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Let [An,k]n,k�0 be an infinite lower triangular array satisfying the recurrence

An,k = An−1,k−1 + gkAn−1,k + hkAn−1,k+1

for n � 1 and k � 0, where A0,0 = 1, A0,k = Ak,−1 = 0 for k > 0. We present some
criteria for the log-concavity of rows and strong q-log-convexity of generating
functions of rows. Our results can be applied to many well-known triangular arrays,
such as the Pascal triangle, the Stirling triangle of the second kind, the Bell triangle,
the large Schröder triangle, the Motzkin triangle, and the Catalan triangles of Aigner
and Shapiro, in a unified approach. In addition, we prove that the binomial
transformation not only preserves the strong q-log-convexity property, but also
preserves the strong q-log-concavity property. Finally, we demonstrate that the
strong q-log-convexity property is preserved by the Stirling transformation and
Whitney transformation of the second kind, which extends some known results for
the strong q-log-convexity property.
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1. Introduction

The object of this paper is to study the log-concavity and the strong q-log-convexity
of sequences arising in some triangular arrays in a unified approach.

For a combinatorial sequence, one often considers its log-concavity or log-convex-
ity. Recall that a sequence of non-negative real numbers (ak)k�0 is called concave
(respectively, convex ) if ak−1+ak+1 � 2ak (respectively, ak−1+ak+1 � 2ak) for k �
1. It is called log-concave (respectively, log-convex ) if ak−1ak+1 � a2

k (respectively,
ak−1ak+1 � a2

k) for all k � 1, which is equivalent to having that an−1am+1 � anam

(respectively, an−1am+1 � anam) for all 1 � n � m. By the arithmetic–geometric
mean inequality, the log-convexity implies the convexity and the concavity implies
the log-concavity. In addition, the log-concavity and log-convexity problems occur
naturally in combinatorics, analysis, algebra, geometry, probability and statistics,
and in many other branches of mathematics and have been extensively investigated;
see Stanley’s survey article [38] and Brenti’s supplement [14] for log-concavity, and
Liu and Wang [31] for log-convexity.
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For two polynomials with real coefficients f(q) and g(q), write f(q) �q g(q) if
the difference f(q)−g(q) has only non-negative coefficients. A polynomial sequence
(fn(q))n�0 is called q-log-concave if

fn(q)2 �q fn+1(q)fn−1(q)

for n � 1. It is called strongly q-log-concave if

fn(q)fm(q) �q fn+1(q)fm−1(q)

for any m � n � 1. It is called q-log-convex if

fn+1(q)fn−1(q) �q fn(q)2

for n � 1. It is called strongly q-log-convex if

fn+1(q)fm−1(q) �q fn(q)fm(q)

for any m � n � 1. Clearly, the strong q-log-concavity (respectively, strong q-log-
convexity) implies the q-log-concavity (respectively, q-log-convexity). In addition,
a log-concave (respectively, log-convex) sequence is a special strongly q-log-concave
(respectively, strongly q-log-convex) sequence. The q-log-concavity of polynomials
has been extensively studied. See, for example, [15,28,29,34]. The reader is referred
to [16–18,31,42,43] for the strong q-log-convexity property.

It is known that there are many triangular arrays in combinatorics. The following
are some classical examples.

Example 1.1.

(1) The Pascal triangle is

P =
[(

n

k

)]
n,k�0

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where
(
n+1

k

)
=

(
n
k

)
+

(
n

k−1

)
.

(2) The Stirling triangle of the second kind [Sn,k]n,k�0 satisfies Sn+1,k = Sn,k−1+
(k + 1)Sn,k.

(3) The Catalan triangle of Aigner [3] is

C = [Cn,k]n,k�0 =

⎡
⎢⎢⎢⎢⎢⎣

1
1 1
2 3 1
5 9 5 1
...

. . .

⎤
⎥⎥⎥⎥⎥⎦ ,

where Cn+1,k = Cn,k−1 + 2Cn,k + Cn,k+1 and Cn+1,0 = Cn,0 + Cn,1. The
numbers in the zeroth column are the Catalan numbers Cn.
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(4) The Catalan triangle of Shapiro [35] is

C ′ = [C ′
n,k]n,k�0 =

⎡
⎢⎢⎢⎢⎢⎣

1
2 1
5 4 1
14 14 6 1
...

. . .

⎤
⎥⎥⎥⎥⎥⎦ ,

where C ′
n+1,k = C ′

n,k−1 + 2C ′
n,k + C ′

n,k+1 for k � 0. The numbers in the
zeroth column are the Catalan numbers Cn.

(5) The Motzkin triangle [2, 3] is

M = [Mn,k]n,k�0 =

⎡
⎢⎢⎢⎢⎢⎣

1
1 1
2 2 1
4 5 3 1
...

. . .

⎤
⎥⎥⎥⎥⎥⎦ ,

where Mn+1,k = Mn,k−1 + Mn,k + Mn,k+1 and Mn+1,0 = Mn,0 + Mn,1. The
numbers in the zeroth column are the Motzkin numbers Mn.

(6) The large Schröder triangle [20] is

s = [sn,k]n,k�0 =

⎡
⎢⎢⎢⎢⎢⎣

1
2 1
6 4 1
22 16 6 1
...

. . .

⎤
⎥⎥⎥⎥⎥⎦ ,

where sn+1,k = sn,k−1 + 2sn,k + 2sn,k+1 and sn+1,0 = sn,0 + 2sn,1. The num-
bers in the zeroth column are the large Schröder numbers Sn.

(7) The Bell triangle [4] is

B = [Bn,k]n,k�0 =

⎡
⎢⎢⎢⎢⎢⎣

1
1 1
2 3 1
5 10 6 1
...

. . .

⎤
⎥⎥⎥⎥⎥⎦ ,

where Bn+1,k = Bn,k−1+(1+k)Bn,k+(1+k)Bn,k+1 and Bn+1,0 = Bn,0+Bn,1.
The numbers in the zeroth column are the Bell numbers.

In fact, the above triangles can be obtained in a unified approach as follows. Let
[An,k]n,k�0 be an infinite lower triangular array defined by the recurrence

An,k = An−1,k−1 + gkAn−1,k + hkAn−1,k+1
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for n � 1 and k � 0, where A0,0 = 1, A0,k = Ak,−1 = 0 for k > 0. [An,k]n,k�0 is
called the recursive matrix and An,0 are called the Catalan-like numbers; see [3,5].
Aigner [2, 3, 5, 6] researched various combinatorial properties of recursive matrices
and Hankel matrices of the Catalan-like numbers. Chen et al . [19] considered the
total positivity of recursive matrices. In [42], Zhu gave a criterion for log-convexity of
the Catalan-like numbers, i.e. the first column of the recursive matrices [An,k]0�k�n.
Motivated by this, we will show one criterion for log-concavity of each row of recur-
sive matrices; see theorem 2.1. As applications, we prove the log-concavity of row
sequences in many well-known triangular arrays, such as the Pascal triangle, the
Stirling triangle of the second kind, the Bell triangle, the large Schröder triangle,
the Motzkin triangle, and the Catalan triangles of Aigner and Shapiro, in a unified
approach.

If gk = g and hk = h for k � 0, then the recursive matrix turns out to be a
kind of special interesting Riordan array. Recall that the Riordan array, denoted by
(g(x), f(x)) = [Rn,k]n,k�0, is an infinite lower triangular matrix whose generating
function of the kth column is xkfk(x)g(x) for k � 0, where g(0) = 1 and f(0) �= 0.
It can also be characterized by two sequences (an)n�0 and (zn)n�0 such that

R0,0 = 1, Rn+1,0 =
∑
j�0

zjRn,j , Rn+1,k+1 =
∑
j�0

ajRn,k+j

for n, k � 0. The literature about Riordan arrays is vast and still growing, and
the applications cover a wide range of subjects, such as enumerative combinatorics,
combinatorial sums, recurrence relations and computer science, among other topics
[19, 20, 25, 26, 32, 33, 36, 37]. Let [Tn,k]n,k�0 be an array of non-negative numbers
satisfying the recurrence relation

Tn,k = (An + a1k
2 + a2k + a3)Tn−1,k + (Bn + b1k

2 + b2k + b3)Tn−1,k−1,

where Tn,k = 0 unless 0 � k � n. Two known results for the strong q-log-convexity
of the generating functions of row sequences of [Tn,k]n,k�0, for a1 = b1 = 0 and for
A = B = 0, respectively, were proved by Chen et al . [18] and Zhu [43]. Therefore,
we also consider a similar problem for the above special interesting Riordan arrays
(see theorem 3.4). As consequences, we get the strong q-log-convexity of polynomials
arising in many well-known triangular arrays, such as the Bell triangle, the large
Schröder triangle, the Motzkin triangle, and the Catalan triangles of Aigner and
Shapiro, in a unified manner.

A good way of obtaining the log-concavity or log-convexity is via some operators.
For instance, Davenport and Pólya [22] proved that the log-convexity is preserved
under the binomial convolution. The binomial transformation yn =

∑n
k=0

(
n
k

)
xk

preserves the log-concavity property (see, for instance, [13, 27]). More generally,
Wang and Yeh [41] showed that the log-concavity property is preserved under the
binomial convolution. Ahmia and Belbachir [1] demonstrated that the log-convexity
property is preserved under the ordinary multinomials convolution. However, there
are few results about the linear transformation preserving the strong q-log-convexity
property. Motivated by this, in § 4 we research some linear transformations that
preserve the strong q-log-convexity property. We prove that the binomial transfor-
mation not only preserves the strong q-log-convexity property, but also preserves
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the strong q-log-concavity property. We also demonstrate that the strong q-log-
convexity is preserved by the Stirling transformation and Whitney transformation
of the second kind, which extends some known results for the strong q-log-convexity.

2. Log-concavity of the rows

Many sequences of binomial coefficients share various log-concavity properties. For
example, each row sequence in the Pascal triangle is log-concave, which is one basic
and classical result. More generally, any sequence of integers lying along a finite
ray in the Pascal triangle is log-concave (see [7, 8, 39]). It is also known that each
row sequence in the Stirling triangle of the second kind is log-concave (see, for
instance, [24, 30]). Recently, Belbachir and Tebtoub [9] also proved that every row
sequence in the 2-successive associated Stirling triangle is log-concave. Thus, in this
section, we will give a sufficient condition for the log-concavity of rows in recursive
matrices.

Theorem 2.1. Let an infinite lower triangular array [An,k]n,k�0 satisfy the recur-
rence

An,k = An−1,k−1 + gkAn−1,k + hkAn−1,k+1 (2.1)

for n � 1 and k � 0, where A0,0 = 1, A0,k = A0,−1 = 0 for k > 0. Assume that
non-negative sequences (gk)k�0 and (hk)k�0 are both concave. If

2gkhk � gk+1hk−1 + gk−1hk+1 and gk+1gk−1 � hk−1

for all k � 1, then, for any fixed n, the row sequence (An,k)0�k�n is log-concave
in k.

Proof. To show that (An,k)0�k�n is log-concave in k, it suffices to prove that

A2
n,k − An,k+1An,k−1 � 0

for any k � 0, which will be done by induction on n. It is clear for n = 0. Thus, we
suppose that it follows for 1 � n � m − 1. Then for n = m and 0 � k � m we have
that

A2
m,k − Am,k+1Am,k−1

= [Am−1,k−1 + gkAm−1,k + hkAm−1,k+1]2

− [Am−1,k + gk+1Am−1,k+1 + hk+1Am−1,k+2]
× [Am−1,k−2 + gk−1Am−1,k−1 + hk−1Am−1,k]

= A2
m−1,k−1 − Am−1,kAm−1,k−2︸ ︷︷ ︸ +[2gk − gk−1]Am−1,k−1Am−1,k

− gk+1Am−1,k+1Am−1,k−2 + h2
kA2

m−1,k+1 − hk+1hk−1Am−1,k+2Am−1,k︸ ︷︷ ︸
+ [2hkgk − hk−1gk+1]Am−1,kAm−1,k+1 − hk+1gk−1Am−1,k+2Am−1,k−1

+ g2
kA2

m−1,k − gk+1gk−1Am−1,k+1Am−1,k−1︸ ︷︷ ︸
+ [2hkAm−1,k−1Am−1,k+1 − hk+1Am−1,k+2Am−1,k−2 − hk−1A

2
m−1,k].

(2.2)
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In the following, we will consider the non-negativity of (2.2). On the one hand,
it follows from the log-concavity of (Am−1,k)0�k�m−1 that we have

A2
m−1,k−1 − Am−1,kAm−1,k−2 � 0. (2.3)

In addition, we know that (gk)k�0 and (hk)k�0 are log-concave by the concavities
of (gk)k�0 and (hk)k�0. Thus, we also have

h2
kA2

m−1,k+1 − hk+1hk−1Am−1,k+2Am−1,k � 0. (2.4)

On the other hand, by the log-concavity of (Am−1,k)0�k�m−1 and the given
concave condition 2gk � gn,k−1 + gk+1, we deduce that

[2gk − gk−1]Am−1,k−1Am−1,k − gk+1Am−1,k+1Am−1,k−2

� [2gk − gk−1 − gk+1]Am−1,k−1Am−1,k

� 0. (2.5)

By a similar method, we get

[2hkgk − hk−1gk+1]Am−1,kAm−1,k+1 − hk+1gk−1Am−1,k+2Am−1,k−1

� [2hkgk − hk−1gk+1 − hk+1gk−1]Am−1,kAm−1,k+1

� 0. (2.6)

Finally, by 2hk � hk+1 + hk−1 and the log-concavity of (gk)k�0, we obtain that

g2
kA2

m−1,k − gk+1gk−1Am−1,k+1Am−1,k−1︸ ︷︷ ︸ +2hkAm−1,k−1Am−1,k+1

− hk+1Am−1,k+2Am−1,k−2 − hk−1A
2
m−1,k

� g2
kA2

m−1,k − gk+1gk−1Am−1,k+1Am−1,k−1︸ ︷︷ ︸
+ (hk+1 + hk−1)Am−1,k−1Am−1,k+1 − hk+1Am−1,k+2Am−1,k−2

− hk−1A
2
m−1,k

� gk+1gk−1[A2
m−1,k − Am−1,k+1Am−1,k−1]︸ ︷︷ ︸

+ hk−1[Am−1,k−1Am−1,k+1 − A2
m−1,k]

+ hk+1[Am−1,k+1Am−1,k−1 − Am−1,k+2Am−1,k−2]

= [gk+1gk−1 − hk−1][A2
m−1,k − Am−1,k+1Am−1,k−1]︸ ︷︷ ︸

+ hk+1[Am−1,k+1Am−1,k−1 − Am−1,k+2Am−1,k−2]
� 0, (2.7)

where the last inequality follows from the log-concavity of (Am−1,k)0�k�m−1 and
gk+1gk−1 � hk−1.

Thus, by (2.2)–(2.7), we demonstrate that

A2
m,k − Am,k+1Am,k−1 � 0

for 0 � k � m. This completes the proof.
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The following special case may be more interesting.

Corollary 2.2. Define the matrix [An,k]n,k�0 recursively:

A0,0 = 1,

A0,k = 0 (k > 0),
An,0 = eAn−1,0 + hAn−1,1,

An,k = An−1,k−1 + gAn−1,k + hAn−1,k+1 (n � 1).

If eg � h � 0 and g � e � 0, then for any fixed n each row (An,k)0�k�n is
log-concave.

Applying our results to some combinatorial arrays in example 1.1, we have the
following result.

Proposition 2.3. Each row sequence in the Pascal triangle, the Stirling triangle of
the second kind, the Catalan triangles of Aigner and Shapiro, the Motzkin triangle,
the large Schröder triangle and the Bell triangle is log-concave.

3. Strong q-log-convexity of generating functions of rows

In this section we present a criterion for the strong q-log-convexity of generating
functions of rows in certain Riordan arrays.

Recall that a matrix M = (mij)i,j�0 of non-negative numbers is said to be 2-order
totally positive (TP2 for short) if all of its minors of order 1 and 2 are non-negative.
We often find that the entries of a matrix are polynomials with real coefficients in
an independent variable q. Similarly, if any corresponding minor of order 1 or 2 is
a polynomial with non-negative coefficients in q, then we say that it is q-TP2. See
Karlin [27] for more details.

The following lemmas will be very useful in our proof.

Lemma 3.1. A sufficient condition that a matrix is TP2 is that all leading principal
submatrices are TP2.

Lemma 3.2. If two matrices A and B are both TP2, then we have that AB is TP2.

By the classical Cauchy–Binet formula, we also have the following lemma.

Lemma 3.3. If the matrix A is TP2 and the matrix B is q-TP2, then we have that
AB is q-TP2.

The next theorem is our result for the strong q-log-convexity.

Theorem 3.4. Assume that the Riordan array [An,k]n,k�0 satisfies the recurrence

An,k = An−1,k−1 + gAn−1,k + hAn−1,k+1, (3.1)
An,0 = eAn−1,0 + hAn−1,1

for n � 1 and k � 1, where A0,0 = 1, A0,k = 0 for k > 0. If ge � h � 0 and
g � e � 0, then the generating functions An(q) =

∑
k�0 An,kqk for n � 0 form a

strongly q-log-convex sequence.
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Proof. Define a triangular array S = [bn,k(q)]n,k�0, where

bn,k(q) =
∑
i�k

An,iq
i for all n and k.

Thus, by (3.1), it is not hard to verify that the triangular array S = [bn,k(q)]n,k�0
satisfies the recurrence

bn,k(q) = qbn−1,k−1(q) + gbn−1,k(q) +
h

q
bn−1,k+1(q) (n � 1, k � 1),

bn,0(q) = (e + q)bn−1,0(q) +
(

g − e +
h

q

)
bn−1,1(q) (n � 1), (3.2)

where b0,0 = 1, b0,k = 0 for k > 0. It is clear that An(q) = bn,0(q).
So, by (3.2) we have

An(q)Am(q) − An+1(q)Am−1(q)
= bn,0(q)bm,0(q) − bn+1,0(q)bm−1,0(q)
= bn,0(q)[(e + q)bm−1,0(q) + (g − e + h/q)bm−1,1(q)]

− bm−1,0(q)[(e + q)bn,0(q) + (g − e + h/q)bn,1(q)]
= [(g − e)q + h][bn,0(q)bm−1,1(q) − bm−1,0(q)bn,1(q)]/q

for any m � n. Thus, in order to prove the strong q-log-convexity of (An(q))n�0, it
suffices to prove that the matrix S is q-TP2 since g � e and h � 0.

Consider the infinite lower triangular matrix

A = (An,k)k,n�0 =

⎛
⎜⎜⎜⎝

A0,0 0 0 · · · 0
A1,0 A1,1 0 · · · 0
A2,0 A2,1 A2,2 · · · 0

...
...

...
. . .

...

⎞
⎟⎟⎟⎠

and an infinite lower triangular matrix E = (qi)i�j�0. It is clear that S = AE and
E is q-TP2, which implies that S is q-TP2 by lemma 3.3 if A is TP2. Thus, in what
follows we will prove that A is TP2.

Define an infinite matrix

J =

⎛
⎜⎜⎜⎜⎜⎝

e 1 0 0 0 · · · 0
h g 1 0 0 · · · 0
0 h g 1 0 · · · 0
0 0 h g 1 · · · 0
...

...
...

...
...

. . .
...

⎞
⎟⎟⎟⎟⎟⎠ .

Define the matrix Q obtained from A by deleting its first row. Assume that the
nth leading principal submatrices of A, Q and J are An, Sn and Jn, respectively.
Thus, by (3.1) we have

Qn = AnJn.

Note that J is TP2 since g2 � h and ge � h. Thus, by induction on n, we conclude
that An is TP2 by lemma 3.2. So, by lemma 3.1 we have that A is TP2. This
completes the proof.
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It is clear that theorem 3.4 can be applied to some of the triangular arrays in
example 1.1 in a unified manner.

Proposition 3.5. The generating functions of rows in Catalan triangles of Aigner
and Shapiro, the Motzkin triangle, and the large Schröder triangle respectively form
strongly q-log-convex sequences.

4. Strong q-log-convexity and linear transformations

It is known that many polynomials, denoted by An(q) =
∑n

k=0 An,kqk for n � 0,
have strong q-log-convexity (see [18,42]). Note that the sequence {qk}k�0 is strongly
q-log-convex. So it is natural to consider the strong q-log-convexity of the linear
transformation

gn(q) =
n∑

k=0

An,kfk(q)

for n � 0 if (fk(q))k�0 is strongly q-log-convex. In this section we will study some
linear transformations that preserve the strong q-log-convexity property.

Theorem 4.1. Assume that (an,k)0�k�n and (bn,k)0�k�n are two triangles of non-
negative numbers. If the linear transformations tn =

∑n
k=0 an,kfk(q) and sn =∑n

k=0 bn,kfk(q) preserve the strong q-log-convexity property, then so does

gn(q) =
n∑

k=0

Tn,kfk(q)

for n � 0, where Tn,k =
∑n

j=k an,jbj,k.

Proof. Let (fk(q))n�0 be a strongly q-log-convex sequence. Notice that

gn(q) =
n∑

k=0

fk(q)
n∑

j=k

an,jbj,k =
n∑

j=0

an,j

[ j∑
k=0

bj,kfk(q)
]
.

Let hj(q) =
∑j

k=0 bj,kfk(q) for 0 � j � n, which is strongly q-log-convex since
sn =

∑n
k=0 bn,kfk(q) preserves the strong q-log-convexity property. Thus, it follows

from the linear transformations tn =
∑n

k=0 an,kfk(q) that preserve the strong q-log-
convexity property that (gk(q))k�0 is strongly q-log-convex. The proof is complete.

Theorem 4.2. The binomial transformation gn(q) =
∑n

k=0

(
n
k

)
fk(q) preserves the

strong q-log-convexity property.

Proof. Let (fk(q))k�0 be a strongly q-log-convex sequence. We first claim that
(fk(q) + fk+1(q))k�0 is strongly q-log-convex, which follows from

[fj−1(q) + fj−2(q)][fi+1(q) + fi(q)] − [fj(q) + fj−1(q)][fi(q) + fi−1(q)]
= [fj−1(q)fi+1(q) − fj(q)fi(q)] + [fj−2(q)fi(q) − fj−1(q)fi−1(q)]

+ [fj−2(q)fi+1(q) − fj(q)fi−1(q)]
�q 0

for any i � j � 0 since (fk(q))k�0 is strongly q-log-convex.
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Using this claim, we will prove the desired result by induction on n. If 0 � n � 3,
then we have

g0(q) = f0(q),
g1(q) = f0(q) + f1(q),
g2(q) = f0(q) + 2f1(q) + f2(q),
g3(q) = f0(q) + 3f1(q) + 3f2(q) + f3(q),

since gn(q) =
∑n

k=0

(
n
k

)
fk(q). Therefore, it follows from the strong q-log-convexity

of (fk(q))k�0 that

g2(q)g0(q) − g2
1(q) = f2(q)f0(q) − f2

1 (q) �q 0,

g3(q)g0(q) − g2(q)g1(q) = 2[f2(q)f0(q) − f2
1 (q)] + [f0(q)f3(q) − f1(q)f2(q)] �q 0,

g3(q)g1(q) − g2
2(q) = [f2(q)f0(q) − f2

1 (q)] + [f0(q)f3(q) − f1(q)f2(q)]

+ [f3(q)f1(q) − f2
2 (q)] �q 0,

which imply that g0(q), g1(q), g2(q), g3(q) is strongly q-log-convex. So we proceed
to the inductive step (n � 4).

Note that

gn(q) =
n∑

k=0

(
n

k

)
fk(q)

=
n−1∑
k=0

(
n − 1

k

)
(fk(q) + fk+1(q)).

Therefore, by the induction hypothesis and the strong q-log-convexity of (fk(q) +
fk+1(q))k�0, we have that g0(q), g1(q), g2(q), . . . , gn(q) is strongly q-log-convex.

The Bell polynomials are given by Bn+1(q) =
∑

k�0 Sn+1,kxk, where Sn,k are
the Stirling numbers of the second kind. It has been shown that the polynomials
Bn(q) form a strongly q-log-convex sequence (see, for instance, [18, 42, 43]). Note
that Bn+1(q) =

∑n
k=0

(
n
k

)
Bn(q). Thus, using theorem 4.2, we can give a new proof

for the strong q-log-convexity of Bn(q).
Similar to the proof of theorem 4.2, we also have the following result.

Theorem 4.3. The binomial transformation gn(q) =
∑n

k=0

(
n
k

)
fk(q) preserves the

strong q-log-concavity property.

Note that a log-concave sequence is a special strong q-log-concave sequence.
Thus, theorem 4.3 generalizes the result that the binomial transformation yn =∑n

k=0

(
n
k

)
xk preserves the log-concavity property (see, for instance, [13,27]).

The following is another criterion for the linear transformation to preserve the
strong q-log-convexity property.
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Theorem 4.4. Let Tn,k =
∑n−1

j=k−1

(
n−1

j

)
Tj,k−1 for n, k � 1 and Tn,0 = T0,k = 0

unless T0,0 = 1. Then the linear transformation

gn(q) =
n∑

k=0

Tn,kfk(q)

preserves the strong q-log-convexity property.

Proof. Let (fn(q))n�0 be a strongly q-log-convex sequence. It suffices to prove that
the sequence (gn(q))n�0 is q-log-convex. We proceed by induction on n. It follows
from the given conditions that we can obtain

g0(q) = T0,0f0(q) = f0(q),
g1(q) = T1,0f0(q) + T1,1f1(q) = f1(q),
g2(q) = T2,0f0(q) + T2,1f1(q) + T2,2f2(q) = f1(q) + f2(q),
g3(q) = T3,0f0(q) + T3,1f1(q) + T3,2f2(q) + T3,3f3(q) = f1(q) + 3f2(q) + f3(q).

Thus, we deduce that

g2(q)g0(q) − g1(q)2 = f2(q)f0(q) − f1(q)2 + f1(q)f0(q) �q 0,

g3(q)g0(q) − g1(q)g2(q) = [f1(q) + 3f2(q) + f3(q)]f0(q) − f1(q)[f1(q) + f2(q)]

= [f1(q)f0(q) + 2f2(q)f0(q)] + [f2(q)f0(q) − f1(q)2]
+ [f3(q)f0(q) − f1(q)f2(q)] �q 0,

g3(q)g1(q) − g2(q)2 = [f1(q) + 3f2(q) + f3(q)]f1(q) − [f1(q) + f2(q)]2

= f1(q)f2(q) + f1(q)f3(q) − f2
2 (q) �q 0

since (fn(q))n�0 is strongly q-log-convex. This implies that g0(q), g1(q), g2(q), g3(q)
is strongly q-log-convex. Now assume that g0(q), g1(q), g2(q), . . . , gn−1(q) is strongly
q-log-convex for n � 4, i.e. gj(q) =

∑j
k=0 Tj,kfk(q) preserves the strong q-log-

convexity property for 0 � j � n − 1. Since

Tn,k =
n−1∑

j=k−1

(
n − 1

j

)
Tj,k−1,

we have

gn(q) =
n∑

k=0

Tn,kfk(q)

=
n∑

k=0

fk(q)
n−1∑

j=k−1

(
n − 1

j

)
Tj,k−1

=
n−1∑
j=0

(
n − 1

j

) j∑
k=0

Tj,kfk+1(q)

=
n−1∑
j=0

(
n − 1

j

)
hj(q),
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where

hj(q) =
j∑

k=0

Tj,kfk+1(q) for 0 � j � n − 1.

Then the sequence h0(q), h1(q), . . . , hn−1(q) is strongly q-log-convex by the induc-
tion hypothesis, and so is the sequence g0(q), g1(q), . . . , gn(q) since the linear trans-
formation tn(q) =

∑n
k=0

(
n
k

)
fk(q) preserves the strong q-log-convexity property.

This completes the proof.

The Stirling numbers Sn,k of the second kind are defined by the relation

xn =
n∑

k=0

Sn,k(x)k

for n � 0, where (x)k = x(x − 1)(x − 2) · · · (x − k + 1). It is known that

Sn,k =
n−1∑

j=k−1

(
n − 1

j

)
Sj,k−1,

where Sn,0 = S0,k = 0, S0,0 = 1; see [21, p. 209]. Hence, by theorem 4.4, we have
the next result, which extends the strong q-log-convexity of Bell polynomials.

Proposition 4.5. The Stirling transformation of the second kind

gn(q) =
n∑

k=0

Sn,kfk(q)

preserves the strong q-log-convexity property.

In [40], Tanny introduced the following polynomials:

Fn(q) =
n∑

k=0

Sn,kk!qk.

By proposition 4.5, we can give a new proof of the following result.

Corollary 4.6 (Chen et al . [18]). The polynomials Fn(q) form a strongly q-log-
convex sequence.

The Dowling lattice Qn(G) is a geometric lattice of rank n over a finite group G
of order m and has many remarkable properties; see [10–12,23]. When m = 1, that
is, G is the trivial group, Qn(G) is the lattice

∏
n+1 of partitions of an (n + 1)-

element set. So the Dowling lattices can be viewed as group-theoretic analogues of
the partition lattices. Let Wm(n, k) be the Whitney numbers of the second kind. It
is known that [11]

Wm(n, k) = m−k
n∑

i=k

(
n

k

)
Si,kmi.

Thus, the following proposition is immediate by theorems 4.1 and 4.2, and propo-
sition 4.5.
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Proposition 4.7. The Whitney transformation of the second kind

gn(q) =
n∑

k=0

Wm(n, k)fk(q)

preserves the strong q-log-convexity property.

The Dowling polynomials are given by Dn(q) =
∑n

k=0 Wm(n, k)qk. In addi-
tion, Benoumhani [11] introduced the following generalized polynomials: Fn,m(q) =∑n

k=0 k!Wm(n, k)mkqk and Gn,m(q) =
∑n

k=0 k!Wm(n, k)qk. Obviously, proposi-
tion 4.7 immediately implies the following result.

Corollary 4.8 (Chen et al . [18]). The polynomials Dn(q), Fn,m(q) and Gn,m(q)
are all strongly q-log-convex.
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