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Abstract

We show that an estimate by de la Peña, Ibragimov, and Jordan for E(X − c)+, with c
a constant and X a random variable of which the mean, the variance, and P(X � c) are
known, implies an estimate by Scarf on the infimum of E(X ∧ c) over the set of positive
random variables X with fixed mean and variance. This also shows, as a consequence,
that the former estimate implies an estimate by Lo on European option prices.

Keywords: Probabilistic inequalities; bounds for option prices

2020 Mathematics Subject Classification: Primary 60E15
Secondary 91G20; 91G80

1. Introduction

A remarkable result by Scarf [11] provides an explicit solution to the problem of minimizing
E(X ∧ c), with c a positive constant, over the set of all positive random variables X with given
mean and variance (see Theorem 4.1 below). The infimum is shown to have two different
expressions depending on whether the parameter c is above or below a certain threshold and to
be attained by a random variable taking only two values. About thirty years after the publication
of [11], Lo [7] noticed that Scarf’s result immediately implies an upper bound for E(X − c)+,
with X and c as before. This has an obvious financial interpretation as an upper bound for the
price at time zero of a European call option with strike c on an asset with value at maturity
equal to X (in discounted terms, assuming that expectation is meant with respect to a pricing
measure). More recently, de la Peña, Ibragimov, and Jordan [5] obtained, among other things,
a sharp upper bound for E(X − c)+ over the set of random variables X for which mean and
variance as well as the probability P(X � c) are known (see Theorem 3.1 below).

Our goal is to prove that the estimate by de la Peña, Ibragimov, and Jordan is stronger than
Scarf’s in the sense that the former implies the latter. This may appear somewhat counterin-
tuitive, as the former estimate requires the extra input P(X � c), while the latter has an extra
positivity constraint.

The proof by Scarf, while relatively elementary, is quite ingenious. A different proof, also
covering substantial generalizations, has been obtained in [2] using duality methods in semi-
definite optimization. The arguments used in [5] are instead based on classical probabilistic
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2 C. MARINELLI

inequalities and a ‘toy’ version of decoupling. The proof of Scarf’s estimate given here
is entirely elementary and self-contained. Starting from an alternative proof of the relevant
estimates in [5], another proof of Scarf’s result is obtained that is certainly not as deft as the
original, but that would hopefully seem more natural to anyone who, like the author, would
hardly ever come up with the ingenious idea used in [11]. Our proof is based, roughly speak-
ing, on a representation of the set of random variables with given mean and variance as a union
of subsets of equivalent random variables, where two random variables X1 and X2 are equiva-
lent if P(X1 � c) = P(X2 � c). This allows to establish a link between the two inequalities and
to reduce the problem of proving a version of Scarf’s result without the positivity constraint
to the minimization of a function of one real variable. Finally, the positivity constraint is taken
into account, thus establishing the full version of Scarf’s result. Moreover, the fact that opti-
mizers exist and are given by two-point distributed random variables appears in a natural way
and plays an important role in the proof.

The result proved in this article may also clarify, or at least complement, several qualita-
tive remarks made in [5] about the relation between the two abovementioned inequalities. For
instance, the authors note that their inequality is simpler than Lo’s in the sense that the right-
hand side does not depend on the value of c. Here we show that this is only due to the positivity
constraint in [11], with very explicit calculations showing how the threshold value for c arises.
Moreover, the sharpness of their inequality is proved in a much more natural way, i.e. showing
that a two-point distributed random variable always attains the bound.

Apart from the application to bounds for option prices, estimates of (functions of) X ∧ c,
sometimes called the Winsorization of X, are important in several areas of applied probabil-
ity and statistics (see, e.g., [10]). For results in this direction, as well as for an informative
discussion with references to the literature, we refer to [9].

2. Preliminaries

Let (�, F, P) be a probability space, on which all random elements will be defined. We
shall write, for simplicity, L2 to denote L2(�, F, P), and ‖·‖2 for its norm. For any m ∈R and
σ ∈R+, the sphere of L2 of radius σ centered in m will be denoted by Xm,σ , and just by X
if m = 0 and σ = 1. In other words, Xm,σ stands for the set of random variables X such that
EX = m and Var (X) =E(X − m)2 = σ 2. It is clear that Xm,σ = m + σX. The intersection of
Xm,σ with the cone of random variables bounded below by α ∈R will be denoted by Xα

m,σ . It
is easily verified that, for any m ∈R and σ ∈R+,

m + σXα = Xm+σα
m,σ . (2.1)

Recall that a random variable is said to be two-point distributed if it takes only two (distinct)
values. The set of two-point distributed random variables belonging to X can be parametrized
by the open interval ]0, 1[: let X take the values x, y ∈R, x < y, and set p := P(X = x), 1 −
p = P(X = y). Then X ∈ X if and only if px + (1 − p)y = 0 and px2 + (1 − p)y2 = 1, which
implies

x = −
(

1 − p

p

)1/2

, y =
(

p

1 − p

)1/2

. (2.2)

Note that p = 0 and p = 1 are not allowed, and hence p ∈ ]0, 1[. This is also obvious a priori,
as there is no degenerate random variable with mean zero and variance one. The following
simple observations, the proofs of which are immediate consequences of (2.2) and elementary
algebra, will be useful.
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Lemma 2.1. Let X ∈ X be the {x, y}-valued random variable identified by the parameter p ∈
]0, 1[, and c ∈R.

(i) If c � 0, then x < c � y if and only if p � c2/(1 + c2).

(ii) If c < 0, then x � c < y if and only if p � 1/(1 + c2).

We shall also need the following elementary lattice identities.

Lemma 2.2. Let a, b, c ∈R. The following hold:

(i) a + (b ∧ c) = (a + b) ∧ (a + c);

(ii) if a � 0, then a(b ∧ c) = (ab) ∧ (ac);

(iii) (a − b)+ = a − (a ∧ b).

Proof. The identities in (i) and (ii) are clear. The identity in (iii) can be verified ‘case
by case’, but it can also be deduced from the identity (a − b)+ = (a − b) + (a − b)−, where,
using (i),

(a − b)− = −(
(a − b) ∧ 0

) = b − (a ∧ b),

from which the claim follows immediately. �

3. de la Peña–Ibragimov–Jordan bound

The following sharp estimates are proved in [5].

Theorem 3.1. (de la Peña, Ibragimov, and Jordan) Let X ∈ Xm,σ and c ∈R. Setting p0 :=
P(X > c), we have

(m − c)p0 �E(X − c)+ � (m − c)p0 + σ (p0 − p2
0)1/2. (3.1)

The proof of (3.1) in [5] is very elegant, the main idea being the introduction of an inde-
pendent copy of the random variable X. Here we give an alternative, entirely elementary,
proof.

Proof. Let us start with the lower bound. We can assume, without loss of generality, that
m � c, otherwise there is nothing to prove. Since

E(X − c)+ =E(X − c)1{X>c} =EX1{X>c} − cP(X > c),

it suffices to show that EX1{X>c} � mP(X > c). To this purpose, note that

EX1{X>c} =EX −EX1{X�c},

where, thanks to the assumption m � c,

EX1{X�c} �Ec1{X�c} = cP(X � c) � mP(X � c),

and hence EX1{X>c} � m − mP(X � c) = mP(X > c).
To prove the upper bound, note that

E(X − c)1{X>c} − (m − c)p0 =E
(
X1{X>c} − m1{X>c}

)
,
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4 C. MARINELLI

hence, adding and subtracting EXp0 = mp0 on the right-hand side, the Cauchy–Schwarz
inequality yields

E(X − c)+ − (m − c)p0 =E(X − m)(1{X>c} − p0) � σ
∥∥1{X>c} − p0

∥∥
2 = σ (p0 − p2

0)1/2,

thus completing the proof. �

Remark 3.1. Even if m < c, the inequality EX1{X>c} � mP(X > c) is still true. In fact, mP(X >

c) � cP(X > c) =Ec1{X>c} �EX1{X>c}.

Theorem 3.1 implies useful one-sided Chebyshev-like bounds.

Corollary 3.1. Let X ∈ X and c ∈R. The following hold:

(i) if c � 0, then P(X � c) � P(X < c) � c2/(1 + c2);

(ii). if c < 0, then P(X � c) � 1/(1 + c2).

Proof. The proof of Theorem 3.1 remains valid with p1 := P(X � c) in place of p0; hence,
as the right-hand side of (3.1) must be positive,

√
p1(1 − p1) � cp1. If c � 0, squaring both

sides yields a linear inequality that is satisfied if and only if p1 � 1/(1 + c2). This proves (i).
For (ii), if c < 0, P(X � c) = P(−X �−c) = 1 − P(−X < −c). Since −X ∈ X and −c > 0,

(i) implies that P(−X < −c) � c2/(1 + c2), and hence

P(X � c) � 1 − c2

1 + c2
= 1

1 + c2
. �

Remark 3.2. Let X ∈ X and c ∈R+. By reasoning entirely analogous to the proof of Corollary
3.1(ii), both P(X > c) and P(X < −c) are bounded above by 1/(1 + c2); hence P(|X| > c) �
2/(1 + c2), which is sharper than Chebyshev’s inequality P(|X| > c) � 1/c2 if c < 1.

4. Scarf–Lo bound

The following estimate is obtained in [11].

Theorem 4.1. (Scarf) Let c, m, σ be strictly positive real numbers. The infimum of the function
X �→E(X ∧ c) on the set X0

m,σ is attained, i.e. it is a minimum, and is given by

min
X∈X0

m,σ

E(X ∧ c) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m2

m2 + σ 2
c if c � m2 + σ 2

2m
,

c + m

2
− 1

2

(
(c − m)2 + σ 2)1/2 if c � m2 + σ 2

2m
.

Note that the constraint X � 0 is dictated by the structure of the practical inventory problem
considered by Scarf. It is not needed, however, to avoid the infimum being minus infinity. In
fact,

|E(X ∧ c)|�E|X ∧ c|�E|X| + |c|� (
EX2)1/2 + |c|,

where
(
EX2

)1/2 = ‖X‖2 = ‖X − m + m‖2 � σ + |m|, which implies

inf
X∈Xm,σ

E(X ∧ c) �−(σ + |m| + |c|).

As observed in [7], Lemma 2.2(iii) immediately yields the following result.
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Corollary 4.1. (Lo) Let c, m, σ be strictly positive real numbers. The supremum of the function
X �→E(X − c)+ on the set X0

m,σ is attained, i.e. it is a maximum, and is given by

max
X∈X0

m,σ

E(X − c)+ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m − m2

m2 + σ 2
c if c � m2 + σ 2

2m
,

m − c

2
+ 1

2

(
(m − c)2 + σ 2)1/2 if c � m2 + σ 2

2m
.

The remainder of this section is dedicated to showing that Theorem 4.1, and hence also
its corollary, are consequences of Theorem 3.1. We shall argue by a sequence of elementary
lemmas and propositions. The first is a reduction step that, in spite of its simplicity, consid-
erably reduces the burden of symbolic calculations. Throughout the section we assume that
c, m, σ ∈R, with σ > 0. Further constraints (that do not imply any loss of generality) will be
introduced as needed.

Lemma 4.1. Let c̃ := (c − m)/σ . Then

inf
X∈X0

m,σ

E(X ∧ c) = m + σ inf
X∈X−m/σ

E(X ∧ c̃).

Proof. Since X0
m,σ = m + σX−m/σ by (2.1), we have

inf
X∈X0

m,σ

E(X ∧ c) = inf
Y∈X−m/σ

E((m + σY) ∧ c),

where, by Lemma 2.2,

E((m + σY) ∧ c) = m + σE

(
Y ∧ c − m

σ

)
,

which immediately yields the conclusion. �

The lemma implies that it suffices to study the problem of minimizing the function X �→
E(X ∧ c) over the set X−m. We shall first study the minimization problem without the lower-
boundedness constraint, i.e. on X rather than on X−m. We shall need some more notation:
the subset of Xm,σ such that P(X � c) = p is denoted by Xm,σ (p;c). Note that, in view of
Corollary 3.1, these sets are nonempty only for certain combinations of the parameters p and
c. Let Lc : ]0, 1[ �→R be the function defined by Lc : p �−→ −(p − p2)1/2 + c(1 − p).

Lemma 4.2. infX∈X(c;p) E(X ∧ c) � Lc(p).

Proof. Lemma 2.2 (iii) implies E(X − c)+ = −E(X ∧ c) for any X with mean zero; hence,
by Theorem 3.1,

inf
X∈X(c;p)

E(X ∧ c) = − sup
X∈X(c;p)

E(X − c)+ �−(p − p2)1/2 + c(1 − p).
�

We are now going to show that the infimum in Lemma 4.2 is achieved, and that the
minimizer is a two-point distributed random variable. We shall only consider, without loss
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6 C. MARINELLI

of generality, those values of p such that X(p;c) is nonempty, that is, by Corollary 3.1,
setting

�c :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

]
0,

1

1 + c2

]
if c < 0,

[
c2

1 + c2
, 1

[
if c � 0,

to p ∈ �c.

Lemma 4.3. Let p ∈ �c, and X0 ∈ X be the two-point distributed random variable with
parameter p. Then E(X0 ∧ c) = Lc(p), and hence

inf
X∈X(c;p)

E(X ∧ c) = min
X∈X(c;p)

E(X ∧ c) =E(X0 ∧ c) = Lc(p).

Proof. Since p ∈ �c, Lemma 2.1 implies that the random variable X0, taking the values x and
y as defined in (2.2), is such that x � c � y. In particular, P(X0 � c) = p, that is, X0 ∈ X(p;c),
and an elementary computation finally shows that E(X0 ∧ c) = Lc(p). �

The following result essentially shows that Theorem 3.1 implies Theorem 4.1 in the
unconstrained case (i.e. without assuming that the minimizer should be bounded from below).

Proposition 4.1. infX∈X E(X ∧ c) = infp∈�c Lc(p).

Proof. The decomposition X = ⋃
p∈�c

X(p;c) implies (see, e.g., [3, p. III.11])

inf
X∈X

E(X ∧ c) = inf
p∈�c

inf
X∈X(p;c)

E(X ∧ c),

so that Lemma 4.3 implies the claim. �

This clearly indicates that the next step should be to find the minimum of the function Lc.

Lemma 4.4. The function Lc satisfies the following properties:

(i) it is decreasing on the interval

]
0,

1

2
+ 1

2

c

(1 + c2)1/2

]
;

(ii) it is increasing on the interval

[
1

2
+ 1

2

c

(1 + c2)1/2
, 1

[
;

(iii) it admits a unique minimum point p∗ defined by p∗ := 1

2
+ 1

2

c

(1 + c2)1/2
.

Moreover, p∗ belongs to �c and Lc(p∗) = 1
2 c − 1

2 (1 + c2)1/2.

Proof. The argument is elementary, so it will be sketched only (the details can be found in
[8]). The function Lc is smooth and its derivative is the function

L′
c : p �→ −1

2

(
p(1 − p)

)−1/2(1 − 2p) − c;

hence, standard calculus yields the claims (i)–(iii). It only remains to show that p∗ ∈ �c; if
c � 0, this is equivalent to

p∗ = 1

2
+ 1

2

c

(1 + c2)1/2
� c2

1 + c2
.
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Setting x := c/(1 + c2)1/2 ∈ [0, 1[, this reduces to 1 + x � 2x2, which is satisfied if x ∈
[0, 1]. If c < 0, p∗ belongs to �c if and only if

p∗ = 1

2
+ 1

2

c

(1 + c2)1/2
= 1

2
− 1

2

|c|
(1 + c2)1/2

� 1

1 + c2
,

that is, setting 〈c〉 := (1 + c2)1/2 for convenience, if and only if 〈c〉|c|� 〈c〉2 − 2. This inequal-
ity is easily seen to be satisfied for every c ∈ [ − 1, 0]. If c �−1, the inequality is equivalent to
〈c〉2c2 � (c2 − 1)2, which simplifies to 3c2 � 1, i.e. it is verified for every |c|� 1/

√
3 ∨ 1, that

is for every c �−1. Finally, the expression for Lc(p∗) follows by elementary algebra. �

We have thus solved the problem of of minimizing the function X �→E(X ∧ c) on X.

Proposition 4.2. Let p∗ be defined as in Lemma 4.4, and

x∗ := −
(

1 − p∗
p∗

)1/2

, y∗ :=
(

p∗
1 − p∗

)1/2

.

The two-point distributed random variable X0 with P(X0 = x∗) = p∗, P(X0 = y∗) = 1 − p∗
is a minimizer of infX∈X E(X ∧ c), i.e.

inf
X∈X

E(X ∧ c) = Lc(p∗) =E(X0 ∧ c).

If the parameters of the problem are such that X0, as defined in Proposition 4.2, is bounded
below by −m, the original minimization problem is clearly solved. We shall assume, until
further notice, that m � 0 and c > −m. This comes at no loss of generality, as X−m is empty
if m < 0, and the problem degenerates if c �−m, in the sense that E(X ∧ c) = c for every
X �−m.

Corollary 4.2. Let X0 be defined as in Proposition 4.2. Then

inf
X∈X−m

E(X ∧ c) =E(X0 ∧ c)

if and only if c � (1 − m2)/2m.

Proof. By definition of X0, the lower bound X0 �−m holds if and only if p∗ � 1/(1 + m2),
i.e. if and only if

1

1 + m2
� 1

2
+ 1

2

c

(1 + c2)1/2
,

or, equivalently,

2
1

1 + m2
− 1 � c

(1 + c2)1/2
,

where the left-hand side takes values in the interval ]−1, 1]. Elementary algebra shows that the
inequality

β � c

(1 + c2)1/2
, β ∈ ]−1, 1],

is verified if and only if

c � β

(1 − β2)1/2
.
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Replacing β by 2/(1 + m2) − 1 finally implies that X0 �−m if and only if

c � 1 − m2

2m
,

from which the claim follows immediately. �

In view of the corollary, we only need to consider the problem under the condition

c <
1 − m2

2m
.

Note that this implies c < 1/m.
Let us start by observing that, for any X �−m,

E(X ∧ c) =E
(
X1{X�c} + c1{X>c}

)
�−mP(X � c) + cP(X > c) (4.1)

=E(Y ∧ c),

where Y is a random variable taking values in {−m, y}, y � c, with

P(Y = −m) = P(X � c), P(Y = y) = P(X > c).

In order for the random variable Y to belong to X, it is sufficient and necessary, in view of
(2.2) and Lemma 2.1, that

P(Y = −m) = P(X � c) = 1

1 + m2
,

and either c � 0 or c � 0 and

P(X � c) � c2

1 + c2
.

In other words, Y belongs to X and takes values in {−m, y} with y � c if and only if c � 0
or c > 0 and

1

1 + m2
� c2

1 + c2
.

As this inequality is satisfied if and only if cm � 1, which holds by assumption, Y satisfies
the abovementioned conditions if and only if P(X � c) = 1/(1 + m2). Let us then define the
random variable Y0 ∈ X−m as the (unique) random variable in X identified by the parameter
pm = 1/(1 + m2). We are going to show that Y0 is in fact the minimizer of the problem.

Proposition 4.3. If c < (1 − m2)/(2m), then

inf
X∈X−m

E(X ∧ c) =E(Y0 ∧ c) = c − (m + c)
1

1 + m2
.

Proof. Let us rewrite (4.1) as E(X ∧ c) �−c + (m + c)P(X � c), which holds for every
X ∈ X−m. Since m + c > 0 by assumption, the function p �→ −c + (m + c)p is decreasing.
Therefore, for every X ∈ X−m such that P(X � c) � pm, we have

E(X ∧ c) � c − (m + c)pm =E(Y0 ∧ c).
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Let X ∈ X−m be such that p := P(X � c) > pm. Then Lemma 4.2 yields

E(X ∧ c) �−(
p(1 − p)

)1/2 + c(1 − p) = Lc(p).

Since p∗ < pm by assumption and the function Lc is increasing on ]p∗, 1[ by Lemma 4.4, it
follows that E(X ∧ c) � Lc(p) � Lc(pm) =E(X0 ∧ c), which concludes the proof. �

We have therefore proved the main result, which reads as follows.

Theorem 4.2. Let c, m, σ ∈R with m � 0, σ > 0, and c > −m. Then

inf
X∈X−m

E(X ∧ c) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
E(Y0 ∧ c) = Lc(pm) = c − (m + c)

1

1 + m2
if c � 1 − m2

2m
,

E(X0 ∧ c) = Lc(p∗) = 1

2
c − 1

2
(1 + c2)1/2 if c � 1 − m2

2m
.

Using the notation X(p) to denote a two-point distributed random variable in X with
parameter p, we could write, more concisely,

inf
X∈X−m

E(X ∧ c) =E(X(p∗ ∨ pm) ∧ c) = Lc(p∗ ∨ pm).

The bound by Scarf, and hence the one by Lo, i.e. Theorem 4.1 and its corollary, follow
immediately by the previous theorem and Lemma 4.1.

5. Applications to option prices

In order to also consider bounds for put options, we record an easy consequence of
Theorem 3.1.

Corollary 5.1. Under the hypotheses of Theorem 3.1, let p := P(X � c). Then

(c − m)p �E(c − X)+ � (c − m)p + σ (p − p2)1/2.

Proof. It immediately follows from the identities E(c − X)+ =E(X − c)+ − (m − c) and
p − p2 = p(1 − p) = (1 − p0)p0 = p0 − p2

0. �

Let us also note that a simple but useful sharpening of the lower bound in Theorem 3.1 can
be given: Jensen’s inequality implies that

E(X − c)+ � (EX − c)+ = (m − c)+

as well as E(c − X)+ � (c − m)+.
Assume that the probability space (�, F, P) is equipped with a filtration (Ft)t∈[0,T] satisfy-

ing the so-called usual conditions. Let Ŝ and β be the price processes of two traded assets, the
latter of which is strictly positive and is used as numéraire, so that S := β−1̂S is the discounted
price process of the former asset. We assume that no asset pays dividends. A classical result
[6] asserts that a suitable version of no-arbitrage holds (precisely, no free lunch with vanish-
ing risk) if and only if there exists a probability measure Q equivalent to P such that S is a
σ -martingale with respect to Q. For simplicity of notation, let us assume that P is already an
equivalent σ -martingale measure that is used for pricing. We are then interested in upper and
lower bounds for

πc := Eβ−1
T

(̂
ST − K

)+ =E
(
ST − β−1

T K
)+

, πp := Eβ−1
T

(
K − ŜT

)+ =E
(
β−1

T K − ST
)+.
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We first establish an easy consequence of the σ -martingale property of S.

Lemma 5.1.

(i) If S is a supermartingale (in particular, if S is bounded from below), then πp �(
KEβ−1

T − S0
)+

.

(ii) If S is a martingale, then πc �
(
S0 − KEβ−1

T

)+
.

Proof. Recall first that a σ -martingale bounded from below is a local martingale thanks to
the Ansel–Stricker lemma [1, p. 309], thus also a supermartingale by an application of Fatou’s
lemma. This implies that EST � S0, and hence, by Jensen’s inequality,

πp =E
(
β−1

T K − ST
)+ �

(
KEβ−1

T −EST
)+ �

(
KEβ−1

T − S0
)+

,

which proves (i). The proof of (ii) is entirely analogous. �

Remark 5.1. The lower bound for πc is in general not true without the hypothesis that S is a
martingale. This is essentially equivalent to the failure of put–call parity for asset prices with
so-called bubbles (cf., e.g., [4]).

It is clear that the estimates of Theorem 3.1 and Corollary 4.1 cannot be directly applied,
as βT is a random variable. In some cases, however, this is indeed possible. For instance, apart
from the trivial case where the price process β of the numéraire is non-random, if the random
variables β−1

T and Ŝ+
T belong to L2, and β−1

T and (ST − K)+ are uncorrelated, so that

Eβ−1
T

(̂
ST − K

)+ =Eβ−1
T E

(̂
ST − K

)+
,

estimates on πc can be obtained by Corollary 4.1 in terms of the mean of β−1
T and the mean

and variance of ŜT . In order to apply Theorem 3.1, the value of the distribution function of
ŜT at K is also needed. In the following we make the stronger assumption that the random
variables βT and ŜT are independent. Furthermore, we assume that S is a supermartingale. By
independence,

S0 �EST =Eβ−1
T ŜT =Eβ−1

T ÊST ,

and hence ÊST � S0/Eβ−1
T . Setting k := KEβ−1

T and σ̂ := ‖̂ST − ÊST‖2, we thus have the
bounds

(k − S0)+ � πp � (k −EST )p +Eβ−1
T σ̂ (p − p2)1/2,

(EST − k)+ � πc � (S0 − k)p0 +Eβ−1
T σ̂ (p0 − p2

0)1/2.

If S is a martingale, then EST = S0, so the bounds for πp and πc assume a more symmetric
form.

Adapting Lo’s estimate to option prices can be done along the same lines. It does not seem
possible, though, to exploit the supermartingale property of S to obtain bounds involving S0
rather than EST . On the other hand, if S is a martingale, and if the constraint ŜT � 0 is not
enforced, it follows from the proofs in Section 4 and elementary computations that

πc �
S0 − k

2
+ 1

2

(
(S0 − k)2 + (

Eβ−1
T

)2
σ̂ 2)1/2

,

from which a corresponding upper bound for put options can be obtained by put–call parity.
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