).

To obtain the equality, observe that the integral
∫
ΣZ𝑑×𝑄 𝑠(𝑥, 𝑞)𝑑𝜇 defining the average movement is

a finite sum over cylinders, the contribution of each cylinder is an integer vector, and the measure of a
cylinder is in the group generated by 1

𝑘𝑛 𝑗 . Thus every element in 𝛼(RTM(Z𝑑 , 𝑛, 𝑘)) can be written as a
finite sum of 𝑒𝑖

𝑘𝑛 𝑗 . �

The image under the homomorphism 𝛼 of RTM(Z𝑑 , 𝑛, 𝑘) computed above is not finitely generated
whenever 𝑛 ≥ 2, therefore we conclude that RTM(Z𝑑 , 𝑛, 𝑘) cannot be finitely generated for 𝑛 ≥ 2.

Theorem 3.11. For 𝑛 ≥ 2, the group RTM(Z𝑑 , 𝑛, 𝑘) is not finitely generated.

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

Forum of Mathematics, Sigma 19

Although 𝛼 is not a homomorphism on TM(Z𝑑 , 𝑛, 𝑘), using Theorem 2.19 we obtain that
TM(Z𝑑 , 𝑛, 𝑘) cannot be finitely generated either.
Theorem 3.12. For 𝑛 ≥ 2 the monoid TM(Z𝑑 , 𝑛, 𝑘) is not finitely generated.

Proof. Let 𝑇 ∈ RTM(Z𝑑 , 𝑛, 𝑘). As T is injective, we conclude that if 𝑇 = 𝑇𝑛 ◦ · · · ◦ 𝑇1 then 𝑇1 is also
injective. By Theorem 2.19 this means that𝑇1 is reversible, which in turn implies𝑇2 is injective and so on.
Therefore, if TM(Z𝑑 , 𝑛, 𝑘) is generated by S, then there exists 𝑆′ ⊂ 𝑆 such that 〈𝑆′〉 = RTM(Z𝑑 , 𝑛, 𝑘).
But every such 𝑆′ is infinite by Theorem 3.11 and thus S must also be infinite. �

In the remainder of the section we study how close EL(Z𝑑 , 𝑛, 𝑘) is to RTM(Z𝑑 , 𝑛, 𝑘). We also give a
natural infinite generating set for RFA(𝑋, 𝑘) for every Z-subshift X. Later on we show that EL(Z, 𝑛, 𝑘)
is finitely generated which implies that EL(Z, 𝑛, 𝑘) is strictly contained in RTM(Z, 𝑛, 𝑘). However, we
will first provide a simple proof of that fact which works in any dimension.
Proposition 3.13. Let 1

𝑘Z = { 𝑛
𝑘 | 𝑛 ∈ Z}. We have that

𝛼(RFA(Z𝑑 , 𝑛, 𝑘)) = 𝛼(EL(Z𝑑 , 𝑛, 𝑘)) =
(

1
𝑘
Z

)𝑑

.

In particular, EL(Z𝑑 , 𝑛, 𝑘) is strictly contained in RTM(Z𝑑 , 𝑛, 𝑘).
Proof. Clearly 𝛼(𝑇) = 0 for every 𝑇 ∈ LP(Z, 𝑛, 𝑘), so the first equality holds. Let us then consider
average movement values of finite-state automata. The machine 𝑇𝑗 that increments the state by 1 on
each step (modulo the number of states) and walks one step along the j-th axis whenever it enters the
state 1, has 𝛼(𝑇𝑗) = (0, . . . , 0, 1/𝑘, 0, . . . , 0). We obtain(

1
𝑘
Z

)𝑑

= 〈𝛼(𝑇𝑗) | 1 ≤ 𝑗 ≤ 𝑑〉 � 𝛼(RFA(Z𝑑 , 𝑛, 𝑘)).

Next, let us show that for every finite-state machine T, we have 𝛼(𝑇) ∈ (1
𝑘Z)

𝑑 . For this, consider the
behavior of T on the all-zero configuration. Given a fixed state q, T moves by an integer vector �𝑣𝑞 , thus
contributing 1

𝑘 �𝑣𝑞 to the average movement. Let �𝑣 =
∑

𝑞∈𝑄
1
𝑘 �𝑣𝑞 be the average movement of T on the

all-zero configuration.
We claim that 𝛼(𝑇) = �𝑣. Note that by composing T with a suitable combination of the machines 𝑇𝑗

and their inverses, it is enough to prove this in the case �𝑣 = �0. Now, for a large m, Let 𝑝 ∈ Σ{−𝑚,...,𝑚}𝑑

be a pattern, �𝑢 ∈ {−𝑚, . . . , 𝑚}𝑑 a position and 𝑞 ∈ 𝑄 a state. Complete p to a configuration 𝑥𝑝 ∈ ΣZ
𝑑

by writing 0 in every cell outside {−𝑚, . . . , 𝑚}𝑑 . Write 𝛼𝑚 (𝑇) for the average movement of T for the
finitely many choices of 𝑝, 𝑢, 𝑞. Formally, if 𝑠𝑇 is the shift indicator of T:

𝛼𝑚(𝑇) =
1

𝑘 (2𝑚 + 1)𝑑𝑛(2𝑚+1)𝑑

∑
𝑝,𝑢,𝑞

𝑠𝑇 (𝜎−�𝑢 (𝑥𝑝), 𝑞).

As 𝑚 →∞, it is easy to show that 𝛼𝑚 (𝑇) → 𝛼(𝑇), as the movement vector of T is distributed correctly
in all positions except at the boundary of {−𝑚, . . . , 𝑚}𝑑 which grows as 𝑜(𝑚𝑑).

On the other hand, for any fixed 𝑝 ∈ Σ{−𝑚,...,𝑚}𝑑 the average movement of T on 𝑥𝑝 started from a
random state and a random position is �0, that is,∑

𝑢,𝑞

𝑠𝑇 (𝜎−�𝑢 (𝑥𝑝), 𝑞) = �0.

This follows from the fact that 𝑇 ∈ RFA(Z𝑑 , 𝑛, 𝑘) and thus the action is simply a permutation of the
set of position-state pairs and the fact that �𝑣 = �0. From here we conclude that the sum restricted to
𝑢 ∈ {−𝑚, . . . , 𝑚}𝑑 is 𝑜(𝑚𝑑). It follows that 𝛼(𝑇) = lim𝛼𝑚(𝑇) = �0. �

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

20 S. Barbieri, V. Salo and J. Kari

3.2. The oblivious Turing machines are finitely generated

In this section, we show that OB(Z𝑑 , 𝑛, 𝑘) is finitely generated. Our proof is based on the existence of
strongly universal reversible gates for permutations of 𝐴𝑚, which can be found in [1, 40] for the binary
alphabet case, and generalized to other alphabets in [8]. We need a finite generating set for permutations
of 𝑄 × Σ𝑚, and hence the proof in [8] has to be adjusted to account for nonhomogeneous alphabet sizes
(that is, due to possibly having 𝑛 ≠ 𝑘).

Let us remark that the case 𝑛 = 1 is trivial: The group LP(Z𝑑 , 1, 𝑘) is finite and SHIFT(Z𝑑 , 1, 𝑘) is
generated by the single step moves. We hence assume that 𝑛 ≥ 2.

The following result was proved in [8] (Lemmas 3 and 5):
Lemma 3.14. Let 𝐻 = (𝑉, 𝐸) be a connected undirected graph.
(a) The transpositions (𝑠 𝑡) for {𝑠, 𝑡} ∈ 𝐸 generate Sym(𝑉), the set of permutations of the vertex set.
(b) LetΔ ⊂ Sym(𝑉) be a set of permutations of V that contains for each edge {𝑠, 𝑡} ∈ 𝐸 a 3-cycle (𝑥 𝑦 𝑧)

where {𝑠, 𝑡} ⊂ {𝑥, 𝑦, 𝑧}. Then Δ generates Alt(𝑉), the set of even permutations of the vertex set.
Let 𝑚 ≥ 1, and consider permutations of 𝑄 × Σ𝑚. Controlled swaps are transpositions (𝑠 𝑡) where

𝑠, 𝑡 ∈ 𝑄 × Σ𝑚 have Hamming distance one. Controlled 3-cycles are permutations (𝑠 𝑡 𝑢) where the
Hamming distances between the three pairs are 1, 1 and 2.

Let us denote by𝐶 (2)𝑚 and𝐶 (3)𝑚 the sets of controlled swaps and 3-cycles in Sym(𝑄×Σ𝑚), respectively.
Let 𝐻 = (𝑉, 𝐸) be the graph with vertices 𝑉 = 𝑄 × Σ𝑚 and edges {𝑠, 𝑡} that connect elements s and t
having Hamming distance one. This is a connected undirected graph, so we get from Lemma 3.14(b)
that the controlled 3-cycles generate all its even permutations:

Lemma 3.15. Let 𝑛 ≥ 2 and 𝑚 ≥ 1. The group Alt(𝑄 × Σ𝑚) is generated by 𝐶 (3)𝑚 .
Let ℓ ≤ 𝑚, and let f be a permutation of 𝑄 × Σℓ . We can apply f on 1 + ℓ coordinates of 𝑄 × Σ𝑚

(including the first), while leaving the other 𝑚 − ℓ coordinates untouched. More precisely, the prefix
application 𝑓 of f on 𝑄 × Σ𝑚, defined by

𝑓 (𝑞, 𝑠1, . . . , 𝑠ℓ , . . . , 𝑠𝑚) = (𝑓1(𝑞, 𝑠1, . . . , 𝑠ℓ), . . . , 𝑓ℓ+1(𝑞, 𝑠1, . . . , 𝑠ℓ), 𝑠ℓ+1, . . . , 𝑠𝑚),

applies f on the first 1 + ℓ coordinates. To apply it on other choices of coordinates we conjugate 𝑓 using
rewirings of symbols. For any permutation 𝜋 ∈ Sym({1, . . . , 𝑚}) we define the rewiring permutation
of 𝑄 × Σ𝑚 by

𝑟𝜋 : (𝑞, 𝑠1, . . . , 𝑠𝑚) ↦→ (𝑞, 𝑠𝜋 (1) , . . . , 𝑠𝜋 (𝑚)).

It permutes the positions of the m tape symbols according to 𝜋. Now we can conjugate the prefix
application 𝑓 using a rewiring to get 𝑓𝜋 = 𝑟−1

𝜋 ◦ 𝑓 ◦ 𝑟𝜋 , we call 𝑓𝜋 an application of f in the coordinates
𝜋(1), . . . , 𝜋(ℓ). Let us denote by

[𝑓]𝑚 = { 𝑓𝜋 | 𝜋 ∈ Sym(𝑚)},

the set of permutations of 𝑄 × Σ𝑚 that are applications of f. For a set P of permutations we denote by
[𝑃]𝑚 the union of [𝑓]𝑚 over all 𝑓 ∈ 𝑃.

Note that if n is even and 𝑓 ∈ Sym(𝑄 × Σℓ) for ℓ < 𝑚 then [𝑓]𝑚 only contains even permutations.
The reason is that the coordinates not participating in the application of f carry a symbol of the even
alphabet Σ. The application [𝑓]𝑚 then consists of an even number of disjoint permutations of equal
parity – hence the result is even. In contrast, for the analogous reason, if n is odd then [𝑓]𝑚 only contains
odd permutations whenever f is itself is an odd permutation.

Lemma 3.16. Let 𝑚 ≥ 6, and let 𝐺𝑚 = 〈[𝐶 (2)4]𝑚〉 be the group generated by the applications of
controlled swaps of 𝑄 × Σ4 on 𝑄 × Σ𝑚. If 𝑛 = |Σ | is odd then 𝐺𝑚 = Sym(𝑄 × Σ𝑚). If n is even then
𝐺𝑚 = Alt(𝑄 × Σ𝑚).

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

Forum of Mathematics, Sigma 21

Figure 3. A decomposition of a controlled 3-cycle of 𝑄 × Σ𝑚 on the left into a sequence of four
applications of controlled swaps of 𝑄×Σ𝑚−2 on the right. The ordering of the wires is such that topmost
three wires contain the Q-component and the two wires changed by the 3-cycle (one of which may or
may not be the Q-component). Black circles are control points: the gate computes the identity unless
the wire carries the symbol indicated at the left of the wire or next to the control point.

Proof. For even n, by the note above, [𝐶 (2)4]𝑚 ⊂ Alt(𝑄 ×Σ𝑚), and for odd n there are odd permutations
in [𝐶 (2)4]𝑚. So in both cases it is enough to show Alt(𝑄 × Σ𝑚) ⊂ 𝐺𝑚. We also note that, obviously,
[𝐺𝑚−1]𝑚 ⊂ 𝐺𝑚.

Based on the decomposition in Figure 3, we first conclude that any controlled 3-cycle f of 𝑄 × Σ𝑚

is a composition of four applications of controlled swaps of 𝑄 × Σ𝑚−2. In the figure, the components
of 𝑄 × Σ𝑚 have been ordered in parallel horizontal wires, with the Q-component being among the
topmost three wires. Referring to the symbols in the illustration, the gate on the left is a generic 3-cycle
(𝑝𝑠𝑧𝑎𝑏𝑐𝑑𝑤 𝑝𝑡𝑧𝑎𝑏𝑐𝑑𝑤 𝑞𝑠𝑧𝑎𝑏𝑐𝑑𝑤) where one of the first three wires is the Q-component, 𝑎, 𝑏, 𝑐, 𝑑 ∈ Σ
and𝑤 ∈ Σ𝑚−6. The proposed decomposition consists of two different controlled swaps 𝑝1 and 𝑝2 applied
twice in the order 𝑓 = 𝑝1𝑝2𝑝1𝑝2. Because 𝑝1 and 𝑝2 are involutions, the decomposition amounts to
identity unless the input is of the form 𝑥𝑦𝑧𝑎𝑏𝑐𝑑𝑤 where 𝑥 ∈ {𝑝, 𝑞} and 𝑦 ∈ {𝑠, 𝑡}. When the input is
of this form, it is easy to very that the circuit on the right indeed amounts to the required 3-cycle. We
conclude that 𝐶 (3)𝑚 ⊂ 〈[𝐶 (2)𝑚−2]𝑚〉, for all 𝑚 ≥ 6. By Lemma 3.15,

Alt(𝑄 × Σ𝑚) = 〈𝐶 (3)𝑚 〉 ⊂ 〈[𝐶 (2)𝑚−2]𝑚〉. (3.1)

We proceed by induction on m. The base case 𝑚 = 6 is clear: By (3.1),

Alt(𝑄 × Σ6) ⊂ 〈[𝐶 (2)4]6〉 = 𝐺6.

Consider then𝑚 > 6 and suppose that𝐺𝑚−1 is as claimed. If n is odd, then by the inductive hypothesis,

[𝐶 (2)𝑚−2]𝑚 ⊂ [Sym(𝑄 × Σ𝑚−1)]𝑚 ⊂ [𝐺𝑚−1]𝑚 ⊂ 𝐺𝑚.

By (3.1) then Alt(𝑄 × Σ𝑚) ⊂ 〈[𝐶 (2)𝑚−2]𝑚〉 ⊂ 𝐺𝑚. As pointed out above, 𝐺𝑚 contains odd permutations
(all elements of [𝐶 (2)4]𝑚 are odd), so 𝐺𝑚 = Sym(𝑄 × Σ𝑚) as claimed.

If n is even, then an application of a permutation of 𝑄 × Σ𝑚−2 on 𝑄 × Σ𝑚 is also an application of
an even permutation of 𝑄 × Σ𝑚−1 on 𝑄 × Σ𝑚. (For this reason we left two noncontrolling wires for the
gates on the right side of Figure 3.) By this and the inductive hypotheses,

[𝐶 (2)𝑚−2]𝑚 ⊂ [Alt(𝑄 × Σ𝑚−1)]𝑚 ⊂ [𝐺𝑚−1]𝑚 ⊂ 𝐺𝑚,

so, by (3.1), we have the required Alt(𝑄 × Σ𝑚) ⊂ 𝐺𝑚. �

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

22 S. Barbieri, V. Salo and J. Kari

Corollary 3.17. [Sym(𝑄 × Σ𝑚)]𝑚+1 ⊂ 〈[Sym(𝑄 × Σ4)]𝑚+1〉 for all 𝑚 ≥ 5.

Proof. If n is even then [Sym(𝑄×Σ𝑚)]𝑚+1 ⊂ Alt(𝑄×Σ𝑚+1) and if n is odd then [Sym(𝑄×Σ𝑚)]𝑚+1 ⊂
Sym(𝑄 × Σ𝑚+1). In either case, the claim follows from Lemma 3.16 and 𝐶 (2)4 ⊂ Sym(𝑄 × Σ4). �

In Corollary 3.17, arbitrary permutations of 𝑄 × Σ𝑚 are obtained as projections of permutations of
𝑄 × Σ𝑚+1. The extra symbol is an ancilla that can have an arbitrary initial value and is returned back to
this value in the end. Such an ancilla is called a “borrowed bit” in [40]. It is needed in the case of even
n to facilitate implementing odd permutations of 𝑄 × Σ𝑚.

Now we are ready to prove the following theorem.

Theorem 3.18. OB(Z𝑑 , 𝑛, 𝑘) is finitely generated.

Proof. We construct a finite generating set 𝐴1 ∪ 𝐴2 ∪ 𝐴3. Let 𝐴1 contain the one step moves 𝑇𝑒𝑖 for
𝑖 = 1, . . . , 𝑑. These clearly generate SHIFT(Z𝑑 , 𝑛, 𝑘).

Each 𝑇 ∈ LP(Z𝑑 , 𝑛, 𝑘) is defined by a local rule 𝑓 : Σ𝐹 ×𝑄 → Σ𝐹 ×𝑄×{�0} with a finite 𝐹 ⊂ Z𝑑 . To
have injectivity, we clearly need that 𝜋 : (𝑝, 𝑞) ↦→ (𝑓1(𝑝, 𝑞), 𝑓2(𝑝, 𝑞)) is a permutation of Σ𝐹 ×𝑄. We
denote 𝑇 = 𝑃𝜋 . Let us fix an arbitrary 𝐸 ⊂ Z𝑑 of size 4, and let 𝐴2 be the set of all 𝑃𝜋 ∈ LP(Z𝑑 , 𝑛, 𝑘)
determined by 𝜋 ∈ Sym(Σ𝐸 ×𝑄).

For any permutation𝛼 ofZ𝑑 with finite support, we define the cell permutation machine𝐶𝛼 : (𝑝, 𝑞) ↦→
(𝑝′, 𝑞), where 𝑝′�𝑣 = 𝑝𝛼(�𝑣) for all �𝑣 ∈ Z𝑑 . These are clearly in LP(Z𝑑 , 𝑛, 𝑘). We take 𝐴3 to consist of the
cell permutation machines 𝐶𝑖 = 𝐶(0 𝑒𝑖) that, for each 𝑖 = 1, . . . , 𝑑, swaps the contents of the currently
scanned cell and its neighbor with offset 𝑒𝑖 .

Observe that 𝐴1 and 𝐴3 generate all cell permutation machines 𝐶𝛼. First, conjugating 𝐶𝑖 with
𝑇�𝑣 ∈ SHIFT(Z𝑑 , 𝑛, 𝑘) gives the cell permutation machine 𝐶𝛼 = 𝑇−1

�𝑣 𝐶𝑖𝑇�𝑣 for the transposition
𝛼 = (�𝑣 �𝑣 + 𝑒𝑖). Such transpositions generate all permutations ofZ𝑑 with finite support. This follows from
Lemma 3.14(a) by considering a finite connected grid graph containing the support of the permutation.

Consider then an arbitrary 𝑃𝜋 ∈ LP(Z𝑑 , 𝑛, 𝑘), where 𝜋 ∈ Sym(Σ𝐹 × 𝑄). We can safely assume
|𝐹 | ≥ 5. Let us pick one ancilla 𝑣 ∈ Z𝑑 \ 𝐹 and denote 𝐹 ′ = 𝐹 ∪ {𝑣}. By Corollary 3.17, 𝑃𝜋 is a
composition of machines of type 𝑃𝜌 for 𝜌 ∈ Sym(Σ𝐻 ×𝑄) where 𝐻 ⊂ 𝐹 ′ has size |𝐻 | = 4. It is enough
to be able to generate these. Let 𝛼 be a permutation of Z𝑑 that exchanges E and H, two sets of cardinality
four. Then 𝐶−1

𝛼 𝑃𝜌𝐶𝛼 ∈ 𝐴2, which implies that 𝑃𝜌 is generated by 𝐴1 ∪ 𝐴2 ∪ 𝐴3. �

3.3. Generators for finite-state automata on any one-dimensional subshift

In this section, we show that while finite-state automata are not finitely generated on the one-dimensional
full shift, the group of finite-state automata has a natural generating set on every one-dimensional
subshift.

We shall show that a generating set for this group is composed of two types of objects: there is
a (possibly infinite rank) abelian group that translates orbits and is an abstracted notion of average
movement, and a collection of elements with zero average-movement which is generated by “controlled
position swaps” which are similar in spirit to the controlled swaps of the previous section. We show this
result for the topological full group (one state) and will extend it to the case of multiple states using
Lemma 2.8.

Similar results are known for topological full groups of minimal systems (see, e.g., [31, 19]). The
main additional issue is with average movement, which does not actually apply in our main application
of the full shift. Usually aperiodicity is assumed when studying topological full groups, but periodic
points do not pose any problems, except for the small issue that without strong local aperiodicity, we
might not have RFAfix (𝑋, 𝑘) � RFA(𝑋, 𝑘). We study RFA(𝑋, 𝑘), understanding that the groups are the
same in all cases we are actually interested in.

As suggested, we begin by showing that on any Z-subshift, there is a natural generalization of the
average-movement homomorphism which measures the average movement separately on every orbit.

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

Forum of Mathematics, Sigma 23

This homomorphism coincides with the average-movement 𝛼 when 𝑋 = ΣZ, and on minimal subshifts
it corresponds to the index map defined for topological full groups [18].

The results of this section will rely strongly on our subshifts being one-dimensional. Our analogue
of the index map will be based on counting heads to the left and right of some interval, which is not
straightforward to generalize to the multidimensional case.

Suppose for the rest of this section that X denotes a one-dimensional subshift. In this section, we
write RFA(𝑋) = RFA(𝑋, 1). We can see the shift 𝜎 as an element of RFA(𝑋) defined by 𝜎(𝑥𝑖

1) = 𝑥𝑖−1
1 .

Let ∼′𝑛 be the relation on the language 𝐿𝑛 (𝑋) of words of length n appearing on X defined by 𝑢 ∼′𝑛 𝑣
if there exists 𝑥 ∈ 𝑋 such that u and v occur in x. Let ∼𝑛 be the transitive closure of ∼′𝑛. We write ∼ for
∼𝑛 the equivalence relation induced by the collection of ∼𝑛 for every 𝑛 ∈ N.

Definition 3.19. A subshift 𝑋 ⊂ ΣZ is weakly chain-transitive if for every 𝑛 ∈ N and 𝑢, 𝑣 ∈ 𝐿𝑛 (𝑋) we
have 𝑢 ∼ 𝑣.

We use the prefix “weak” to distinguish this notion from other (stronger) notions of chain-transitivity
in the literature such as the one found in [26].

For any subshift X, let 𝑋 ⊂
∏

𝑛 𝐿𝑛 (𝑋)/∼𝑛 be the image of X under the factor map 𝜋(𝑥)𝑛 = 𝑥 [0,𝑛−1]/∼𝑛.
Considering 𝑋 as a dynamical system with a trivial Z-action, it is easy to see that 𝜋 : 𝑋 → 𝑋 is a factor
map: 𝑥 [0,𝑛−1] ∼ 𝑥 [−1,𝑛−2] for all 𝑥 ∈ 𝑋 and 𝑛 ∈ N, so 𝜋(𝜎(𝑥)) = 𝜋(𝑥) = id(𝜋(𝑥)). Notice that X is
weakly chain-transitive if and only if 𝑋 is a singleton.

Recall from Definition 2.7 that given a subshift 𝑋 ⊂ ΣZ, we define a subshift 𝑘
√
𝑋 ⊂ (Σ ∪ {#})Z

where configurations of X occur in a coset of 𝑘Z and all other positions are filled with the symbol #.

Lemma 3.20. Let X be a weakly chain-transitive subshift. Then 𝑘
√
𝑋 is weakly chain-transitive.

Proof. Let 𝑢′, 𝑣′ be two words of the same length in 𝑘
√
𝑋 . Then possibly by extending 𝑢′ and 𝑣′ we may

write them as subwords of words 𝑢′′ and 𝑣′′ of the form

𝑢′ � 𝑢′′ = #𝑛−1𝑢1#𝑘−1𝑢2#𝑘−1𝑢3 · · · 𝑢𝑛#𝑘−1,

𝑣′ � 𝑣′′ = #𝑘−1𝑣1#𝑘−1𝑣2#𝑘−1𝑣3 · · · 𝑣𝑛#𝑘−1,

for some 𝑛 ∈ N and words 𝑢, 𝑣 in 𝐿𝑛 (𝑋). Since X is weakly chain-transitive, there is a finite chain
𝑢 = 𝑤0 ∼ 𝑤1 ∼ · · · ∼ 𝑤𝑘 = 𝑣 such that 𝑤𝑖 and 𝑤𝑖+1 occur in the same point of X for all i. Then the
corresponding interspersed versions of the 𝑤𝑖 give a chain between 𝑢′′ and 𝑣′′, and thus between 𝑢′

and 𝑣′. �

Definition 3.21. We say that 𝑇 ∈ RFA(𝑋) is an orbitwise shift if for every 𝑥 ∈ 𝑋 there exists 𝑘 ∈ Z
such that

𝑇 (𝑥𝑖
1) = 𝑥𝑖−𝑘

1 for every 𝑖 ∈ Z.

An abstract orbitwise shift is a continuous function 𝑓 : 𝑋 → Z such that 𝑓 (𝑥) = 𝑓 (𝜎(𝑥)) for all
𝑥 ∈ 𝑋 . Write OS(𝑋) and AOS(𝑋) for the group of orbitwise shifts and the group of abstract orbitwise
shifts, respectively.

Note that orbitwise shifts form a subgroup of RFA(𝑋), and abstract orbitwise shifts form a group
under pointwise addition. Orbitwise shifts are a much smaller group than RFA(𝑋) in general. For
example, OS(𝑋) is always abelian, while one can show that RFA(𝑋) may contain a free group on two
generators, see, for example, [14] or [4].

Lemma 3.22. The abstract orbitwise shifts are precisely the continuous functions 𝑓 : 𝑋 → Z that factor
through 𝑋 in the sense that 𝑓 = 𝑔 ◦ 𝜋 for some continuous map 𝑔 : 𝑋 → Z.

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

24 S. Barbieri, V. Salo and J. Kari

Proof. Suppose that 𝑓 = 𝑔 ◦ 𝜋 for some 𝑔 : 𝑋 → Z. Then f is continuous as the composition of two
continuous functions, and

𝑓 (𝑥) = 𝑔(𝜋(𝑥)) = 𝑔(𝜋(𝜎(𝑥))) = 𝑓 (𝜎(𝑥)),

so f is an abstract orbitwise shift.
On the other hand, if 𝑓 : 𝑋 → Z is continuous and 𝑓 (𝑥) = 𝑓 (𝜎(𝑥)), then the map 𝑔 : 𝑋 → Z given

by the formula 𝑔(𝜋(𝑥)) = 𝑓 (𝑥) for all 𝑥 ∈ 𝑋 is well defined: suppose not, and that 𝜋(𝑥) = 𝜋(𝑦) and
𝑓 (𝑥) ≠ 𝑓 (𝑦). Since f is continuous and X is compact, 𝑓 (𝑧) depends only on finitely many coordinates
of z, that is, there exists n such that 𝑓 (𝑧) = 𝑓 (𝑧′) whenever 𝑧 {−𝑛,...,𝑛} = 𝑧 {−𝑛,...,𝑛}. Since 𝜋(𝑥) = 𝜋(𝑦),
𝑢 = 𝑥 {−𝑛,...,𝑛} and 𝑣 = 𝑦 {−𝑛,...,𝑛} are connected by a finite chain 𝑢 = 𝑤0 ∼ 𝑤1 ∼ · · · ∼ 𝑤𝑘 = 𝑣 such that
𝑤𝑖 and 𝑤𝑖+1 occur in the same configuration of X for all 0 ≤ 𝑖 < 𝑘 .

Since the image of f is determined by the restriction to the central 2𝑛 + 1 coordinates, we can write
𝑛𝑖 = 𝑓 (𝑤𝑖) for this unique value. Now, since 𝑓 (𝑧) = 𝑓 (𝜎(𝑧)) for all 𝑧 ∈ 𝑋 , it is easy to see that in fact
𝑛𝑖 = 𝑛𝑖+1 for all i, by moving along orbits of points connecting the words 𝑤𝑖 and 𝑤𝑖+1. This shows that
g is well-defined. Furthermore, as the image of f is determined by the restriction to the central 2𝑛 + 1
coordinates, it follows easily that g is continuous. �

We shall now define our analogue of the index map. Let 𝑇 ∈ RFA(𝑋) and let 𝜙 = 𝜙𝑇 be its
permutation model, so that 𝜙 is an automorphism of 𝑋 × (Z/2Z)Z. Let 𝑟 ∈ N such that the biradius of
𝜙 is bounded by r (i.e., the maximum of radii of 𝜙 and 𝜙−1 is bounded by r as an automorphism). Let
𝑢 ∈ 𝐿(𝑋) such that |𝑢 | ≥ 4𝑟 and let (𝑥, 𝑦) ∈ 𝑋 × (Z/2Z)Z be a configuration where

1. 𝑥 |{0,..., |𝑢 |−1} = 𝑢
2. 𝑦𝑚 = 1 if and only if 𝑟 ≤ 𝑚 < |𝑢 | − 𝑟 .

Recall that the automorphism 𝜙 preserves the number |𝑦−1 (1) |, therefore 𝜙2(𝑥, 𝑦) also has |𝑢 | − 2𝑟
heads. We define

𝐿𝜙 (𝑢) = |𝜙(𝑥, 𝑦)−1 (1) ∩ {0, . . . , 2𝑟 − 1}| − 𝑟 and 𝑅𝜙 (𝑢) = |𝜙2 (𝑥, 𝑦)−1(1) ∩ {|𝑢 | − 2𝑟, . . . , |𝑢 | − 1}| − 𝑟.

This definition is best explained informally. Count the number of heads on the left side of the
coordinate 2𝑟 (exclusive) of u after applying 𝜙 and call this 𝐿∗𝜙 (𝑢). Let 𝑅∗𝜙 (𝑢) be the number of heads
on the right side of coordinate |𝑢 |−2𝑟 (inclusive). We clearly have 𝐿∗𝜙 (𝑢)+𝑅∗𝜙 (𝑢) = 2𝑟 , as 𝜙 permutes the
heads on any configuration and since its biradius is r, coordinates in [2𝑟, |𝑢 | − 2𝑟 − 1] all contain heads.
Then 𝐿𝜙 (𝑢) = 𝐿∗𝜙 (𝑢) − 𝑟 and 𝑅𝜙 (𝑢) = 𝑅∗𝜙 (𝑢) − 𝑟 satisfy that 𝐿𝜙 (𝑢) + 𝑅𝜙 (𝑢) = 0. For an illustration in
the case where 𝜙 is the permutation model associated to the square of the shift, see Figure 4.

Definition 3.23. Let X be a Z-subshift, 𝑇 ∈ RFA(𝑋) and let 𝜙 be its permutation model. The head
index map of X and T is the map 𝐻𝑇 : 𝑋 → Z given by

𝐻𝑇 (𝑥) = lim
𝑛→∞

𝐿𝜙 (𝑥 |{0,...,𝑛−1}).

Notice that the function 𝐻𝑇 is well defined, as the values of 𝐿𝜙 stabilize after 𝑛 ≥ 4𝑟 , where r is
the biradius of 𝜙. It is also noteworthy that choosing any value 𝑟 ′ greater than the biradius r does not
change the value. Indeed, as 𝜙 only permutes the heads in a finite radius, any head which is at the left of
2𝑟 ′ at a distance greater than the biradius will necessarily stay left of 2𝑟 ′, and thus will not change the
value 𝐿𝜙 (𝑢) = 𝐿∗𝜙 (𝑢) − 𝑟 ′ as the difference 𝑟 ′ − 𝑟 is accounted for on 𝐿∗𝜙 (𝑢).

Lemma 3.24. Let X be a Z-subshift. For every 𝑇 ∈ RFA(𝑋) we have that 𝐻𝑇 ∈ AOS(𝑋) and the map
𝛾 : RFA(𝑋) → AOS(𝑋) defined by 𝛾(𝜙𝑇) = 𝐻𝑇 is a homomorphism. This homomorphism splits with
section 𝛽 : AOS(𝑋) → RFA(𝑋) defined by 𝛽(𝑓) (𝑥) = 𝜎 𝑓 (𝑥) (𝑥), and 𝛽(AOS(𝑋)) = OS(𝑋), so 𝛽 gives
an isomorphism between AOS(𝑋) and OS(𝑋).

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

Forum of Mathematics, Sigma 25

Figure 4. For 𝑇 = 𝜎2 its permutation model 𝜙𝜎2 moves the heads to the right twice. If we choose 𝑟 = 4
we observe that the sum of the red zones is 2𝑟 , the blue zone remains unchanged, 𝐿𝜙 (𝑢) = −2 and
𝑅𝜙 (𝑢) = 2.

Proof. Consider an arbitrary 𝜙 in the permutation model acting on 𝑋 × (Z/2Z)Z with biradius r. We
first claim that if |𝑢 | ≥ 4𝑟 and 𝑎𝑢 � 𝑋 , then 𝐿𝜙 (𝑎𝑢) = 𝐿𝜙 (𝑢). To see this, note that all heads except the
leftmost new one map exactly as before, and thus 𝑅∗𝜙 (𝑎𝑢) = 𝑅∗𝜙 (𝑢). As 𝑅∗𝜙 (𝑣) + 𝐿∗𝜙 (𝑣) = 2𝑟 for every
𝑣 ∈ 𝐿(𝑋) we conclude that 𝐿∗𝜙 (𝑎𝑢) = 𝐿∗𝜙 (𝑢) and thus 𝐿𝜙 (𝑎𝑢) = 𝐿𝜙 (𝑢). Symmetrically, one shows that
𝐿𝜙 (𝑢𝑎) = 𝐿𝜙 (𝑢).

Suppose now that 𝑢, 𝑣 � 𝑥 ∈ 𝑋 . Let 𝑤 � 𝑥 be any word containing both u and v, and apply the
observation of the previous paragraph repeatedly to get 𝐿𝜙 (𝑢) = 𝐿𝜙 (𝑤) = 𝐿𝜙 (𝑣). It follows that
𝐻𝑇 (𝑥) = 𝐻𝑇 (𝜎(𝑥)) for all x. The function 𝐻𝑇 is continuous because the limit stabilizes after 𝑛 > 4𝑟 .
We conclude that 𝐻𝑇 ∈ AOS(𝑋).

To see that 𝛾(𝑇) = 𝐻𝑇 is a homomorphism, we need the following stronger fact about 𝐿𝜙: fix
𝑚 ∈ N and let (𝑥, 𝑦) ∈ 𝑋 × (Z/2Z)Z be a configuration where 𝑥 [0, |𝑢 |−1] = 𝑢 where |𝑢 | ≥ 𝑚 + 4𝑟 , and
let 𝑦 = ...000.0𝑟𝑣1 |𝑢 |− |𝑣 |−𝑟 000... where 𝑣 ∈ (Z/2Z)𝑚 is any word of length m. Then the number of
heads in 𝜙2(𝑥, 𝑦) |{0,...,𝑚+2𝑟−1} is |𝑣−1 (1) | + 𝑟 + 𝐻𝑇 (𝑥). To see this, simply fill in the gaps of v (turn its
0-symbols to 1-symbols). At each step, the number of heads in the image increases by one, and the head
is always added among the coordinates in {0, . . . , 𝑚 + 2𝑟 − 1} since 𝜙 has biradius r. After filling the
gaps in v, we have 𝑚 + 𝑟 + 𝐻𝑇 (𝑥) heads in 𝜙2(𝑥, 𝑦) |{0,...,𝑚+2𝑟−1} by the definition of 𝐿𝜙 .

Now, computation of 𝛾(𝑇 ◦ 𝑇 ′) (𝑥) can be done by first applying 𝜙′ = 𝜙𝑇 ′ on the left side of a
long word u in x, with heads positioned suitably on coordinates of u, and then applying 𝜙 = 𝜙𝑇 to the
resulting scattered set of heads. By the previous paragraph, we see that 𝛾 is a homomorphism, that is,
𝛾(𝑇 ◦𝑇 ′) (𝑥) = 𝛾(𝑇) (𝑥) + 𝛾(𝑇 ′) (𝑥) for all 𝑥 ∈ 𝑋 . The map 𝛽 is well-defined essentially by the definition
of AOS(𝑋), and it is clearly a section for 𝛾. �

As mentioned, the homomorphism 𝛾 generalizes the index map defined on elements of the topological
full group. It is well-known that the index map is Z-valued in the minimal case. This is true more
generally for all weakly chain-transitive subshifts, because for a weakly chain-transitive subshift the
maximal invariant symbolic factor is trivial.

Lemma 3.25. If X is weakly chain-transitive, then its orbitwise shifts are precisely the shifts.

Proof. Since 𝑋 is a singleton, Lemma 3.22 implies that AOS(𝑋) � Z and therefore 𝛽 ◦ 𝛾 must map
every element of RFA(𝑋) to a power of 𝜎 by the definition of 𝛽. �

A clear example where the previous lemma holds is the full Z-shift ΣZ. Given any 𝑇 ∈ RFAfix (𝑋),
we can compose T with orbitwise shifts in order to force the average movement to be zero in every orbit,
that if, to obtain 𝑇 ∈ RFAfix (𝑋) such that 𝛾(𝑇) is identically zero. Therefore, it only remains to find a
way to generate all elements of RFAfix(𝑋) that have no average movement on any orbit.

Definition 3.26. Let 𝑢, 𝑣 ∈ Σ∗, 𝑎 ∈ Σ. A reversible finite-state automaton 𝑇 = 𝑇𝑢,𝑎,𝑣 ∈ RFA(𝑋) is a
controlled position swap if𝑇 ((𝑥𝑢.𝑎𝑣𝑦) 𝑗1) = (𝑥𝑢.𝑎𝑣𝑦)

1− 𝑗
1 for 𝑗 ∈ {0, 1}, and 𝑇 (𝑧) = 𝑧 for all 𝑧 ∈ 𝑋 ×𝑋1

whose image these rules do not determine.

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

26 S. Barbieri, V. Salo and J. Kari

Lemma 3.27. Let 𝑢, 𝑣 ∈ Σ∗, 𝑎 ∈ Σ. Then the controlled position swap 𝑇𝑢,𝑎,𝑣 is well-defined and in
RFA(𝑋) whenever 𝑢𝑎𝑣 is nonunary (i.e., when 𝑢𝑎𝑣 ∉ {𝑎}∗).

Proof. The cylinders [𝑢.𝑎𝑣] and [𝑢𝑎.𝑣] have empty intersection when 𝑢𝑎𝑣 is nonunary. Thus, the
conditions under which we move the head do not overlap, and the finite-state machine 𝑇𝑢,𝑎,𝑣 is well-
defined. It is clearly an involution, thus invertible. �

More generally, given a clopen set 𝐶 ⊆ 𝑋 , we define the map 𝑇𝐶 ∈ RFA(𝑋), which we call a
clopen-controlled position swap.

𝑇𝐶 (𝑥𝑖
1) =

⎧⎪⎪⎨⎪⎪⎩
𝑥𝑖+1

1 if 𝜎−𝑖 (𝑥) ∈ 𝐶
𝑥𝑖−1

1 if 𝜎−𝑖+1(𝑥) ∈ 𝐶
𝑥 otherwise

As above, these maps are well-defined for any clopen set C such that 𝐶 ∩ 𝜎(𝐶) = ∅. Any such 𝑇𝐶

can be obtained as a composition of finitely many controlled position swaps, since clopen sets can be
written as a finite union of cylinder sets.

Theorem 3.28. Let X be a subshift. Then RFA(𝑋) is generated by orbitwise shifts and controlled
position swaps.

Proof. For 𝑇 ∈ RFA(𝑋), let 𝑃𝑇 ⊂ {(0, 0)} ∪ Z2
+ be the set of all pairs (𝑚, 𝑘) such that there exists

𝑥 ∈ 𝑋 and 𝑖 ∈ Z such that 𝑇 (𝑥𝑖+ 𝑗
1) = 𝑥

𝑖+ 𝑗+𝑚
1 for all 0 ≤ 𝑗 < 𝑘 . Order these pairs lexicographically (m is

more significant). The order type is a suborder of 1 + 𝜔2 � 𝜔2, thus well-founded. It is now enough to
prove that, whenever T has zero average movement,

1. 𝑃𝑇 has a maximal element 𝑀𝑇 ,
2. if 𝑀𝑇 > (0, 0), there exists controlled position swap 𝑇 ′ such that 𝑀𝑇 ◦𝑇 ′ < 𝑀𝑇 , and
3. T is the identity map if and only if 𝑀𝑇 = (0, 0).

Namely, by well-foundedness we must reach (0, 0) in finitely many steps by iterating the second item,
and by the third we have reached the identity map.

Fix now 𝑇 ∈ RFA(𝑋). To see that a maximum 𝑀𝑇 = (𝑚, 𝑘) exists, first observe that 𝑃𝑇 ≠ ∅ since
(0, 0) ∈ 𝑃𝑇 . Next, for (𝑚, 𝑘) ∈ 𝑃𝑇 the local rule of T clearly gives a finite upper bound on m. Finally, if
m is maximal and (𝑚, 𝑘) ∈ 𝑃𝑇 for arbitrarily large k, then 𝑚 > 0 (since 𝑃𝑇 ⊂ {(0, 0)} ∪ Z2

+ by choice),
and by compactness there exists a configuration 𝑥 ∈ 𝑋 satisfying𝑇 (𝑥𝑖

1) = 𝑥𝑖+𝑚
1 for all 𝑖 ∈ Z, thus average

movement on x is clearly nonzero.
Suppose now that 𝑀𝑇 = (𝑚, 𝑘) > (0, 0). Now, let 𝐶 ⊂ 𝑋 be the set of configurations x such that

∀𝑖 ∈ [−𝑘 + 1, 0] : 𝑇 (𝑥𝑖
1) = 𝑥𝑖+𝑚

1 . Observe that 𝑥 ∈ 𝐶 =⇒ 𝑇 (𝑥1
1) = 𝑥

1+ 𝑗
1 where 𝑗 ≤ 𝑚 − 2, namely,

𝑗 ≤ 𝑚 − 1 by the maximality of k, and 𝑗 = 𝑚 − 1 would contradict bijectivity of T. Clearly C is a clopen
set, and 𝐶 ∩ 𝜎(𝐶) = ∅ because 𝑘 > 0. We let 𝑇 ′ = 𝑇𝐶 .

Consider now an arbitrary point 𝑥 ∈ 𝑋 and 𝑖 ∈ Z.

1. If 𝜎−𝑖 (𝑥) ∉ 𝐶 and 𝜎−𝑖+1(𝑥) ∉ 𝐶, then (𝑇 ◦ 𝑇 ′) (𝑥𝑖
1) = 𝑇 (𝑥𝑖

1).
2. If 𝜎−𝑖 (𝑥) ∈ 𝐶, then (𝑇 ◦ 𝑇 ′) (𝑥𝑖

1) = 𝑇 (𝑥𝑖+1
1).

3. If 𝜎−𝑖+1(𝑥) ∈ 𝐶, then (𝑇 ◦ 𝑇 ′) (𝑥𝑖
1) = 𝑇 (𝑥𝑖−1

1).

Defining 𝑦, 𝑧 ∈ ZZ by 𝑦𝑖 = 𝑗 where 𝑇 (𝑥𝑖
1) = 𝑥

𝑖+ 𝑗
1 and 𝑧𝑖 = 𝑗 where (𝑇 ◦ 𝑇 ′) (𝑥𝑖

1) = 𝑥
𝑖+ 𝑗
1 , the

difference between y and z is precisely that all subsequences of the form 𝑚𝑘 𝑗 ∈ Z𝑘+1 are replaced by
𝑚𝑘−1 (𝑗 + 1) (𝑚 − 1). Since 𝑗 ≤ 𝑚 − 2, the run of ms become strictly shorter, and no symbols larger than
m are introduced, thus 𝑀𝑇 ◦𝑇 ′ < 𝑀𝑇 are required. See Figure 5 for an illustration. �

Remark 3.29. In the proof above, only the part about nonzero average movement and orbitwise shifts
crucially depends on the properties of X. The other part does not: if 𝑇 ∈ RFA(𝑌), T has average

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

Forum of Mathematics, Sigma 27

Figure 5. The composition 𝑇 ◦ 𝑇 ′ illustrated with 𝑚 = 3, 𝑘 = 4. The movement of heads in the
permutation model on a configuration x is shown, and values at the nodes are those of y (central row)
and z (top row). The four nodes forming 𝑚𝑘 are highlighted. The configuration x determines these moves,
but its contents are not shown.

movement zero (on Y), and 𝑋 ⊂ 𝑌 , then one can perform all choices in the proof canonically so that
decomposing T into controlled position swaps on Y and then restricting to X is equivalent to first
restricting to X and then applying our construction on X.

Let us use Lemma 2.8 to extract corollaries in the case where we have more than one state. If
𝑘 ≥ 2, then recall that the isomorphism between RTM(𝑋, 𝑘) and RTM(𝑘

√
𝑋, 1) simply uses the different

positions on #-segments to encode the state. Thus, moving a head one step to the right along a contiguous
segment of #-symbols corresponds to increasing the state by one. Moving a head from the rightmost
#-symbol to non-# symbol to the right of it means corresponds to changing the state to 1 and stepping
to the right.

Thus, translating the previous result amounts to the following: Let 𝑋 ⊂ ΣZ be a locally aperiodic
subshift and 𝑘 ≥ 2. For 𝑢, 𝑣 ∈ Σ∗ and 𝑞 ∈ {1, . . . , 𝑘 − 1} define the controlled state swap 𝑓𝑢,𝑞,𝑣 ∈
RFAfix (𝑋, 𝑘) as

𝑓𝑢,𝑞,𝑣 (𝑥, 𝑞′) = (𝑥, 𝑞′′)

where 𝑞′′ = 𝑞′ if 𝑞′ ∉ {𝑞, 𝑞 + 1} or if 𝑥 {−|𝑢 |,..., |𝑣 |−1} ≠ 𝑢𝑣, and otherwise let 𝑞′′ ∈ {𝑞, 𝑞 + 1} \ {𝑞′}.
For 𝑢, 𝑣 ∈ Σ∗, 𝑎 ∈ Σ, define a stateful controlled position swap as 𝑓 (𝑥𝑢.𝑎𝑣𝑦, 𝑘) = (𝑥𝑢𝑎.𝑣𝑦, 1) and
𝑓 (𝑥𝑢𝑎.𝑣𝑦, 1) = (𝑥𝑦.𝑎𝑣𝑦, 𝑘) for all tails 𝑥, 𝑦, and 𝑓 (𝑧) = 𝑧 for all points not of this form. This is a
well-defined involution for all 𝑢, 𝑣 (since 𝑘 ≥ 2).

Corollary 3.30. Let X be a weakly chain-transitive locally aperiodic subshift and 𝑘 ≥ 2. Then RFA(𝑋, 𝑘)
is generated by the shift map, controlled state swaps, and stateful controlled position swaps.

3.4. Elementary Turing machines are finitely generated

In this section, we prove Theorem 1.1. That is, we show that for any 𝑛, 𝑘 ≥ 1 the group EL(Z, 𝑛, 𝑘) is
finitely generated.

Proof of Theorem 1.1. The case 𝑛 = 1 is easy. Suppose thus that 𝑛 ≥ 2. Let 𝑋 = ΣZ. Since OB(𝑋) is
finitely generated and OS(𝑋) = 〈𝜎〉, we only need to show that the controlled position swaps can be
implemented when 𝑘 = 1, and that the stateful controlled position swaps and controlled state swaps can
be implemented when 𝑘 ≥ 2. We work in the fixed-head model.

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

28 S. Barbieri, V. Salo and J. Kari

Suppose first that 𝑘 = 1. Let 𝑠ℓ = 𝑇𝜖 ,1,0ℓ . By conjugating with an element of OB(𝑋), these swaps
generate all controlled swaps where the left control is 𝜖 . Namely, to generate 𝑇𝜖 ,𝑎,𝑣 where 𝑎𝑣 is not
unary (see Lemma 3.27), conjugate 𝑠ℓ where ℓ = |𝑣 | with any local permutation mapping

𝑓 (𝑥.𝑎𝑣𝑦) = 𝑥.10ℓ 𝑦 and 𝑓 (𝑥𝑎.𝑣𝑦) = 𝑥1.0ℓ 𝑦.

Such f exists because 𝑎𝑣 is not unary and thus does not overlap with its 1-shift – simply map these patterns
correctly, and fill the permutation arbitrarily. Swaps at other positions are obtained by conjugating
with 𝜎. Thus, we only need to show that 𝑠ℓ can be decomposed into elements of OB(𝑋), shifts, and
finitely many controlled swaps. We do this by induction on ℓ.

We begin with a construction in the case when n is even. We begin with the intuitive description. Since
whether the head is on the coordinate 0 or 1 in the word 10ℓ can be checked locally, we can consider the
position to be just a binary digit c (so 𝑐 = 0 means we are on the zero-coordinate of a word 10, 𝑐 = 1
means we are on the one-coordinate of such pattern, and otherwise we fix the point anyway). Note that
using elements of OB(𝑋), we can swap positions to the right of the pattern 10 independently of c. Thus,
our controlled swaps may depend on positions arbitrarily far to the right from the central 10, as long as
they do not depend on more than a constant number of coordinates.

We begin with state 𝑐𝑤𝑏, where c is the head position (either 0 or 1, marking whether we are on the
first or second coordinate of w), and 𝑤 = 10𝑢 where 𝑢 ∈ Σℓ−1 is the control word that we are checking
for value 0ℓ−1. The permutation is the following: First, flip c if 𝑏 = 0 (by moving b next to the initial
10 of w performing a small-radius controlled swap, and moving b back). Then add 1 (modulo n) to b
(by an element of OB(𝑋)) if 𝑢 = 0ℓ−1. Then repeat these two steps n times. The end result is that c is
flipped once if 𝑢 = 0ℓ−1, since 𝑏 = 0 at exactly one of the c-flipping steps, and otherwise c is flipped
either 0 or n times and thus is not changed.

More precisely, define first 𝑔 ∈ RFA(𝑋) as the controlled swap 𝑇𝜖 ,1,00, that is,

𝑔(𝑥1.00𝑦) = 𝑥.100𝑦, 𝑔(𝑥.100𝑦) = 𝑥1.00𝑦

and 𝑔(𝑧) = 𝑧 for points not of this form. This is clearly in RFA(𝑋), and we take it in our set of generators.
Also define ℎ ∈ OB(𝑋) as any local permutation such that

ℎ(𝑥1.0𝑢𝑏𝑦) = 𝑥1.0𝑏𝑢𝑦, ℎ(𝑥.10𝑢𝑏𝑦) = 𝑥.10𝑏𝑢𝑦

for all 𝑢 ∈ Σℓ−1, 𝑏 ∈ Σ (and ℎ(𝑧) may be arbitrary for points not of this form), which is again well-
defined since no point is of both forms.

Now, defining 𝑓 ′ = ℎ−1 ◦ 𝑔 ◦ ℎ we have

𝑓 ′(𝑥1.0𝑢0𝑦) = 𝑥.10𝑢0𝑦, 𝑓 ′(𝑥.10𝑢0𝑦) = 𝑥1.0𝑢0𝑦

for all 𝑢 ∈ Σℓ−1 and 𝑓 ′(𝑧) = 𝑧 for points not of this form.
Next, define 𝑓 ′′ ∈ OB(𝑋) by

𝑓 ′′(𝑥.10ℓ𝑏𝑦) = 𝑥.10ℓ (𝑏 + 1)𝑦, 𝑓 ′′(𝑥1.0ℓ𝑏𝑦) = 𝑥1.0ℓ (𝑏 + 1)𝑦

for all 𝑏 ∈ {0, 1, . . . , 𝑛− 1} (where increment is modulo n) and 𝑓 ′′(𝑧) = 𝑧 for all 𝑧 ∈ 𝑋 not of this form.
Then (𝑓 ′′ ◦ 𝑓 ′)𝑛 is our desired map.
Suppose then that n is odd. We will use the proof structure of [39]. Again, consider the input to be

𝑐10𝑢𝑏 where 𝑐 ∈ {0, 1} indicates the position of the head (either on the symbol 1 or the symbol 0 of
the word 10 after c), and 𝑢 ∈ Σℓ−1 and 𝑏 ∈ Σ. We construct the machine by induction. Suppose we have
already constructed a machine that flips c conditioned on 𝑢 = 0ℓ−1, and let us show how to check 𝑏 = 0.
First flip b between 0 and 1 if 𝑢 = 0ℓ−1 (and fix the value of b if 𝑏 ∈ Σ \ {0, 1}), using a machine in
OB(𝑋). Then flip the bit c if 𝑏 = 0 using a machine in RFA(𝑋) conjugated by a machine in OB(𝑋), as

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

Forum of Mathematics, Sigma 29

above. Repeat these steps. The resulting machine 𝑔2 is in EL(𝑋) and will flip c if and only if 𝑏 ∈ {0, 1}
and 𝑢 ∈ 0ℓ−1.

Now, conjugate the machine by affine translations: let ℎ ∈ OB(𝑋) add 2 to the value of b. Then
ℎ−

𝑛−1
2 ◦ (𝑔2 ◦ ℎ) 𝑛−1

2 will flip the value of c if and only if 𝑢 = 0ℓ−1 and 𝑏 ≠ 0. Finally, flip c if 𝑢 = 0ℓ−1,
so that the resulting machine flips c if and only if 𝑢𝑏 = 0ℓ .

The details of translation to machines in RFA(𝑋) and OB(𝑋) are omitted, as they are similar as in
the case of an even alphabet.

In the case 𝑘 ≥ 2, we need to perform controlled state swaps and stateful controlled position swaps
using finitely many elements of RFA(𝑋) and elements of OB(𝑋). The proof of controlled state swaps
is the same as the proof above, but now the bit c (which indicated the position above) indicates which
state we are in, out of the two we are swapping (and nothing happens if we are in neither state). The
proof of stateful controlled position swaps is also similar; and now the bit c is 0 if we are in state k, and
1 if we are in state k, and in state 1 the control word is seen through an offset of one. �

4. Computability aspects

In this section we study the computability aspects of RTM(Z𝑑 , 𝑛, 𝑘). We begin the section by briefly
showing which properties of Turing machines are computable. In particular we prove that injectivity and
thus the reversibility of a machine in TM(Z𝑑 , 𝑛, 𝑘) is decidable. This property, along with the possibility
to compute the rule of a composition and an inverse gives a recursive presentation for RTM(Z𝑑 , 𝑛, 𝑘)
which has a decidable word problem.

In this context, we proceed to study the torsion problem of RTM(Z𝑑 , 𝑛, 𝑘) and its subgroups, that
is, whether there exists an algorithm which given a description of 𝑇 ∈ RTM(Z𝑑 , 𝑛, 𝑘) always halts and
accepts if and only if there exists 𝑛 ≥ 1 such that 𝑇𝑛 = id. In this context we show that EL(Z, 𝑛, 𝑘)
has an undecidable torsion problem (Theorem 1.2). Furthermore, we use this result to show that
the automorphism group of any uncountable Z-subshift contains a finitely generated subgroup with
undecidable torsion problem (Corollary 1.3).

Finally, we study the torsion problem for RFA(Z𝑑 , 𝑛, 𝑘). We show by a simple argument that
RFA(Z, 𝑛, 𝑘) has a decidable torsion problem. Interestingly, the torsion problem in RFA(Z𝑑 , 𝑛, 𝑘) for
𝑑 ≥ 2 is undecidable. We present a detailed proof of this result which draws upon the undecidability
of the snake tiling problem [24]. These two results add up to the Theorem 1.4 we discussed in the
introduction.

4.1. Basic decidability results

First, we observe that basic management of local rules is decidable.

Lemma 4.1. Given two local rules 𝑓 , 𝑔 in the moving head model,

◦ It is decidable whether 𝑇 𝑓 = 𝑇𝑔,
◦ We can effectively compute a local rule for 𝑇 𝑓 ◦ 𝑇𝑔,
◦ It is decidable whether 𝑇 𝑓 is injective,
◦ It is decidable whether 𝑇 𝑓 is reversible, and
◦ We can effectively compute a local rule for 𝑇−1

𝑓 when 𝑇 𝑓 is reversible.

Proof. For the first claim, let 𝑓 : Σ𝐹1 ×𝑄 → Σ𝐹2 ×𝑄 ×Z𝑑 and 𝑔 : Σ𝐹3 ×𝑄 → Σ𝐹4 ×𝑄 ×Z𝑑 and define
𝐹 = 𝐹1 ∪ 𝐹2 ∪ 𝐹3 ∪ 𝐹4. Extend the rules 𝑓 , 𝑔 so that they are defined as 𝑓 ′, 𝑔′ : Σ𝐹 ×𝑄 → Σ𝐹 ×𝑄 ×Z𝑑

satisfying𝑇 𝑓 = 𝑇 𝑓 ′ and𝑇𝑔 = 𝑇𝑔′ . If for some (𝑝, 𝑞) ∈ Σ𝐹 ×𝑄 𝑓 ′(𝑝, 𝑞) ≠ 𝑔′(𝑝, 𝑞), then clearly𝑇 𝑓 ′ ≠ 𝑇𝑔′ .
Otherwise, we have 𝑇 𝑓 ′ = 𝑇𝑔′ .

Finding a local rule for the composition of two Turing machines is a straightforward, if somewhat
tedious, exercise.

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

30 S. Barbieri, V. Salo and J. Kari

For the decidability of reversibility, we give a semi-algorithm for both directions. First, if 𝑇 𝑓 is
reversible, then it has a reverse 𝑇𝑔. We thus only need to enumerate local rules g, and check whether
𝑇 𝑓 ◦ 𝑇𝑔 = id, which is decidable by using the two previously described procedures.

If 𝑇 𝑓 is not injective, then 𝑇 𝑓 (𝑥, 𝑦) = 𝑇 𝑓 (𝑥 ′, 𝑦′) for some (𝑥, 𝑦), (𝑥 ′, 𝑦′) ∈ ΣZ
𝑑 × 𝑋𝑘 with 𝑦�0 ≠ 0.

If r is the move-radius of f, then necessarily the nonzero position of 𝑦′ is at distance at most r from the
origin and 𝑥 �𝑣 = 𝑥 ′�𝑣 for |�𝑣 | larger than the radius of 𝑇 𝑓 . Then we can assume 𝑥 �𝑣 = 𝑥 ′�𝑣 = 0 for all such �𝑣. It
follows that if 𝑇 𝑓 is not injective, it is not injective on the finite set of configurations (𝑥, 𝑦) ∈ ΣZ𝑑 × 𝑋𝑘

where (𝑥, 𝑦)�𝑣 = 0 for all |�𝑣 | larger than the radius of 𝑇 𝑓 , which we can check algorithmically.
By Theorem 2.19, injectivity is equal to reversibility, so the decidability of the reversibility of a

Turing machine is a direct consequence of the previous argument.
Finally, if𝑇 𝑓 is reversible, we can effectively construct a reverse𝑇 𝑓

−1 for it by enumerating all Turing
machines and outputting the first 𝑇 ′ such that 𝑇 𝑓 ◦ 𝑇 ′ = 𝑇 ′ ◦ 𝑇 𝑓 = id. �

From the results above, we obtain that the set of all possible local rules f which generate reversible
actions 𝑇 𝑓 gives a recursive countable presentation of RTM(Z𝑑 , 𝑛, 𝑘). Furthermore, that presentation
has a decidable word problem.

Proposition 4.2. RTM(Z𝑑 , 𝑛, 𝑘) admits a recursive presentation with decidable word problem.

Proof. The set of local rules giving moving head Turing machines can be recursively enumerated.
Indeed, consider the sequence of sets Λ𝑛 = {−𝑛, . . . , 𝑛}𝑑 indexed by 𝑛 ∈ N and list in some lexico-
graphical order all local rules 𝑓 : ΣΛ𝑛 × 𝑄 → ΣΛ𝑛 × 𝑄 × Λ𝑛. For each 𝑛 ∈ N this is a finite set and
thus all local rules can be recursively listed as (𝑓𝑖)𝑖∈N. By Lemma 4.1 it is decidable which local rules
define reversible Turing machines, and thus one can run that algorithm on each 𝑓𝑖 to obtain a recursive
enumeration (𝑓𝜑 (𝑖))𝑖∈N of all reversible moving head Turing machines. Also, using Lemma 4.1 one can
reduce every word 𝑓𝜑 (𝑖1) 𝑓𝜑 (𝑖2) · · · 𝑓𝜑 (𝑖𝑘) to some equivalent rule 𝑓eq. It suffices to test the equality of 𝑓eq
with the identity machine to decide the word problem of this presentation. �

4.2. The torsion problem of elementary Turing machines

Definition 4.3. Let G be a group which is generated by 𝑆 ⊂ 𝐺. The torsion problem of G is the set of
words 𝑤 ∈ 𝑆∗ for which there is 𝑛 ∈ Z+ such that the element represented by 𝑤𝑛 is the identity of G.

If a group G is recursively presented, then the torsion problem is recursively enumerable. However,
the torsion problem may not be decidable even when G has decidable word problem. Many such
examples are known, and the main result of this section provides a new such example.

As discussed in the introduction, we say a moving head Turing machine is classical if its in- and
out-radii are 0, and its move-radius is 1. Here we characterize reversibility in classical Turing machines.
If 𝑇0 has in-, out-, and move-radius 0, that is, 𝑇0 only performs a permutation of the set of pairs
(𝑠, 𝑞) ∈ Σ×𝑄 at the position of the head, then we say 𝑇0 ∈ LP(Z, 𝑛, 𝑘) is a state-symbol permutation.
If 𝑇1 has in-radius −1, never modifies the tape, and only makes movements by vectors in {−1, 0, 1}, then
𝑇1 ∈ RFA(Z, 𝑛, 𝑘) is called a state-dependent shift.

If we consider the class of all classical Turing machines on some finite alphabet and number of states
then the torsion problem is undecidable. This result was shown by Kari and Ollinger in [25] –they call it
the periodicity problem in their setting– using a reduction from the mortality problem which in turn they
also prove to be undecidable following a reduction from the mortality problem of reversible 2-counter
machines. In this section, we show that the torsion problem is also undecidable for elementary Turing
machines with a fixed alphabet and number of states. We do this by reducing to the classical machines.
We begin by describing them in our setting.

Proposition 4.4. A classical Turing machine 𝑇 ∈ RTM(Z, 𝑛, 𝑘) is reversible if and only if it can be
expressed in the form 𝑇1 ◦ 𝑇0 where 𝑇0 is a state-symbol permutation and 𝑇1 is a state-dependent shift.
In particular, classical reversible Turing machines are in EL(Z, 𝑛, 𝑘).

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

Forum of Mathematics, Sigma 31

Proof. We only need to show that if T is reversible then it is of the stated form. Let 𝑓𝑇 : Σ × 𝑄 →
Σ×𝑄×{−1, 0, 1} be a local rule for T in the moving tape model. We claim that if 𝑓𝑇 (𝑎, 𝑞) = (𝑏, 𝑟, 𝑑) and
𝑓𝑇 (𝑎′, 𝑞′) = (𝑏′, 𝑟, 𝑑 ′) then 𝑑 = 𝑑 ′. Namely, if it is not the case, one can easily find two configurations
with the same image. There are multiple cases to consider which can all be treated similarly, for instance,
let 𝑥, 𝑦 be a left and right infinite sequence of symbols of Σ respectively and suppose 𝑑 = 0 and 𝑑 ′ = 1.
In this case:

𝑇 ((𝑥𝑏′.𝑎𝑦), 𝑞) = (𝑥𝑏′.𝑏𝑦, 𝑟) = 𝑇 ((𝑥.𝑎′𝑏𝑦), 𝑞′).

Therefore contradicting the reversibility of T. Repeating this argument over all pairs 𝑑 ≠ 𝑑 ′ we
obtain that the direction of movement is entirely determined by the output state. Of course, for T to
be injective, also 𝑓𝑇 must be injective, so the map 𝑔 : Σ × 𝑄 → Σ × 𝑄 defined by 𝑔(𝑎, 𝑞) = (𝑏, 𝑟)
if 𝑓𝑇 (𝑎, 𝑞) = (𝑏, 𝑟, 𝑑) is injective, thus a bijection. From here, the only remaining possibility is that
𝑇0 is the permutation g, and 𝑇1 as the finite-state automaton with local rule 𝑓𝑇1 (𝑎, 𝑞) = (𝑎, 𝑞, 𝑑) if
𝑓𝑇 (𝑏, 𝑞′) = (𝑏′, 𝑞, 𝑑) for some (𝑏, 𝑞) ∈ Σ ×𝑄. �

It follows that the inverse of a reversible classical Turing machine is always of the form 𝑇0 ◦𝑇1 where
𝑇0 is a state-symbol permutation and 𝑇1 is a state-dependent shift. In the terminology of Section 3, the
theorem implies that all reversible classical Turing machines are elementary.

Now we are ready to prove Theorem 1.2, namely, that the torsion problem of EL(Z𝑑 , 𝑛, 𝑘) is
undecidable for all 𝑛 ≥ 2, 𝑘 ≥ 1 and 𝑑 ≥ 1.

Proof of Theorem 1.2. As EL(Z, 𝑛, 1) embeds into EL(Z𝑑 , 𝑛, 𝑘) for every 𝑘, 𝑑 ≥ 1, It is enough to
prove this for 𝑑 = 1 and 𝑘 = 1.

The machines constructed in [25] are already elementary, but their alphabets are not bounded (note
that these are classical Turing machines so there are only finitely many machines of any given state-
alphabet pair). However, one can simulate them with elementary Turing machines with fixed alphabets.
That is, given a classical reversible Turing machine T (on some finite alphabet and number of states),
one can construct a machine in EL(Z, 𝑛, 1) which is periodic if and only if T is. Our result then follows
from the main result of [25].

Let T be a given classical Turing machine with state set Q and tape alphabet Σ, and let 𝑓𝑇 be its local
rule. Note that in this proof we use Σ and Q for the alphabet and state set of T, rather than those of the
machines in EL(Z, 𝑛, 1).

By Proposition 4.4 we have 𝑇 = 𝑇1 ◦ 𝑇0 where 𝑇0 is a state-symbol permutation and 𝑇1 is a state-
dependent shift. We can further assume that 𝑇1 does not use movement by 0: For each state q that would
move by 0 we introduce a new state 𝑞′, and modify shift𝑇1 to move by −1 in state q and by +1 in state 𝑞′.
We also modify state-symbol permutation 𝑇0 to enter always state 𝑞′ instead, whenever it would enter q,
and to map (𝑎, 𝑞′) ↦→ (𝑎, 𝑞) for all tape symbols a. In this way a single nonmoving step gets replaced
by two steps moving to the right and to the left, respectively. Clearly the modified machine is periodic
if and only if the original one is. Let us denote by 𝐿 ⊂ 𝑄 and 𝑅 ⊂ 𝑄 the sets of left and right moving
states in 𝑇1. Then Q is the disjoint union of L and R

Let ⊥ be a symbol which is not in Q and m be such that 𝑛𝑚 ≥ |Σ × (𝑄 ∪ {⊥})| so that we can encode
tape symbols (represented by pairs in Σ × {⊥}) and state-symbol pairs as unique blocks of length m
over the n letter alphabet. Pair (𝑎, 𝑞) represents a tape cell containing 𝑎 ∈ Σ and being read by the
machine in state 𝑞 ∈ 𝑄, while (𝑎,⊥) is a cell containing 𝑎 ∈ Σ and not currently read by the machine.
Take an arbitrary one-to-one encoding function Σ × (𝑄 ∪ {⊥}) → {1, . . . , 𝑛}𝑚. Let us denote by [𝑎, 𝑟]
the encoding of (𝑎, 𝑟) ∈ (𝑄 ∪ {⊥}), a word of length m in the alphabet {1, . . . , 𝑛}.

The idea is that a configuration of T with tape content 𝑥 ∈ ΣZ, state 𝑞 ∈ 𝑄, and position 𝑝 ∈ Z is
represented as the encoded configuration with tape content 𝑥 ′ ∈ {1 . . . , 𝑛}Z, where 𝑥 ′[𝑖𝑚, (𝑖+1)𝑚) = [𝑥𝑖 ,⊥]
for 𝑖 ≠ 𝑝 and 𝑥 ′[𝑝𝑚, (𝑝+1)𝑚) = [𝑥𝑝 , 𝑞], and with the stateless head in position 𝑝𝑚. Notice that there might
be many configurations in {1, . . . , 𝑛}Z that are not valid encodings.

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

32 S. Barbieri, V. Salo and J. Kari

We construct an element of EL(Z, 𝑛, 1) that is a composition 𝑇 ′1 ◦ 𝑇
′
0 where 𝑇 ′0 ∈ LP(Z, 𝑛, 1) and

𝑇 ′1 ∈ RFA(Z, 𝑛, 1) are both involutions. Informally, the local permutation 𝑇 ′0 implements the state-
symbol permutation 𝑇0 on the encoded tape, including writing the new state in the correct position,
while the finite-state automaton 𝑇 ′1 simply moves the machine head m positions to the right or to the left
to scan the block containing the new state. We complete the local rules of 𝑇 ′0 and 𝑇 ′1 into involutions that
also perform the inverse steps, and act as identities in all other situations. This automatically causes the
machine to reverse its time direction and start retracing it steps backwards if it encounters a nonvalid
pattern.

More precisely, the local permutation 𝑇 ′0 is defined with neighborhood 𝐹0 = {−𝑚, . . . , 2𝑚 − 1} and
so that the local rule 𝑓0 is a permutation of {1, . . . , 𝑛}𝐹0 . The machine sees three m-blocks: the current
block in the center and neighboring blocks on both sides. For every 𝑎, 𝑏, 𝑐, 𝑑 ∈ Σ and 𝑞, 𝑝 ∈ 𝑄,
1. if 𝑓𝑇 (𝑎, 𝑞) = (𝑏, 𝑝,−1) then 𝑓0 swaps

[𝑐,⊥][𝑎, 𝑞] [𝑑,⊥] ←→ [𝑐, 𝑝] [𝑏,⊥][𝑑,⊥],

2. if 𝑓𝑇 (𝑎, 𝑞) = (𝑏, 𝑝, +1) then 𝑓0 swaps

[𝑐,⊥][𝑎, 𝑞] [𝑑,⊥] ←→ [𝑐,⊥][𝑏,⊥][𝑑, 𝑝] .

All other patterns in {1 . . . , 𝑛}𝐹0 are mapped to themselves. By the reversibility of T this 𝑓0 is a
well-defined involution.

The reversible single-state finite automaton 𝑇 ′1 uses the neighborhood 𝐹1 = {−2𝑚, . . . , 3𝑚 − 1}, so
the machine sees two blocks to the left and to the right from its current block. Its local rule is a function
𝑓1 : {1, . . . , 𝑛}𝐹1 −→ Z where 𝑓1(𝑢) gives the head movement on tape pattern u.
1. Let 𝑝 ∈ 𝐿. Then 𝑓1 maps, for all 𝑏, 𝑐, 𝑑 ∈ Σ,

∗ [𝑐, 𝑝] [𝑏,⊥] [𝑑,⊥] ∗ ↦→ −𝑚,
∗ ∗ [𝑐, 𝑝] [𝑏,⊥] [𝑑,⊥] ↦→ +𝑚,

where ∗ represents any m-block in {1 . . . , 𝑛}𝑚. In other words, if the machine sees a state 𝑝 ∈ 𝐿 on
the block to its left and nonstates ⊥ at its current block and the block on its right, the machine moves
left. If it sees a state 𝑝 ∈ 𝐿 at its current block and ⊥ on the two blocks to its right, it moves right.
These moves are inverses of each other: if one is applicable now, the other one is applicable on the
next time step and it makes the machine return to its original position.

2. Symmetrically, let 𝑝 ∈ 𝑅. Then 𝑓1 maps, for all 𝑐, 𝑏, 𝑑 ∈ Σ,

∗ [𝑐,⊥] [𝑏,⊥] [𝑑, 𝑝] ∗ ↦→ +𝑚,
[𝑐,⊥] [𝑏,⊥] [𝑑, 𝑝] ∗ ∗ ↦→ −𝑚.

Also these moves are inverses of each other.
On all other patterns in {1 . . . , 𝑛}𝐹1 the movement is by 0. Because L and R are disjoint, 𝑇 ′1 is well-
defined. It is also an involution.

Machines 𝑇 ′0 and 𝑇 ′1 are so designed that 𝑇 ′1 ◦ 𝑇
′
0 simulates one step of T on valid encodings of its

configurations. It follows that if T is not periodic, neither is 𝑇 ′1 ◦ 𝑇
′
0.

Suppose then that 𝑇 ′1 ◦ 𝑇
′
0 is not periodic. When iterating 𝑇 ′0 and 𝑇 ′1 alternatingly, if at any moment

either machine does not change the configuration then the iteration starts to retrace its steps back in time.
This follows from the fact that 𝑇 ′0 and 𝑇 ′1 are involutions. Any orbit containing two such changes of time
direction is periodic. By this and compactness, if 𝑇 ′1 ◦ 𝑇

′
0 is not periodic, there exists a bi-infinite orbit

where each application of 𝑇 ′0 and 𝑇 ′1 changes the configuration. By the construction, the machine locally
only sees valid encodings. The orbit – in either forward or backward time direction – is then a valid
simulation of T on the portion of the tape that T sees. It follows that T has a nonperiodic orbit as well. �

Combining Theorem 1.2 and Theorem 1.1, we immediately obtain the following corollary.

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

Forum of Mathematics, Sigma 33

Corollary 4.5. There is a finitely generated subgroup of RTM(Z, 𝑛, 𝑘) whose torsion problem is
undecidable.

4.3. The torsion problem of cellular automata

In this section, we show that there is a finitely generated group of cellular automata whose torsion
problem is undecidable. It is tempting to try to prove this by constructing an embedding from EL(Z, 𝑛, 𝑘)
to Aut(𝐴Z), but this is impossible: it is well-known that Aut(𝐴Z) is residually finite; however, the group
of finitely supported permutations of N embeds into LP(Z, 𝑛, 𝑘) and therefore EL(Z, 𝑛, 𝑘) can not
be residually finite. Nevertheless, there are standard ways to construct cellular automata from Turing
machines, and we show that while one cannot preserve the complete group structure, one can preserve
torsion.

One could do this similarly as in the previous section, by showing directly that an automorphism
simulating a Turing machine will be periodic if and only if the Turing machine is. We will prove a
slightly stronger abstract result, namely we construct a map from EL(Z, 𝑛, 𝑘) to Aut(𝐴Z) that preserves
some of the group structure of EL(Z, 𝑛, 𝑘) while adding only some “local” identities. To achieve this, it
seems we cannot use the same construction as in the previous section, as discussed below in Remark 4.9.

In the following, the free monoid generated by the elements of a group G is written 𝐺∗, and consists
of formal words w where 𝑤𝑖 ∈ 𝐺 for all 𝑖 = 1, . . . , |𝑤 |. For 𝑤 ∈ 𝐺∗, write 𝑤 = 𝑤1 · 𝑤2 · · ·𝑤 |𝑤 | ∈ 𝐺 for
the corresponding element of G.

Definition 4.6. Let G and H be groups and P be a group property. We say a function 𝜙 : 𝐺 → 𝐻 is
P-preserving if the following holds: For every finite set 𝐹 ⊂ 𝐺∗ the group 〈𝑤 | 𝑤 ∈ 𝐹〉 ≤ 𝐺 has
property P if and only if the group 〈𝜙(𝑤1)𝜙(𝑤2) · · · 𝜙(𝑤 |𝑤 |) | 𝑤 ∈ 𝐹〉 has property P

We remark that P-preserving functions 𝜙 need not be morphisms as we do not ask that 𝜙(𝑤1𝑤2) =
𝜙(𝑤1)𝜙(𝑤2). We only demand that property P is preserved when applying 𝜙 to the symbols appearing
in the words in F.

In what follows we are going to use the property P of being finite. We use this property to extend
computability invariants such as the torsion problem of a group onto another group even if no embedding
from the first group to the second exists. This kind of extension obviously demands that the function 𝜙
is in some way computable. We will say a function 𝜙 : 𝐺 → 𝐻 is computable if both G and H have
decidable word problem for some fixed presentation and there is a Turing machine which turns any
word w in the presentation of G such that 𝑤 = 𝑔 ∈ 𝐺 into a word u in the presentation of H such that
𝑢 = 𝜙(𝑔) ∈ 𝐻.

Lemma 4.7. Let G be a finitely generated group with undecidable torsion problem and generating set
S, and suppose there exists a computable finiteness-preserving function 𝜙 : 𝐺 → 𝐻. Then the subgroup
𝐻 ′ = 〈{𝜙(𝑠)}𝑠∈𝑆〉 ≤ 𝐻 has undecidable torsion problem.

Proof. Suppose the group 𝐻 ′ generated by the 𝜙(𝑠) has decidable torsion problem and let 𝑤 ∈ 𝑆∗.
As 𝜙 is finiteness-preserving we have that 〈𝑤̄〉 is finite if and only if 〈𝜙(𝑤1)𝜙(𝑤2) · · · 𝜙(𝑤 |𝑤 |)〉 is
finite. This means 𝑤 has finite order in G if and only if 𝜙(𝑤1)𝜙(𝑤2) · · · 𝜙(𝑤 |𝑤 |) has finite order in 𝐻 ′.
We can compute 𝜙(𝑤1)𝜙(𝑤2) · · · 𝜙(𝑤 |𝑤 |) from w and from the finite set {𝜙(𝑠) |𝑠 ∈ 𝑆} ⊂ 𝐻. Thus, the
algorithm to decide the torsion problem in 𝐻 ′ can be used to decide the torsion problem in G, raising a
contradiction. �

The previous lemma indicates that in order to prove that Aut(𝐴Z) contains a finitely generated sub-
group with undecidable torsion problem, it now suffices to provide a computable finiteness-preserving
map from EL(Z, 𝑛, 𝑘) into Aut(𝐴Z).

Lemma 4.8. Let 𝐴 = Σ2 × ({←,→} ∪ 𝑄 × {↑, ↓}). There is a computable finiteness-preserving map
𝜙 : RTM(Z, 𝑛, 𝑘) → Aut(𝐴Z).

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

34 S. Barbieri, V. Salo and J. Kari

Figure 6. A finite word in 𝐴∗ is divided into zones by the third layer. The dashed lines separate each
zone and the colors indicate which tape is being pointed at by the arrow next to the state.

Figure 7. Every zone is wrapped around as a conveyor belt, where 𝜙(𝑇) acts as if it were T seeing a
periodic word.

Proof. The alphabet A consists of triples and thus 𝐴Z can be thought of as consisting of three tapes. The
two first tapes carry a configuration in ΣZ while the third tape has symbols in ({←,→} ∪ (𝑄 × {↑, ↓}))
and deals with the heads and calculation zones. A head is represented by a tuple in 𝑄 × {↑, ↓}, where Q
is the set of states of the Turing machine and {↑, ↓} is the track the machine is in. If this value is ↑, the
head is on the first (“topmost”) tape and if it is ↓, on the second (“bottom”) tape.← means the head is
to the left of the current cell on the current zone (if the current zone contains a head), while→ means
the head is to the right.

A configuration in 𝐴Z is split into zones by the contents of the third tape. Namely, every finite portion
of the second track can be split uniquely into pieces of the forms →∗ (𝑞, 𝑎) ←∗ and →∗←∗ where
(𝑞, 𝑎) ∈ 𝑄 × {↑, ↓}. We call these pieces zones; see Figure 6. To define the finiteness-preserving map
𝜙 : RTM(Z, 𝑛, 𝑘) → 𝐴Z it is enough to do so in every piece of this form.

Let 𝑇 ∈ RTM(Z, 𝑛, 𝑘) be a moving head Turing machine of radius r. We define 𝜙(𝑇) ∈ Aut(𝐴Z) by
defining its action over each zone as follows: If the zone has no head or the zone is of size less than
2𝑟 + 1, do nothing. Otherwise let 𝑢0, . . . , 𝑢𝑚−1 and 𝑣0, . . . , 𝑣𝑚−1 be the words in the first and second
track, respectively; (𝑞, 𝑎) ∈ 𝑄 × {↑, ↓} be the head and ℓ ∈ {0, . . . , 𝑚 − 1} the position of the head in
the third track. Using this information we can construct the configuration 𝑥 ∈ ΣZ given by:

𝑥𝑖 =

{
𝑢 𝑗 if 𝑗 = (𝑖 mod 2𝑚) ∈ {0, . . . , 𝑚 − 1}
𝑣2𝑚− 𝑗−1 if 𝑗 = (𝑖 mod 2𝑚) ∈ {𝑚, . . . , 2𝑚 − 1}

And apply T to x, where the position of the head is on ℓ if 𝑎 = ↑ and on 2𝑚 − ℓ − 1 otherwise. After
applying the Turing machine’s local rule, recode the result again updating the left and right arrows so
that the zone does not change its shape as shown in Figure 7. With this definition, in each bounded zone
𝜙(𝑇) induces a permutation of all possible heads and tape contents while on unbounded zones it acts as
T on an infinite configuration.

The map 𝜙(𝑇) is clearly continuous and shift invariant and therefore 𝜙(𝑇) ∈ Aut(𝐴Z). Also, 𝜙 is
clearly a computable map. It suffices to show that 𝜙 preserves the property of being finite.

Consider 𝐹 ⊂ RTM(Z, 𝑛, 𝑘)∗, and 𝐻 = 〈𝜙(𝑤1)𝜙(𝑤2) · · · 𝜙(𝑤 |𝑤 |) | 𝑤 ∈ 𝐹〉 generated in Aut(𝐴Z). If
〈𝐹〉 is infinite, just note that the action of 𝜙(𝑇) over any configuration such that the third tape is a single

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

Forum of Mathematics, Sigma 35

unbounded zone with a head, (that is . . . ←←← (𝑞, ↑) →→→ . . .) replicates exactly the behavior of
T on the first tape. Therefore each element of 〈𝐹〉 will act differently over at least one configuration
of this form, implying that H is infinite. Conversely, if 〈𝐹〉 is finite, consider the action over any zone
which is unbounded or larger than the maximum movement from the origin attained by a machine in
〈𝐹〉. Obviously such a machine acts as the original machine, so the action on such zones satisfies the
same relations as the action of 〈𝐹〉. Consider then the zones whose length is bounded by a fixed length
h. The number of different machine actions on these zones is bounded as each action is a permutation
over a finite set, thus again the movement of the Turing machine head is bounded. Therefore H is finite
and a rough bound is |𝐻 | ≤ |〈𝐹〉| · (

∏
𝑚≤ℎ (2𝑘𝑚𝑛2𝑚)!) �

Remark 4.9. The above is not the only possible construction for making cellular automata out of Turing
machines. For example in [25], one instead uses a direction bit, and flips the running direction of the
Turing machine (from forward to backward) if it hits the boundary of a computation zone. This roughly
corresponds to the construction in the previous section. This construction does not, at least without
some modifications, give a finiteness-preserving map in the sense of the definition above: Suppose f
and g are Turing machines satisfying no relations. Pick 𝐹 = {(𝑓 −1𝑔−1) · 𝑔 · 𝑓 } (a formal product of
length 3 in 𝐺∗) in Definition 4.6. Since id = (𝑓 −1𝑔−1) · 𝑔 · 𝑓 is torsion as a Turing machine, we should
have that the corresponding cellular automaton 𝜙(𝑓 −1𝑔−1) ◦ 𝜙(𝑔) ◦ 𝜙(𝑓) is. But on a configuration
where the direction bit points backwards in time, this cellular automata in fact simulates the Turing
machine 𝑔 ◦ 𝑓 ◦ 𝑔−1 ◦ 𝑓 −1 which is of infinite order.

Using the fact that EL(Z𝑑 , 𝑛, 𝑘) is finitely generated and considering the restriction of the map of
Lemma 4.7 to EL(Z𝑑 , 𝑛, 𝑘) we obtain that:

Corollary 4.10. For some alphabet A with at least two symbols, there is a finitely generated subgroup
𝐺 ≤ Aut(𝐴Z) with undecidable torsion problem.

In Lemma 7 of [35], it is shown that for every finite set A, and every uncountable sofic subshift X,
we have that End(𝐴Z) embeds into End(𝑋). In particular Aut(𝐴Z) embeds into Aut(𝑋). Letting A be
the alphabet of Corollary 4.10 we obtain Corollary 1.3, that is, that the automorphism group of every
uncountable sofic Z-subshift contains a finitely generated subgroup G with undecidable torsion problem.

4.4. The torsion problem of finite-state machines

The torsion problem of OB(Z𝑑 , 𝑛, 𝑘) is not of much interest, as an element of this group is periodic
if and only if its shift component is 0𝑑 . The group RFA(Z𝑑 , 𝑛, 𝑘) for 𝑛 ≥ 2, however, is quite inter-
esting. Namely, the decidability of the torsion problem turns out to be dimension-sensitive as stated in
Theorem 1.4. In this section we prove that theorem in two parts, namely, the one-dimensional part is a
corollary of Theorem 4.11 whereas the multidimensional result is given in Theorem 4.12.

We first show that for 𝑑 = 1 the torsion problem is decidable. In fact, we obtain this from a more
general result. We say the finiteness problem of a group presentation is decidable if there exists a Turing
machine which on input a finite set of words in the presentation accepts if and only if the elements of
the group represented by those words generate a finite subgroup. This generalizes the torsion problem
which can be regarded as the special case where the set is a singleton.

The proof we presented in the appendix of the conference version [4] contained errors, here we
present a new proof which is based on a strong form of the pigeonhole principle, namely the Ramsey
theorem. A dynamical proof of the same result is given in [36].

Theorem 4.11. Let X be a sofic Z-subshift. Then the finiteness problem of RFA(𝑋, 𝑛, 𝑘) is decidable
for every 𝑛, 𝑘 ≥ 1.

Proof. Let F be a finite set of Turing machines represented by their local rules and 𝑛 ∈ N. By Lemma 4.1
given 𝑢, 𝑣 ∈ 𝐹∗ we can compute the relation ∼ where 𝑢 ∼ 𝑣 if and only if 𝑢 = 𝑣. A semialgorithm which
accepts if and only if 〈𝐹〉 is finite computes the set 𝑈𝑛 = (

⋃
𝑚≤𝑛 𝐹

𝑛)/∼ and accepts if 𝑈𝑛 = 𝑈𝑛+1 for

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

36 S. Barbieri, V. Salo and J. Kari

some n. In other words, the finiteness problem is recursively enumerable; it suffices thus to show it is
co-recursively enumerable.

For the other direction, we may assume that the movement of the machines in F only depends on the
current symbol under them, and the machines move by at most one cell on each step. To see this, take a
higher power presentation of X by a sufficiently large power p (see Section 1.4 of [30]), and record the
position in a cell modulo p in the state, so that the size of Q changes to 𝑘 𝑝.

Now, to each word 𝑢 � 𝑋 associate

𝜙(𝑢) : {←,→} ×𝑄 → 2{←,→}×𝑄,

where the interpretation of (𝑑 ′, 𝑞′) ∈ 𝜙(𝑢) (𝑞, 𝑑) is that, when entering the word u in state q by moving
in direction d, it is possible to apply a finite sequence of finite-state machines in F so that eventually the
machine exits u by moving in direction 𝑑 ′ in state 𝑞′. For example, by (→, 𝑞′) ∈ 𝜙(𝑢) (→, 𝑞) we mean
that there exist 𝑓1, 𝑓2, . . . , 𝑓𝑘 ∈ 𝐹 such that

(𝑓𝑘 ◦ · · · ◦ 𝑓1) (𝑞, 𝑥.𝑢𝑦) = (𝑞′, 𝑥𝑢.𝑦)

where x and y are tails such that 𝑥𝑢𝑦 ∈ 𝑋 , and the head does not leave u during the “intermediate steps,”
that is, for all 1 ≤ 𝑗 < 𝑘 we have (𝑓 𝑗 ◦ · · · ◦ 𝑓1) (𝑞, 𝑥𝑢′.𝑢′′𝑦) where 𝑢 = 𝑢′𝑢′′ and |𝑢′ |, |𝑢′′ | > 0.

Recall that sofic Z-subshifts have a regular language [30] and thus have an associated syntactic
monoid. Associate to each nonempty u its class 𝜓(𝑢) in the syntactic monoid of 𝐿(𝑋). Write 𝐼 (𝑢) =
(𝜙(𝑢), 𝜓(𝑢)). Then I is a semigroup homomorphism where defined in the sense that if 𝑢𝑣 � 𝑋 then

𝐼 (𝑢𝑣) = (𝜙(𝑢𝑣), 𝜓(𝑢𝑣)) = (𝜙(𝑢)𝜙(𝑣), 𝜓(𝑢)𝜓(𝑣)) = 𝐼 (𝑢)𝐼 (𝑣),

where maps 𝜙(𝑢) ∈ {←,→} × 𝑄 → 2{←,→}×𝑄 are given a semigroup structure by observing that
the possible ways one can exit 𝑢𝑣 after entering it from the left or right are entirely determined by the
corresponding information for u and v.

Now, by the Ramsey theorem, there exists N such that in every word 𝑤 � 𝑋 of length at least N, there
is a subword 𝑢𝑣 such that u and v are nonempty, and 𝐼 (𝑢) = 𝐼 (𝑣) = 𝐼 (𝑢𝑣). To see this, let w be such
a word and color the 2-subset {𝑖, 𝑗} ⊂ 𝑁 by 𝐼 (𝑤 [𝑖, 𝑗]). If N is large enough, there is a monochromatic
subset of size 3, which corresponds to the word 𝑢𝑣. In particular, by the previous paragraph it follows that

𝐼 (𝑢) = 𝐼 (𝑢𝑣) = 𝐼 (𝑢)𝐼 (𝑣) = 𝐼 (𝑢)𝐼 (𝑢) = 𝐼 (𝑢2) · · · = 𝐼 (𝑢𝑘)

for all k.3
If F generates an infinite group, then there are arbitrarily long words w that the head can walk over,

under a suitable application of elements of F. Otherwise, every long enough word blocks movement,
so F must generate a finite group. More precisely, we have arbitrarily long words 𝑤 ∈ 𝑋 which are
traversable, meaning

(→, 𝑞′) ∈ 𝜙(𝑤) (→, 𝑞) or (←, 𝑞′) ∈ 𝜙(𝑤) (←, 𝑞)

for some 𝑞, 𝑞′ ∈ 𝑄.
If w has this property, then all its subwords do. It follows that if F generates an infinite group then

there is a traversable word u such that 𝐼 (𝑢) = 𝐼 (𝑢𝑢). Once we find such a word u, we have 𝑢𝑘 � 𝑋 for
all k and that each 𝑢𝑘 is traversable, thus F must be infinite. �

Before tackling the problem in the multidimensional case, we recall the snake tiling problem
introduced and shown to be undecidable in [24]. In this problem, a set T of square tiles with colored

3Alternatively, one can apply the well-known fact that every finite semigroup has an idempotent, but the argument of the present
paragraph makes it more explicit why one can pick the idempotent u in the language of X and so that it has the traversability
property.

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

Forum of Mathematics, Sigma 37

edges which have an associated direction arrow is given, and the goal is to find a partial tiling of
Z2 – that is, some positions can be left without tiles – such that if among two adjacent tiles the arrow of
one points to the other then they share the same color on the adjacent edge. Furthermore we require that
at least one infinite path appears in the partial tiling while following the direction associated to the tiles.

For the next proof we are going to use a slightly modified version of the snake tiling problem, which
is also undecidable [24]. Instead of using Wang tiles with just an outgoing direction we are going to
use tiles which have both a left and right direction. Formally, let T be a finite set of tiles with colored
edges and functions left, right : 𝑇 → 𝐷, where 𝐷 = {(1, 0), (−1, 0), (0, 1), (0,−1)} which satisfy
left(𝑡) ≠ right(𝑡) for each 𝑡 ∈ 𝑇 . We are going to ask for a partial tiling 𝜏 : Z2 → 𝑇 ∪ {𝜖} such
that there exists a function 𝑝 : Z→ Z2 such that 𝜏(𝑝(𝑛)) ∈ 𝑇 , 𝑝(𝑛 + 1) − 𝑝(𝑛) = right(𝜏(𝑝(𝑛))) and
𝑝(𝑛) − 𝑝(𝑛 + 1) = left(𝜏(𝑝(𝑛 + 1))) for all 𝑛 ∈ Z and all tiles match their non-𝜖 neighbors along the
arrows. If a partial tiling 𝜏 with such a path exists, we say the instance (𝑇, left, right) of the problem
admits a snake.

One way to think about this version is that right arrows give instructions on how to walk to +∞ in
this path, while left arrows point to −∞.

Theorem 4.12. For all 𝑛 ≥ 2, 𝑘 ≥ 1, 𝑑 ≥ 2, there is a finitely generated subgroup of RFA(Z𝑑 , 𝑛, 𝑘)
whose torsion problem in undecidable.

Proof. For the rest of the proof we assume 𝑑 = 2. In the general case, the result follows from the obvious
fact that RFA(Z2, 𝑛, 𝑘) embeds into RFA(Z𝑑 , 𝑛, 𝑘).

First, let us explain why, if we let the alphabet Σ be arbitrary and take the local rule of an element
𝑓 ∈ RFA(Z2, |Σ |, 2), it is undecidable whether 𝑇 𝑓 is a torsion element in that group. We then explain
how to do this construction in the case of a fixed alphabet and number of states. Finally, we show that the
torsion problem still remains undecidable in a finitely generated subgroup of RFA(Z2, 𝑛, 𝑘) for every
𝑛 ≥ 2 and 𝑘 ≥ 1.

Consider an instance of our modified snake tiling problem (𝑇, left, right) where T is the set of
tiles. We choose |Σ | > |𝑇 | and associate the first |𝑇 | symbols in Σ to the tiles in T and the rest to the empty
tile. We construct a local rule f which gives a nontorsion element 𝑇 𝑓 if and only if (𝑇, left, right)
admits a snake.

In this instance we ask for two states, we will call them direction bits 𝑄 = {𝑅, 𝐿} standing for right
and left. The machine 𝑇 𝑓 has radius 𝐹 = {(𝑖, 𝑗) ∈ Z2 | |𝑖 | + | 𝑗 | ≤ 1} and acts as follows:

◦ Let t be the tile at (0, 0). If 𝑡 = 𝜖 , do nothing.
◦ Otherwise:

– If the state is L. Check the tile in the direction left(𝑡). If it matches correctly with t, move
the head to that position, otherwise switch the state to R.

– If the state is R. Check the tile in the direction right(𝑡). If it matches correctly with t move
the head to that position, otherwise switch the state to L

The machine𝑇 𝑓 is reversible and its inverse is given by the machine which does the same but switches
the roles of R and L. If (𝑇, left, right) admits a snake, it suffices to consider the configuration in
ΣZ

2×𝑋𝑞 that contains an infinite snake and such that the head of the machine is positioned somewhere in
the snake. Clearly𝑇 𝑓 walks to infinity in that configuration without repeating positions, thus showing that
𝑇 𝑓 is a nontorsion element (recall we are using the moving head model). Conversely, if (𝑇, left, right)
does not admit a snake, then there is an uniform bound on how far 𝑇 𝑓 can walk from its starting position
before encountering an error or entering a cycle and henceforth 𝑇 𝑓 has finite order. This concludes the
proof of undecidability of the torsion problem when the alphabet is arbitrary.

Now we explain how to pass to a fixed alphabet and how to avoid using states. For this we encode the
tiles into squares of size 𝑛× 𝑛. By having the bottom left corner of the coding contain 1 1

1 1 and having no
two adjacent 1s elsewhere, we ensure that there is a unique way to “parse” a given tiling into encodings
of squares. Clearly, the movements of the machine 𝑇 𝑓 are now inflated by n and anything which is not
a valid coding of a tile is interpreted as the empty tile. Also, as there is a unique way to parse correct

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

38 S. Barbieri, V. Salo and J. Kari

Figure 8. Basic coding of the construction. The outer ring of 1s (blue) codes the boundary of the cell
and the state. The middle ring of 0s separates the zones. The inner ring (green) codes the information.

squares, one can also use the position of the head in the bottom left corner to code the states. Say,
the lower left corner of 1 1

1 1 codes L and the lower right corner of (1, 0) codes R. Thus the state change
amounts to a shift by either (1, 0) or (−1, 0).

The inconvenient part of the previous construction is that the subgroup of machines defined by it is not
necessarily finitely generated. Thus a priori it might be the case that every finitely generated subgroup
of RFA(Z2, 𝑛, 𝑘) still has decidable torsion problem. In order to show this does not hold we construct a
finite set of machines which simulates the previous construction. For this we are going to use a specific
7 × 7 square coding which is shown on Figure 8. This coding is composed of three zones. The outer
zone consists of a ring of 1s of side length 7 which serves to code unambiguously the boundary of the
structure. The four bottom left 1s of this zone are used to code the states, this is obtained by forcing the
head of the machine to always stay in one of these positions modulo Z2/7Z2. The middle zone consists
of a ring of 0s of side length 5 which serves to separate the three zones so no ambiguity is possible.
Finally there is the inner zone consisting of a 3 × 3 square containing a configuration in {0, 1}9. Four
of these bits 𝑙1, 𝑙2, 𝑟1, 𝑟2 serve to code two directions in 𝐷 = {(1, 0), (−1, 0), (0, 1), (0,−1)}. The rest
of the bits are going to be specified later on.

For this construction we are going to use a two bit string 𝑠 ∈ {0, 1}2 as the set of states (which is to
be coded by the head position amongst the four fixed places in the outer ring of 1s). The first bit is the
direction bit, that is, it takes the role of L and R for the first construction. The second bit is the auxiliary
bit, whose role will become clear later on.

Let C be the set of all patterns of shape as in Figure 8 centered in one of four fixed positions in the
ring of 1s –that is, such that the support is of the form ([−𝑖, 7− 𝑖] × [0, 7]) ∩Z2 for some 𝑖 ∈ {0, 1, 2, 3}–.
We consider the following finite set of machines as our generating set S.
1. {𝑇�𝑣 }𝑣 ∈𝐷 that walks in the direction �𝑣 ∈ 𝐷 independently of the configuration.
2. 𝑇walk that walks along the direction codified by 𝑙1, 𝑙2 or 𝑟1, 𝑟2 depending on the direction bit.
3. {𝑔𝑐}𝑐∈𝐶 that flips the direction bit if the current pattern is 𝑐 ∈ 𝐶,
4. {ℎ𝑐}𝑐∈𝐶 that flips the auxiliary bit if the current pattern is 𝑐 ∈ 𝐶,
5. {𝑔+,𝑐}𝑐∈𝐶 that adds the auxiliary bit to the direction bit if the current pattern is 𝑐 ∈ 𝐶, and
6. {ℎ+,𝑐}𝑐∈𝐶 that adds the direction bit to the auxiliary bit if the current pattern is 𝑐 ∈ 𝐶,

The machine 𝑇walk is the only one which needs to be carefully defined. It acts similarly to 𝑇 𝑓 defined
in the beginning. Formally it does the following:
◦ If the pattern around the identity does not correspond to a 𝑐 ∈ 𝐶, do nothing.
◦ Otherwise:

– If the direction bit is 0 check the pattern centered in 7left(𝑡) from the actual head position.
If it is a valid 𝑐′ ∈ 𝐶 in the same state and its two right bits code −left(𝑡) then move the head
by 7left(𝑡). Otherwise flip the direction bit to 1.

– If the direction bit is 1. Check the pattern centered in 7right(𝑡) from the actual head position.
If it is a valid 𝑐′ ∈ 𝐶 in the same state and its two left bits code −right(𝑡) then move the head
by 7right(𝑡). Otherwise flip the direction bit to 0.

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

Forum of Mathematics, Sigma 39

The machines 𝑇�𝑣 simply act as the shift by �𝑣 ∈ 𝐷 which is clearly reversible. As 〈𝐷〉 = Z2 we have
that for every vector �𝑢 ∈ Z2 the machine 𝑇�𝑢 which moves the head by �𝑢 belongs to 〈𝑆〉.

Let 𝑝∗ be a pattern consisting of the concatenation of patterns from c which are well aligned along the
columns and lines of 1s. More formally, for a finite 𝐹 ⊂ Z2, 𝑝∗ is a pattern with support 7𝐹+(([−𝑖, 7−𝑖]×
[0, 7])∩Z2) for some 𝑖 ∈ {0, 1, 2, 3} and such that for every �𝑣 ∈ 𝐹 then 𝜎−7�𝑣 (𝑝∗) |([−𝑖,7−𝑖]×[0,7])∩Z2 ∈ 𝐶.
We define 𝑔𝑝∗ and ℎ𝑝∗ as the machines which flip the direction bit and the auxiliary bit, respectively, if
they read 𝑝∗. We claim 𝑔𝑝∗ , ℎ𝑝∗ ∈ 〈𝑆〉. If 𝑝∗ is defined by some singleton 𝐹 = {�𝑣} it suffices to note that
𝑔𝑝∗ = 𝑇−7�𝑣 ◦ 𝑔𝑐 ◦ 𝑇7�𝑣 and ℎ𝑝∗ = 𝑇−7�𝑣 ◦ ℎ𝑐 ◦ 𝑇7�𝑣 for the appropriate 𝑐 ∈ 𝐶. Inductively, we can choose
�𝑣 ∈ 𝐹 and separate 𝑝∗ as the disjoint union of the pattern 𝑝∗

𝐹\{ �𝑣 } defined by 𝐹 \ {�𝑣}, and the pattern 𝑝∗�𝑣
defined by �𝑣 and thus write:

𝑔𝑝∗ = (𝑇−7�𝑣 ◦ 𝑔+,𝑐 ◦ 𝑇7�𝑣 ◦ ℎ𝑝∗
𝐹\{ �𝑣}
)2, and ℎ𝑝∗ = (𝑇−7�𝑣 ◦ ℎ+,𝑐 ◦ 𝑇7�𝑣 ◦ 𝑔𝑝∗

𝐹\{ �𝑣}
)2.

Consider an instance (𝑇, left, right) of the snake tiling problem. The information associated to
each tile 𝑡 ∈ 𝑇 consists of a 4-tuple of colors (𝑐1, 𝑐2, 𝑐3, 𝑐4) and the directions left(𝑡) and right(𝑡).
Suppose the tiles of T are defined using N colors. Let 𝑀 ∈ N such that 𝑀2 > log2(𝑁). We define for
each 𝑡 ∈ 𝑇 a macrotile M(𝑡) as a fixed square array of patterns of shape as in Figure 8 of side length
M (see Figure 9). We fix an enumeration of these patterns from the bottom left to the upper right as
{𝑐 𝑗 }1≤ 𝑗≤𝑀 2 and denote the bit 𝑏𝑖 of 𝑐 𝑗 as 𝑏𝑖, 𝑗 . We demand M(𝑡) to satisfy the following properties:
◦ For 𝑖 ∈ {1, 2, 3, 4} the sequence of bits {𝑏𝑖, 𝑗 }1≤ 𝑗≤𝑀 2 codifies the color 𝑐𝑖 .
◦ 𝑏5,1 = 1 and for all 𝑗 > 1 the bit 𝑏5, 𝑗 = 0.
◦ The bits 𝑙1, 𝑙2 and 𝑟1, 𝑟2 of 𝑐1 code left(𝑡) and right(𝑡), respectively.
◦ If left(𝑡) = (1, 0) then for all 2 ≤ 𝑗 ≤ 𝑀 we have that 𝑙1, 𝑙2 and 𝑟1, 𝑟2 of 𝑐 𝑗 code (1, 0) and (−1, 0),

respectively.
◦ If right(𝑡) = (1, 0) then for all 2 ≤ 𝑗 ≤ 𝑀 we have that 𝑙1, 𝑙2 and 𝑟1, 𝑟2 of 𝑐 𝑗 code (−1, 0) and (1, 0),

respectively.
◦ If left(𝑡) = (0, 1) then for all 1 ≤ 𝑗 ≤ 𝑀 − 1 we have that 𝑙1, 𝑙2 and 𝑟1, 𝑟2 of 𝑐1+ 𝑗𝑀 code (0, 1) and
(0,−1), respectively.

◦ If right(𝑡) = (0, 1) then for all 1 ≤ 𝑗 ≤ 𝑀 − 1 we have that 𝑙1, 𝑙2 and 𝑟1, 𝑟2 of 𝑐1+ 𝑗𝑀 code (0,−1)
and (0, 1), respectively.
As 𝑀2 > log2 (𝑁) it is possible to satisfy the first requirement. The rest are possible to satisfy as

left(𝑡) ≠ right(𝑡). An example of such a macrotile is represented in Figure 9.
Associate all arrays of 𝑀 × 𝑀 codings which do not represent some 𝑡 ∈ 𝑇 to the 𝜖 tile. Also, let M

be the set of all patterns given as an array of 3× 3 macrotiles which represent a valid local pattern of the
snake problem and such that the middle tile is not an 𝜖 tile and are centered in the bottom left position
of the middle macrotile.

Consider the machine 𝑇∗ ∈ 〈𝑆〉 given by:

𝑇∗ = (𝑇walk)𝑀 ◦
∏

𝑝∗ ∈M
𝑔𝑝∗ ◦

∏
𝑐∈𝐶

𝑔𝑐

We claim that 𝑇∗ is a torsion element if and only if (𝑇, left, right) does not admit a snake.
If (𝑇, left, right) admits a snake, it suffices to take a configuration with a snake, replace each tile

and 𝜖 in it by a corresponding macrotile and put the head of the machine in the lower left corner of
a macrotile belonging to the snake. The machine 𝑇∗ will first detect some pattern 𝑐 ∈ 𝐶, so exactly
one 𝑔𝑐 will flip the direction bit once. Then it will detect a valid pattern 𝑝∗ of the snake problem and
thus 𝑔𝑝∗ will flip again the direction bit amounting to no action at all. Finally, (𝑇walk)𝑀 will just walk
towards the lower left corner of the next macrotile. As the initial configuration codes a snake, repeating
this procedure will make 𝑇∗ walk to infinity, and thus 𝑇∗ is not a torsion element.

For the converse, we need to analyze more carefully the behavior of 𝑇∗. First of all, if in the initial
configuration the head is not over a pattern 𝑐 ∈ 𝐶, then𝑇∗ by definition acts trivially. Otherwise, suppose

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

40 S. Barbieri, V. Salo and J. Kari

Figure 9. An example of macrotile M(𝑡) of side 𝑀 = 6. The red arrows represent the function
left(𝑡) = (1, 0) while the blue arrows represent right(𝑡) = (0, 1). The bottom left black square
represents 𝑏5,1 = 1.

the head is over a 𝑐 ∈ 𝐶. The application of
∏

𝑝∗ ∈M 𝑔𝑝∗ ◦
∏

𝑐∈𝐶 𝑔𝑐 can at most do a state change, and
thus the head still sees some 𝑐′ ∈ 𝐶 afterwards. Also, by definition of 𝑇walk, the head will always see
an element of C after applying (𝑇walk)𝑀 . This means that the head will always be seeing a pattern in C
after applying 𝑇∗.

There are two possible behaviors of 𝑇∗ starting from a pattern in C. If the head is not over a valid
array of macrotiles in M then the direction bit is flipped by 𝑔𝑐 , the second part does nothing, and 𝑇walk
is applied M times. Otherwise the direction bit is flipped two times, amounting to no flip at all and 𝑇walk
is applied M times.

These two behaviors translate into the following: If the head is over a valid array of macrotiles in M
then 𝑇∗ can either move into another valid array (and correctly simulate the working of 𝑇 𝑓 defined at
first in the proof), or it can fall outside a valid array of macrotiles. If it does this, then another application
of 𝑇∗ undoes the last M steps of 𝑇walk and changes the direction bit. Therefore the machine continues to
live inside a valid array of M and simulate 𝑇 𝑓 . In this case we can use the uniform bound on the length
of the snake to find a bound N such that (𝑇∗)𝑁 acts trivially over all these configurations. The only case
remaining is when initially the head is not over an array in M and after one application of 𝑇∗ it stays
that way. In this case, we just have that (𝑇∗)2 acts trivially over these configurations. Thus showing that
(𝑇∗)2𝑁 = 𝑖𝑑 and thus 𝑇∗ is a torsion element of 〈𝑆〉. �

In the special case where 𝑘 = 1 the previous result can be expressed in dynamical terms. Namely,
RFA(Z𝑑 , 𝑛, 1) is exactly the topological full group of the full Z2-shift on n symbols. This yields
Corollary 1.5, that is, for every 𝑑 ≥ 2 the topological full group of the full Z2-shift on n symbols
contains a finitely generated subgroup with undecidable torsion problem.

A. Dictionary of groups and monoids

TM(Z𝑑 , 𝑛, 𝑘): the monoid of moving-head Turing machines on Z𝑑 with n symbols and k states
(Definition 2.2).

RTM(Z𝑑 , 𝑛, 𝑘): the group of reversible moving-head Turing machines on Z𝑑 with n symbols and k
states (Definition 2.2).

TMfix (Z𝑑 , 𝑛, 𝑘): the monoid of moving-tape Turing machines on Z𝑑 with n symbols and k states
(Definition 2.12).

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

Forum of Mathematics, Sigma 41

RTMfix(Z𝑑 , 𝑛, 𝑘): the group of reversible moving-tape Turing machines on Z𝑑 with n symbols and k
states (Definition 2.12).

SP(Z𝑑 , 𝑛, 𝑘): the group of state permutations, that is, reversible moving-head Turing machines which
do not move the head nor change the tape, and may only permute the state.

LP(Z𝑑 , 𝑛, 𝑘): the group of local permutations, that is, reversible moving-head Turing machines which
do not move the head (Definition 3.1).

RFA(Z𝑑 , 𝑛, 𝑘): the group of reversible finite-state automata, that is, reversible moving-head Turing
machines which do not modify the tape (Definition 3.3).

SHIFT(Z𝑑 , 𝑛, 𝑘): the group of reversible moving-head Turing machines that shift by some vector
independent of the tape (this group is naturally isomorphic to Z𝑑).

OB(Z𝑑 , 𝑛, 𝑘): the group of oblivious Turing machines, that is, the group generated by LP(Z𝑑 , 𝑛, 𝑘)
and SHIFT(Z𝑑 , 𝑛, 𝑘) (Definition 3.1).

EL(Z𝑑 , 𝑛, 𝑘): the group of elementary Turing machines, that is, the group generated by LP(Z𝑑 , 𝑛, 𝑘)
and RFA(Z𝑑 , 𝑛, 𝑘) (Definition 3.9).

Competing interest. The authors have no competing interests to declare.

Funding statement. S. Barbieri was partially supported by ANR CoCoGro (ANR-16-CE40-0005), ANR CODYS (ANR-18-
CE40-0007), AMSUD240026, ECOS230003, and ANID FONDECYT grants 11200037 and 1240085. J. Kari was partially
supported by the Research Council of Finland project 354965. V. Salo was partially supported by FONDECYT grant 3150552
and Academy of Finland grant 2608073211.

References

[1] S. Aaronson, D. Grier and L. Schaeffer, ‘The classification of reversible bit operations’, in 8th Innovations in Theoretical
Computer Science Conference, vol. 67 of LIPIcs. Leibniz Int. Proc. Inform. (Schloss Dagstuhl. Leibniz-Zent. Inform.,
Wadern, 2017), Art. No. 23, 34 pp.

[2] N. Aubrun, S. Barbieri and M. Sablik, ‘A notion of effectiveness for subshifts on finitely generated groups’, Theoret. Comput.
Sci. 661 (2017), 35–55.

[3] N. Aubrun and M. Sablik, ‘Simulation of effective subshifts by two-dimensional subshifts of finite type’, Acta Appl. Math.
126 (2013), 35–63.

[4] S. Barbieri, J. Kari and V. Salo, ‘The group of reversible Turing machines’, in Cellular Automata and Discrete Complex
Systems, vol. 9664 of Lecture Notes in Comput. Sci. (Springer, Cham, 2016), 49–62.

[5] J. Belk and C. Bleak, ‘Some undecidability results for asynchronous transducers and the Brin–Thompson group 2V’, Trans.
Amer. Math. Soc. 369(5) (2017), 3157–3172.

[6] J. Belk and F. Matucci, ‘Conjugacy and dynamics in Thompson’s groups’, Geom. Dedicata 169 (2014), 239–261.
[7] V. D. Blondel, J. Cassaigne and C. Nichitiu, ‘On the presence of periodic configurations in Turing machines and in counter

machines’, Theoret. Comput. Sci. 289(1) (2002), 573–590.
[8] T. Boykett, J. Kari and V. Salo, ‘Strongly universal reversible gate sets’, in Reversible Computation, vol. 9720 of Lecture

Notes in Comput. Sci. (Springer, Cham, 2016), 239–254.
[9] T. Ceccherini-Silberstein and M. Coornaert, Cellular Automata and Groups, 2nd ed, Springer Monographs in Mathematics

(Springer, Cham, 2023).
[10] T. Ceccherini-Silberstein and M. Coornaert, Exercises in Cellular Automata and Groups, Springer Monographs in Mathe-

matics (Springer, Cham, 2023). With a foreword by R. I. Grigorchuk.
[11] E. Czeizler and J. Kari, ‘A tight linear bound on the synchronization delay of bijective automata’, Theoret. Comput. Sci.

380(1–2) (2007), 23–36.
[12] J.-C. Delvenne, P. Kůrka and V. Blondel, ‘Decidability and universality in symbolic dynamical systems’, Fund. Inform. 74(4)

(2006), 463–490.
[13] B. Durand, A. Romashchenko and A. Shen, ‘Effective closed subshifts in 1D can be implemented in 2D’, in Fields of Logic

and Computation, vol. 6300 of Lecture Notes in Comput. Sci. (Springer, Berlin, 2010), 208–226.
[14] G. Elek and N. Monod, ‘On the topological full group of a minimal Cantor Z2-system’, Proc. Amer. Math. Soc. 141(10)

(2013), 3549–3552.
[15] A. Gajardo and P. Guillon, ‘Zigzags in Turing machines’, in Computer Science—Theory and Applications, vol. 6072 of

Lecture Notes in Comput. Sci. (Springer, Berlin, 2010), 109–119.
[16] A. Gajardo and J. Mazoyer, ‘One head machines from a symbolic approach’, Theoret. Comput. Sci. 370(1–3) (2007), 34–47.
[17] A. Gajardo, N. Ollinger and R. Torres-Avilés, ‘The transitivity problem of Turing machines’, in Mathematical Foundations

of Computer Science 2015. Part I, vol. 9234 of Lecture Notes in Comput. Sci. (Springer, Heidelberg, 2015), 231–242.
[18] T. Giordano, I. F. Putnam and C. F. Skau, ‘Full groups of Cantor minimal systems’, Israel J. Math. 111 (1999), 285–320.

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10118

42 S. Barbieri, V. Salo and J. Kari

[19] R. I. Grigorchuk and K. S. Medinets, ‘On the algebraic properties of topological full groups’, Mat. Sb. 205(6) (2014), 87–108.
[20] M. Hochman, ‘On the dynamics and recursive properties of multidimensional symbolic systems’, Invent. Math. 176(1)

(2009), 131–167.
[21] E. Jeandel, ‘Computability of the entropy of one-tape Turing machines’, in 31st International Symposium on Theoretical

Aspects of Computer Science, vol. 25 of LIPIcs. Leibniz Int. Proc. Inform. (Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern,
2014), 421–432.

[22] K. Juschenko and N. Monod, ‘Cantor systems, piecewise translations and simple amenable groups’, Ann. of Math. (2) 178(2)
(2013), 775–787.

[23] J. Kari, ‘Representation of reversible cellular automata with block permutations’, Math. Systems Theory 29(1) (1996), 47–61.
[24] J. Kari, ‘Infinite snake tiling problems’, in Developments in Language Theory, vol. 2450 of Lecture Notes in Comput. Sci.

(Springer, Berlin, 2003), 67–77.
[25] J. Kari and N. Ollinger, ‘Periodicity and immortality in reversible computing’, in Mathematical Foundations of Computer

Science 2008, vol. 5162 of Lecture Notes in Comput. Sci. (Springer, Berlin, 2008), 419–430.
[26] A. Kazda, ‘The chain relation in sofic subshifts’, Fund. Inform. 84(3–4) (2008), 375–390.
[27] P. Kůrka, ‘On topological dynamics of Turing machines’, Theoret. Comput. Sci. 174(1–2) (1997), 203–216.
[28] P. Kůrka, ‘Erratum to: Entropy of Turing machines with moving head’, Theoret. Comput. Sci. 411(31–33) (2010), 2999–3000.
[29] C. G. Langton, ‘Studying artificial life with cellular automata’, Phys. D 22(1–3) (1986), 120–149. Evolution, games and

learning (Los Alamos, N.M., 1985).
[30] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding (Cambridge University Press, Cambridge, 1995).
[31] H. Matui, ‘Some remarks on topological full groups of Cantor minimal systems’, Internat. J. Math. 17(2) (2006), 231–251.
[32] H. Matui, ‘Topological full groups of one-sided shifts of finite type’, J. Reine Angew. Math. 705 (2015), 35–84.
[33] C. Moore, ‘Generalized shifts: unpredictability and undecidability in dynamical systems’, Nonlinearity 4(2) (1991), 199–230.
[34] R. Pavlov and M. Schraudner, ‘Classification of sofic projective subdynamics of multidimensional shifts of finite type’,

Trans. Amer. Math. Soc. 367(5) (2015), 3371–3421.
[35] V. Salo, ‘A note on subgroups of automorphism groups of full shifts’, Ergodic Theory Dynam. Systems 38(4) (2018),

1588–1605.
[36] V. Salo, ‘Subshifts with sparse traces’, Studia Math. 255(2) (2020), 159–207.
[37] V. Salo and I. Törmä, ‘Group-walking automata’, in Cellular Automata and Discrete Complex Systems, vol. 9099 of Lecture

Notes in Comput. Sci. (Springer, Heidelberg, 2015), 224–237.
[38] V. Salo and I. Törmä, ‘Plane-walking automata’, in Cellular Automata and Discrete Complex Systems, vol. 8996 of Lecture

Notes in Comput. Sci. (Springer, Cham, 2015), 135–148.
[39] P. Selinger, Reversible k-valued logic circuits are finitely generated for odd k, preprint (2016). arXiv:1604.06028.
[40] S. Xu, Reversible logic synthesis with minimal usage of ancilla bits, Master’s thesis, MIT, 2015.

https://doi.org/10.1017/fms.2025.10118 Published online by Cambridge University Press

https://arxiv.org/abs/1604.06028
https://doi.org/10.1017/fms.2025.10118

	1 Introduction
	1.1 Turing machines and their generalization
	1.2 Our results and comparisons with other groups
	1.3 Preliminaries

	2 Two models for Turing machine groups
	2.1 The moving head model
	2.2 The moving tape model
	2.3 The uniform measure and reversibility.

	3 Subgroups and generators
	3.1 Definitions of subgroups
	3.1.1 Oblivious Turing machines
	3.1.2 Finite-state automata
	3.1.3 Elementary Turing machines

	3.2 The oblivious Turing machines are finitely generated
	3.3 Generators for finite-state automata on any one-dimensional subshift
	3.4 Elementary Turing machines are finitely generated

	4 Computability aspects
	4.1 Basic decidability results
	4.2 The torsion problem of elementary Turing machines
	4.3 The torsion problem of cellular automata
	4.4 The torsion problem of finite-state machines

	A Dictionary of groups and monoids
	References

