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Abstract

This paper is an exploration of the parallel graph reduction approach to parallel functional

programming, illustrated by a particular example: pipelined, dynamically-scheduled imple-

mentation of search, updates and read-modify-write transactions on an in-store binary search

tree. We use program transformation, execution-driven simulation and analytical modelling

to expose the maximum potential parallelism, the minimum communication and synchronisa-

tion overheads, and to control the overall space requirement. We begin with a lazy functional

program specifying a series of transactions on a binary tree, each involving several searches

and updates, in a side-effect-free fashion. Transformation of the source code produces a

formulation of the program with greater locality and larger grain size than can be achieved

using naive parallelization methods, and we show that, with care, these tasks can be scheduled

effectively. Even with a workload using random keys, significant spatial locality is found, and

we evaluate a modified cache coherency protocol which avoids false sharing so that large

cache lines can be used to minimise the number of messages required. As expected with

a pipeline, the application should reach a steady state as soon as the first transaction is

completed. However, if the network latency is too large, the rate of completion lags behind

the rate at which work is admitted, and internal queues grow without bound. We determine

the conditions under which this occurs, and show how it can be avoided while maximising

speedup.

Capsule Review

The functional programming community has a long tradition of using program transformation

and analytical models to improve, and explore the characteristics of, sequential programs.

This paper is novel in applying these techniques, along with simulation, to improve and

characterise, the parallel behaviour of a functional program. The program has interesting

parallel behaviour, namely a high degree of synchronisation, data-dependent sharing of

intermediate results and a high degree of spatial locality. All three techniques are used

to improve parallelism by increasing locality and maximal parallelism, and reducing the

communication and synchronisation overheads. An analysis of the key pipeline bottleneck

ã Currently with Micromuse PLC, London, UK.

https://doi.org/10.1017/S0956796801003793 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801003793


360 A. J. Bennett et al.

in the program allows maximum throughput to be optimised according to the latency and

computation speed of the underlying parallel platform.

1 Introduction

This paper is an exploration of a particular approach to parallel functional pro-

gramming, in which the dynamically-scheduled, shared-memory parallel functional

approach is applied to a simple application involving updates to binary search trees.

The application can be considered a simplified, in-store formulation of on-line

transaction processing on a database (although there are good alternative tech-

niques available). We selected it for this study because it illuminates more general

performance issues in parallel software design, which we expose in this paper:

• Its high rate of synchronization reflects a fundamental requirement of the

algorithm, unlike many benchmarks commonly used for parallel graph reduc-

tion.

• It displays interesting, data-dependent sharing of intermediate results.

• It displays considerable spatial locality, despite lacking a statically-predictable

access pattern.

This case study is a simple example that exposes a number of interesting issues.

These issues, we argue, are very likely to arise in more complicated programs, in less

tractable form. It follows from the paper’s exploratory nature that our conclusions

are indicative rather than conclusive.

1.1 Background and related work

A functional formulation of transaction processing was introduced by Trinder et

al. (Argo et al., 1987; Trinder, 1989), and the results of simulation and execution on

the GRIP multiprocessor are reported in Akerholt et al. (1993). Our approach to

parallel functional programming is based on parallel graph reduction (Peyton Jones,

1989); the most thorough studies of parallel graph reduction performance have arisen

from the GRIP project (Peyton Jones et al., 1987), although the most successful

implementations have relied on general-purpose shared-memory multiprocessors

(e.g. the 〈ν, G〉-machine) (Augustsson and Johnsson, 1989). Closely related work

has been done in the context of futures in MultiLisp (Halstead, 1984). Caching

and locality of reference in a sequential graph reducer has been studied by several

groups (Koopman et al., 1992). The efficient implementation of the shared graph

has been studied by the present authors (Bennett and Kelly, 1993), and based on

this analysis we have proposed a caching scheme – the Two-Level Ownership (TLO)

protocol – specially suited to parallel graph reduction (Bennett and Kelly, 1994;

Bennett and Kelly, 1997). We study the effectiveness of both this and conventional

cache coherence protocols in supporting functional transaction processing later in

this paper.

We are particularly concerned with modern multicomputers, which have relatively
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high latency and high bandwidth interconnection networks – these characteristics

greatly influence the behaviour and speedup of programs.

There is a considerable literature on algebraic transformation of functional pro-

grams to improve their suitability for parallel execution (e.g. (Boyle et al., 1987;

Kelly, 1989; Harrison, 1992; Darlington et al., 1993)). The transformations pre-

sented here are unusual in being targeted to parallel graph reduction, and concern

reducing control dependence. They are related to the work of Bird and others on

using ‘circular’ programs to eliminate multiple traversals of data (Bird, 1984).

Our work is based on Trinder’s technique of using multiple versions of trees,

and using the synchronization mechanism of parallel graph reduction for record

locking. However the mechanism used to achieve concurrent evaluation in the

presence of total transactions is quite different: we have used transformation whereas

Trinder proposes various approaches based on implementations of the conditional

operator (see section 3). The most successful of these, the ‘Friedman and Wise’ fwif

approach tends to produce many small tasks. Recognizing that current and future

multiprocessors have high latency and high bandwidth interconnection networks, we

apply various transformations to control task granularity and locality. Larger grain

tasks raise a number of interesting scheduling issues.

In later work, the Glasgow group conducted extensive detailed applications case

studies (Loidl and Trinder, 1998; Loidl et al., 1998). To support this activity, they

developed simulation tools similar to ours, and visualization techniques (Hammond

et al., 1995). In the light of their experience, they have developed techniques for

abstract but explicit control over how parallelism is exploited (Trinder et al., 1998).

Loidl and Hammond (1996) explicitly address the idea of ‘bulk fetching’, analogous

to our use of large cache lines.

1.2 Main contributions

1. We provide an instructive example of systematic algebraic transformation to

improve the run-time characteristics of a dynamic, irregular multi-threaded

application (sections 3 and 4)

2. We expose and analyse the need to control CPU scheduling to avoid thread

migration and improve locality (section 6.2)

3. We evaluate the application’s performance using a conventional Distributed

Shared Memory (DSM) implementation, showing the presence of spatial lo-

cality as predicted by our analytical model, offset by contention for cache line

ownership due to false sharing (section 8)

4. We demonstrate that a modified DSM coherency protocol, which exploits the

parallel graph reduction memory access discipline, eliminates invalidations so

that false sharing does not lead to contention (section 8.3)

5. We identify a serious problem with the application’s space behaviour, which

occurs under some combinations of workload and system performance char-

acteristics. This could be solved naively by restricting the rate of initiation

of tasks. We show (section 8.4) that by balancing the pipeline, much higher

performance can be achieved while retaining reasonable space requirements.
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1.3 Structure of the remainder of the paper

The remainder of the paper is structured as follows: section 2 introduces the binary

search tree access and update operations, and presents the structure of a transaction.

section 3 concerns parallelizing the execution of a sequence of transactions. Inter-

transaction parallelism can be exploited if transactions are expected to succeed,

and we show how an optimistic implementation can be derived formally. A further

transformation, combining two similar passes over a data structure into one is

shown in section 4. An overview of parallel graph reduction and the simulation

scheme used for our experiments is given in section 5. Results of simulations of an

ideal shared-memory are used to illustrate the operation of the new form of the

program in section 6. Multicache implementations of shared-memory are reviewed

in section 7, and simulation results and their corresponding analytical models are

presented in section 8. Finally, we present our conclusions and give some pointers

to future work.

2 A simple formulation of transaction processing

We begin with a direct functional formulation of transaction processing. Similar

material is covered in greater detail in Trinder (1989).

The usual implementation of updates in a conventional database system alters

the data structures in place. At first sight it would appear that a functional version

must generate a new copy of the entire database for each update. However, it is well

known that simple databases may be structured as trees, and the update need only

generate new versions of nodes on a path down the tree to the addressed record

(this representation is also well suited to write-once media). For ease of illustration,

we shall assume a simple database, comprising a collection of records indexed by

a single key, and that the whole database resides in memory, or that the language

supports persistent data structures.

More specifically, we define a database as a tree of the following kind:

data DB α β
4
= Leaf α β | Node (DB α β) α (DB α β)

A database item is either a leaf, containing a key and associated data, or an index

node containing a signpost key and two subtrees. In a properly constructed tree, the

key in an index node is greater than or equal to all the keys in the left subtree and

less than all those in the right subtree.

The function lookup returns the datum associated with a key, if present, or fails:

data Maybe α
4
= Yes α | No

lookup : α → DB α β → Maybe β

lookup x (Leaf k v )
4
= if k = x then Yes v else No

lookup x (Node l k r )
4
= lookup x (if x 6 k then l else r )

The following function assigns the datum associated with a key, if present:

assign : α → β → DB α β → DB α β
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db assign x v db

Fig. 1. New nodes created by assign.

assign x v ′ (Leaf k v )
4
= Leaf k (if k = x then v ′ else v )

assign x v ′ (Node l k r )
4
=

if x 6 k

then Node (assign x v ′ l ) k r

else Node l k (assign x v ′ r )

As noted above, only nodes on the path down to the addressed leaf are replaced

(see figure 1).

We do not present results in this paper for updates that change the shape of the

tree, such as insertions and deletions. As is explained in section 9, the application’s

behaviour would be complicated somewhat but not substantially changed.

A great deal of parallelism is available in such a database. A lookup and an assign

applied to the same database may proceed independently in parallel, since the assign

returns a new tree without altering the old one. Another source of parallelism is

the non-strict semantics of the functional formulation, which allows a constructed

value to be inspected before its components have been evaluated. Here, an instance

of assign is able to construct each index node without waiting for the recursive call.

If the result is the input to another call of assign, the new index node may be given

to a thread executing the following call while the current thread processes a child

node. That is, successive calls to assign may run concurrently in a pipeline. Once

their paths diverge in the tree, they will be completely independent.

On the other hand, if a thread inspects the value of a sub-expression that is being

evaluated by another thread, it must block until the value is available. Hence the

flow of data within the program provides the only locking mechanism we shall need.

In the current case, a thread executing assign is blocked from accessing a node

until the previous instance has updated the node, and moved on to one of its child

nodes. The effect is equivalent to a tree locking scheme, with a tree node being held

temporarily and released as soon as one of its children is held.

A more realistic application might group a number of lookup and update oper-
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ations as a transaction, so that the updates are taken as a whole – either all take

effect, or in the event of some failure the database is unchanged. For example, let t

denote a data structure describing a transaction, containing distinct keys x1, . . . , x5.

Let the corresponding values be v1, . . . , v5. If all keys are present and a condition c

defined in terms of t and the vi is satisfied, we wish to replace each vi with a new

value ei defined in terms of t and v1, . . . , v5. Otherwise we wish to return the original

database. Thus a simple function to apply such a transaction to a database is:

apply : Trans → DB Key Value → DB Key Value

apply t db0
4
=

let v1
4
= lookup x1 db0 in

...

let v5
4
= lookup x5 db0 in

let all-ok
4
= ok v1 ∧ ... ∧ ok v5 in

if all-ok ∧ c

then

let db1
4
= assign x1 e1 db0 in

...

let db5
4
= assign x5 e5 db4 in

db5

else db

where the function ok tests whether a lookup has succeeded:

ok : Maybe α → Bool

ok (Yes x )
4
= True

ok No
4
= False

This sort of global rollback is neatly supported by a functional formulation (Trinder,

1989): the program may return either the old root node or a new one reflecting all

the updates.

3 Reducing synchronization

The program of the previous section has much parallelism within a transaction:

• The various lookup operations may be executed in parallel.

• Assuming that transactions usually succeed, we may speculatively execute the

assign operations in parallel with the lookups. Moreover, the assign operations

exhibit the pipeline parallelism discussed above.

However, in a sequence of transactions, no parallelism between transactions is

possible: the top-level if forces a synchronization between transactions, as the

next transaction cannot begin until the appropriate branch is selected. This is

wasteful, since the two possible versions of the output database differ very little,

and the differences are all in the leaf records, not the index nodes. Recognizing this,

Trinder (1989) and Akerholt et al. (1993) proposed that the if in the above program
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be replaced with a less-strict conditional proposed by Friedman and Wise (1978). The

idea is to evaluate the branches concurrently with the condition; if both branches

have the same top-level structure, it may be returned even if the condition is as

yet unknown, while execution continues on the subtrees. The action of this function

might be described by parallel application of the usual conditional rules

fwif True x y
4
= x

fwif False x y
4
= y

together with an extra rule for each data constructor:

fwif b (C x1 ... xn) (C y1 ... yn) =

C (fwif b x1 y1) ... (fwif b xn ... yn)

This requires at least two threads, one to evaluate the condition and another

to evaluate the two branches to weak head normal form. If the former thread

terminates first, then fwif behaves like a normal conditional. If the latter terminates

first, and the two branches have the same shape, the structure may be returned while

execution continues on the subtrees.

The effect is to push the conditional down into its branches, hence reducing syn-

chronization. We prefer to achieve a similar effect using a source-level transformation,

generating a new program that exhibits better parallel behaviour, but is equivalent

in the specified context. The transformational approach can produce programs in

which the grain of parallelism is quite large. The essence of the transformation to

remove the synchronization entailed by if is a pair of observations

if b then e else e v e

if b then C e1 ... en else C e′1 ... e′n v
C (if b then e1 else e′1) ... (if b then en else e′n)

The two sides of each relation are equal if b is defined, but differ if b diverges –

the right-hand sides can produce results without waiting for the value of b. The

difference on partially defined inputs reflects increased laziness in a sequential setting,

increased concurrency in a parallel one.

In the current case, we wish to apply such a transformation to a sub-expression

of the form

if b then assign x v d else d

That is, we require a function

maybe-assign : α → Maybe β → DB α β → DB α β

such that for all fully defined x and d,

if b then assign x v d else d v
maybe-assign x (if b then Yes v else No ) d (*)

The function maybe-assign always updates the tree, and can therefore proceed down

the tree (thereby freeing the upper levels for other processes). It need not wait to

know whether the value in the leaf must be changed until it reaches that leaf.
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Assuming for the moment the existence of such a function, we can transform our

transaction processor to the equivalent

decide : Trans → Maybe Value → ... → Maybe Value →
(Maybe Value × ... × Maybe Value )

decide t u1 ... u5 =

let all-ok
4
= ok u1 ∧ ... ∧ ok u5 in

if all-ok ∧ c

then (Yes e1, ..., Yes e5)

else (No , ..., No )

apply t db0
4
=

let u1
4
= lookup x1 db0 in

...

let u5
4
= lookup x5 db0 in

let (u′1, ..., u′5)
4
= decide t u1 ... u5 in

let db1
4
= maybe-assign x1 u′1 db0 in

...

let db5
4
= maybe-assign x5 u′5 db4 in

db5

The two programs are equivalent on fully defined inputs. However, in the revised

version the five instances of maybe-assign can be pipelined, and will proceed in

parallel once their paths in the tree diverge. Subsequent applys may also run

concurrently, blocking only if they refer to one of these keys.

It remains to construct a definition of the function maybe-assign. The usual

procedure in such cases is to attempt to prove the desired relation (*) by induction

over the data structure. In the process, the appropriate definition of the function

will often emerge, as happens in this case.

To simplify the notation a little, we introduce an infix function

or : Maybe α → α → α

Yes x or y
4
= x

No or y
4
= y

The Leaf case of equation (*) is

if b then assign x u (Leaf k v ) else Leaf k v

= { definition of assign }
if b then Leaf k (if k = x then u else v ) else Leaf k v

v { re-arranging ifs }
Leaf k (if b ∧ k = x then u else v )

= { re-arranging ifs }
Leaf k (if k = x then (if b then u else v ) else v )

= { definition of or }
Leaf k (if k = x then ((if b then Yes u else No ) or v ) else v )

= { synthesized Leaf case of maybe-assign }
maybe-assign x (if b then Yes u else No ) (Leaf k v )
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To perform the last step, we had to synthesize the Leaf case of the definition of

maybe-assign:

maybe-assign x u (Leaf k v )
4
= Leaf k (if k = x then (u or v ) else v )

In attempting to prove the Node case of relation (*), we may assume induction

hypotheses, namely that equation (*) has been demonstrated for l and r.

if b then assign x v (Node l k r ) else Node l k r

= { definition of assign }
if b

then (if x 6 k then Node (assign x v l ) l r

else Node l k (assign x v r )) else Node l k r

v { re-arranging ifs }
if x 6 k

then Node (if b then assign x v l else l ) k r

else Node l k (if b then assign x v r else r )

= { induction hypotheses for l and r }
if x 6 k

then Node (maybe-assign x (if b then Yes v else No ) l ) k r

else Node l k (maybe-assign x (if b then Yes v else No ) r )

= { synthesized Node case of maybe-assign }
maybe-assign x (if b then Yes u else No ) (Node l k r )

As before, to perform the last step we had to synthesize the Node case of the

definition of maybe-assign:

maybe-assign x u (Node l k r )
4
=

if x 6 k

then Node (maybe-assign x u l ) k r

else Node l k (maybe-assign x u r )

By pushing the synchronization point downwards, we have constructed a program

that always updates, but updates with the original content in the event of failure.

This might be considered an optimistic update; in the context of transactions that

rarely fail, this optimism is justified.

The improvement results from the fact that the transformed program produces a

more defined result when the condition b is undefined – implying that more work

can be done before having to wait for input. Although the prospects for automating

a transformation like this seem bleak, the semantic basis for comparing the two is

intriguing.

4 Increasing grain size

Our revised program is naturally partitioned as a thread for each lookup and one

for each maybe-assign. It is necessary to perform all the assignments concurrently,

so that the upper levels of the index are made available to the next transaction as

early as possible. However, we can increase the grain size still further.
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A well-known transformation (Burstall and Darlington, 1977) combines two sim-

ilar passes over a data structure into one, saving some effort in searching through

the data structure. In the parallel context, this transformation may fuse two similar

processes, creating a larger process with greater locality. Here, we shall apply this

procedure to lookup and maybe-assign, which repeat the same process of searching

for the key in the tree. Applying the usual technique, we define a function that

performs both operations

update : α → Maybe β → DB α β → Maybe β × DB α β

update k v ′ d
4
= (lookup k d , maybe-assign k v ′ d )

A standard application of the fold-unfold technique to the above definition of update

yields an equivalent recursive definition of update:

update x u ′ (Leaf k v )
4
=

(u , Leaf k v ′)
where (u , v ′) 4

= if k = x then (Yes v , u ′ or v ) else (No , v )

update x u ′ (Node l k r )
4
=

if x 6 k

then (u , Node l ′ k r )

where (u , l ′) 4
= update x u ′ l

else (u , Node l k r ′)
where (u , r ′) 4

= update x u ′ r

The update function uses its database argument immediately, making the top level

of its database result available as soon as it moves to the next level. Only when it

reaches the leaf does it make its value result available, after which it consults its

value argument to determine whether to alter the value in the leaf. Thus several

updates may be pipelined.

Recall that we assumed that all keys within a transaction were distinct, so that

the five updates are independent:

lookup xi dbi−1 = lookup xi db0

for each i = 2, . . . , 5. We shall use this independence in the reverse direction,

serializing the composition of the updates. Thus we can restate the transaction

processor as follows:

apply t db0
4
=

let

(u1, db1)
4
= update x1 u′1 db0

...

(u5, db5)
4
= update x5 u′5 db4

(u′1, ..., u′5)
4
= decide t u1 ... u5

in

db5
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The let in this program is recursive: the ui are defined in terms of the u′j , which in turn

are defined in terms of the ui. However, there is no circularity in the computation,

since as noted above update provides the value of ui before it examines the value of

u′i. Moreover, the only part of the database that depends upon u′i is the data value

in one leaf.

5 Experimental design

To evaluate the parallel performance of the new form of the transaction processor,

we have studied its behaviour on an implementation of parallel graph reduction.

This in turn runs on a simulation of a shared-memory multiprocessor. We have

chosen to use simulation rather than an implementation on real hardware since it

allows the behaviour of the system to be closely monitored without affecting its

behaviour, permitting, for example, counts of important events to be made without

changing the schedule of the computation or its simulated execution time.

5.1 Compiler and run-time system

Our complete implementation consists of an optimizing compiler for a functional

language that generates an executable when linked with a parallel run-time system,

which contains the graph reducer itself. The source language is a lazy, higher-order

functional language in the tradition of SASL and Haskell (Hudak et al., 1992). The

primary objective in building an optimizing compiler for a lazy functional language

is to reduce the frequency at which claims and references are made to the heap. It

is therefore of great importance that the compiler used in our experiments should

perform well. We have adopted the compiler developed for the FAST project (Cox

et al., 1992), and although comparing compilers is difficult, we are confident that the

system is competitive with the state of the art (Hartel and Langendoen, 1993). It

also, conveniently, generates C, making generated code very easy to instrument and

modify. A comprehensive description of the parallel graph reducer and simulator

design can be found in Bennett (1993).

5.2 Parallel graph reduction: closures and ‘sparking’

Our parallel implementation is based on a parallel graph reducer that supports the

‘call-by-need’ parameter passing mechanism required by lazy functional languages

by using closures. Function arguments are represented by ‘closures’. A closure is a

heap-based object containing a method for computing a value; the method is only

invoked when the closure is demanded , and on completion of the call the closure is

overwritten by its result value. Closures cannot be allocated on the stack since their

lifetime is unknown: a heap is used instead. The programmer may specify parallel

evaluation of closures: an expression is annotated with the keyword spark, requesting

that the closure representing the expression be added to a pool of available tasks

for distribution to other processing elements (Peyton Jones et al., 1987). If a closure

that is in the process of being evaluated is demanded by another thread, the second
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thread blocks until evaluation has been completed. A thread does not need to block

when an evaluated closure is demanded – the value can be used directly.

Closures are used in several places in the new formulation of the transaction

processor. In the definition of the apply function in section 4, each call of update

is packaged into a closure and then sparked. The call to decide is also built as a

closure, but is not sparked since its arguments will not be available until the updates

have reached the leaves of the tree. The u ′i parameters of the update closures are

components of the value of the decide closure. The first call of update to reach a leaf

node of the tree will demand its u ′i parameter, in turn evaluating the decide closure.

Any other update requiring a u ′i will block until decide completes, at which point

the new result database can be returned. This is described in detail in section 6.1.

5.3 Simplifications

A number of assumptions and simplifications have been made in our experimental

design: it is a compromise between the need to model the important effects, and the

need to study these effects in isolation. Our objective is to learn general lessons about

a large class of systems, and we are therefore less concerned that the experiments

predict the actual performance of some production system, as to do so we would

have to introduce many factors that are orthogonal to the issues we intend to study.

These simplifications are outlined in the design below.

5.3.1 Scheduling

Parallel graph reduction is inherently dynamically scheduled, and mechanisms are

required to distribute sparked tasks around the machine. Logically a single shared

task pool is used, but this will inevitably become a source of contention in a large-

scale system if implemented as a single queue. The usual approach taken in a large

system is to equip each processor with a local task queue to which closures it sparks

are added and from which new work can be fetched when necessary. Mechanisms

are therefore required to distribute tasks around the machine on demand. Policies

relating to this form of scheduling are described and evaluated experimentally

in Goldberg (1988).

We have adopted such a work stealing scheme, except that we model ideal

behaviour when a processor needs to find a sparked task and none is available

locally: the oldest sparked task is used. We do not account for the communications

traffic involved in implementing this (i.e. the traffic required to find the oldest sparked

task in the machine). If no work is available at all, the process is removed from the

set of processes under simulation and added to a queue of idle processors. It is either

resumed later when work becomes available, or remains in this state until evaluation

of the functional program completes and the simulation system terminates. Note

that once execution of a thread has begun, it will not migrate – we return to this

issue in section 6.1.
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5.3.2 Simulated architectures

Our first simulation results are based on an ideal shared memory in which all accesses

have unit cost, allowing optimum speedups to be determined, and scheduling policies

to be evaluated without being affected by the performance of the memory system and

the interconnection network. We then study the influence of using two multicache

shared-memory designs that are suitable for implementation in hardware, one of

which has been previously shown to be particularly effective with parallel graph

reduction (Bennett and Kelly, 1994).

A simple model of a shared-memory parallel architecture has been adopted: the

system consists of a set of processing elements (PEs), each comprising a processor

and a large cache. The PEs are interconnected by a network. This is a cache coherent

shared-memory multiprocessor such as the SGI Origin 2000 (Laudon and Lenoski,

1997) or the Convex Exemplar (Thekkath, 1997). Some systems also have separate

memory units, but for simplicity we assume that the caches are large enough that

the memory units need not be simulated. The processor model is based on a simple

32-bit RISC (i.e. load/store) device. It is assumed that stack, private data and code

regions of each process are served by separate perfect cache systems; each read or

write to these areas has unit latency. Cache associativity conflicts and cache capacity

events are ignored, i.e. it is assumed that each cache is infinite in size, and therefore

associativity is not an issue.

Between consecutive global events produced by an application process, an amount

of time is spent accessing local memory, performing primitive arithmetic operations

and in other local operations: the clock associated with each application process

must be altered to account for this time in order to maintain a correct ordering

of global events. Compiler generated code and the runtime system are annotated

with cycle counting code, which assigns a cost of two cycles for each local event

instruction.

5.3.3 Garbage collection

Our simulation assumes sufficient memory is present that garbage collection is not

needed. This is clearly unrealistic, but garbage collection in large parallel systems

lies outside the scope of the current investigation.

In general, garbage collection can have a dramatic effect, both because of the

time taken, and because of its impact on data placement. In the simulation, each

CPU allocates from its own contiguous region of the shared address space. Thus,

spatial locality derives from the sequence with which each CPU allocates space. This

approximates what would happen with any copying or compacting collector.

The problem of garbage collection using our TLO protocol is discussed in Bennett

and Kelly (1994). We return to this issue in our concluding sections.

6 Parallel behaviour

To run the transaction processor on a parallel machine, we need to indicate the

parallel grains by annotating the program with spark directives. Each update must
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be run independently, so that the following transaction will not be blocked in any

part of the tree. However, the program processes the root node in a purely sequential

manner, so locality will be increased with no loss of concurrency if a single thread is

responsible for all root updates. Hence, we unfold the definition of update, sparking

threads to update nodes below the root:

update k u ′ (Leaf k v )
4
=

(spark u , Leaf k v ′)
where (u , v ′) 4

= if k = x then (Yes v , spark(u ′ or v )) else (No , v )

update x u ′ (Node l k r )
4
=

if x 6 k

then (spark u , Node l ′ k r )

where (u , l ′) 4
= update ′ x u ′ l

else (spark u , Node l k r ′)
where (u , r ′) 4

= update ′ x u ′ r

update ′ k u ′ (Leaf k v )
4
=

(u , Leaf k v ′)
where (u , v ′) 4

= if k = x then (Yes v , spark(u ′ or v )) else (No , v )

update ′ x u ′ (Node l k r )
4
=

if x 6 k

then (u , Node l ′ k r )

where (u , l ′) 4
= update ′ x u ′ l

else (u , Node l k r ′)
where (u , r ′) 4

= update ′ x u ′ r

Evaluation of the first component of the result of the function update requires

computation all the way down to the leaf, so by sparking it we ensure that a single

thread performs this scan.

In general, a sparked closure is evaluated only to weak head normal form, exposing

the topmost constructor. A further spark is required to schedule work on arguments

of that constructor. This occurs, for example, in the Leaf case of update′. In the

implementation we are using, a small optimization is performed in such a case:

if a thread is about to terminate returning a constructed object, and one of the

arguments of the constructor is a spark, the thread starts work on that argument.

This increases the grain size of parallelism, saving the overhead of thread creation,

and increases locality within threads. In this particular example, the combined effect

is to spawn a single thread for each update, after the root node is reconstructed by

the master thread.

For our experiments, we used the following parameters:

• Size of the database: 10000 consecutively numbered records, yielding a binary

tree of approximately 13 levels. This size was adopted in order to produce a

reasonable execution time for each simulation run.
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Fig. 2. New nodes created by assign.

• Initial distribution of the database: the entire database is divided into subsets

of consecutively numbered keys, which are allocated to individual PEs.

• Number and size of transactions: 10 transactions each operating on five

randomly selected records. Some runs of 100 such transactions were also

performed.

• No disks are simulated, i.e. the database is entirely RAM-resident.

6.1 Results under an ideal memory model

To study the concurrency of the program independently of memory cost issues, our

first simulations were of a system in which all memory accesses had unit cost. The

parallelism present is clearly illustrated by figure 2, Activity on a 64-processor ideal

shared-memory machine (see section 5.3.2 for explanation of simulation model).

showing the activity of each processor when the program was run using a large

number of processors to give a simple picture. As can be seen from the figure,

the master thread spawns five threads for each transaction and then terminates.

Each of these threads represents an update, scanning from the root of the tree to

a particular leaf. The path of nodes to that leaf are updated by the thread, so any

following thread requesting the same node will block. As the figure shows, such

collisions usually occur in the upper levels of the tree, and are transient. They are

most noticeable where several keys are close together in the tree, and thus have long

paths in common, as in the seventh transaction (processor number 33). For each

transaction, the first update thread to reach its leaf goes on to apply decide, while

the others block. When the new values are known, all the update threads commit

together.

Since the keys in the transactions are spread across the tree, collisions are rare.

However, in our example, one of the keys to be updated by the seventh transaction

has been updated by the fifth. Thus the evaluation of decide blocks until the value
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is updated. If our implementation supported a more sophisticated ∧ connective,

evaluating the conditions concurrently, slightly more parallelism would be possible.

6.2 Achieving a reasonable schedule

From figure 2 we can form some expectations about the behaviour on fewer

processors. When a thread blocks after reaching a leaf, the processor on which it is

running may usefully take up another update thread. The modification of the leaf

data can be done later; only another update requiring the same leaf will be blocked.

When transient blocks occur high in the tree (usually near the root), the processor

takes up a new thread. This thread also quickly blocks, as it requires the node held by

the former thread (or a similarly blocked thread on another processor). In this way,

the processor accumulates many blocked threads. Moreover, other threads requiring

the output of these also block. Since in our simulation threads do not migrate, most

of the processors will be idle, waiting for a few heavily loaded processors. Once such

a load imbalance occurs, the situation deteriorates rapidly.

One attack on this problem is to break up the grain size of the computation

by timesharing between runnable threads, allowing queued threads to progress far

enough down the tree to release other blocked threads. Another is to allow runnable

threads to migrate to idle processors, but this is typically rather expensive. However,

it is apparent from the program that

• the updates are pipelined, and

• the nodes and leaves of the tree are built quickly.

Thus we have introduced a new annotation, quick. An expression quick e is

semantically equivalent to e, with a hint to the implementation that the value of e

can be computed quickly, so that if a thread blocks waiting for the value of the

annotated expression, the processor should not schedule extra work. Quick simply

sets a bit on the closure, which is inspected by the evaluator before blocking.

Automatic detection of short computations is useful for other purposes (for

example to avoid the overhead of thread switching, or to avoid creating short-lived

threads) and some partial solutions are known (Goldberg, 1988).

We use quick for the recursive calls to update (see section 6). With this modification

there are some momentary delays high in the tree, but otherwise the processors are

almost completely utilized. For example, figure 3 shows activity and state transitions

on a 10-node machine. Note that there are three different typical lengths of activity,

in decreasing order:

• The scan from the root of the tree to the leaf.

• The work of decide.

• The actual update of the leaf.

As can be seen, the work of deciding whether to commit, and of updating the leaves

may be done one or more scans later than the update of which they were part.

Figure 4 shows the relative speedup achieved for various sizes of machine. We

have used a larger number of transactions (100) to reduce the significance of the
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Fig. 3. Activity and state transitions on a 10-processor machine (see section 5.3.2 for

explanation of simulation model).
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Fig. 4. Relative speedup on an ideal shared-memory.

uneven finish times seen in figure 3. As one might expect from figure 2, the graph

shows near-linear speedup up to the ratio between the cost of processing the root

node (by processor 0) and the cost of processing the entire path down the tree

and performing the update, which is proportional to the depth of the tree (Trinder,

1989). For our sample tree of 10,000 nodes, the asymptotic speedup is 18.

7 Multicache shared-memory

Simulating an ideal shared-memory has enabled us to isolate the functional trans-

action processor from details of the implementation of the shared-memory and

the performance of the interconnection network. This has allowed us to measure

the parallelism inherent in the application, thereby setting a performance standard
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against which to compare simulated execution results from more realistic archi-

tectural models. In addition, we have identified a scheduling problem, which was

resolved by introducing a simple annotation. However, network latency is relatively

large in modern multiprocessors and the influence of the network must be addressed.

Specifically we address four main issues:

• How can the single shared heap be efficiently maintained?

• Should the scheduling policies already adopted be changed to accommodate

the increased latency?

• Is significant locality of reference available in the program, and can it be

exploited?

• Finally, how is speedup affected by network latency and cache line size?

These questions are addressed by means of simulation experiments in section 8.

In the following three subsections we discuss how the shared heap can be supported

on shared-memory multiprocessors, and describe further details of the experimental

design.

7.1 Caching, coherency and line size

Since the class of architectures we are considering has relatively high latency inter-

connection networks, memory references that can be satisfied by the local cache can

take place quickly; otherwise the operations incur the cost of arbitrating for the

network, a remote cache operation, and a message transaction on the network itself.

Minimizing the number of shared-memory references requiring use of the network

will therefore improve execution times.

Our previous results demonstrated that cache coherent shared-memory multi-

processors can effectively support the shared heap required by parallel graph re-

duction (Bennett and Kelly, 1993). In such a system the shared-memory region is

divided into cache lines of some constant size. Each line has a single owner; own-

ership changes dynamically according to coherency transactions. When a processor

attempts to read a line that is not present in its cache, a read request is sent to

the owner of the line, which responds by sending a copy of the line. The requesting

processor adds the line to its cache (expelling another line if the cache is full) and

proceeds to use it. In this way, multiple copies of lines come into existence in the

system. A write to a line that is present in the local cache but not in any remote

caches can take place without using the network.

The problem comes when a processor attempts to write to a cache line that exists

in more than one cache: in a conventional protocol the other copies of the line

must either be invalidated or updated when the write takes place (Archibald and

Baer, 1986); either will require use of the network and will have a large latency. We

have previously proposed a coherency protocol, called Two-Level Ownership (TLO),

which has been shown to be more effective at supporting the sharing requirements

of parallel graph reduction than either invalidation or update (Bennett and Kelly,

1994). This new scheme is described in section 7.2 and used to produce the results

in section 8.
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The design issue of cache line size is particularly important. Since heap cells

are allocated incrementally, the new path from the root of the database to a leaf

constructed by a call of update is built in a contiguous region of the shared-memory.

Since the tree is binary, there is therefore a 50% probability that the node at the

next level down the tree encountered when scanning down to a leaf from the root

will be adjacent to its parent, which could be on the same cache line. Large cache

lines are therefore beneficial since they allow this locality to be exploited.

Modern shared-memory multiprocessors favour the use of such large cache lines.

The latency of sending a message (or cache line) is dominated by two costs:

a constant startup time and a time related to the the message length. Modern

multiprocessors are characterized by having high latency and high bandwidth in-

terconnection networks (Markatos and LeBlanc, 1992), and therefore once the high

latency setup time has been incurred, data can be rapidly pipelined through the

network. The latency of large messages is not significantly worse than that of small

ones. For example in the Meiko CS-2, a unit sized message can be sent in 10µs,

whereas 400 bytes takes only twice as long (Barton et al., 1994), and if sufficient

locality can be exploited by such large messages to more than halve the number of

messages required during a program run, an improved execution time may result.

7.2 The TLO protocol

The protocol is based on the three-stage lifetime of closures:

inactive: The closure has not been evaluated, and no thread has yet gained the

right to evaluate it.

active: The closure has not been evaluated, but a thread has gained the right to

evaluate it, and the closure will be updated by its result by that thread at some

time in the future.

evaluated: The closure has been evaluated and will not be updated again.

When a PE needs the value of a given closure, it checks to see whether it has a

local, evaluated copy – if so, this is used. If not, it sends a request to the closure’s

’owner’ – the PE which allocated it (easily detected by inspecting its address):

• If the owner’s copy is already evaluated, it replies immediately. The reply

contains the entire cache line on which the closure falls, and this replaces the

requesting PE’s version of that data (since it is guaranteed to be at least as

up-to-date).

• If the owner’s copy is inactive, the owner atomically marks the closure as

being evaluated by the requesting PE, then sends the cache line as before –

the requesting PE must then evaluate the closure and send an update message

to the owner when it finishes.

• If the owner’s copy is active, the owner adds the requesting thread to a list of

blocked threads associated with the closure. Some PE is currently evaluating

the closure, and on completion it sends an update message to the owner. The

owner then marks the closure as evaluated and replies to each PE on the list

with the updated cache line.
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When a PE sends a request message, the requesting thread blocks and the processor

switches to a runnable thread, or if none exists, starts a newly-sparked closure from

its work pool.

Copies of remotely created cache lines are made whenever a network transaction

is made. Incoherent copies of lines come into existence when a line that resides in

more than one cache is updated, but this can be done safely since any access to a

non-evaluated closure on such a line will result in a network transaction with the

owner of the line whose copy is always fully coherent.

7.3 The memory timing models

This model determines the latency of each heap access. Two models are used: the

low latency model represents a first-generation shared-memory machine such as the

Sequent Balance (Thakkar et al., 1988) in which a shared-memory access requiring

use of the network has a latency of about an order of magnitude greater than one

that can be satisfied by the local cache. Specifically, access latencies are either 1 cycle

or 10 cycles.

The high latency model places a greater cost on memory references requiring use

of the network, and more closely represents the cost of communication in modern

scalable multiprocessors. An access that can be satisfied by the local cache has a

latency of 1 cycle, whereas others have a latency of 100 cycles.

Note that it is the relative cost of communication that has changed. The speed

of processors has improved considerably more than the speed of communication;

modern shared-memory multiprocessors have much shorter cycle times than older

machines.

We do not simulate details of the interconnection network. We assume messages

are handled with very little work by the processors, and they are delivered after

the given latency. We do not model pipelined message transfer, nor do we model

blocking due to contention. Note in addition that the transaction latencies are kept

constant despite varying the cache line size. All subsequent results are based on 100

transactions, each operating on five randomly selected records.

8 Program behaviour with a multicache shared-memory

In this section we present some experimental results showing the behaviour of our

program on a more realistic shared-memory. First, we consider the communication

requirements of the program in comparison with experimental results, and show

how the TLO protocol allows the locality of the program to be exploited. We then

address some scheduling issues raised by high latency networks, before presenting

an empirical comparison between the invalidation and TLO protocols.

8.1 A model of communication requirements

How much communication is required by the transaction processor? We shall

distinguish between communications that deal directly with the database, and those

that do not.
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Fig. 5. Communication within a transaction.

Consider first the data cells representing the database itself. Creation of new nodes

involves no communication, since these nodes are created on cache lines owned by

the creator. Moreover, each update operation creates a path of new nodes from the

root to a leaf, and these new nodes will be adjacent in memory. For each node

accessed by some subsequent operation, the probability that the node was created

by the same process as its parent will be 50%. Hence as cache line size increases,

approximately half of node accesses will be satisfied by the local cache, while half

will require network communication.

The other communications are those required to start new processes, and the

internal communications within a transaction. The essential communications for

a single transaction are summarized by figure 5. The master thread (on pro-

cessor 0) starts five update threads on processors 1 to 5. Each of these must

read its arguments from the cache of processor 0. These threads then run with-

out further communication (except involving the nodes of the tree, as discussed

above) until they reach their respective leaf nodes, when each returns the cur-

rent value in its leaf to some central point. Then the first thread to reach its

leaf begins to evaluate the decide condition, while the other threads block, wait-

ing for the result. With the version of the TLO protocol used in our experi-

ments, returning the current value of each leaf involves updating a redex cre-

ated (and therefore owned) by processor 0. The thread evaluating the condition

must then retrieve the values from the cache of processor 0. It need not retrieve

the value it (needlessly) wrote itself, as it is already present. Similarly, since the

decide redex was also created by processor 0, its result must also be passed

through the cache of processor 0, and then each update thread is able to com-

plete.

Clearly, the simple ownership scheme used here is limited: any communication

between two threads must use a redex created by a common ancestor of the threads.

Thus an extra processor will often be involved. Moreover, in a situation like the

transaction processor, where all the worker threads are children of a single master,
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Fig. 6. Measured network reads per transaction, for the TLO protocol on a 64-processor

machine.

the servicing of cache requests on the central processor may interfere with the work

of the master thread. It would be better if the creator of a redex were able to

transfer its ownership to another thread. In the transaction processor, this would

remove the contention for the cache of processor 0, and might reduce the number

of writes, but the same number of reads (13) would still be required. Also, note that

it is not possible to determine in advance which of the update threads will evaluate

the decide condition.

We have described the ideal situation. A functional implementation typically

creates many extra cells, for intermediate tuples, indirections, and so on. However

these are adjacent to the required values, so that while they will generate many

extra network reads with small cache lines, they will have little effect with large

enough cache lines. Figure 6 shows the observed number of reads requiring use of

the network per transaction using the TLO protocol for various cache line sizes

on a 64-processor machine. The simulation reflects a cold start, with the database

distributed across the processor caches, so that each node access will require a cache

read, except for a few nodes near the top of the tree. Hence the asymptotic number

of reads per transaction is 13 + 5d, so with a database of 10,000 nodes (d = 13)

we expect the asymptotic number of reads per transaction to be 78. Figure 6

shows that the TLO protocol achieves this. After the transaction processor has been

running for a long time, the locality of database nodes will increase, as described

above, and the number of reads required by database node accesses will approach

13 + 5 d+1
2

.

8.2 Unnecessary updates

While the unnecessary reads caused by the extra data structures representing inter-

mediate results are eliminated by large cache lines, the corresponding writes are a

more serious problem. With the TLO protocol, which lacks migration of ownership,
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Fig. 7. Cache transaction ratio for the invalidation protocol using 2, 4, 8, 16 and 32

processors.

communication due to updates cannot be alleviated by increasing cache size. The

number of updates required will vary greatly with the quality of the implementation,

as lazy evaluation causes the fetching of small packets of work from their owners

and writing back of their results. With a sophisticated implementation, eliminating

unnecessary intermediate data structures, we would expect the number of updates

to conform to our model.

8.3 Exploiting locality

In this section the model presented above is used to interpret counts of heap accesses

reported by simulation runs. The model predicts the number of reads made by a

transaction, whereas the simulation results include writes and accesses to closures

representing intermediate results created by the functional language implementation.

The simulation results are used to quantify the advantage gained by adopting large

cache lines in the implementation of the shared heap.

All references to the heap are classified according to whether they require use of

the interconnection network. Counts of each heap reference type were maintained

during simulation, and used to produce graphs in which the percentage of all heap

references made that require use of the network (referred to as the cache transaction

ratio) is plotted against cache line size for a variety of processor configurations.

Results from a conventional invalidation protocol are shown in figure 7, and from

the TLO protocol in figure 8.

A reduction in cache transaction ratio can be seen when moving from the minimum

to a line size of two closures in each case. This represents a reduction in the

load on the network, and ultimately in execution time. However, in the case of

the conventional protocol, a minimum is reached (at a point dependent on the

number of processors), after which the trend reverses. The increase is due to false
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Fig. 8. Cache transaction ratio for the TLO protocol using 2, 4, 8, 16 and 32 processors.

sharing (Dubois, 1992), a contention effect commonly observed when conventional

coherency protocols are used with large cache lines.

The graph for the TLO protocol shows that, regardless of the number of processors

used, the cache transaction ratio falls as the cache line size is increased from 1 to 256

closures. An increase never occurs as the line size is increased, showing that the false

sharing problem has been eliminated. False sharing is described in more detail, with

experimental results from other functional programs in Bennett and Kelly (1994).

The remainder of the results in this paper are based on the TLO protocol.

Although the reduction in cache transaction ratio is often small, the effect it has

on simulated execution time is determined by the latencies of accesses requiring use

of the network, which are many times greater than the latency of a cache-hit for the

class of architecture envisaged. Therefore even relatively small variations produced

by changing line size can have a significant effect on performance.

The reduction in cache transaction ratio as line size is increased is due to locality.

Initially the reduction is very significant, but the cache transaction ratio begins to

level off at the largest line sizes. This behaviour is largely due to the reduction in

reads resulting from increasing line size, which can be explained by the analysis of

section 8.1.

8.4 Scheduling and latency

In this section we consider some scheduling issues raised by network delays. All the

experiments here used the TLO protocol, with a very large cache line size (256 cells).

The behaviour of our program on a relatively low latency network (remote

accesses 10 times more expensive than local ones) is shown in figure 9. As expected,

everything takes longer than with an ideal memory (figure 2), but the overall shape

of the computation is much as before. In particular, the asymptotic speedup is

unchanged, but a larger number of processors will be required to achieve it. Note,

however, that the transient delays that occur near the top of the tree are longer.
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Fig. 10. Activity on a high latency network.

If the network latency is greatly increased relative to processor speed (see sec-

tion 5.3.2), we have the situation of figure 10. Here remote accesses are 100 times

more expensive than local ones. The slope of the leading edge, the thread creations,

is identical to that in figure 9. As discussed in section 6.1, this is determined by the

time taken by the master thread running on processor 0 to reconstruct the root node

in each update. While latency was low, this was the limiting factor on the incremental

time required per transaction. Now the limiting factor is the rate at which the two

nodes at the second level of the tree can be passed between the update threads.

Indeed, closer examination of figure 10 reveals that the thread resumptions form

two arcs, reflecting queues for the left and right child nodes of the root.

What can be done? Throttling process creation will prevent the system from

being overloaded with useless processes, but will not increase throughput, which is
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Fig. 11. Activity on a high latency network with delayed sparks (k = 3).

bounded by these queues. It is necessary to increase the number of queues, which

can be done by moving the sparks further down the tree, effectively broadening the

root node. This has two effects:

• The work done by processor 0 on each update increases, a throttling effect

decreasing the slope of the leading edge in the figure.

• The updates are divided between a larger number of queues, increasing the

slope of the thread-resumption part of the figure and reducing overall time.

If the sparks occur after k levels, processor 0 must process k nodes, and the threads

are divided between 2k queues. Assuming a uniform distribution of keys, if tn is the

time to reconstruct a node and l the latency:

• If latency is low, the incremental time per update is bounded by the time taken

by processor 0 to process those k nodes, i.e. ktn.

• If latency is high, the incremental time is bounded by the rate at which each

node at level k is passed from thread to thread, divided by the number of such

threads (since the nodes are updated concurrently), i.e. l+tn
2k

. The node must be

fetched across the network (l) and updated (tn).

Hence a crude estimate of the incremental time per update is

max

(
ktn,

l + tn

2k

)
Figure 12 shows the total time taken to process 100 transactions (which is roughly

proportional to the incremental time) for various latencies and various values of

k. The number of processors used is very large. As expected, for each value of k,

the incremental time is constant (and proportional to k) until the point where the

latency becomes dominant, and the time grows linearly.

An alternative view is to treat the situation as a queuing system, with the average

inter-arrival time in each queue is k2ktn, while the service time is l + tn. To achieve
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Fig. 12. Total time vs latency for different values of k.

a stable system (the flat part of the graphs in figure 12), we choose k such that

k2ktn > l + tn

For the network parameters reflected in figure 10, this value is 3, leading to the

behaviour seen in figure 11. The processors are used for shorter periods, and the

overall time has also improved. However, in comparison with the ideal memory

model (figure 2) the asymptotic speedup is reduced by this factor k.

According to figure 8.4, a value of k = 2 gives a faster overall time on infinitely

many processors, but the unstable queues will grow indefinitely, eventually exhausting

the available memory.

8.5 Relative performance

The success of exploiting locality has been clearly demonstrated using event counts

rather than simulated execution times in order to reduce the influence of the

particular latencies assigned to various events in the simulation. However, the

sensitivity of relative performance to network latency and cache line size is ultimately

of greatest importance. Graphs of relative performance for the TLO protocol are

shown in figure 13 for the low latency network, and figure 14 for the high latency

network. In each case, spark annotations were placed at a level in the tree appropriate

for the network latency: at the top-level for the low latency network (i.e. k = 1), and

the third level for the low latency network (i.e. k = 3).

Recall that an asymptotic speedup of 18 was achieved with 19 processors with an

ideal shared-memory (figure 4). The asymptotic speedup of 17.25 for the low latency

network compares well with the ideal case. The advantage of using large line sizes

can be clearly seen: large line sizes result in the asymptotic speedup being achieved

at a significantly lower number of processors.

The graph for the high latency network is essentially similar in nature, but differs

in a number of key respects. The asymptotic speedup is considerably lower, at
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Fig. 14. Relative performance with the TLO protocol and a high latency network.

about 6 – as explained in section 8, the asymptotic speedup is reduced by a factor of

k = 3. Most obvious from this graph is the reduction in relative performance shown

when moving from 1 to 2 PEs. This demonstrates that the cost of communication

outweighs the advantage of parallel evaluation resulting from the addition of only

a single extra processor.

These results appear to indicate that the largest possible line size is the most

effective. This is because we have assumed that the time taken to send a line

is independent of its size. This assumption makes results considerably easier to

interpret and independent of the characteristics of particular networks. However,

the cost of transmitting larger line results in the optimum size being less: the exact

value is determined by such factors as the startup time, bandwidth and blocking.

https://doi.org/10.1017/S0956796801003793 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801003793


Pipelined functional tree accesses and updates 387

9 Conclusions

A number of conclusions can be drawn from our experience with this case study,

some of which, at least, have broader significance:

1. Program transformation (sections 3 and 4)

Two transformations of the initial problem specifications were vital in achieving

the desired behaviour:

• Speculative execution: the speculative/optimistic execution needed in this

application does not require run-time support, but can instead be imple-

mented using a systematic formal program transformation.

This manual transformation step improves performance by exposing more,

probably-useful, work before construction of the updated tree has to wait

for confirmation of the transaction’s success. It relies on the programmer’s

knowledge that most transactions succeed. It also relies on knowing that

useful pipeline parallelism is available, and why it is blocked. Profiling tools

could help in this respect.

• Grain size: repeated traversals of the tree to lookup then assign a leaf

value were fused into a single update function.

Both of these optimisations exploit the ‘transaction’ structure we imposed on

sequences of tree operations.

The power of these transformations raises the exciting prospect of applying

similar techniques to optimisation of multithreaded software written in conven-

tional languages. Although these transformations are, in some restrictive sense,

well-known optimisations for conventional languages – code motion based on

branch prediction, and loop fusion – their scope is dramatically increased

thanks to the control over side-effects present in a functional language.
2. Scheduling (section 6.2)

In our implementation, a sparked closure can be assigned to any idle processor,

but once it has started it cannot be migrated to another processor, even if it

blocks. Meanwhile, when a thread blocks and no other local thread is ready

to run, the processor selects another sparked closure from the task pool.

These are often good policies: the first avoids transferring the active thread’s

stack; the second avoids wasted processor time and avoids deadlock. They

lead to very poor behaviour when many tasks in the task pool tend to block

before doing useful work.

In this case, a processor will initiate many threads, all of which will block.

This is inefficient, because of the overheads of blocking and unblocking the

threads. Much worse, it can lead to a severe load imbalance: when they

become unblocked, all the threads must complete on the processor on which

they started.

One solution is to allow migration of blocked threads. This ought to avoid

the load imbalance, but at the expense of large overheads due to blocking,

restarting and migration. In this case study, we instead identified the cause

of the blocking, and observed that blocking will always be momentary, as

the node is updated very quickly after being locked. Furthermore, there is no
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deadlock hazard because no other nodes need to be evaluated before this can

happen.

Our solution, then, is for the processor to ‘spin’ on the node, rather than seek

another task from the pool. The time wasted is bounded and very small.

The choice between spin- vs queue-locks is well-known in the operating systems

context. Choosing between the two statically is very hard, in general – the

choice may depend on run-time conditions. One approach might be to use

some kind of adaptive or competitive scheme (Karlin et al., 1991).

3. Caching and cache coherency (section 8.3)

This application displays substantial spatial locality, which is evident despite

the use of random keys in our experiments. By transferring a large block of

adjacent nodes in response to each remote memory reference, the total number

of remote memory references can be reduced dramatically.

However, conventional approaches to implementing shared memory fail to

exploit this advantage fully because of invalidations resulting from false shar-

ing. We demonstrate that a modified, multicast-free cache coherency protocol

avoids this problem.

Other applications may, of course, have less locality and different update

patterns. The actual performance effect will depend both on the application

and on the network latency and bandwidth characteristics. Our results show

that with sufficiently high bandwidth, ‘cache lines’ can be several kilobytes (e.g.

256 closures, where our implementation’s minimum closure size is 24 bytes).

This is similar to the operating system’s page size, and suggests a software

implementation based on distributed virtual memory might be interesting.

4. The problems caused by unnecessary updates (section 8.2)

We analyse in detail the minimum communication requirements of the al-

gorithm, and compare our model with the performance reported by our

implementation. We find that the number of remote reads is close to minimal,

but the number of remote updates is higher than expected.

These unnecessary updates are caused by unnecessary lazy evaluation. The

large cache lines transferred on remote reads contain evaluated closures and

sparked but unevaluated closures, as expected. Unfortunately, they also contain

unevaluated closures which have not been sparked, but are instead demanded

later in the computation. When these closures are later demanded, further

communication is needed to avoid recomputation.

The closures are introduced in formulating the application in a lazy functional

language. Our optimising compiler uses strictness analysis to avoid the use

of closures, employing in-line evaluation or call-by-value wherever possible.

Unfortunately, it does not always succeed.

The most straightforward solution is to use an implementation language which

creates no unwanted lazy evaluation. We have built a prototype implemen-

tation as a library for parallel C programmers which results in no spurious

updates.

5. Space (section 8.4)

The problem of space management is, arguably, the Achilles’ heel of parallel
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functional and dynamic, multithreaded software. The space required for paral-

lel functional programs can easily increase in proportion to the execution time,

even for applications with reasonable behaviour when executed sequentially.

This turns out conditionally to be the case for our application when running

on a high-latency interconnection network.

One approach is to restrict the structure of the application so that space can be

controlled automatically. Data-parallel structures obviously have reasonable

space behaviour; more interestingly, the work of Blumofe et al. (1995) shows

that there is a large class of ‘fully strict’ dynamic, multithreaded applications

which can run in reasonable space (< S1P per processor on P processors,

where S1 is the space required on one processor).

The application studied in this paper is not ‘fully strict’, and cannot be made

so while retaining its pipelined, parallel structure. For applications like this,

experience is needed to identify and solve space problems; our work contributes

as a case study. The key issue is not just to control the space utilisation, but

to do so without reducing the parallelism.

Further work

This work has raised many issues deserving further investigation:

• The transactions considered above comprise only lookups and assignments,

operations that do not alter the structure of the database tree. Insertions and

deletions will require rebalancing of the tree, but if this is done using one of

several well-known top-down methods, our methods will still be applicable.

(The more common bottom-up rebalancing schemes are unsuitable, as they

would lock the whole tree until the end of the operation.) For example,

insertions may be supported by 2–4-trees using the top-down rebalancing

scheme: before entering a node, the algorithm performs such rotations as

required to ensure that it is not a 4-node. After this, the parent node may

be returned, to be used by any following operation. In this way, imbalance

percolates up the tree, one level at a time, until it can be removed. Now

suppose the insertion is part of a transaction, with a commitment condition

c dependent on other time-consuming operations. As with assign, we wish to

transform a sub-expression

if c then insert x v d else d

into an equivalent expression

maybe-insert x (if c then Yes v else No ) d

using a function maybe-insert that always proceeds to the leaf, performing

such rebalancings as required on the way. The decision of whether to actually

perform the insertion is delayed until the leaf is reached. The equivalence here

is more lax: all we require is that the two trees represent the same mapping.

Of course, such laxer notions of equivalence cannot be used with the fwif

approach.
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• We have not implemented a garbage collector for our simulated parallel

graph reduction machine using the TLO protocol. The design of a collector

which minimises invalidation traffic is an interesting exercise, both with our

TLO protocol and with conventional protocols. Note that, although the TLO

protocol avoids invalidations during computation, invalidation is still needed

when addresses are reclaimed for re-allocation.

• In the TLO protocol, accesses and updates to a cell are always directed to the

processor which allocated the cell: unlike the invalidation protocol, there is no

migration of cache line ownership. As is discussed in section 8.1, this may lead

to some contention. The significance of this effect needs to be evaluated, in

case a more sophisticated scheme (such as ‘proxies’ (Talbot and Kelly, 1998))

is needed.

• A cache line consists of many cells, and we have assumed that the whole line

would be transferred. In fact, there is no need to include cells which have not yet

been evaluated. If an unevaluated cell is referred to remotely, a communication

is anyway needed to ensure exclusive access. This optimisation is obviously

worthwhile only on architectures where the cost of packing a message buffer

is small compared with the other costs of message passing.

An extension to this idea is to pack each message with a logical subgraph

rather than a physically-contiguous block of cells. This is the approach taken

in GUM (Trinder et al., 1996) and evaluated in Loidl and Hammond (1996).

Note that this relies on maintaining a separate mapping from a node’s global

identifier to the local address of the cell within each processor’s memory. By

marshalling the graph in breadth-first order, GUM should achieve a higher

cache hit rate for a given transfer block size.

• This paper concerns simple read-modify-write transactions on a single binary

search tree. Transactions which use the result from one lookup as a key in a

subsequent operation have different pipeline characteristics, with much greater

potential for blocking. Maximising parallelism while minimising computational

work would involve combining the approach presented in this paper with

conventional relational query optimization.

• Although we have no ambitions to use this case study as a basis for database

transaction processing, we are applying ideas from the work in adaptive,

tree-structured parallel applications such as particle simulation and adaptive

mesh problems, running on large distributed-memory systems. For example,

we report a similar application-specific caching mechanism (Wu Qian et al.,

1997).
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