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Abstract

We show that the minimal model program on any smooth projective surface is realized

as a variation of the moduli spaces of Bridgeland stable objects in the derived category

of coherent sheaves.
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1. Introduction

1.1 Motivation

This paper is a continuation of the previous paper [Tod13b], in which the following question

on the relationship between minimal model program (MMP) and Bridgeland stability

conditions [Bri07] was addressed (cf. [Tod13b, Question 1.1]).

Question 1.1. Let X be a smooth projective variety and consider its MMP

X = X1 99K X2 99K · · · 99K XN .

Then is each Xi a moduli space of Bridgeland (semi)stable objects in the derived category of

coherent sheaves on X, and MMP is interpreted as wall-crossing under a variation of Bridgeland

stability conditions?

The main result of [Tod13b] was to answer the above question for the first step of MMP, i.e.

extremal contraction, when dimX 6 3. The purpose of this paper is to give a complete answer

to the above question for further steps of MMP when dimX = 2.
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1.2 Bridgeland stability
For a smooth projective variety X, Bridgeland [Bri07] introduced the notion of stability
conditions on Db Coh(X), which provides a mathematical framework of Douglas’s Π-
stability [Dou02]. In [Bri07], Bridgeland showed that the set of stability conditions

Stab(X) (1)

forms a complex manifold, and studied it when X is a K3 surface or an abelian surface [Bri08].
Since then there have been several studies on the space (1), or the associated moduli spaces
of semistable objects in the derived category, when X is a K3 surface or an abelian surface
(cf. [AB13, HMS08, MYY11a, MYY11b, Tod08a, YY12]).

On the other hand, there are few papers in the literature in which the space (1) is studied
for an arbitrary projective surface X. If X is non-minimal, the birational geometry of X is
interesting, and we expect that it has a deep connection with the space of stability conditions
(1). This idea is motivated by Bridgeland’s work [Bri02] on the construction of three dimensional
flops as moduli spaces of objects in the derived category. This result is not yet possible to realize
in terms of Bridgeland stability conditions, since constructing them on projective 3-folds turned
out to be a very difficult problem (cf. [BMT14]). However, in the surface case, we have the
examples of stability conditions constructed by Arcara and Bertram [AB13]. Given the above
background, we shall establish a rigorous statement connecting two-dimensional MMP and the
space of Bridgeland stability conditions (1).

1.3 Main result
Our main result is formulated in the space Stab(X)R, defined to be the ‘real part’ of the space
(1). This is the space which fits into the following Cartesian square (cf. § 2).

Stab(X)R

�

//

ΠR
��

Stab(X)

Π
��

NS(X)R
−

∫
X e−i∗

// N(X)∨C

(2)

Recall that the ample cone A(X) ⊂ NS(X)R plays an important role in birational geometry. We
will see that there is an open subset

U(X) ⊂ Stab(X)R (3)

which is homeomorphic to A(X) under the map ΠR of the diagram (2). The subset (3) coincides
with the set of σ ∈ Stab(X)R in which all of the objects Ox for x ∈ X are stable. The closure
U(X) is the analogue of the nef cone of X, and expected to contain information of the birational
geometry of X.

Our purpose is to construct an open subset such as (3) associated to each birational morphism
f : X → Y , and investigate how they are related under the change of (f, Y ). Here we fix the
notation: for a Bridgeland stability condition σ = (Z,A), we denote by Mσ([Ox]) the algebraic
space which parameterizes Z-stable objects E ∈ A with phase one and ch(E) = ch(Ox) for x ∈X
(cf. [Ina02]). The following is the main theorem in this paper.

Theorem 1.2 (Propositions 4.12 and 4.14). Let X be a smooth projective complex surface.
Then for any smooth projective surface Y and a birational morphism f : X → Y , there is a
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connected open subset
U(Y ) ⊂ Stab(X)R

satisfying the following conditions:

(i) if f factors through a blow-up at a point Y ′ → Y , we have

U(Y ) ∩ U(Y ′) 6= ∅ (4)

which is of real codimension one in Stab(X)R;

(ii) for any σ ∈ U(Y ), Mσ([Ox]) is isomorphic to Y .

The above result shows that the space Stab(X)R is a fundamental object, beyond the ample
cone A(X), in the study of birational geometry of X. Indeed, the geometry of any birational
morphism f : X → Y is captured from the space Stab(X)R. Here is a simple example of
Theorem 1.2.

Example 1.3. Let f : X → P2 be the blow-up at a point p ∈ P2. Let H be the pull-back of a line
in P2 and C the exceptional curve of f . Then [H] and [C] span NS(X)R. The subsets U(X) and
U(P2) in Stab(X)R are homeomorphic to their images in ΠR, and they are given by

ΠR(U(X)) = {x[H] + y[C] : x > 0,−x < y < 0},
ΠR(U(P2)) = {x[H] + y[C];x > 0, 0 < y < x}.

The following is the obvious corollary of Theorem 1.2.

Corollary 1.4. Let X be a smooth projective complex surface and

X = X1 → X2 → · · ·→ XN

a MMP, i.e. contractions of (−1)-curves. Then there is a continuous one-parameter family of
Bridgeland stability conditions {σt}t∈(0,1) on Db Coh(X) and real numbers

0 = t0 < t1 < t2 < · · · < tN = 1

such that Xi is isomorphic to Mσt([Ox]) for t ∈ (ti−1, ti).

The result of the above corollary completely answers Question 1.1 for surfaces: any MMP of
a smooth projective surface X is realized as wall-crossing of Bridgeland moduli spaces of stable
objects in Db Coh(X). The real numbers ti correspond to walls in this case.

1.4 Technical ingredients
As we mentioned before, the space (1) has not been studied for an arbitrary projective surface X.
Although it was studied for a K3 surface or an abelian surface in [Bri08], there are several
technical arguments in [Bri08] which are not applied directly to an arbitrary projective surface X.
It seems that these technical issues have prevented us to study the space (1) beyond the case of
K3 surfaces or abelian surfaces.

One of the technical issues is to prove the support property of the stability conditions. This
property is required in order to make the topology of the space (1) desirable. It has now turned
out that proving the support property is not an easy problem in general, and closely related to
the Bogomolov–Gieseker (BG)-type inequality of semistable objects in the derived category. In
the case of K3 surfaces or abelian surfaces, proving the BG-type inequality is easier: this follows
from the Serre duality and the Riemann–Roch theorem. However, this is not the case for an
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arbitrary projective surface, and we need to find a general argument proving such an inequality.

In the previous paper [Tod13b], we established such a BG-type inequality for semistable objects

on an arbitrary projective surface, and proved the support property for some stability conditions

in U(X). We use this result to show the support property for stability conditions contained in

other subsets U(Y ).

Another issue is that the analysis of the boundary of U(X) in the case of K3 surfaces

in [Bri07] is not applied for an arbitrary projective surface X. In the former case, if we cross the

codimension-one boundary of U(X), then the resulting stability condition is obtained by applying

some autoequivalence of the derived category. In the latter case, this is not the case in general.

Indeed we will see that, after crossing the boundary of U(X) corresponding to a (−1)-curve

contraction, then the resulting stability condition is not described by an autoequivalence but

by a certain tilting of the t-structure which appears at the boundary. We will describe the

resulting tilting explicitly, and investigate the wall-crossing behavior of the open subsets U(Y )

in Theorem 1.2 in detail.

1.5 Relation to existing works

There are some recent works in which the relationship between Bridgeland stability conditions

and MMP is discussed (cf. [ABCH13, BM14, Tod08b, Tod13b]). The works [ABCH13, BM14]

treat the cases of P2 and K3 surfaces respectively. Also the works [Tod08b, Tod13b] treat the

cases of local flops, contraction of a (−1)-curve, respectively. The result in this paper generalizes

the result of [Tod13b], and completely answer [Tod13b, Question 1.1] for an arbitrary projective

surface.

The examples of Bridgeland stability conditions on arbitrary projective surfaces are given

in [AB13]. In the works [Mac12, MM13, MYY11a, MYY11b, YY12], the structure of walls and

wall-crossing phenomena with respect to these stability conditions are studied. Our construction

of U(Y ) provides other examples of Bridgeland stability conditions on arbitrary non-minimal

surfaces. It would be interesting to study the moduli spaces of semistable objects in U(Y ) with

arbitrary numerical classes, and investigate their behavior under crossing the intersection of the

closures (4).

1.6 Plan of the paper

In § 2, we give some background on Bridgeland stability conditions, especially on projective

surfaces. In § 3, we construct some t-structures on relevant triangulated categories. In § 4, we

give a proof of Theorem 1.2. In § 5, we prove some technical results which are stated in previous

sections.

1.7 Notation and convention

In this paper, all of the varieties are defined over C. For a triangulated category D and a set

of objects S ⊂ D, we denote by 〈S〉 the smallest extension closed subcategory of D which

contains objects in S. The category 〈S〉 is called the extension closure of S. For the heart of a

bounded t-structure A ⊂ D, we denote by HiA(∗) the ith cohomology functor with respect to

the t-structure with heart A. If S is contained in A, the right orthogonal complement of S in A
is defined by

S⊥ := {E ∈ A : Hom(S, E) = 0}.
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2. Background

In this section, we briefly recall Bridgeland stability conditions, and prepare some results which
will be needed in the later sections.

2.1 Bridgeland stability conditions
Let X be a smooth projective variety and N(X) the numerical Grothendieck group of X. This
is the quotient of the usual Grothendieck group K(X) by the subgroup of E ∈ K(X) with
χ(E,F ) = 0 for any F ∈ K(X), where χ(E,F ) is the Euler pairing

χ(E,F ) :=
∑
i∈Z

(−1)i dim Exti(E,F ).

Definition 2.1 [Bri07]. A stability condition on X is a pair

(Z,A), A ⊂ Db Coh(X) (5)

where Z : N(X) → C is a group homomorphism and A is the heart of a bounded t-structure,
such that the following conditions hold.

(i) For any non-zero E ∈ A, we have

Z(E) ∈ {r exp(iπφ) : r > 0, φ ∈ (0, 1]}. (6)

(ii) (Harder–Narasimhan property) For any E ∈ A, there is a filtration in A

0 = E0 ⊂ E1 ⊂ · · · ⊂ EN

such that each subquotient Fi = Ei/Ei−1 is Z-semistable with argZ(Fi) > argZ(Fi+1).

Here an object E ∈ A is Z-(semi)stable if for any subobject 0 6= F ( E we have

argZ(F ) < (6) argZ(E).

The group homomorphism Z is called a central charge. The central charges we use in this paper
are of the form

Zω(E) = −
∫
X
e−iω ch(E) (7)

for ω ∈ NS(X)R. If dimX = 2, we have

Zω(E) = −ch2(E) +
ω2

2
ch0(E) + i ch1(E) · ω. (8)

We fix a norm ‖∗‖ on the finite-dimensional vector space N(X)R. We need to put the following
technical condition on the stability conditions.

Definition 2.2. A stability condition (5) satisfies the support property if there is a constant
K > 0 such that for any non-zero Z-semistable object E ∈ A, we have

‖E‖
|Z(E)|

< K.

The set Stab(X) is defined to be the set of stability conditions on Db Coh(X) satisfying the
support property. The following is the main result of [Bri07] (see also [KS08]).
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Theorem 2.3 [Bri07]. There is a natural topology on Stab(X) such that the forgetting map

Π: Stab(X) → N(X)∨C

sending (Z,A) to Z is a local homeomorphism.

We are interested in the set of stability conditions whose central charges are of the form (7).
So we restrict our attention to the space Stab(X)R defined as follows.

Definition 2.4. We define Stab(X)R to be the following Cartesian square.

Stab(X)R

�

//

ΠR
��

Stab(X)

Π
��

NS(X)R
−

∫
X e−i∗

// N(X)∨C

(9)

Here the bottom map takes ω ∈ NS(X)R to the central charge Zω given by (7).

2.2 Gluing t-structures
We use the following gluing t-structure method in order to produce several t-structures. Let

C i
→ D j

→ E

be an exact triple of triangulated categories. Namely C, D and E are triangulated categories, i,
j are exact functors with j ◦ i = 0. Both of i and j have the left and the right adjoint functors,
which satisfy some axioms. For details, see [GM03, IV. Example 2].

Let
(C60, C>0), (E60, E>0)

be bounded t-structures on C and E , respectively. Then they induce the bounded t-structure on
D whose heart is given by

{E ∈ D : j(E) ∈ E0, Hom(i(C<0), E) = Hom(E, i(C>0)) = 0}.

Here E0 := E60 ∩ E>0 is the heart on E . For details, see [BBD82, number 1.4] and [GM03,
IV. Example 4].

2.3 Perverse t-structure
Let X and Y be smooth projective surfaces, and f a birational morphism

f : X → Y.

We recall the construction of the perverse t-structure associated to the above data,
following [Bri02, vdB04].

It is well known that the derived pull-back

Lf∗ : Db Coh(Y ) → Db Coh(X)

is fully faithful. The functor Lf∗ has the right adjoint Rf∗ and the left adjoint Rf!,

Rf∗,Rf! : D
b Coh(X) → Db Coh(Y )

where Rf! is given by
Rf!E = Rf∗(E ⊗ ωX)⊗ ω−1

Y .
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We define the triangulated subcategories CX/Y , DX/Y in Db Coh(X) to be

CX/Y := {E ∈ Db Coh(X) : Rf!E ∼= 0},
DX/Y := {E ∈ Db Coh(X) : Rf∗E ∼= 0}.

They are related by CX/Y ⊗ ωX = DX/Y . Here we only use the latter category DX/Y . The
category CX/Y will be treated in the next section.

We have the sequences of exact functors

DX/Y → Db Coh(X)
Rf∗−→ Db Coh(Y ),

where the left functor is the natural inclusion. The above sequence determines an exact triple,
and the standard t-structure on Db Coh(X) induces a t-structure

(D60
X/Y ,D

>0
X/Y )

on DX/Y (cf. [Bri02, Lemma 3.1]). By gluing the standard t-structure on Db Coh(Y ) and the

shifted t-structure (D6−1
X/Y ,D

>−1
X/Y ), we have the heart of the perverse t-structure (cf. [Bri02,

vdB04])
Per(X/Y ) ⊂ Db Coh(X).

The perverse heart Per(X/Y ) is known to be equivalent to the module category of a certain
sheaf of non-commutative coherent OY -algebras (cf. [vdB04]). In particular, it is a noetherian
abelian category. Also if f = idX : X → X, the category Per(X/X) coincides with Coh(X).

2.4 Tilting of Per(X/Y )
Let us take

ω ∈ NS(Y )Q

such that ω is a Q-ample class. We have the following slope function,

µf∗ω : Per(X/Y )\{0}→ Q ∪ {∞}

by setting µf∗ω(E) =∞ if ch0(E) = 0, and

µf∗ω(E) =
ch1(E) · f∗ω

ch0(E)

if ch0(E) 6= 0. The above slope function determines a weak stability condition on Per(X/Y ),
which satisfies the Harder–Narasimhan property (cf. [Tod13b, Lemma 3.6]).

We define the pair of subcategories (Tf∗ω,Ff∗ω) in Per(X/Y ) to be

Tf∗ω := 〈E : E is µf∗ω-semistable with µf∗ω(E) > 0〉,
Ff∗ω := 〈E : E is µf∗ω-semistable with µf∗ω(E) 6 0〉.

The above pair is a torsion pair [HRS96] in Coh(X). The associated tilting is

Af∗ω := 〈Ff∗ω[1], Tf∗ω〉. (10)

By a general theory of tilting, the category Af∗ω is the heart of a bounded t-structure on
Db Coh(X). In particular, it is an abelian category. Later we will need the following property on
the above category.
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Lemma 2.5. We have the embedding

Lf∗Aω ⊂ Af∗ω.

Proof. It is enough to show the following statements:

(i) for any M ∈ Coh(Y ), we have Lf∗M ∈ Per(X/Y );

(ii) if M is a torsion free µω-semistable sheaf on Y , then Lf∗M ∈ Per(X/Y ) is µf∗ω-semistable.

We first show the first statement. By the projection formula, we have

Rf∗Lf
∗M ∼= M.

Also we have
Hom(Lf∗M,D>0

X/Y ) ∼= 0

by adjunction. Let us take F ∈ D6−2
X/Y . We have

Hom(F,Lf∗M)∼= Hom(Rf!F,M)
∼= 0

since Rf!F ∈ Coh6−1(Y ). Therefore, Lf∗M ∈ Per(X/Y ) follows by the definition of the gluing.
As for the second statement, let us take an exact sequence in Per(X/Y )

0 → F → Lf∗M → G → 0

such that F and G are non-zero. We need to show that

µf∗ω(F ) 6 µf∗ω(G). (11)

Applying Rf∗, we obtain the exact sequence in Coh(Y )

0 → Rf∗F → M → Rf∗G → 0.

If both of Rf∗(F ) and Rf∗(G) are non-zero, the inequality (11) holds by the µω-stability of
E and noting µf∗ω(Lf∗(∗)) = µω(∗) for non-zero ∗. If Rf∗G = 0, then µf∗ω(G) = ∞ and (11)
holds. Suppose that Rf∗F = 0. Then F ∈ DX/Y ∩ Coh(X)[1], hence Rf!F ∈ D60(Coh(Y )) and
its zeroth cohomology is a zero-dimensional sheaf. By adjunction and the torsion freeness of M ,
this implies

Hom(F,Lf∗M)∼= Hom(Rf!F,M)
∼= 0

which is a contradiction. 2

2.5 Bridgeland stability conditions on projective surfaces
Let f : X → Y be a birational morphism between smooth projective surfaces, and ω ∈ NS(Y )Q
is ample. We consider the pair

σf∗ω := (Zf∗ω,Af∗ω)

where Zf∗ω : N(X) → C is the central charge defined by (8), and Af∗ω is the heart of a
bounded t-structure on Db Coh(X) constructed in the previous subsection. We have the following
proposition.
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Proposition 2.6. Suppose that f satisfies one of the following conditions:

(i) f = idX : X → X;

(ii) f contracts a single (−1)-curve C on X to a point in Y .

Then we have
σf∗ω ∈ Stab(X)R.

In particular, σf∗ω satisfies the support property.

Proof. If f = idX , the result of [AB13] shows that σf∗ω is a stability condition on Db Coh(X). If f
contracts a (−1)-curve C on X, the result of [Tod13b, Lemma 3.12] shows that σf∗ω is a stability
condition on Db Coh(X). The support property of σf∗ω is proven in [Tod13b, Proposition 3.13]
when f contracts a (−1)-curve. When f = idX , the proof for the support property follows from
the same (even easier) argument of [Tod13b, Proposition 3.13]. 2

If f = idX , the stability condition σω satisfies the following property.

Lemma 2.7. Let ω ∈ NS(X)Q be ample and f = idX .

(i) For any x ∈ X, the object Ox is a simple object in Aω. In particular, it is Zω-stable.

(ii) For any object E ∈ Aω with ch(E) = ch(Ox), we have E ∼= Ox for some x ∈ X.

Proof. The result of part (i) is essentially proved in [Bri08, Lemma 6.3]. The result of part (ii)
is obvious from the construction of Aω. 2

The ample cone A(X) is defined to be

A(X) := {ω ∈ NS(X)R : ω is R-ample}.

We define its partial compactification A(X) ⊂ NS(X)R to be

A(X) :=
⋃

f : X→Y

f∗A(Y ).

In the above union, f is either idX : X → X or contracts a single (−1)-curve on X to a point in
Y . Below, we sometimes write an element of A(X) as ω for a nef divisor ω on X, omitting f∗

in the notation. We have the embedding

A(X) ⊂ NS(X)R. (12)

The following proposition shows the existence of stability conditions for irrational ω.

Proposition 2.8. The embedding (12) lifts to a continuous map

σ : A(X) → Stab(X)R, (13)

which takes any rational point ω ∈ A(X) to the stability condition σω in Proposition 2.6.

Proof. The proof will be given in § 5.1. 2

Remark 2.9. For ω ∈ A(X), it is possible to construct the heart Aω similarly to (10), even if ω
is irrational. However the Harder–Narasimhan property for the pair (Zω,Aω) is not obvious. In
the proof of Proposition 2.8, we will also show that any object Ox for x ∈ X is σ(ω)-stable, even
when ω is irrational. Combined with Lemma 5.1, it shows that the pair (Zω,Aω) indeed satisfies
the Harder–Narashiman property for an irrational ω. (See also the argument of [Bri08, § 11].)
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We set U(X) ⊂ Stab(X)R to be

U(X) := σ(A(X)).

Note that U(X) is a connected open subset of Stab(X)R, which is homeomorphic to A(X)
under the forgetting map Stab(X)R → NS(X)R. It satisfies the property of Theorem 1.2 for
f = idX : X → X. Our purpose in the following sections is to construct a similar open subset
associated to any birational morphism f : X → Y .

3. Construction of t-structures

In what follows, X and Y are smooth projective surfaces and

f : X → Y

a birational morphism. In this section, we construct some t-structures on CX/Y and Db Coh(X),
which will be needed in the proof of Theorem 1.2.

3.1 t-structure on CX/Y

Let CX/Y be the triangulated subcategory of Db Coh(X) defined in § 2.3. The purpose here is to
construct the heart of a bounded t-structure

C0
X/Y ⊂ CX/Y

satisfying the following conditions: there are objects S1, . . . , SN ∈ C0
X/Y satisfying

C0
X/Y = 〈S1, . . . , SN 〉, Rf∗Si[1] ∈ Coh0(Y ). (14)

Here Coh0(Y ) is the abelian category of zero-dimensional coherent sheaves on Y , and N is the
number of irreducible components of Ex(f), the exceptional locus of f . We construct C0

X/Y by
induction on the number of irreducible components N . This approach is convenient to describe
generators of C0

X/Y , and the relationship under blow-downs.

When N = 0, then CX/Y = {0} and the heart C0
X/Y is taken to be the trivial one. Suppose

that N > 0, and let us consider the finite set of points,

f(Ex(f)) = {p1, . . . , pl}.

Since any object E ∈ CX/Y is supported on tif−1(pi), there is a decomposition

CX/Y =

l⊕
i=1

CX/Yi

where X
fi
→ Yi → Y is a factorization of f so that Ex(fi) = f−1(pi). We construct t-structures

on each CX/Yi , and take their direct sum to construct the t-structure on CX/Y . Since fi(Ex(fi))
is a point, we may assume that l = 1.

Let
h : Y ′ → Y

be the blowing up at f(Ex(f)) = {p}, and C ⊂ Y ′ the exceptional locus of h. The birational
morphism f : X → Y factors through h : Y ′ → Y ,

f : X
g
→ Y ′

h
→ Y.
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The functor Rf! also factors as

Rf! : D
b Coh(X)

Rg!−→ Db Coh(Y ′)
Rh!−→ Db Coh(Y ).

Therefore, we have the sequence of exact functors

CX/Y ′ → CX/Y
Rg!−→ CY ′/Y , (15)

where the left functor is the natural inclusion. The functors Lg∗, g! satisfy

Rg!Lg
∗E ∼= E, Rg!g

!E ∼= E

for any E ∈ Db Coh(Y ′). This implies that Lg∗ and g! induce the right and the left adjoint
functors of

Rg! : CX/Y → CY ′/Y ,

respectively. From this fact, it is straightforward to check that the sequence (15) is an exact
triple as in § 2.2.

By [Bri02, Lemma 3.1], the standard t-structure onDb Coh(Y ′) induces a bounded t-structure
on CY ′/Y . The heart is described by (cf. [vdB04, Proposition 3.5.8])

CY ′/Y ∩ Coh(Y ′) = 〈OC〉. (16)

On the other hand, by the inductive assumption, we have the heart C0
X/Y ′ ⊂ CX/Y ′ written as

C0
X/Y ′ = 〈S′1, . . . , S′N−1〉 (17)

for some objects S′j ∈ C0
X/Y ′ with 1 6 j 6 N − 1 satisfying Rg∗S

′
j [1] ∈ Coh0(Y ′). By gluing the

t-structures with hearts (16), (17) via the exact triple (15), we obtain the heart

C̃0
X/Y ⊂ CX/Y .

Let us set Ĉ := g∗C, where g∗ means the total pull-back. We naturally regard Ĉ as a subscheme
of X. We have the following lemma.

Lemma 3.1. We have
C̃0
X/Y = 〈C0

X/Y ′ ,OĈ〉 (18)

such that (C0
X/Y ′ , 〈OĈ〉) is a torsion pair on C̃0

X/Y .

Proof. We first check that the right-hand side is contained in the left-hand side. By the definition
of gluing, it is obvious that C0

X/Y ′ is contained in the left-hand side. Also since O
Ĉ

= Lg∗OC , we

have Rg!OĈ = OC ∈ Coh(Y ′). We have

Hom(CX/Y ′ ,OĈ)∼= Hom(Rg!CX/Y ′ ,OC)
∼= 0 (19)

since Rg!CX/Y ′ = 0, and

Hom(O
Ĉ
, C>0
X/Y ′)

∼= Hom(OC ,Rg∗C>0
X/Y ′)

∼= 0

since Rg∗C>0
X/Y ′ ∈ D

>1(Coh(Y )) by the inductive assumption. These imply that O
Ĉ

is contained

in the left-hand side.
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Conversely, let us take an object E ∈ C̃0
X/Y . By the adjointness, we have the distinguished

triangle
F → E → Lg∗Rg!E.

Note that we have
Lg∗Rg!E ∈ 〈OĈ〉, F ∈ CX/Y ′ .

Moreover, since C0
X/Y ′ ⊂ C̃

0
X/Y , we have

HiC0
X/Y ′

(F ) ∼= HiC̃0
X/Y

(F )

for all i. Therefore, we have the exact sequence in C̃0
X/Y

0 → H0
C0
X/Y ′

(F ) → E → Lg∗Rg!E → H1
C0
X/Y ′

(F ) → 0

and HiC0
X/Y ′

(F ) = 0 for i 6= 0, 1. On the other hand, for any A ∈ Coh(Y ′) and A′ ∈ C0
X/Y ′ , we

have

Hom(Lg∗A,A′)∼= Hom(A,Rg∗A
′)

∼= 0

since Rg∗A
′ ∈ Coh0(Y ′)[−1]. Therefore, we have H1

C0
X/Y ′

(F ) ∼= 0, F ∈ C0
X/Y ′ and an exact

sequence in C̃0
X/Y

0 → F → E → Lg∗Rg!E → 0. (20)

This implies that E is contained in the right-hand side of (18). Together with the vanishing (19),
the exact sequence (20) implies that (C0

X/Y ′ , 〈OĈ〉) is a torsion pair on C̃0
X/Y . 2

We also have the following lemma.

Lemma 3.2. There is a torsion pair on C̃0
X/Y of the form

(〈O
Ĉ
〉,OC,⊥

Ĉ
), (21)

where OC,⊥
Ĉ

is the right orthogonal complement of O
Ĉ

in C̃0
X/Y .1

Proof. By the inductive assumption, the abelian category C0
X/Y ′ is the extension closure of some

finite number of objects. Hence, by Lemma 3.1, it follows that the abelian category C̃0
X/Y is

also the extension closure of some finite number of objects. In particular, it is a noetherian
abelian category. Hence, it is enough to check that 〈O

Ĉ
〉 is closed under quotients (cf. [Tod13a,

Lemma 2.15(i)]). To prove the latter statement, note that 〈O
Ĉ
〉 is closed under subobjects since

it is a free part of some torsion pair by Lemma 3.1. Also since the self-extension of O
Ĉ

vanishes,

any object in 〈O
Ĉ
〉 is a direct sum of O

Ĉ
. Let us take an exact sequence in C̃0

X/Y ,

0 → F → O⊕m
Ĉ

→ G → 0.

By the argument above, F is isomorphic to O⊕l
Ĉ

for some l. Then the object G must be isomorphic

to O⊕m−l
Ĉ

, proving that 〈O
Ĉ
〉 is closed under quotients. 2

1 We put ‘C’ in the notation of the right orthogonal complement, in order to distinguish it from a similar orthogonal
complement in other abelian category in § 4.4.
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By taking the tilting with respect to the torsion pair (21), we define the heart of a bounded
t-structure C0

X/Y on CX/Y to be

C0
X/Y := 〈OC,⊥

Ĉ
,O

Ĉ
[−1]〉. (22)

Lemma 3.3. We have
C0
X/Y = 〈S1, . . . , SN−1, SN 〉 (23)

where SN = O
Ĉ

[−1] and Si for 1 6 i 6 N − 1 is given by the universal extension in C̃0
X/Y

0 → S′i → Si → O
Ĉ
⊗ Ext1(O

Ĉ
, S′i) → 0. (24)

Proof. We first note the vanishing

Hom(O
Ĉ
, C0
X/Y ′) = 0 (25)

since Rg∗C0
X/Y ′ ⊂ Coh0(Y ′)[−1]. By the vanishing (25), we have Hom(O

Ĉ
, S′i) = 0 for 1 6 i 6

N − 1. Combined with the fact that (24) is the universal extension, it follows that Hom(O
Ĉ
,

Si) = 0, i.e. Si ∈ OC,⊥
Ĉ

for 1 6 i 6 N − 1. Therefore, the right-hand side of (23) is contained in

the left-hand side of (23).

Conversely, let us take an object E ∈ OC,⊥
Ĉ

. By Lemma 3.1, there is an exact sequence in

C̃0
X/Y

0 → F → E → O
Ĉ
⊗ V → 0

for some F ∈ C0
X/Y ′ and some finite-dimensional C-vector space V . Since Hom(O

Ĉ
, E) = 0, we

have the injection
V ↪→ Ext1(O

Ĉ
, F ).

Let W be the cokernel of the above injection. There is an exact sequence in C0
X/Y

0 → E → F̂ → O
Ĉ
⊗W → 0

where F̂ is the universal extension in C̃0
X/Y

0 → F → F̂ → O
Ĉ
⊗ Ext1(O

Ĉ
, F ) → 0. (26)

It is enough to show that F̂ is contained in the right-hand side of (23). Since C0
X/Y ′ is the

extension closure of S′1, . . . , S
′
N−1, this follows from the following claim: for an exact sequence in

C0
X/Y ′

0 → F1 → F → F2 → 0 (27)

suppose that their universal extensions F̂i in C̃0
X/Y

0 → Fi → F̂i → O
Ĉ
⊗ Ext1(O

Ĉ
, Fi) → 0

are contained in the right-hand side of (23). Then F̂ is contained in the right-hand side of (23).
To prove this claim, first note that Hom(O

Ĉ
, F2) = 0 by the vanishing (25). Therefore, applying

Hom(O
Ĉ
, ∗) to the sequence (27), we obtain the exact sequence

0 → Ext1(O
Ĉ
, F1) → Ext1(O

Ĉ
, F )

ψ
→ Ext1(O

Ĉ
, F2).

It follows that there is an exact sequence in C0
X/Y

0 → F̂1 → F̂ → F 2 → 0 (28)
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where F 2 fits into the exact sequence in C̃0
X/Y

0 → F2 → F 2 → O
Ĉ
⊗ Imψ → 0.

We have the exact sequence in C0
X/Y

0 → O
Ĉ
⊗ Cok(ψ)[−1] → F 2 → F̂2 → 0.

Since F̂2 is contained in the right-hand side of (23), the object F 2 is also contained in the
right-hand side of (23). Combined with that F̂1 is contained in the right-hand side of (23),
the exact sequence (28) implies that the object F̂ is also contained in the right-hand side
of (23). 2

Moreover, we have the following lemma.

Lemma 3.4. For the objects Si in Lemma 3.3, we have

Rf∗Si[1] ∈ Coh0(Y ), 1 6 i 6 N. (29)

Proof. The claim for i = N is obvious. Suppose that 1 6 i 6N−1. Applying Rg∗ to the sequence
(24), we obtain the distinguished triangle

Rg∗S
′
i → Rg∗Si → O⊕miC

where mi = dim Ext1(O
Ĉ
, S′i). Since Rg∗S

′
i
∼= Qi[−1] for some zero-dimensional sheaf Qi on Y ′,

the object Rg∗Si is isomorphic to the two-term complex

(O⊕miC

φ
→ Qi)

with O⊕miC located in degree zero. It is enough to check h∗Ker(φ) = 0, which is equivalent to
H0(C,Ker(φ)) = 0. If H0(C,Ker(φ)) is non-zero, then there is a non-zero section s ∈ H0(C,
O⊕miC ) satisfying φ ◦ s = 0. By adjunction, there is non-zero ŝ ∈ H0(Ĉ,O⊕mi

Ĉ
) such that the

composition

O
Ĉ

ŝ
→ O⊕mi

Ĉ
→ S′i[1]

is zero. Here the right morphism is induced by the extension (24). This contradicts the fact that
(24) is the universal extension. Hence, h∗Ker(φ) = 0, and the condition (29) holds. 2

By the above lemmas, the heart C0
X/Y ⊂ CX/Y satisfies the desired property (14). As a

summary, we have obtained the following proposition.

Proposition 3.5. Let X be a smooth projective surface. Then for each smooth projective
surface Y and a birational morphism f : X → Y , we can associated the heart of a bounded
t-structure C0

X/Y ⊂ CX/Y satisfying the following conditions:

(i) for any F ∈ C0
X/Y , the object Rf∗F [1] is a zero-dimensional sheaf on Y ;

(ii) C0
X/Y is the extension closure of a finite number of objects in C0

X/Y .

(iii) suppose that f(Ex(f)) is a point p ∈ Y , and take the factorization

f : X
g

→ Y ′
h
→ Y

where h is a blow-up at p which contracts a (−1)-curve C on Y ′, and C0
X/Y ′ is the extension

closure of objects S′1, . . . , S
′
N−1; then C0

X/Y is the extension closure of objects S1, . . . , SN−1,

SN := O
Ĉ

[−1], where Ĉ = g∗C and Si is the cone of the universal morphism

Si → O
Ĉ
⊗ Ext1(O

Ĉ
, S′i) → S′i[1].
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3.2 Generators of the heart C0
X/Y

In this subsection, we give an explicit description of the generator of C0
X/Y . The description here

is not canonical, since it depends on a choice of a factorization of f as in (30) below. However,
it will be useful in constructing stability conditions. Before giving a general description, we look
at our resulting generators in some examples.

Example 3.6. (i) Suppose that f : X → Y contracts disjoint (−1)-curves C1, . . . , CN on X. Then
we have

C0
X/Y = 〈OC1 [−1], . . . ,OCN [−1]〉.

(ii) Suppose that the f : X → Y factors as

X = X1
g1
→ X2

g2
→ X3 = Y

so that each gi contracts a (−1)-curve Ci ⊂ Xi, and p1 = g1(C1) satisfies p1 ∈ C2. Then we have

C0
X/Y = 〈OC2

(−1),OC1+C2
[−1]〉.

Here Ci ⊂ X is the strict transform.
(iii) Suppose that f : X → Y factors as

X = X1
g1
→ X2

g2
→ X3

g3
→ X4 = Y

so that each gi contracts a (−1)-curve Ci ⊂Xi, and pi = gi(Ci) satisfies p1 /∈ C2, {g2(p1), p2} ⊂ C3.
Then we have

C0
X/Y = 〈OC2+C3

(−p1),OC1+C3
(−p2),OC1+C2+C3

[−1]〉.

Our strategy is to factorize f into a composition of contractions of (−1)-curves, and describe
the generator of C0

X/Y by the induction on the number of contractions. We divide (−1)-curves

which appear in the contractions into two types: a (−1)-curve is of type I if it is essentially
obtained as an exceptional curve of a blow-up of Y , and otherwise it is of type II. For instance,
in Example 3.6(iii), the curve C3 is of type I, and C1, C2 are of type II. We describe the generator
of C0

X/Y according to the above types of (−1)-curves.
For a birational morphism f : X → Y as in the previous subsection, we factorize it into a

composition of contractions of (−1)-curves

X = X1
g1
→ X2

g2
→ · · ·

gN−1−→ XN
gN
→ XN+1 = Y. (30)

The birational morphism
gi : Xi → Xi+1

contracts a single (−1)-curve Ci ⊂ Xi to a point pi ∈ Xi+1. We also set

gi,j := gj−1 ◦ · · · ◦ gi : Xi → Xj ,

fi := g1,i : X → Xi

and Ĉi := f∗i Ci. For j > i, we also write gi,j(Ci) as pi ∈ Xj by abuse of notation. The curves Ci
are classified into two types.

(i) Type I: for any j > i, we have pi /∈ Cj .
(ii) Type II: there is j > i so that pi ∈ Cj . In this case, we define κ(i) > i to be the smallest

j > i satisfying pi ∈ Cj .
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If Ci is of type I, we set Si = O
Ĉi

[−1]. If Ci is of type II, we consider the exact sequence of

sheaves on Xi

0 → Si → g∗i,κ(i)OCκ(i) → OCi → 0 (31)

and set Si = Lf∗i Si(= f∗i Si). Here (31) is obtained by restricting g∗i,κ(i)OCκ(i) to Ci, and taking

its kernel. The sheaf Si is written as

Si = Og∗
i,κ(i)

Cκ(i)−Ci(−pi)

for pi ∈ Cκ(i).

Proposition 3.7. In the above notation, we have

C0
X/Y = 〈S1, . . . , SN 〉.

Proof. We show the proposition by the induction on N . Suppose that the claim holds for

fN : X → XN . Then we have

C0
X/XN

= 〈S′1, . . . , S′N−1〉

where S′i are the objects defined similarly to Si, applied for the composition

X = X1
g1
→ X2

g2
→ · · ·

gN−1−→ XN .

Noting Proposition 3.5 and SN = O
ĈN

[−1], it is enough to show that there is a distinguished

triangle for each 1 6 i 6 N − 1,

Si → O
ĈN
⊗ Ext1(O

ĈN
, S′i) → S′i[1]. (32)

For 1 6 i 6 N − 1, we have the following three cases.

Case 1. The curve Ci is of type I for both of X → XN and X → Y .

In this case, we have S′i = Si = O
Ĉi

[−1]. Also we have

Ext1(O
ĈN
, S′i) = Hom(O

ĈN
,O

Ĉi
)

= HomXN (OCN ,Opi)
∼= 0

since pi /∈ CN . Therefore, we have the distinguished triangle (32).

Case 2. The curve Ci is of type I for X → XN and type II for X → Y .

In this case, we have S′i = O
Ĉi

[−1], κ(i) = N and Si = Lf∗i Si. We have

Ext1(O
ĈN
, S′i)
∼= HomXN (OCN ,Opi)
∼= C

since pi ∈ CN . By pulling back the exact sequence (31) to X via fi, we have the distinguished

triangle (32).
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Case 3. The curve Ci is of type II for both of X → XN and X → Y .

In this case, 1 6 κ(i) 6 N − 1 and S′i = Si = Lf∗i Si. We have

Ext1(O
ĈN
, S′i)
∼= Ext1

Xi(Lg
∗
i,NOCN , Si)

∼= Ext1
XN

(OCN ,Rgi,N∗Si). (33)

Applying Rgi,κ(i)∗ to the sequence (31), we obtain the distinguished triangle

Rgi,κ(i)∗Si → OCκ(i) → Opi

such that the right morphism is non-trivial since pi ∈ Cκ(i). Therefore, we have Rgi,κ(i)∗Si ∼=
OCκ(i)(−1) and

Rgi,N∗Si ∼= Rgκ(i),N∗OCκ(i)(−1)
∼= 0.

Therefore, (33) vanishes and we have the distinguished triangle (32). 2

Remark 3.8. By the construction of Si, we obviously obtain the generators of C0
X/Y in

Example 3.6.

3.3 t-structures on Db Coh(X)
Let f : X → Y be a birational morphism as in the previous subsections. Let

AY ⊂ Db Coh(Y )

be the heart of a bounded t-structure such that Oy ∈ AY for any y ∈ Y . We construct the heart
of a t-structure on Db Coh(X) by gluing AY and C0

X/Y constructed in the previous subsections.
Let us consider the following sequence of exact functors

CX/Y → Db Coh(X)
Rf!−→ Db Coh(Y )

where the left functor is the natural inclusion. It is straightforward to check that the above
sequence is an exact triple as in § 2.2. By gluing AY and C0

X/Y , we obtain the heart

AX ⊂ Db Coh(X).

The heart AX is described as follows.

Lemma 3.9. We have
AX = 〈C0

X/Y ,Lf
∗AY 〉 (34)

and (C0
X/Y ,Lf

∗AY ) is a torsion pair on AX .

Proof. The proof is very similar to Lemma 3.1. First we show that the right-hand side of (34) is
contained in the left-hand side of (34). It is obvious that C0

X/Y is contained in the left-hand side,
so we show that Lf∗AY is contained in the left-hand side. For M ∈ AY , we have Rf!Lf

∗M ∼=
M ∈ AY and

Hom(CX/Y ,Lf∗M) ∼= 0 (35)

by the adjunction. Also we have

Hom(Lf∗M, C>0
X/Y )∼= Hom(M,Rf∗C>0

X/Y )

∼= 0 (36)
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since Rf∗C>0
X/Y ⊂ D>0 Coh(Y ) with cohomology sheaves zero-dimensional, and Coh0(Y ) ⊂ AY .

Therefore, Lf∗M is an object in AX by the definition of the gluing.
Conversely, we show that AX is contained in the right-hand side of (34). For an object

E ∈ AX , there is a distinguished triangle

F → E → Lf∗Rf!E

with F ∈ CX/Y . Similarly to the proof of Lemma 3.1, we have the exact sequence in AX

0 → H0
C0
X/Y

(F ) → E → Lf∗Rf!E → H1
C0
X/Y

(F ) → 0

and HiC0
X/Y

(F ) = 0 for i 6= 0, 1. By the vanishing (36), we also have H1
C0
X/Y

(F ) = 0 and F ∈ C0
X/Y .

Consequently, we have the exact sequence in AX
0 → F → E → Lf∗Rf!E → 0 (37)

with F ∈ C0
X/Y . Therefore, E is contained in the left-hand side of (34). By (35) and (37), the

pair (C0
X/Y ,Lf

∗AY ) is a torsion pair on AX . 2

4. Proof of Theorem 1.2

In this section, we construct a connected open subset

U(Y ) ⊂ Stab(X)R

for each birational morphism f : X → Y , and prove Theorem 1.2. In what follows, we always
assume that f : X → Y is a birational morphism between smooth projective surfaces.

4.1 Central charges corresponding to U(Y )
Let

NSf (X)R ⊂ NS(X)R

be the orthogonal complement of f∗NS(Y ) with respect to the intersection pairing. Note
that NSf (X)R is a linear subspace of NS(X)R spanned by the irreducible components of the
exceptional locus of f . For fixed k > 0, we set

Cf,k(X) :=

{
D ∈ NSf (X)R :

D · c1(F ) > 0 for all

F ∈ C0
X/Y , D2 + k > 0

}
.

We have the following lemma.

Lemma 4.1. The set Cf,k(X) is a non-empty connected open subset of NSf (X)R.

Proof. We factorize f : X → Y into the composition of blow-downs as in (30). In the notation
of § 3.2, we have

NSf (X)R =

N⊕
i=1

R[Ĉi]

for Ĉi = f∗i Ci. For D ∈ NSf (X)R, it is contained in Cf,k(X) if and only if D · c1(Si) > 0 for all
1 6 i 6 N , where Si is given in § 3.2, and D2 + k > 0. If we write D ∈ NSf (X)R as

D =
N∑
i=1

ti[Ĉi]
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for ti ∈ R, then D · c1(Si) is calculated as

D · c1(Si) =

{
ti, i is of type I,

ti − tκ(i), i is of type II.

Therefore, Cf,k(X) is identified with

Cf,k(X) =

(t1, . . . , tN ) ∈ RN :

ti > 0, i is of type I

ti > tκ(i), i is of type II

t21 + · · ·+ t2N < k.

 .

Hence, Cf,k(X) is a non-empty connected open subset of NSf (X)R. 2

We consider the following sets

A†(Y ) := {f∗ω +D : ω ∈ A(Y ), D ∈ Cf,ω2(X)},

A
†
(Y ) := {f∗ω +D : ω ∈ A(Y ), D ∈ Cf,ω2(X)}.

The set A†(Y ) is a topological fiber bundle

f∗ : A†(Y ) → A(Y )

whose fiber at ω is Cf,ω2(X). By Lemma 4.1, A†(Y ) is an open connected subset of NS(X)R,

and A
†
(Y ) is its partial compactification. We will consider the central charges of the form

Zf∗ω+D ∈ N(X)∨C, f∗ω +D ∈ A†(Y ).

The compatible t-structure will be given in the next subsection.

4.2 t-structures corresponding to U(Y )
For a rational point ω ∈ A(Y ), we have the heart of a bounded t-structure

Aω ⊂ Db Coh(Y )

constructed in § 2.4. By construction, all of the objects Oy for y ∈ Y are contained in Aω.
Therefore, Lemma 3.9 implies the existence of a bounded t-structure on Db Coh(X) with heart
given by

Aω(X/Y ) := 〈C0
X/Y ,Lf

∗Aω〉 (38)

such that (C0
X/Y ,Lf

∗Aω) is a torsion pair on Aω(X/Y ). Later we will need the following lemma.

Lemma 4.2. The subcategories

C0
X/Y ,Lf

∗Aω ⊂ Aω(X/Y )

are closed under subobjects and quotients.

Proof. Since (C0
X/Y ,Lf

∗Aω) is a torsion pair on Aω(X/Y ), the subcategory C0
X/Y is closed under

quotients, and the subcategory Lf∗Aω is closed under subobjects. For F ∈ C0
X/Y , suppose that

A ↪→ F is an injection in Aω(X/Y ). Then it induces an injection Rf!A ↪→ Rf!F in Aω. Since
Rf!F = 0, we have Rf!A = 0, hence A ∈ C0

X/Y . This implies that C0
X/Y is also closed under

subobjects.
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For M ∈ Aω, let us take an exact sequence in Aω(X/Y )

0 → E1 → Lf∗M → E2 → 0.

As we have observed before, we have E1 ∈ Lf∗Aω. For any F ∈ C0
X/Y , we have

RHom(F,Lf∗Aω) = 0

since Rf!F = 0. Therefore, we have Hom(F,E2) = 0, hence E2 ∈ Lf∗Aω since (C0
X/Y ,Lf

∗Aω) is

a torsion pair on Aω(X/Y ). This implies that Lf∗Aω is also closed under quotients. 2

We will also need the following lemma.

Lemma 4.3. The abelian category Aω(X/Y ) is noetherian.

Proof. Suppose that there is an infinite sequence of surjections in Aω(X/Y )

E = E1 � E2 � · · ·� Ei � Ei+i � · · · . (39)

Applying Rf! to the sequence (39), we obtain surjections

Rf!Ei � Rf!Ei+1 (40)

in Aω ⊂Db Coh(Y ). Since Aω is noetherian by the proof of [Tod13b, Lemma 5.2], we may assume
that (40) are isomorphisms for all i. Hence, if we take the exact sequences in Aω(X/Y )

0 → Fi → E → Ei → 0,

then Fi ∈ C0
X/Y . On the other hand, we have the exact sequence in Aω(X/Y )

0 → F → E → Lf∗M → 0

for F ∈ C0
X/Y and M ∈ Aω. Since Hom(Fi,Lf

∗M) = 0, we have the sequence of injections in

Aω(X/Y )
F1 ↪→ F2 ↪→ · · · ↪→ F.

By Lemma 4.2, the above sequence is a sequence of injections in C0
X/Y . Since C0

X/Y is the extension
closure of a finite number of objects, it is noetherian, hence the above sequence terminates.
Therefore, the sequence (39) also terminates. 2

4.3 Construction of U(Y )

For f∗ω +D ∈ A†(Y ) with ω, D rational, we consider the pair

σf∗ω+D := (Zf∗ω+D,Aω(X/Y )). (41)

The purpose here is to show that σf∗ω+D gives a point in Stab(X)R. We first prepare a lemma:
let us consider the central charge Zω,D ∈ N(Y )∨C defined by

Zω,D(M) := Zω(M) +
D2

2
ch0(M).

Note that, for any M ∈ Db Coh(Y ), it satisfies the following equality:

Zf∗ω+D(Lf∗M) = Zω,D(M). (42)
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Lemma 4.4. We have
σω,D := (Zω,D,Aω) ∈ Stab(Y ).

Proof. Note that the pair (Zω,Aω) is shown to be an element of Stab(Y ) in [Tod13b,
Lemma 3.12], and almost the same argument is applied. Indeed for a non-zero M ∈ Aω, Zω,D(M)
is written as

−ch2(M) +
ch0(M)

2
(D2 + ω2) + i ch1(M) · ω.

By the construction of Aω, we have ch1(M) ·ω > 0. Moreover, the proof of [Tod13b, Lemma 3.12]
shows that if ch1(M) · ω = 0, then M satisfies either ch0(M) < 0, ch2(M) > 0 or ch0(M) = 0,
ch2(M) > 0. By the definition of Cf,ω2(X), we have D2 + ω2 > 0, hence Zω,D satisfies the
property (6).

The proofs for other properties are also the same as in [Tod13b, Lemma 3.12]. Indeed the
abelian category Aω is noetherian, so there is no need to modify the proof for the Harder–
Narasimhan property. As for the support property, since D ∈ Cf,s2ω2(X) for any s > 1, the
wall-crossing method in [Tod13b, Theorem 3.23] for the family {σsω,D}s>1 works as well. This
implies that the Chern characters of Zω,D-semistable objects in Aω satisfies the same BG-type
inequality as in [Tod13b, Theorem 3.23], and the same computation in the proof of [Tod13b,
Lemma 3.12] shows the support property for σω,D. Since there is no need to modify the proof,
we omit the detail. 2

Using the above lemma, we show the following.

Lemma 4.5. In the above situation, the pair (41) is a stability condition on Db Coh(X).

Proof. We first check that σf∗ω+D satisfies the property (6). For non-zero F ∈ C0
X/Y and M ∈ Aω,

we have the equality (42) and

ImZf∗ω+D(F ) = c1(F ) ·D > 0. (43)

Combined with Lemma 4.4 and the fact that Aω(X/Y ) is the extension closure of C0
X/Y and

Lf∗Aω, it follows that σf∗ω+D satisfies the property (6).
In order to show the Harder–Narasimhan property, since Aω(X/Y ) is noetherian by

Lemma 4.3, it is enough to show that there is no infinite sequence

E = E1 ⊃ E2 ⊃ · · · ⊃ Ei ⊃ Ei+1 ⊃ · · · (44)

in Aω(X/Y ) such that

argZf∗ω+D(Ei+1) > argZf∗ω+D(Ei/Ei+1) (45)

for all i (cf. [Bri07, Proposition 2.4]). Suppose that a sequence (44) satisfying (45) exists. Since
ImZf∗ω+D(∗) is discrete by the rationality of ω and D, we may assume that ImZf∗ω+D(Ei) is
constant, hence ImZf∗ω+D(Ei/Ei+1) = 0. This implies that argZf∗ω+D(Ei/Ei+1) = π, which
contradicts (45). 2

We also have the following lemma.

Lemma 4.6. An object M ∈ Aω is Zω,D-(semi)stable if and only if Lf∗M ∈ Aω(X/Y ) is Zf∗ω+D-
(semi)stable.

Proof. Since the equality (42) holds, the lemma obviously follows from Lemma 4.2. 2
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The final step is to show the support property for the pair (41). We have the following
proposition.

Proposition 4.7. In the above situation, we have

σf∗ω+D ∈ Stab(X)R

i.e. σf∗ω+D satisfies the support property.

Proof. We first note that, for any F ∈ C0
X/Y , we have

Zf∗ω+D(F ) = ZD(F )

and its imaginary part is positive by (43). Since C0
X/Y is the extension closure of a finite number

of objects, there is 0 < θ 6 1 so that

ZD(C0
X/Y \{0}) ⊂ Hθ, (46)

where Hθ is defined by
Hθ := {r exp(iπφ) : r > 0, φ ∈ [θ, 1]}.

We can find a constant K(θ) > 0, which only depends on θ, satisfying the following: for any
k > 1 and z1, . . . , zk ∈ Hθ, we have

|z1 + · · ·+ zk|
|z1|+ · · ·+ |zk|

> K(θ). (47)

For instance, one can take K(θ) = sin2 πθ/2. The proof of this fact is an easy exercise, and we
omit the proof.

Let us take a Zf∗ω+D-semistable object E ∈ Aω(X/Y ). We have the exact sequence in
Aω(X/Y )

0 → F → E → Lf∗M → 0 (48)

for F ∈ C0
X/Y and M ∈ Aω. We find a constant K as in Definition 2.2 by dividing into the three

cases.

Case 1. We have M = 0, i.e. E ∈ C0
X/Y .

In this case, let us take K ′ > 0 so that the following holds:

‖Si‖
|ZD(Si)|

< K ′

for all 1 6 i 6 N . Here S1, . . . , SN are the objects in C0
X/Y as in Proposition 3.7. Then by (47),

it follows that

‖E‖
|Zf∗ω+D(E)|

<
K ′

K(θ)
(= K).

Note that the Zf∗ω+D-stability of E is not needed in the above argument.

Case 2. We have F = 0, i.e. E ∼= Lf∗M .

In this case, the object M is Zω,D-semistable by Lemma 4.6. By Lemma 4.4, the pair (Zω,D,
Aω) satisfies the support property. Therefore, we can find K > 0, which is independent of M , so
that

‖E‖
|Zf∗ω+D(E)|

=
‖M‖

|Zω,D(M)|
< K.

1776

https://doi.org/10.1112/S0010437X14007337 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007337


Stability conditions and birational geometry

Case 3. We have F 6= 0 and M 6= 0.

In this case, note that the object M may not be Zω,D-semistable. So there may be an exact
sequence in Aω

0 → M ′′ → M → M ′ → 0

satisfying
argZω,D(M ′′) > argZω,D(M) > argZω,D(M ′). (49)

We have the surjections in Aω(X/Y )

E � Lf∗M � Lf∗M ′

such that the kernel of their composition has the numerical class [F ]+ [Lf∗M ′′]. By the Zf∗ω+D-
stability of E, we have

arg(ZD(F ) + Zω,D(M ′′)) = argZf∗ω+D(F ⊕ Lf∗M ′′)

6 argZω,D(M ′). (50)

On the other hand, by (46), the exact sequence (48) and the Zf∗ω+D-stability of E, we have the
inequalities

πθ 6 argZD(F ) 6 argZω,D(M). (51)

The inequalities (49), (50) and (51) imply that argZω,D(M ′) > πθ. Let us take the Zω,D-
semistable factors of M ,

M1, . . . ,Mk ∈ Aω.
Then the above argument implies that Zω,D(Mi) ∈ Hθ for all 1 6 i 6 k. Let K > 0 be a constant
which we took in the previous cases. Then we have

‖E‖
|Zf∗ω+D(E)|

6
1

K(θ)
·

‖F‖+
∑k

i=1‖Mi‖
|ZD(F )|+

∑k
i=1|ZD,ω(Mi)|

6
K

K(θ)

by (47) and the results in the previous steps. Therefore σf∗ω+D satisfies the support property. 2

For an irrational f∗ω +D, we have the following analogue of Proposition 2.8.

Proposition 4.8. The embedding A
†
(Y ) ⊂ NS(X)R lifts to a continuous map

σY : A
†
(Y ) → Stab(X)R (52)

which takes any rational point f∗ω + D in A
†
(Y ) to the stability condition σf∗ω+D in

Proposition 4.7.

Proof. The proof is given in § 5.2. 2

We define U(Y ) to be
U(Y ) := σY (A†(Y )) ⊂ Stab(X)R.

Note that U(Y ) is a connected open subset of Stab(X)R, which is homeomorphic to A†(Y ) under
the forgetting map Stab(X)R → NS(X)R.

Remark 4.9. In the situation of Example 1.3, it is easy to see that

A†(X) = {x[H] + y[C] : x > 0,−x < y < 0},
A†(P2) = {x[H] + y[C];x > 0, 0 < y < x}.

Therefore, we obtain the description in Example 1.3.
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4.4 Relations of U(Y ) under blow-downs
In the situation of the previous subsections, suppose that f factors as

f : X
g
→ Y ′

h
→ Y

where h contracts a single (−1)-curve C on Y ′ to a point in Y . The purpose of this subsection
is to prove that U(Y ) ∩ U(Y ′) is non-empty of real codimension one.

We first see the relationship between the hearts of bounded t-structures (38) under blow-
downs. Let us take a rational point ω ∈ A(Y ), and consider h∗ω ∈ A(Y ′).

Lemma 4.10. There is a torsion pair on Ah∗ω(X/Y ′) of the form

(〈O
Ĉ
〉,OA,⊥

Ĉ
) (53)

where Ĉ = g∗C and OA,⊥
Ĉ

is the right orthogonal complement of O
Ĉ

in Ah∗ω(X/Y ′).

Proof. Since OC ∈ Per(Y ′/Y ), we have O
Ĉ
∈ Ah∗ω(X/Y ′). Also the abelian category

Ah∗ω(X/Y ′) is noetherian by Lemma 4.3, so it is enough to check that 〈O
Ĉ
〉 is closed under

quotients in Ah∗ω(X/Y ′) (cf. [Tod13a, Lemma 2.15(i)]). Let us take an exact sequence in
Ah∗ω(X/Y ′)

0 → E1 → O⊕m
Ĉ

→ E2 → 0

for m ∈ Z>1. By Lemma 4.2, Ei is of the form Lg∗Mi for some Mi ∈ Ah∗ω, and we have the
exact sequence in Ah∗ω

0 → M1 → O⊕mC → M2 → 0.

Since OC is a simple object in Per(Y ′/Y ) (cf. [vdB04, Proposition 3.5.8]), it easily follows that
OC is also a simple object in Ah∗ω. Hence, Mi ∈ 〈OC〉 and Ei ∈ 〈OĈ〉 follows. This implies
that 〈O

Ĉ
〉 is closed under quotients. 2

The abelian categories Aω(X/Y ) and Ah∗ω(X/Y ′) are related as follows:

Lemma 4.11. In the above situation, we have

Aω(X/Y ) = 〈OA,⊥
Ĉ

,O
Ĉ

[−1]〉

i.e. Aω(X/Y ) is the tilting with respect to the torsion pair (53).

Proof. Since both sides are the hearts of bounded t-structures, it is enough to show that the
left-hand side is contained in the right-hand side. This is equivalent to the following inclusions:

C0
X/Y ⊂ 〈O

A,⊥
Ĉ

,O
Ĉ

[−1]〉, (54)

Lf∗Aω ⊂ 〈OA,⊥
Ĉ

,O
Ĉ

[−1]〉. (55)

We first show the inclusion (54). By the construction of C0
X/Y in (22), it is enough to show

OC,⊥
Ĉ
⊂ OA,⊥

Ĉ
. (56)

Since O
Ĉ
∈ Lg∗Ah∗ω, we have the following inclusion

〈C0
X/Y ′ ,OĈ〉 ⊂ 〈C

0
X/Y ′ ,Lg

∗Ah∗ω〉
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or, equivalently, C̃0
X/Y ′ ⊂ Ah∗ω(X/Y ′). The inclusion (56) obviously follows from the above

inclusion.
Next we show the inclusion (55). By Lemma 2.5, we have the inclusions

Lf∗Aω ⊂ Lg∗Ah∗ω ⊂ Ah∗ω(X/Y ′).

Also we have

Hom(O
Ĉ
,Lf∗Aω)∼= Hom(Rh!OC ,Aω)

∼= 0

since Rh!OC = 0. This implies that Lf∗Aω is contained in OA,⊥
Ĉ

, proving (55). 2

Note that h∗A(Y ) is a real codimension-one boundary ofA(Y ′). We define the subsetA†h(Y )⊂
A
†
(Y ′) by the following Cartesian square.

A†h(Y )

�

//

g∗

��

A
†
(Y ′)

g∗
��

h∗A(Y ) // A(Y ′)

By Proposition 4.8, we have
σY ′(A

†
h(Y )) ⊂ U(Y ′) (57)

and it is a real codimension-one boundary of U(Y ′). The following proposition shows the desired
property of U(Y ) ∩ U(Y ′).

Proposition 4.12. We have
σY ′(A

†
h(Y )) ⊂ U(Y ).

Proof. It is enough to show the claim for rational points in A†h(Y ). Let us take a rational point

in A†h(Y )

g∗h∗ω +D = f∗ω +D ∈ A†h(Y )

for ω ∈ A(Y ) and D ∈ Cg,ω2(X). By (57), we have the point

σf∗ω+D ∈ U(Y ′). (58)

On the other hand, if we take a rational number 0 < t� 1, which is sufficiently small depending
on ω and D, we have

f∗ω +D + tĈ ∈ A†(Y ) (59)

by the description of Cf,ω2(X) in the proof of Lemma 4.1. Hence, we have the point

σ
f∗ω+D+tĈ

∈ U(Y ).

It is enough to show that
lim
t→+0

σ
f∗ω+D+tĈ

= σf∗ω+D. (60)

The relation (60) obviously follows at the level of central charges. Also the hearts of bounded
t-structures associated to (58), (59) are

Ah∗ω(X/Y ′), Aω(X/Y ),

respectively. By Lemma 4.11, these t-structures are related by a tilting. Moreover the heart
Aω(X/Y ) is independent of t. Therefore, we can apply Lemma 4.13 below, and conclude that
the relation (60) holds. 2
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We have used the following lemma, which is proved in [Tod10].

Lemma 4.13 [Tod10, Lemma 7.1]. Let A,A′ be the hearts of bounded t-structures on D, which
are related by a tilting. Let

[0, 1) 3 t 7→ Zt ∈ N(X)∨C

be a continuous map such that σt = (Zt,A) for any rational number 0 < t < 1 and σ0 = (Z0,A′)
determine points in Stab(X). Then we have limt→+0 σt = σ0.

4.5 Moduli spaces
Let M be the algebraic space which parameterizes objects E ∈ Db Coh(X) satisfying

Ext<0(E,E) = 0, Hom(E,E) = C

constructed by Inaba [Ina02]. For σ = (Z,A) ∈ Stab(X)R, let

Mσ([Ox]) ⊂M

be the subspace which parameterizes Z-stable objects E ∈ A with ch(E) = ch(Ox) for x ∈ X.
Note that, a priori,Mσ([Ox]) is just an abstract subfunctor ofM from the category of C-schemes
to the category of sets. The subspace Mσ([Ox]) is shown to be an algebraic subspace if the
openness of σ-stable objects is proved. (See [Tod08a] for the arguments when X is a K3 surface
or an abelian surface.) The following proposition completes the proof of Theorem 1.2.

Proposition 4.14. For σ ∈ U(Y ), the spaceMσ([Ox]) is an open algebraic subspace ofM, and
isomorphic to Y .

Proof. By deforming σ ∈ U(Y ), we may assume that σ is written as

(Zf∗ω+D,A†ω(X/Y ))

for some rational point f∗ω+D ∈ A†(Y ). In order to reduce the notation, we write Z = Zf∗ω+D.

Let us take an object E ∈ A†ω(X/Y ), giving a C-valued point of Mσ([Ox]). It fits into an exact

sequence in A†ω(X/Y )
0 → F → E → Lf∗M → 0

for some F ∈ C0
X/Y and M ∈ Aω. If F 6= 0, we have ImZ(F ) > 0, ImZ(Lf∗M) > 0, hence

ImZ(E) > 0. This contradicts to ch(E) = ch(Ox), hence F = 0 and E ∼= Lf∗M . Since M ∈ Aω
satisfies ch(M) = ch(Oy), Lemma 2.7 implies that M ∼= Oy for some y ∈ Y , i.e. E ∼= Lf∗Oy.
Conversely, let us consider the object Lf∗Oy ∈ Aω(X/Y ). Since Oy ∈ Aω is Zω,D-stable by
Lemma 2.7, Lemma 4.6 implies that Lf∗Oy ∈ Aω(X/Y ) is also Z-stable.

The above argument shows that the morphism

Y →M (61)

sending y to Lf∗Oy induces a bijection between closed points of Y and those ofMσ([Ox]). Also
since the functor

Lf∗ : Db Coh(Y ) → Db Coh(X)

is fully faithful, the morphism (61) is bijective on the tangent spaces. Therefore, it is enough to
show thatMσ([Ox]) is open inM, which follows if we show that the objects of the form Lf∗Oy
are closed under deformations.
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Note that an object E ∈ Db Coh(X) is written as Lf∗M for some M ∈ Db Coh(Y ) if and
only if

Hom(DX/Y , E) = 0, (62)

where DX/Y is defined in § 2.3. Since DX/Y is the smallest triangulated subcategory which
contains some finite number of objects in DX/Y , the condition (62) is an open condition by
upper semicontinuity. Hence, if E is a small deformation of Lf∗Oy, it is of the form Lf∗M for
some M ∈ Db Coh(Y ). Then M is a small deformation of Oy, hence M ∼= Oy′ for some y′ ∈ Y .
The statement is now proved. 2

5. Some technical results

In this section, we give proofs of Propositions 2.8 and 4.8.

5.1 Proof of Proposition 2.8

Proof. We divide the proof into four steps.

Step 1. Continuity of σ at rational points.

Let us take a rational point ω ∈ A(X). By Theorem 2.3 and Proposition 2.6, there are open
neighborhoods

ω ∈ Uω ⊂ NS(X)R, σω ∈ Uω ⊂ Stab(X)R (63)

such that ΠR restricts to a homeomorphism between Uω and Uω. We claim that, after shrinking
(63) if necessary, we have

σω′ ∈ Uω, for any rational ω′ ∈ Uω ∩A(X). (64)

To prove this, we may assume that ω′ lies in the interior A(X) ⊂ A(X) since Stab(X)R is
Hausdorff. Let us take a stability condition σ̃ω′ ∈ Uω satisfying ΠR(σ̃ω′) = ω′. By [Tod13b,
Proposition 3.14], after shrinking (63) if necessary, any object Ox for x ∈ X is σ̃ω′-stable of
phase one. Then Lemma 5.1 below shows that

σ̃ω′ = σω′ .

Therefore, the condition (64) holds.

Step 2. Partial extension of σ to irrational points.

By the property (64) and Theorem 2.3, there is an open subset U ⊂ A(X), which contains
all of the rational points, such that the construction in Proposition 2.6 extends to a continuous
map

σU : U → Stab(X)R.

It is enough to show that σU extends to the whole A(X). We first show that σU extends to
U ∪ A(X). Let us take an irrational point ω ∈ A(X), and rational points ωj ∈ A(X) for j > 1
which converge to ω. By Proposition 2.6, there is a constant Kj > 0 such that

‖E‖
|Zωj (E)|

< Kj

for any non-zero σωj -semistable object E. By the evaluation of Kj in the proof of [Tod13b,
Proposition 3.13], one can easily check that the Kj is taken to be independent of j. Indeed we

1781

https://doi.org/10.1112/S0010437X14007337 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007337


Y. Toda

can take Kj so that
K2
j < c0 + c1 · Cωj + c2 · lj + c3 ·mj (65)

where ci are positive constants which are independent of j, and Cωj , lj and mj are given by

Cωj := sup

{
−
D2 · ω2

j

(D · ωj)2
: D is an effective divisor on X,D2 6 0

}
,

lj := sup

{
u

(u+ ω2
j /2)2

: u > 0

}
,

mj := sup

{
y2

(−y + ω2
j /2)2 + x2

: (x, y) ∈ R2, x2 > 2ω2
j y

}
.

Here Cωj is obtained in [Tod13b, Lemma 3.20] and [BMT14, Corollary 7.3.3], lj appears in the
proof of [Tod13b, Proposition 3.19] and mj appears in the proof of [Tod13b, Proposition 3.19].
The argument of [Tod13b, Proposition 3.19] implies the inequality of the form (65). By the
openness of A(X), the values Cωj , lj and mj are are bounded above by a positive constant which
is independent of j.

The fact that Kj is bounded above easily implies that

lim
j→∞

{ |Zωj (E)− Zω(E)|
|Zωj (E)|

: E is σωj -semistable

}
= 0.

Therefore, by [Bri07, Theorem 7.1], there is σω ∈ Stab(X)R satisfying

lim
j→∞

σωj = σω. (66)

Step 3. Well-definedness of σω.

We need to show that σω in (66) is independent of ωj . In order to show this, we claim that
Ox is σω-stable for any x ∈ X. Suppose that Ox is not σω-stable. Since ωj is rational, Ox ∈ Aωj
is σωj -stable by Lemma 2.7, hence Ox is σω-semistable. This implies that there is a non-trivial
σω-stable factor A of Ox, and ω is a solution of ω · c1(A) = 0.

On the other hand, let us take a sufficiently small open neighborhood σω ∈ Uω. Since σω
satisfies the support property, there is a wall and chamber structure on Uω with finite number of
codimension one walls such that the set of semistable objects E with ch(E) = ch(Ox) is constant
at a chamber but jumps at a wall. By the argument as above, σω lies at the wall of the form
ΠR(∗) · c1(A) = 0. Since the image of this wall under ΠR contains dense rational points, we can
deform σω to σ̃ω′′ on the wall such that its image under ΠR is a rational point ω′′ ∈ A(X). Since
σ̃ω′′ lies on the wall, it is a limit of stability conditions of the form σω′′j for j > 1 with ω′′j rational

and ω′′j → ω′′. However, by the property (64), the stability condition σω′′ is also the limit of
σω′′j . Therefore, σ̃ω′′ = σω′′ , which is a contradiction since Ox is not σ̃ω′′-stable but σω′′-stable.

Therefore, Ox is σω-stable,
Since Ox is σω-stable, if we take open subsets as in (63) for an irrational ω, then the same

argument as in Step 1 shows that they satisfy the condition (64). This immediately implies that
σω is independent of the choice of ωj . Hence, σU extends to the continuous map from U ∪A(X),
by sending ω to σω.

Step 4. Extension of σ to all of the irrational points.

The final step is to extend the map from U ∪ A(X) to the map from A(X). Let us take an
irrational point ω ∈ A(X)\A(X), and rational points ωj ∈ A(X)\A(X) for j > 1 which converge
to ω. By the same argument as in Step 2, the limit σω of σωj exists. Note thatA(X) is continuously
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embedded into Stab(X)R by the previous step, which gives a section of ΠR over A(X). Since
σωj , σω lie at its boundary, σω is uniquely determined by ω if it exists, and independent of the
choice of ωj . Now the assignment ω 7→ σω gives the desired continuous map (13). 2

We have used the following lemma, which is essentially proved in [Bri08].

Lemma 5.1. Let A ⊂ Db Coh(X) be the heart of a bounded t-structure and ω ∈ NS(X)R is
ample. Suppose that the following conditions hold:

(i) the pair (Zω,A) is a stability condition on Db Coh(X);

(ii) for any x ∈ X, we have Ox ∈ A, and it is Zω-stable;

Then we have A = Aω.

Proof. The result is essentially proved in [Bri08, Proposition 10.3, Step 2], using [Bri08,
Lemma 10.1]. Although these results in [Bri08] are stated for K3 surfaces or abelian surfaces,
one can see that the arguments work for arbitrary projective surfaces. 2

5.2 Proof of Proposition 4.8

Proof. The proof is similar to that of Proposition 2.8, but we need to take more care because
we are no longer able to use Lemma 5.1.

Step 1. Continuity at rational points: reduction to the equality of stability conditions given as
(70).

Let us take a rational point f∗ω + D ∈ A†(Y ). By Theorem 2.3 and Proposition 2.6, there
are open neighborhoods

f∗ω +D ∈ Uω,D ⊂ NS(X)R, (67)

σf∗ω+D ∈ Uω,D ⊂ Stab(X)R, (68)

such that ΠR restricts to a homeomorphism between Uω,D and Uω,D. We claim that, after
shrinking (67), (68) if necessary, we have

σf∗ω′+D′ ∈ Uω,D for any rational f∗ω′ +D′ ∈ Uω,D ∩A
†
(Y ). (69)

Let us take σ̃f∗ω′+D′ ∈ Uω,D whose image under ΠR is f∗ω′ +D′. It is enough to show

σ̃f∗ω′+D′ = σf∗ω′+D′ . (70)

Step 2. A preparation of slicing to prove (70).

Below, we assume that the reader is familiar with the notion of slicings in the original
paper [Bri07], and the related notation. The stability conditions σf∗ω+D, σ̃f∗ω′+D′ are written
as pairs

σf∗ω+D = (Zf∗ω+D,P),

σ̃f∗ω′+D′ = (Zf∗ω′+D′ ,P ′),
for slicings P = {P(φ)}φ∈R, P ′ = {P ′(φ)}φ∈R. We also consider stability conditions on Db Coh(Y )

σω,D = (Zω,D,Aω)

σω′,D′ = (Zω′,D′ ,Aω′)

considered in Lemma 4.4. We denote by

{Q(φ)}φ∈R, {Q′(φ)}φ∈R
the slicings corresponding to σω,D, σω′,D′ , respectively.
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By shrinking (67), (68) if necessary, there is 0 < ε < 1/8 so that

d(P,P ′) < ε

where d(∗, ∗) is given in [Bri07, § 6]. Then the category P ′(φ) is the category of Zf∗ω′+D′-
semistable object in the quasi-abelian category (cf. the proof of [Bri07, Theorem 7.1])

P((φ− ε, φ+ ε)). (71)

Also, similarly to the proof of Proposition 2.8, Step 1, we see that σω′,D′ is contained in an
open neighborhood of σω,D. Consequently, we may assume that d(Q,Q′) < ε, and Q′(φ) is the
category of Zω′,D′-semistable objects in the quasi-abelian category

Q((φ− ε, φ+ ε)).

Step 3. Reduction of (70) to some statements on Q((φ− ε, φ+ ε)), given as (77) and (79).

The relation (70) follows if we show

A†f∗ω′ ⊂ P
′((0, 1]) (72)

since both sides are hearts of bounded t-structures on Db Coh(X). The inclusion (72) is equivalent
to

C0
X/Y ⊂ P

′((0, 1]), (73)

Lf∗Aω′ ⊂ P ′((0, 1]). (74)

We first prove (73). Since C0
X/Y is the extension closure of a finite number of objects, and

ImZD(C0
X/Y \{0}) > 0, we have

C0
X/Y ⊂ P([θ, θ′]) (75)

for some θ, θ′ ∈ (0, π). By shrinking (67), (68) if necessary, we may assume that

[θ − ε, θ′ + ε] ⊂ (0, π). (76)

Then the condition (73) follows since d(P,P ′) < ε.
The inclusion (74) follows if we show Lf∗Q′(φ) ⊂ P ′(φ) for any 0 < φ 6 1. By the argument

in Step 2, it is enough to show that

Lf∗Q((φ− ε, φ+ ε)) ⊂ P((φ− ε, φ+ ε)) (77)

and for any M ∈ Q((φ− ε, φ+ ε)) and an exact sequence in P((φ− ε, φ+ ε))

0 → F1 → Lf∗M → F2 → 0 (78)

we have

Fi ∈ Lf∗Q((φ− ε, φ+ ε)). (79)

Step 4. Proof of (77) and (79).

By Lemma 4.6, we have

Lf∗Q(ψ) ⊂ P(ψ) (80)
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for any ψ ∈ R. Then the inclusion (77) is obvious from (80). Suppose that there is an exact
sequence (78) in P((φ − ε, φ + ε)). If φ ∈ (ε, 1 − ε), we have P((φ − ε, φ + ε)) ⊂ Aω(X/Y ). By
Lemma 4.2, it follows that Fi ∈ Lf∗Aω for i = 1, 2. Together with Fi ∈ P((φ− ε, φ+ ε)) and the
condition (80), we conclude that (79) holds.

If φ /∈ (ε, 1− ε), we have either φ ∈ (0, ε) or φ ∈ (1− ε, 1]. These cases are treated similarly,
so we assume φ ∈ (1− ε, 1] for simplicity. By setting A = Aω(X/Y ), we have the exact sequence
in A

0 → H−1
A (F1) → H−1

A (Lf∗M) → H−1
A (F2)

→ H0
A(F1) → H0

A(Lf∗M) → H0
A(F2) → 0. (81)

Since Lf∗Aω ⊂ Aω(X/Y ), we have

HiA(Lf∗M) ∼= Lf∗HiAω(M)

for all i. By Lemma 4.2 and the exact sequence (81), we have

H−1
A (F1),H0

A(F2) ∈ Lf∗Aω.

By the condition (76), we have

Hom(C0
X/Y ,H

−1
A (F2)) = 0

since H−1
A (F2) ∈ P((0, ε)). This implies that H−1

A (F2) ∈ Lf∗Aω, hence H0
A(F1) ∈ Lf∗Aω also

holds by Lemma 4.2 and the exact sequence (81).
We have shown that HjA(Fi) is an object in Lf∗Aω for all i and j. Since the functor

Lf∗ : Db Coh(Y ) → Db Coh(X)

is fully faithful, it follows that Fi ∈ Lf∗Db Coh(Y ) for i = 1, 2. Combined with (80), we conclude
that (79) holds.

Step 5. Partial extension of σ to irrational points.

Now we have proved (69). By the property (69), there is an open subset UY ⊂ A
†
(Y ), which

contains all of the rational points, such that the construction in Proposition 4.7 extends to a
continuous map

σU,Y : UY → Stab(X)R.

We next show that σU,Y extends to the UY ∪A†(Y ). For an irrational point f∗ω+D ∈ A†(Y ), let
us take rational points f∗ωj +Dj ∈ A†(Y ) for j > 1 which converge to f∗ω+D. By Lemma 4.5,
there is a constant Kj > 0 so that

‖E‖
|Zf∗ωj+Dj (E)|

< Kj

for any non-zero σf∗ω+Dj -semistable object E. By the evaluation of Kj in the proof of
Proposition 4.7, and the argument in the proof of Proposition 2.8, Step 2, it is easy to see that
the constant Kj is taken to be independent of j. Therefore, as in the proof of Proposition 2.8,
Step 2, the limit exists

σf∗ω+D := lim
j→∞

σf∗ωj+Dj . (82)
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Step 6. Well-definedness of σf∗ω+D.

We claim that the limit (82) does not depend on a choice of f∗ωj + Dj . Indeed if we take
another rational points f∗ω′j+D′j ∈ A†(Y ) which converge to f∗ω+D, then Theorem 2.3 implies
the existence of

σ̃f∗ω′j+D′j ∈ Stab(X)R

for j � 0 whose image under ΠR is f∗ω′j +D′j and converge to σf∗ω+D. Let us write

σf∗ωj+Dj = (Zf∗ωj+Dj ,Pj),
σ̃f∗ω′j+D′j = (Zf∗ω′j+D′j ,P

′
j),

for slicings Pj = {Pj(φ)}φ∈R and P ′j = {P ′j(φ)}φ∈R. Then d(Pj ,P ′j) goes to zero for j →∞. Also
we can take θ, θ′ ∈ (0, π), which does not depend on j, so that

C0
X/Y ⊂ Pj([θ, θ

′])

for all j � 0. If we take 0 < ε < 1/8 satisfying (76), we have

C0
X/Y ⊂ P

′
j((0, 1]) (83)

for all j � 0 satisfying d(Pj ,P ′j) < ε. Also, by the same argument of Proposition 2.8, Step 3,
one sees that the stability conditions σωj ,Dj and σω′j ,D′j converge to the same point in Stab(Y )R.

Using this fact instead of the two sentences after (71), the same argument proving (74) shows
the inclusion

Lf∗Aω′j ⊂ P
′
j((0, 1]). (84)

The inclusions (83), (84) imply P ′j((0, 1]) = A†
f∗ω′j

for j � 0, which implies

σ̃f∗ω′j+D′j = σf∗ω′j+D′j , j � 0.

Hence, σf∗ω+D is independent of f∗ω′j + D′j , and the assignment f∗ω + D 7→ σf∗ω+D gives a

continuous map from UY ∪A†(Y ).

Step 7. Extension of σ to all of the irrational points.

We finally extend the map from UY ∪A†(Y ) to the map from A
†
(Y ). Let us take an irrational

point f∗ω +D ∈ A†(Y )\A†(Y ), and rational points f∗ωj +Dj ∈ A
†
(Y )\A†(Y ) for j > 1 which

converge to f∗ω +D. Similarly to the argument of Step 5, the limit σf∗ω+D of σf∗ωj+Dj exists.

Since we have shown that A†(Y ) is continuously embedded into Stab(X)R, the same argument
in the proof of Proposition 5.1, Step 4 shows that σf∗ω+D is independent of f∗ωj +Dj . Now the
assignment f∗ω +D 7→ σf∗ω+D gives the desired continuous map (52). 2
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