
JFP 28, e11, 75 pages, 2018. c© Cambridge University Press 2018

doi:10.1017/S0956796818000072

1

Size-based termination of higher-order rewriting

FRÉDÉRIC BLANQUI

INRIA, ENS / Université Paris-Saclay,

LSV, 61 avenue du Président Wilson, 94235 Cachan Cedex, France

(e-mail: frederic.blanqui@inria.fr)

Abstract

We provide a general and modular criterion for the termination of simply typed λ-calculus

extended with function symbols defined by user-defined rewrite rules. Following a work of

Hughes, Pareto and Sabry for functions defined with a fixpoint operator and pattern matching,

several criteria use typing rules for bounding the height of arguments in function calls. In

this paper, we extend this approach to rewriting-based function definitions and more general

user-defined notions of size.

1 Introduction

In this paper, we are interested in the termination of Church’s simply typed

λ-calculus (Church, 1940) extended with function symbols defined by user-defined

rewrite rules (Dershowitz & Jouannaud, 1990; TeReSe, 2003) like the ones of

Figure 1. Our results could be used to check the termination of typed functional

programs (e.g. in OCaml (2017) or Haskell (2017)), rewriting-based programs (e.g.

in Maude (2015)) or function definitions in proof assistants (e.g. (Coq, 2017), Agda

(2017), Dedukti (2018)). By termination, we mean the strong normalization property,

that is, the absence of infinite rewrite sequences t0 → t1 → . . . The mere existence of

a normal form is a weaker property called weak normalization. Termination is an

important property in program verification.

The rewrite system of Figure 1 defines the substraction and division functions on

the sort N of natural numbers in unary notation, i.e. with the constructors 0 : N

for zero and s : N ⇒ N for the successor function. A way to prove the termination

of this system is to show that, in two successive functions calls, arguments are

strictly decreasing wrt some well-founded order. A natural order, based on the

inductive nature of N, is to compare the height of terms. More precisely, let the

size of a terminating term t of sort N be the number of s symbols at the top of

the normal form of t (this rewrite system is weakly orthogonal and thus confluent

van Oostrom (1994)). While the termination of sub (i.e. the absence of infinite

reductions starting from a term of the form sub t u with t and u in normal form)

is not very difficult to establish (the size of the first argument is strictly decreasing

in recursive calls), proving the termination of div requires the observation that sub

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

2 F. Blanqui

sub x 0 → x

sub 0 y → 0

sub (s x) (s y) → sub x y

div 0 (s y) → 0

div (s x) (s y) → s (div (sub x y) (s y))

Fig. 1. Rewrite system defining subtraction and division on natural numbers.

is not size increasing, that is, the size of (sub t u) is less than or equal to the

size of t.

The idea of sized types, introduced by Hughes et al. (1996) for fixpoint-based

function definitions, is to consider an abstract interpretation of this notion of size

into an algebra of symbolic size expressions, and turn the usual typing rules of

simply typed λ-calculus into deduction rules on the size of terms. This allows

one to automatically deduce some information on the size of terms, and thus prove

termination by checking that, for instance, the size of some given argument decreases

in every recursive call. Hence, termination is reduced to checking typing and abstract

size decreasingness.

In our example, this amounts to saying the second rule of div does not jeopardize

termination since, assuming that x is instantiated by a term t of abstract size α, and

y is instantiated by a term u of abstract size β, then div (s t) (s u) terminates because

its first argument is of size α+ 1, while in the recursive call div (sub t u) (s u), the

first argument has a size smaller than or equal to α.

The goal of this work is to automate this kind of inductive reasoning, and check

the information given by the user (here, the fact that sub is not size-increasing).

However, when considering type constructors taking functions as arguments (e.g.

Sellink’s model of μCRL (Sellink, 1993), Howard’s constructive ordinals in Example

5), the size of a term is generally not a finite natural number but a transfinite

ordinal number. However, abstract size expressions can also handle transfinite

sizes.

Before explaining our contributions and detailing the outline of the paper, we give

hereafter a short survey on the use of ordinals for proving termination since this is

at the heart of our work though, in the end, we provide an ordinal-free termination

criterion.

1.1 Ordinal-based termination

A natural (and trivially complete) method for proving the termination of a relation

→ consists in considering a well-founded domain (�, <�), e.g. some ordinal (h, <h),

assigning a “size” ‖t‖ ∈ � to every term t, and checking that every rewrite step

(including β-reduction) makes the “size” strictly decrease: ‖t‖ >� ‖u‖ whenever

t→ u.

In theory, it is enough to take � = ω (the first infinite ordinal) when the rewrite

relation is finitely branching. However, after Gödel’s incompleteness theorem (Gödel,

1931), defining ‖ ‖ and proving that ‖t‖ >� ‖u‖ whenever t→ u, may require the use

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 3

of much bigger ordinals. For instance, the termination of cut elimination in Peano

arithmetic requires induction up to the ordinal ε0 = ωω..
.

but Peano arithmetic cannot

prove the well-foundedness of ε0 itself (Gentzen, 1935). Yet, there is a function ‖ ‖
from the terms of Gödel’s system T (Gödel, 1958) (which extends Peano arithmetic)

to ω such that ‖t‖ >� ‖u‖ whenever t→ u (Weiermann, 1998).

An equivalent approach is finding a well-founded relation containing →. For

instance, Dershowitz’s recursive path ordering (RPO) (Dershowitz, 1979b, 1982) or

its extension to the higher order case by Jouannaud and Rubio (Jouannaud &

Rubio, 1999, 2007; Blanqui et al., 2015). But, in this paper, we will focus on the

explicit use of size functions. For a connection between RPO and ordinals, see, for

instance, Dershowitz & Okada (1988).

Early examples of this approach are given by Ackermann’s proof of termination

of second-order primitive recursive arithmetic functions using h = ωωω (Ackermann,

1925), Gentzen’s proof of termination of cut elimination in Peano arithmetic using

h = ε0 (Gentzen, 1935; Howard, 1970; Wilken & Weiermann, 2012), Turing’s proof

of weak normalization of Church’s simply typed λ-calculus (Turing, 1942) and

Howard’s proof of termination of his system V (an extension of Gödel’s system T

with an inductive type for representing ordinals) using Bachmann’s ordinal (Howard,

1972). This approach developed into a whole area of research for measuring the

logical strength of axiomatic theories, involving ever growing ordinals, that can

hardly be automated. See for instance Rathjen (2006) for some recent survey.

Instead, Monin & Simonot (2001) developed an algorithm for trying to find size

assignments in h = ωω .

But, up to now, there has been no ordinal analysis for powerful theories like

second-order arithmetic: the termination of cut elimination in such theories is based

on another approach introduced by Girard (1972) and Girard et al. (1988), which

consists in interpreting types by so-called computability predicates and typing by

the membership relation.

In the first-order case, i.e. when there is no rule with abstraction or applied

variables, size decreasingness can be slightly relaxed by conducting a finer analysis

of the possible sequences of function calls. This led to the notions of dependency

pair in the theory of first-order rewrite systems (Arts, 1996; Arts & Giesl, 2000;

Hirokawa & Middeldorp, 2005; Giesl et al., 2006), and size-change principle for

first-order functional programs (Lee et al., 2001). These two notions are thoroughly

compared in Thiemann & Giesl (2005). In both cases, it is sufficient to define

a measure on the class of terms which are arguments of a function call only.

Various extensions to the higher order case have been developed (Sakai et al., 2001;

Wahlstedt, 2007; Jones & Bohr, 2008; Kusakari et al., 2009; Kop, 2011), but no

general unifying theory yet.

The present paper is not concerned with this problem but with defining a practical

notion of size for simply typed λ-terms inhabiting inductively defined types.

Note by the way that the derivational complexity of a rewrite system, i.e. the

function mapping every term t to the maximum number of successive rewrite steps

one can do from t (Hofbauer & Lautemann, 1989), does not seem to be related, at

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

4 F. Blanqui

least in a simple way, to the ordinal necessary to prove its termination: there are

rewrite systems whose termination can be proved by induction up to ω only and yet

have huge derivational complexities (Moser, 2017), unless perhaps one bounds the

growth rate of the size of terms (measured here as the number of symbols) (Schmitz,

2014). The notion of runtime complexity, i.e. the function mapping every n ∈ � to

the maximum number of successive rewrite steps one can do from a term whose

subterms are in normal form and whose size is smaller than n, seems to provide a

better (Turing related) complexity model (Avanzini & Moser, 2010).

1.2 Model-based termination

Manna & Ness (1970) proposed to interpret every term whose free variables are

x1, . . . , xn by a function from �n to �, where (�, <�) is a well-founded domain.

That is, � is the set of all the functions from some power of � to � and <� is the

pointwise extension of <�, i.e. f : �n → � <� g : �n → � if, for all x1, . . . , xn ∈ �,

f(x1, . . . , xn) <� g(x1, . . . , xn).

In the first-order case, this can be done in a structured way by interpreting

every function symbol f of arity n by a function f� : �n → � and every term by

composing the interpretations of its symbols, e.g. ‖f (g x)‖ is the function mapping

x to f�(g�(x)). If moreover these interpretation functions are monotone in each

argument, then checking that rewriting is size decreasing can be reduced to checking

that every rule is size decreasing.

A natural domain for (�, <�) is of course (�, <�). In this case, both monotony

and size decreasingness can be reduced to absolute positivity. Indeed, f(x1, . . . , xp) >

g(x1, . . . , xq) is equivalent to f(x1, . . . , xp)− g(x1, . . . , xq)− 1 � 0

and monotony is equivalent to checking that, for all i, f(. . . , xi+1, . . .)−f(. . . , xi, . . .)−
1 � 0. By restricting the class of functions, e.g. to polynomials of bounded degree,

one can develop heuristics for trying to automatically find monotone polynomial

interpretation functions making rules size decrease (Cherifa & Lescanne, 1987;

Lucas, 2005; Contejean et al., 2005; Fuhs et al., 2007). Unfortunately, polynomial

absolute positivity is undecidable on � since it is equivalent to the solvability of

Diophantine equations (Proposition 6.2.11 in TeReSe (2003)), which is undecidable

(Matiyasevich, 1970, 1993). Yet, these tools get useful results in practice by restricting

degrees and coefficients to small values, e.g. 2.

A similar approach can be developed for dense sets like �+ or �+ by ordering

them with the (not well-founded!) usual orderings on �+ and �+ if one assumes

moreover that the functions f� are strictly extensive (i.e. f�(x1, . . . , xn) > xi for all

i) (Dershowitz, 1979a), or with the well-founded relation <δ where, for some fixed

δ > 0, x <δ y if x + δ � y (Lucas, 2005; Fuhs et al., 2008). In the case of �+,

polynomial absolute positivity is decidable but of exponential complexity (Tarski,

1948; Collins, 1975). Useful heuristics have however been studied (Hong & Jakuš,

1998).

These approaches have also been successfully extended to linear functions on

domains like � = �n (vectors of dimension n) or � = �n×n (square matrices of

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 5

dimension n) (Endrullis et al., 2008; Courtieu et al., 2010), where � is a well-founded

domain.

Instead of polynomial functions, Cichoń considered the class of Hardy functions

(Hardy, 1904) indexed by ordinals smaller than ε0 (Cichoń & Touzet, 1996). The

properties of Hardy functions (composition is addition of indices, etc.) can be used

to reduce the search of appropriate Hardy functions to solving inequalities on

ordinals.

Manna and Ness’ approach has also been extended to the higher order case.

Gandy (1980b) remarks that terms of the λI-calculus (i.e. when, in every

abstraction λxt, x freely occurs at least once in t) can be interpreted in the set

of hereditary strictly monotone functions on some well-founded set (�, <�), that

is, a closed term of base type B is interpreted in the set [[B]] = �, a closed term

of type T ⇒ U is interpreted by a monotone function from [[T]] to [[U]], and

f : [[T ⇒ U]] <[[T⇒U]] g : [[T ⇒ U]] if, for all x ∈ [[T]], f(x) <[[U]] g(x) (note that, in

contrast with the first-order case, x itself may be a function). Then, by taking � = �
and extending the λ-calculus with constants 0 : o, s : o ⇒ o and + : o ⇒ o ⇒ o

for each base type o, he defines a size function that makes β-reduction size decrease

and provide an upper bound to the number of rewrite steps. An exact upper bound

was later computed by de Vrijer (1987).

Gandy’s approach was later extended by van de Pol (1993, 1996) and Kahrs (1995)

to arbitrary higher order rewriting à la Nipkow (1991) and Mayr & Nipkow (1998),

that is, to rewriting on terms in β-normal η-long form with higher order pattern

matching (Miller, 1991). But this approach has been implemented only recently

(Fuhs & Kop, 2012).

Interestingly, van de Pol also showed that, in the simply typed λ-calculus, Gandy’s

approach can be seen as a refinement of Girard’s proof of termination based on

computability predicates (Van de Pol, 1995, 1996).

Finally, a general categorical framework has been developed by Hamana (2006),

that is complete wrt the termination of binding term rewrite systems, a formalism

based on Fiore, Plotkin and Turi’s binding algebra (Fiore et al., 1999) and close to

a typed version of Klop’s combinatory reduction systems (Klop et al., 1993).

To the best of our knowledge, nobody seems to have studied the relations between

Howard’s approach based on ordinals (Howard, 1970; Wilken & Weiermann, 2012)

and Gandy’s approach based on interpretations (Gandy, 1980b; De Vrijer, 1987;

Van de Pol, 1996).

Note also that the existence of a quasi interpretation, i.e. ‖t‖ �� ‖u‖ whenever

t → u, not only may give useful information on the complexity of a rewrite system

(Bonfante et al., 2011) but, sometimes, may also simplify the search of a termination

proof. Indeed, Zantema (1995) proved that the termination of a first-order rewrite

system R is equivalent to the termination of lab(R) ∪ >�, where lab(R) are all

the variants of R obtained by annotating function symbols by the interpretation

of their arguments, a transformation called semantic labeling. Although usually

infinite, the obtained labeled system may be simpler to prove terminating,

and some heuristics have been developed to use this technique in automated

termination tools (Middeldorp et al., 1996; Koprowski & Zantema, 2006; Sternagel

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

6 F. Blanqui

& Middeldorp, 2008). This result was later extended to the higher order case by

Hamana (2007).

1.3 Termination based on typing with size annotations

Finally, there is another approach based on the semantics of inductive types, that

has been developed for functions defined with a fixpoint combinator and pattern

matching (Burstall et al., 1980).

The semantics of an inductive type B, [[B]], is usually defined, following Hessenberg

(1909) theorem, Knaster & Tarski (1928) theorem or Tarski (1955) theorem, as the

smallest fixpoint of a monotone function �B on some complete lattice. Moreover,

following Kuratowski (1922) and Cousot & Cousot (1979), such a fixpoint can be

reached by transfinite iteration of �B from the smallest element of the lattice ⊥.

Hence, every element t ∈ [[B]] can be given as size the smallest ordinal a such that

t ∈ SB
a , where SB

a is the set obtained after a transfinite iterations of �B from ⊥.

In particular, terms of a first-order data type like the type of Peano integers, lists,

binary trees, . . . always have a size smaller than ω.

Mendler used this notion of size to prove the termination of an extension

of Gödel’s system T (Gödel, 1958) and Howard’s system V (Howard, 1972) to

functionals defined by recursion on higher order inductive types, i.e. types with

constructors taking functions as arguments (Mendler, 1987, 1991), in which case the

size of a term can be bigger than ω.

In Hughes et al. (1996) and Pareto (2000), Hughes, Pareto and Sabry proposed to

internalize this notion of size by extending the type system with, for each data type B,

new type constants B0, B1, . . . B∞ = B for typing the terms of type B of size smaller

than or equal to 0, 1, . . . , ∞, respectively, and the subtyping relation induced by the

fact that a term of size at most a is also of size at most b whenever a �� b or b = ∞.

More generally, to provide some information on how a function behaves wrt sizes,

they consider as size annotations not only 0, 1, . . . but any first-order term built from

the function symbols 0 for zero, s for successor and + for addition, and arbitrary

size variables α, β, . . ., that is the language of Presburger arithmetic (Presburger,

1929). So, for instance, the usual list constructor cons gets the type N ⇒ Lα ⇒ Lsα,

and the usual map function on lists can be typed by (N⇒ N)⇒ Lα ⇒ Lα, where α is

a free size variable that can be instantiated by any size expression in a way similar

to type instantiation in ML-like programming languages (Milner, 1978).

Hughes, Pareto and Sabry do not actually prove the termination of their calculus

but provide a domain-theoretic model (Scott, 1972). However, following Plotkin

(1977), a closed term of first-order data type terminates iff its interpretation is not

⊥. The first termination proof for arbitrary terms seems to have been given by

Amadio & Coupet-Grimal (1997, 1998), who independently developed a system

similar to the one of Hughes, Pareto and Sabry, inspired by Giménez’s work on

the use of typing annotations for termination and productivity (Giménez, 1996).

Giménez (1998) himself later proposed a similar system but provided no termination

proof. Note that Plotkin’s result was later extended to higher order types and

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 7

rewriting-based function definitions by Berger (2005), Coquand & Spiwack (2007)

and Berger (2008).

Size annotations are an abstraction of the semantic notion of size that one can use

to prove properties on the actual size of terms like termination (size decreasingness)

or the fact that a function is not size increasing (e.g. map), which can in turn be

used in a termination proof (Walther, 1988; Giesl, 1997). Following Cousot (1997),

it could certainly be described as an actual abstract interpretation.

Hence, termination can be reduced to checking that a term has some given type

in the system with size-annotated type constants and subtyping induced by the

ordering on size annotations, the usual typing rules being indeed valid deduction

rules wrt the size of terms (e.g. if t : Na ⇒ Nb and u : Na, then tu : Nb).

But, in such a system, a term can have infinitely many different types because of

size instantiation or because of subtyping. As already mentioned, size instantiation

is similar to type instantiation in Hindley–Milner’s type system (Hindley, 1969;

Milner, 1978), where the set of types of a term has a smallest element wrt the

instantiation ordering if it is not empty (Huet, 1976). In this case, there is a complete

type-checking algorithm for (t, T) which consists of checking that T is an instance

of the smallest type of t (Hindley, 1969). Unfortunately, with subtyping, there is

no smallest type wrt the instantiation ordering (e.g. λxx has type α ⇒ α for all α,

and type B ⇒ C if B < C, but B ⇒ C is not an instance of α ⇒ α), or subtyping

composed with instantiation (e.g. λfλxf(fx)) has type (α ⇒ α) ⇒ (α ⇒ α) for all

α, and type (B ⇒ C) ⇒ (B ⇒ C) if B < C, but no instance of (α ⇒ α) ⇒ (α ⇒ α)

is a subtype of (B ⇒ C) ⇒ (B ⇒ C)) (Fuh & Mishra, 1990). To recover a notion

of smallest type and completeness, all the works we know on type inference with

subtyping extend the notion of type to include subtyping constraints.

We will not follow this approach though. One reason is that we consider Church-

style λ-terms (i.e. with type-annotated abstractions) instead of Curry-style λ-terms

and, in this case, as we will prove it, there is a smallest type wrt to subtyping

composed with instantiation when size expressions are only built from variables,

the successor symbol and an arbitrary number of constants (the “successor” size

algebra). Note moreover that, although structural (function types and base types

are incomparable), subtyping is not well-founded in this case since, for instance,

Nα ⇒ N > Nsα ⇒ N > . . . However, if we disregard how size annotations are related

to the semantics of inductive types, our work has important connections with more

general extensions of Hindley–Milner’s type system with subtypes (Mitchell, 1984;

Fuh & Mishra, 1990; Pottier, 2001), indexed types (Zenger, 1997), DML(C) (Xi,

2002), HM(X) (Sulzmann, 2000) or generalized algebraic data types (Cheney, 2003;

Xi et al., 2003), which are all a restricted form of dependent types (De Bruijn, 1970;

Martin-Löf, 1975).

Hughes, Pareto and Sabry’s approach was later extended to higher order data types

(Barthe et al., 2004), polymorphic types (Abel, 2004; Barthe et al., 2005; Abel, 2006,

2008), rewriting-based function definitions in the calculus of constructions (Blanqui,

2004, 2005a), conditional rewriting (Blanqui & Riba, 2006), product types (Barthe

et al., 2008), and fixpoint-based function definitions in the calculus of constructions

(Barthe et al., 2006; Grégoire & Sacchini, 2010; Sacchini, 2011).

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

8 F. Blanqui

It should be noted that, in contrast with the ordinal-based approach, not all terms

are given a size, but only those of base type. Moreover, although ordinals are used

to define the size of terms, no ordinal is actually used in the termination criterion

since one considers an abstraction of them. Indeed, when comparing two terms, one

does not need to actually know their size: it is enough to differentiate between their

size. Hence, transfinite computations can be reduced to finite ones.

Finally, Roux and the author proved in Blanqui & Roux (2009) that size

annotations provide a quasi-model, and thus can be used in a semantic labeling.

Terms whose type is annotated by ∞ (unknown size) are interpreted by using a

technique introduced by Hirokawa & Middeldorp (2006). Interestingly, semantic

labeling allows one to deal with function definitions using matching on defined

symbols, like in a rule for associativity (e.g. (x + y) + z → x + (y + z)), while

termination criteria based on types with size annotations are restricted to matching

on constructor symbols.

Current implementations of termination checkers based on typing with size

annotations include ATS (Xi, 2003; ATS, 2018), MiniAgda (Abel, 2010; MiniAgda,

2014), Agda (Agda, 2017), cicminus (Sacchini, 2011; Cicminus, 2015) or HOT (HOT,

2012). Most of these tools assume given the annotated types of function symbols

(e.g. to know whether the size of a function is bounded by the size of one of its

arguments). Heuristics for inferring the annotations of function symbols have been

proposed in Telford & Turner (2000) and Chin & Khoo (2001). They are both based

on abstract interpretation techniques (Cousot, 1996).

1.4 Contributions

1. The first contribution of the present paper is to give a rigorous and detailed

account, for the simply typed λ-calculus, of the approach and results sketched

in Blanqui (2004, 2005a), hence providing the first complete account of the

extension of Hughes, Pareto and Sabry’s approach to rewriting-based function

definitions (Dershowitz & Jouannaud, 1990; TeReSe, 2003).

2. In all the works on size-annotated types, the size algebra is fixed. In

those considering first-order data types only, the size algebra is usually the

language of Presburger arithmetic, the first-order theory of which is decidable

(Presburger, 1929; Fischer & Rabin, 1974). In those considering higher order

data types, the successor symbol s is usually the only symbol allowed, except in

Barthe et al. (2008) which allows addition too. Yet, there are various examples

showing that, within a richer size algebra, more functions can be proved

terminating since types are more precise.

The second contribution of the present paper is to provide a type-checking

algorithm for a general formulation of Hughes, Pareto and Sabry’s calculus

parameterized, for size annotations, by a quasi-ordered first-order term algebra

(A,�A) interpreted in ordinals. In particular, we prove that this algorithm

is complete whenever size function symbols are monotone, the existential

fragment of (A,�A) is decidable and every satisfiable set of size constraints

admits a smallest solution.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 9

3. In all the previous works, the notion of size is also fixed: the size of t is the

height of the set-theoretical tree representation of the normal form of t (an

abstraction being represented as an infinite set of trees).

The third contribution of the paper is to enable users to define their own notion

of size by annotating the types of constructors. These annotations generate a

stratification of the interpretation of inductive types. We prove that one can

build such a stratification in the domain of Girard’s computability predicates

(Girard, 1972; Girard et al., 1988) when annotations form monotone and

extensive functions.

4. The fourth contribution is the proof that, in the successor algebra, the

satisfiability of a finite set of constraints is decidable in polynomial time, and

every satisfiable finite set of constraints has a smallest solution computable in

polynomial time too.

In contrast with Blanqui (2004, 2005a), the present paper

• includes a short survey on the use of ordinals in termination proofs;

• develops a stratification-based notion of size for inhabitants of inductive types;

• introduces the notion of constructor size function;

• shows how to define a stratification from constructor size functions that are

monotone and strictly extensive on recursive arguments;

• proves the existence and polynomial complexity of the computation of a

smallest solution for a solvable set of constraints in the successor algebra,

using max-plus algebra techniques instead of pure linear algebra techniques.

1.5 Organization of the paper

In Section 2, we recall the definitions of types, terms and rewriting, and the

interpretation of types as computability predicates. In Section 3, we introduce the

notions of stratification, size and constructor size functions, and prove properties

on the size of computable terms. In Section 4, we present the termination

criterion. The main ingredient of the termination criterion is a type system with

subtyping, parameterized by a quasi-ordered first-order term algebra for abstract

size expressions. It also requires that annotations of arguments are minimal in some

sense. In Section 5, we provide a sufficient syntactic condition for the minimality

property to be satisfied when the size is defined as the height. In Section 6, we

provide various examples of the expressive power of our termination criterion. In

Section 7, we provide a complete algorithm for checking subject-reduction and size

decreasingness under some general assumptions on the size algebra. In Section 8,

we show how subtyping problems can be reduced to ordering problems in the

size algebra. Finally, in Section 9, we prove that the simplest possible algebra, the

successor algebra, satisfies the required conditions for the type-checking algorithm

to be complete.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

10 F. Blanqui

2 Types, terms and computability

In this section, we define the set of terms that we consider (Church’s simply typed

λ-calculus with constants (Church, 1940)), the operational semantics (the

combination of β-reduction and user-defined rewrite rules (Dershowitz &

Jouannaud, 1990; TeReSe, 2003)) and the notion of computability used to prove

termination.

Given a set E, we denote by E∗ the set of words or sequences over E (i.e. the

free monoid containing E), the empty word by ε, the concatenation of words by

juxtaposition, the length of a word w by |w|. We also use 	e to denote a (possibly

empty) sequence e1, . . . , e|	e| of elements of E.

Given a partial function f : A→ B, a ∈ A and b ∈ B, let [a : b, f] be the function

mapping a to b and every x ∈ dom(f)− {a} to f(x).

We recall that, if X is a bounded set of ordinals, i.e. when there is b such that

x � b for all x ∈ X, then the least upper bound of X, written supX, exists. In

particular, sup ∅ = 0.

2.1 Types

Following Church, we assume given a non-empty countable set 	 of sorts B, C, . . .

and define the set
 of (simple) types as follows:

• Sorts are types.

• If T and U are types, then T ⇒ U is a type.

Implication associates to the right. So, T ⇒ U ⇒ V is the same as T ⇒ (U ⇒ V).

Moreover, 	T ⇒ U is the same as T1 ⇒ T2 ⇒ . . .⇒ Tn ⇒ U where n = |	T |.
The arity of a type T , ar(T), is defined as follows: ar(B) = 0 and ar(T ⇒ U) =

1 + ar(U).

2.2 Terms

Given disjoint countable sets �, � and , for variables, constructors and function

symbols, respectively, we define the set of pre-terms as follows:

• Variables, constructors and function symbols are pre-terms.

• If x is a variable, T a type and u a pre-term, then λxTu is a pre-term.

• If t and u are pre-terms, then tu is a pre-term.

Application associates to the left. So, tuv is the same as (tu)v. Moreover, t	u is the

same as (. . . ((tu1)u2) . . . un−1)un where n = |	u|.
As usual, the set of terms � is obtained by quotienting pre-terms by α-equivalence,

i.e. renaming of bound variables, assuming that � is infinite (Curry & Feys, 1958).

As usual, positions in a tree (type or term) are denoted by words on positive

integers. Word concatenation is denoted by juxtaposition and the empty word by ε.

Given a tree t and a position p in t, let t|p be the subtree of t at position p, and

Pos(u, t) be the set of positions p in t such that t|p = u.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 11

A substitution θ is a map from variables to terms whose domain dom(θ) =

{x ∈ � | θ(x) �= x} is finite. In the following, any finite map θ from variables

to terms is implicitly extended into the substitution θ ∪ {(x, x) | x /∈ dom(θ)}. Let

FV(θ) =
⋃
{FV(θ(x)) | x ∈ dom(θ)}. The application of a substitution θ to a term

t is written tθ. We have xθ = θ(x), (tu)θ = (tθ)(uθ) and (λxTu)θ = λxT (uθ) if

x /∈ dom(θ) ∪ FV(θ), which can always be achieved by α-equivalence.

2.3 Typing

We assume given a map Θ assigning a type to every symbol s ∈ � ∪ , and will

sometimes write s : T instead of (s, T) ∈ Θ or Θ(s) = T .

A typing environment is a finite map Γ from variables to types. The usual deduction

rules assigning a type to a term in a typing environment are recalled in Figure 2. As

mentioned at the beginning of the section, [x : U,Γ] is the function mapping x to

U and every y ∈ dom(Γ)− {x} to Γ(y).

Given a symbol s, let rs = ar(Θ(s)) be the maximum number of terms s can be

applied to. For all s, there are types T1, . . . , Trs and a sort B such that Θ(s) = T1 ⇒
. . .⇒ Trs ⇒ B.

Given B ∈ 	, let �B = {(c,	t, 	T) | c ∈ �, c : 	T ⇒ B, |	t| = |	T |} be the set of tuples

(c,	t, 	T) such that c is maximally applied in c	t and 	T are the types declared for the

arguments of c (but ti does not need to be of type Ti).

(s,T) ∈ Θ∪Γ

Γ � s : T

Γ � t : U ⇒V Γ � u : U

Γ � tu : V

[x : U,Γ] � v : V

Γ � λxU v : U ⇒V

Fig. 2. Typing rules.

2.4 Rewriting

Given a relation on terms R, let R(t) = {t′ ∈ � | tRt′} be the set of immediate reducts

of a term t, R∗ be the reflexive and transitive closure of R and R−1 be its inverse

(xR−1y if yRx). R is finitely branching if, for all t, R(t) is finite. It is monotone (or

congruent, stable by context, compatible with the structure of terms) if tuRt′u, utRut′

and λxUtRλxUt′ whenever tRt′. It is stable (by substitution) if tθRt′θ whenever tRt′.

Given two relations R and S , let RS (or R ◦ S) be their composition (tRSv if there is

u such that tRu and uSv). A relation R is locally confluent if R−1R ⊆ R∗(R−1)∗, and

confluent if (R−1)∗R∗ ⊆ R∗(R−1)∗.

The relation of β-rewriting →β is the smallest monotone relation containing all

the pairs ((λxUt)u, t{(x, u)}).
A rewrite rule is a pair of terms (l, r), written l → r, such that there are f ∈ ,

	l, Δ and T such that l = f	l, FV(r) ⊆ FV(l), Δ � l : T and, (SR) for all Γ and U,

Γ � r : U whenever Γ � l : U.

Given a set R of rewrite rules, let →R denote the smallest monotone and stable

relation containing R. The condition (SR) implies that →R preserves typing: if

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

12 F. Blanqui

Γ � t : U and t →R u, then Γ � u : U (subject-reduction property). Note that it is

satisfied if, for instance, l contains no abstraction and no subterm of the form x t

(Barbanera et al., 1997).

All over the paper, we assume given a set R of rewrite rules and let SN be the

set of terms strongly normalizing wrt

→ = →β ∪→R

We will assume that → is finitely branching, which is in particular the case if R
is finite.

Given B and t, let �B
→∗(t) = {(c,	t, 	T) ∈ �B | t→∗ c	t} be the set of triples (c,	t, 	T)

such that t reduces to c	t, c is maximally applied in c	t, and 	T are the types of the

arguments of c.

Given a relation R, let 	x Rprod 	y if |	x| = |	y| and there is i such that xi R yi and, for

all j �= i, xj = yj . Given n relations R1, . . . , Rn, let 	x (R1, . . . , Rn)lex 	y if |	x| � n, |	y| � n

and there is i such that xi Ri yi and, for all j < i, xj = yj . Rprod and (R1, . . . , Rn)lex are

well-founded whenever R,R1, . . . , Rn so are.

2.5 Computability

Following Tait (1967), Girard (1972), Girard et al. (1988), Mendler (1987), Okada

(1989), Breazu-Tannen & Gallier (1989), Jouannaud & Okada (1991) and Blanqui

et al. (2002), . . . termination of a rewrite relation on simply typed λ-terms can

be obtained by interpreting types by computability predicates and checking that

function symbols are computable, that is, map computable terms to computable

terms.

However, to handle matching on constructors taking functions as arguments

(or matching on function symbols), one needs to modify Girard’s definition of

computability. In the following, we recall the definition that we will use some of its

basic properties, and refer the reader to Blanqui (2016) and Riba (2009) for more

details on the theory of computability predicates with rewriting.

Definition 1 (Computability predicates) A term t is neutral if it is of the form x	v,

(λxt)u	v or f	t with |	t| � sup{|	l| | ∃r, f	l → r ∈ R}.1 A computability predicate is a set

of terms S satisfying the following properties:

• S ⊆ SN.

• → (S) ⊆ S.

• If t is neutral and → (t) ⊆ S, then t ∈ S.

Let � be the set of all the computability predicates. An element of a computability

predicate is said to be computable.

1 The supremum exists since, by assumption, for all f	l → r ∈ R, f	l is typable and thus |	l| � rf .

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 13

In our definition of neutral terms, not every redex is neutral as it is the case in

Girard’s definition. However, the following key property is preserved: application

preserves neutrality, that is, if t is neutral, then tu is neutral too. This definition

also works with polymorphic and dependent types. It only excludes infinite rewrite

systems where the number of arguments to which a function symbol is applied is

unbounded (at the top of rule left-hand sides only, not in every term).

Computability predicates enjoy the following properties:

• The set � of variables is included in every computability predicate.
• Given a computability predicate S, (λxUv)u ∈ S iff v{(x, u)} ∈ S and u ∈ SN.
• � is a complete lattice wrt inclusion.

The greatest lower bound of a set � ⊆ � is
⋂

� if � �= ∅, and SN (the greatest

element of �) otherwise. Note however that the lowest upper bound of �, written

lub(�), is not necessarily the union. For instance, with the non-confluent system

R = {f → a, f → b}, if �(X) denotes the smallest computability predicate containing

X, then �({a}) ∪ �({b}) is not a computability predicate since it does not contain

f . There are a number of cases where the union of two computability predicates is

known to be a computability predicate, but this is for a different notion of neutral

term:

• Riba (2007, 2008) prove that the set of computability predicates is stable by

union if R is an orthogonal constructor rewrite system.
• Werner (1994) (Lemma 4.14 p. 96) proves that the set of computability

predicates is stable by well-ordered union.

Luckily, Werner’s proof does not depend on the definition of neutral terms:

Lemma 1 If → is finitely branching and � is a non-empty set of computability

predicates well-ordered wrt inclusion, then
⋃

� is a computability predicate.

Proof
• Let t ∈

⋃
�. Then, there is S ∈ � such that t ∈ S. Since S ⊆ SN, we have

t ∈ SN.
• Let t ∈

⋃
� and u such that t → u. Then, there is S ∈ � such that t ∈ S.

Since → (S) ⊆ S, we have u ∈ S and thus u ∈ �.
• Let t be a neutral term such that → (t) ⊆

⋃
�. If → (t) = ∅, then t belongs

to every element of �. Therefore, t ∈
⋃

�. Otherwise, since → is finitely

branching, we have → (t) = {t1, . . . , tn} with n � 1. For every i ∈ {1, . . . , n},
there isSi ∈ � such that ti ∈ Si. Since � is well-ordered wrt inclusion, there is

k ∈ {1, . . . , n} such thatSk is the biggest element of {S1, . . . ,Sn} wrt inclusion.

Hence, → (t) ⊆ Sk and t ∈ Sk . Therefore, t ∈
⋃

�.

�

The interpretation of arrow types is defined as usual, in order to ensure the

termination of β-reduction:

Definition 2 (Interpretation of arrow types) A (partial) interpretation of sorts, that

is, a (partial) function � : 	 → ℘(�) (powerset of �), is extended into a (partial)

interpretation of types �̃ :
→ ℘(�) as follows:

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

14 F. Blanqui

• �̃(B) = �(B).

• �̃(U ⇒ V) = �̃(U)⇒̃�̃(V), where U⇒̃V = {t ∈ � | ∀u ∈ U, tu ∈ V}.

Note that �̃(T) is defined whenever � is defined on every sort occurring in T , and

�̃(T) = �̃(T) whenever � and � are defined and equal on every sort occurring in T .

Note also that U ⇒ V is a computability predicate whenever U and V so

are. Hence, �̃(T) is a computability predicate whenever �(B) so is for every sort B

occurring in T .

For interpreting sorts, one could take the computability predicate SN. But this

interpretation does not allow one to prove the computability of functions defined

by induction on types with constructors taking functions as arguments.

Moreover, a computable term may have non-computable subterms. Consider, for

instance, c : (B ⇒ C) ⇒ B, f : B ⇒ (B ⇒ C), R = {f(c x) → x} and t = λxBfxx.

Then, assuming that �(B) = SN, we have (c t) ∈ �(B), but t /∈ �(B) ⇒ �(C) since

t(c t) /∈ SN because t(c t) →β f(c t)(c t) →R t(c t). It is however possible to enforce

that a direct subterm of type T of a computable term of sort B is computable if B

occurs in T at positive positions only (Mendler, 1987):

Definition 3 (Positive and negative positions in a type) The subsets of positive (s =

+) and negative (s = −) positions in a type T , Poss(T), are defined as follows:

• Poss(B) = {ε | s = +},
• Poss(U ⇒ V) = {1p | p ∈ Pos−s(U)} ∪ {2p | p ∈ Poss(V)},

where −− = + and −+ = −.

Note that the sets of positive and negative positions of a type are disjoint.

However, in a type, a sort can have both positive and negative occurrences. For

instance, Pos+(B,B⇒ B) = {2} and Pos−(B,B⇒ B) = {1}.

Definition 4 (Accessible arguments) We assume given a well-founded ordering on

sorts <	. The ith argument of a constructor c : 	T ⇒ B is

• recursive if Pos(B, Ti) �= ∅;
• accessible if Ti is positive wrt. B, that is,

— every sort occurring in Ti is smaller than or equal to B:

for all C, Pos(C, T) = ∅ or C �	 B, where �	 is the reflexive closure of <	;

— B occurs only positively in Ti: Pos(B, Ti) ⊆ Pos+(Ti).

In the following, we will assume wlog2 that there are 0 � pc � qc such that

• the arguments 1 to pc are accessible and recursive,

• the arguments pc + 1 to qc are accessible and not recursive:

Θ(c) = T1 ⇒ . . .⇒ Tpc︸ ︷︷ ︸
rec. acc. args

⇒ Tpc+1 ⇒ . . .⇒ Tqc︸ ︷︷ ︸
non-rec. acc. args

⇒ Tqc+1 ⇒ . . .⇒ Trc︸ ︷︷ ︸
non-acc. args

⇒ B

2 Arguments can be permuted if needed.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 15

For instance, for the sort N of natural numbers with the constructors 0 : N

and s : N ⇒ N (successor) (Peano, 1889), we can take p0 = q0 = 0 and ps =

qs = 1 since N occurs only positively in N. Similarly, for the sort O of Howard’s

constructive ordinals with the constructors zero : O, succ : O ⇒ O (successor)

and lim : (N⇒ O) ⇒ O (limit) (Howard, 1972), we can take pzero = qzero = 0,

psucc = qsucc = 1 since O occurs only positively in O, and plim = qlim = 1 since O

occurs only positively in N⇒ O if one takes N <	 O. Now, for the sort L of lists of

natural numbers with the constructors nil : L and cons : L ⇒ N ⇒ L, we can take

pcons = 1 and qcons = 2 if one takes N <	 L.

Non-accessible arguments are usually forbidden by requiring all the arguments

to be positive, or even strictly positive3 as it is the case in the Coq proof assistant

(Coquand & Paulin-Mohring, 1988). Here, we do not forbid non-positive arguments

and do not require arguments to be strictly positive. Hence, one can have a sort D

with the constructors app : D⇒ D⇒ D and lam : (D⇒ D) ⇒ D, for which we must

have plam = qlam = 0 since the first argument of lam is not positive. However, the

termination conditions will enforce that, although one can use in a rule left-hand

side (lam x) as a pattern, x cannot be used in the corresponding rule right-hand

side: in a rule, constructors with non-positive arguments can be pattern matched in

the left-hand side, but only their positive arguments can be used by themselves in

the right-hand side.

For the sake of simplicity, we consider an ordering instead of a quasi-ordering,

although a quasi-ordering might a priori be necessary for dealing with mutually

defined inductive types (e.g. the types of trees and forests with the constructors : F,

add : F ⇒ T ⇒ F and node : F ⇒ T). The results described in this paper can

however still be applied if one identifies mutually defined inductive types, because

a term typable with mutually defined inductive types is a fortiori typable in the

type system where they are identified. This abstraction is correct but not necessarily

complete since more terms get typable when two types are identified (e.g. add is

typable if T = F).

Since <	 is well-founded, we can define an interpretation � for every sort by

well-founded induction on it as follows. Let B be a sort and assume that � is defined

for every sort smaller than B. Then, let �(B) be the least fixpoint of the monotone

function �B on the complete lattice ℘(�) such that

�B(X) = {t ∈ SN | ∀(c,	t, 	T) ∈ �B
→∗(t), ∀k ∈ {1, . . . , qc}, tk ∈ C[B : X, �](Tk)}

where C[B : X, �] is introduced in Definition 2.

That such a least fixpoint exists follows from Knaster and Tarski’s fixpoint

theorem (Knaster & Tarski, 1928; Tarski, 1955) and the following fact:

Proposition 1 (Blanqui, 2005b) Let B be a sort, � be an interpretation for every sort

smaller than B, and T be a type positive wrt B. Then, C[B : X, �](T) is monotone

wrt X.

3 The ith argument of c is strictly positive if Pos(B, Ti) = ∅, or Ti = 	U ⇒ B and Pos(B, 	U) = ∅.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

16 F. Blanqui

Moreover, one can easily check that �B(X) is a computability predicate whenever

X so is. Hence, for every type T , �̃(T) is a computability predicate.

In the following, for the sake of simplicity, we will not mention � anymore and

simply write t ∈ T instead of t ∈ �̃(T), and t ∈ [B : X]T instead of t ∈ C[B : X, �](T).

3 Size of computable terms

In this section, we study a general way of attributing an ordinal size to computable

terms of base type by defining, for each sort, a stratification of computable terms of

this sort using a size function for each constructor, and assuming that → is finitely

branching.

By Hartogs (1915) theorem, there is an ordinal the elements of which cannot

be injected into ℘(�), where � is the set of terms (note that this theorem does

not require the axiom of choice). Let h be the smallest such ordinal. Since �
is countably infinite and � and are countable, h is the successor cardinal of

|℘(�)| = 2ω (Hrbacek & Jech, 1999).

3.1 Stratifications

Definition 5 (Stratification of a sort) Given a family (Sa)a<h of computability

predicates, let Sh = lub{Sa | a < h}.
A stratification of a computability predicate S is a monotone sequence of

computability predicates (Sa)a<h included in S and converging to S, that is,

such that Sh = S.

A stratification of a type T is a stratification of �̃(T).

Given a stratification S, the size of an element t ∈ Sh, written oS(t), is the

smallest ordinal a < h such that t ∈ Sa.

A stratification is continuous if, for all limit ordinals 0 < a < h, Sa =

lub({Sb | b < a}).

Because → is finitely branching, we immediately remark:

Lemma 2 For all continuous stratifications S and limit ordinal 0 < a � h, we have

Sa =
⋃

({Sb | b < a}).

Proof

By definition, S is monotone. So, for all a � h, {Sb | b < a} is well-ordered wrt

inclusion. Since→ is finitely branching, the conclusion follows from Lemma 1. �

We now prove some properties of oS(t):

Lemma 3 Let S be a stratification and t ∈ Sh.

• If t→ t′, then t′ ∈ Sh and oS(t) � oS(t′).

• If S is continuous, then either oS(t) = 0 or oS(t) = b + 1 for some ordinal b.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 17

Proof

• Since SoS(t) is stable by reduction, t′ ∈ SoS(t). Therefore, oS(t′) � oS(t).

• Assume that oS(t) is a limit ordinal a > 0. Since S is continuous,

we have Sa =
⋃

({Sb | b < a}). Therefore, t ∈ Sb for some b < a.

Contradiction. �

By Proposition 1, [B : X](T) is monotone wrt X whenever T is positive wrt B.

Hence, any stratification S of B provides a way to define a stratification of T :

Definition 6 (Stratification of a positive type) Given a stratification S of a sort B

and a type T positive wrt B, let [B :S](T) denote the stratificationT of T obtained

by taking Ta = [B :Sa](T).

Note that [B : S]T is not continuous in general (see Example 1 below).

Lemma 4 If S is a stratification of B, v ∈ 	U ⇒ B and Pos(B, 	U) = ∅, then

o[B:S](U⇒B)(v) = sup{oS(v	u) |	u ∈ 	U}.

Proof

Let a = o[B:S](U⇒B)(v) and b = sup{oS(v	u) | 	u ∈ 	U}. By definition of a, we have

v ∈ 	U ⇒Sa. So, for all 	u ∈ 	U, v	u ∈ Sa and oS(v	u) � a. Thus, b � a. We now

prove that a � b. To this end, it suffices to prove that v ∈ 	U ⇒ Sb. Let 	u ∈ 	U. By

definition of b, oS(v	u) � b. So, v	u ∈ Sb. �

A continuous stratification of a sort B can be obtained by the transfinite iteration

of �B from the smallest computability predicate ⊥ (Kuratowski, 1922; Cousot &

Cousot, 1979):

• DB
0 = ⊥.

• DB
a+1 = �B(DB

a).

• DB
a = lub({DB

b | b < a}), if a is an infinite limit ordinal.

The fact that DB is monotone follows from the facts that DB
0 ⊆ DB

1 and �B is

monotone (Cousot & Cousot, 1979). Now, by definition of h, DB is not injective.

Therefore, there are c < d < h such that DB
c = DB

d . Since DB is monotone,

DB
c = DB

c+1 = DB
d = DB

h = B (Rubin & Rubin, 1963).

We call this stratification the default stratification. It is the one used in all

the previous works on sized types, except in Abel (2012) where, after Sprenger

& Dam (2003), Abel uses a stratification having better properties, namely SB
a =

lub({�B(SB
b) | b < a}).

The size wrt the default stratification of a term t is the set-theoretical height

of the tree representation of t when abstractions are interpreted as set-theoretical

functions. If no constructor of B has accessible functional arguments and → is

finitely branching, then every element of B has a size smaller than ω. Hence, when

considering first-order data types only (e.g. natural numbers, lists and binary trees)

and a finitely branching rewrite relation →, one can in fact take h = ω.

On the other hand, when one wants to consider constructors with accessible

functional arguments, then one can get terms of size bigger than ω:

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

18 F. Blanqui

Example 1 Take the sort O of Howard’s constructive ordinals mentioned in the

previous section and let inj : N⇒ O be the usual injection from N to O defined by the

rules inj 0→ zero and inj (s x) → succ (inj x). Let us prove that oDO(lim inj) = ω+1.

By definition, oDO(lim inj) is the smallest ordinal a such that lim inj ∈ DO
a . By

definition of D, a = oS(inj) + 1 where S = [O : DO](N ⇒ O). By Lemma 4,

oS(inj) = sup{oDO (inj t) | t ∈ N}. Now, a term of the form (inj t) can only reduce to

a term of the form (inj u), zero or (succ u). Hence, oDO(inj t) < ω. Finally, one can

easily prove that, for all n < ω, oDO (inj(sn0)) = n + 1. Therefore, oS(inj) = ω and

oDO (lim inj) = ω+1. Moreover,S is not continuous since inj ∈ Sω−
⋃
{Sn | n < ω}.

One can also get terms of size bigger than ω by considering infinitely branching

and non-confluent rewrite relations with R = {f → si0 | i ∈ �}, one gets oDN(f) =

ω + 1.

3.2 Stratifications based on constructor size functions

We now introduce a general way of defining a stratification:

Definition 7 (Constructor size function) A size function for c : 	T ⇒ B is given by

• a function Σc : hqc → h for computing the size of a term of the form c	t from

the sizes of its accessible arguments;

• for every non-recursive accessible argument k ∈ {pc +1, . . . , qc}, a sort Bc
k <	 B

occurring in Tk , only positively, and with respect to which we will measure the

size of the kth argument of c (in the following, we let Bc
k = B if k ∈ {1, . . . , pc}).

In practice, there is usually no choice for Bc
k . For having a choice, the order of

Tk must be greater than or equal to 2. For instance, if Tk = (C⇒ D)⇒ E, then one

can choose between C and E if both are different from D.

On the other hand, there are many possible choices for Σc. For instance, consider

the type T of labeled binary trees with the constructors leaf : B ⇒ T and node :

T ⇒ T ⇒ B ⇒ T, where B <	 T is a sort for labels. We can take pleaf = 0, qleaf = 1,

pnode = 2, qnode = 3, Σleaf (a) = 0 and Σnode(a, b, c) = a + b + 1, so that the size of a

tree is not its height as in the default stratification but the number of its nodes.

Interestingly, Σc may depend on all accessible arguments, including the non-

recursive ones. For instance, one can measure the size of a pair of natural numbers

by the sum of their sizes: given a type P for pairs of natural numbers with the

constructor pair : N ⇒ N ⇒ P, one can take ppair = 0, qpair = 2, Bpair
1 = Bpair

2 = N

and Σpair(a, b) = a + b.

Finally, Σc can be defined by combining of size of recursive and non-recursive

arguments. For instance, the size of a list of natural numbers can be defined as the

sum of the sizes of its components. With this notion of size, a list with only one big

element can be greater than a list with many small elements.

Definition 8 (Stratification defined by size functions) Assume that → is finitely

branching. Given a size function Σc for every constructor c, we define a continuous

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 19

stratification SB for every sort B by induction on >	 as follows, where, given

(c,	t, 	T) ∈ �B
→∗(t), oSc (t) denotes the sequence oSc,1 (t1), . . . , oSc,n (tn) with n = qc and

Sc,k
a = [Bc

k : SBc
k

a]Tk , that is, oSc,k (tk) is the size of tk in Tk wrt Bc
k (which is B if

k ∈ {1, . . . , pc}):

• SB
0 is the set of terms t ∈ SN such that, for all (c,	t, 	T) ∈ �B

→∗(t):

— pc = 0 (i.e. c has no recursive argument),

— ∀k ∈ {pc + 1, . . . , qc}, tk ∈ Tk ,
— Σc(oSc (t)) � 0.

• SB
a+1 is the set of terms t ∈ SN such that, for all (c,	t, 	T) ∈ �B

→∗(t):

— ∀k ∈ {1, . . . , pc}, tk ∈ [B :SB
a]Tk ,

— ∀k ∈ {pc + 1, . . . , qc}, tk ∈ Tk ,
— Σc(oSc (t)) � a + 1.

• SB
a = lub({SB

b | b < a}), if a is an infinite limit ordinal.

Note that S is well-defined because

• in the case of SB
0 :

— pc = 0 and thus, for all k ∈ {1, . . . , qc}, oSc,k (tk) = o
[Bc

k:S
Bc
k]Tk

(tk) is well-defined

since tk ∈ Tk and Bc
k <	 B.

• in the case of SB
a+1:

— ∀k � pc, oSc,k (tk) = o[B:SB]Tk (tk) is well-defined and � a since tk ∈ [B :SB
a]Tk;

— ∀k ∈ {pc + 1, . . . , qc}, oSc,k (tk) is well-defined since tk ∈ Tk and Bc
k <	 B.

The definition of SB is similar to the definition of the default stratification except

that the size functions Σc are used to enforce lower bounds on the size of terms.

Hence, if one takes for every Σc the constant function equal to 0, then one almost

gets the default stratification. To get the default stratification, one has to slightly

change the definition of SB by taking SB
0 = ⊥. The current definition has the

advantage that both variables and nullary constructors whose size function is 0 have

size 0. Hence, if one takes Σ0 = Σs(a) = 0, then oSN (six) = oSN (si0) = i while, in the

default stratification, oDN(six) = i and oDN (si0) = i+ 1 (nullary constructors do not

belong to ⊥).

We now check that SB is indeed a stratification of B.

Lemma 5 For every sort B and ordinal a < h, SB
a ⊆ B.

Proof

We proceed by induction on <	 and a.

• Let t ∈ SB
0 . Then, t ∈ SN. Let now (c,	t, 	T) ∈ �B

→∗(t) and k ∈ {1, . . . , qc}. Then,

pc = 0 and tk ∈ Tk . Hence, t ∈ B since B = �B(B).

• Let t ∈ SB
a+1. Then, t ∈ SN. Let now (c,	t, 	T) ∈ �B

→∗(t) and k ∈ {1, . . . , qc}.
If k � pc, then tk ∈ [B : SB

a]Tk . By induction hypothesis, SB
a ⊆ B. Since B

occurs only positively in Tk , Proposition 1 gives [B :SB
a]Tk ⊆ [B : B]Tk = Tk .

Therefore, tk ∈ Tk . Now, if k ∈ {pc + 1, . . . , qc}, then tk ∈ Tk too. Therefore,

t ∈ B since B = �B(B).

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

20 F. Blanqui

• Let a be an infinite limit ordinal. Then, SB
a = lub{SB

b | b < a}. For every

b < a, by induction hypothesis, SB
b ⊆ B. Therefore, SB

a ⊆ B.

�

Lemma 6 For every sort B and ordinal a < h, SB
a is a computability predicate.

Proof

We proceed by induction on <	 and a. If a is an infinite limit ordinal, then SB
a is

a computability predicate by definition of lub since, by induction hypothesis, for all

b < a, SB
a is a computability predicate.

We are left with the cases of 0 and successor ordinals. Given a predicate P on

triples (c,	t, 	T), let SNB(P) = {t ∈ SN | �B
→∗(t) ⊆ P }. We have SB

0 = SNB(P0) for

some predicate P0, and SB
a+1 = SNB(Pa+1) for some predicate Pa+1. However, for

all predicates P , SNB(P) is a computability predicate:

• SNB(P) ⊆ SN by definition.

• If t ∈ SNB(P) and t→ t′, then t′ ∈ SNB(P), since t′ ∈ SN and �B
→∗(t′) ⊆ �B

→∗(t).

• Assume now that t is neutral and → (t) ⊆ SNB(P). Then, t ∈ SN. Assume,

moreover, that (c,	t, 	T) ∈ �B
→∗(t). Since t is neutral, there is t′ such that t → t′

and (c,	t, 	T) ∈ �B
→∗(t′). Therefore, (c,	t, 	T) ∈ P and t ∈ SNB(P).

�

Lemma 7 For every sort B, SB is monotone.

Proof

We prove that, for all (a, b, c), if b � c � a, then (1) SB
b ⊆ SB

c , hence SB|a is

monotone, (2) SB
c ⊆ SB

a , and (3) SB
a ⊆ SB

a+1, by induction on a. There are three

cases:

• a = 0. Then, b = c = 0 and (1) and (2) hold trivially. We now prove (3). Let

t ∈ SB
0 . We prove that t ∈ SB

1 :

— t ∈ SN since, by definition, SB
0 ⊆ SN.

Let now (c,	t, 	T) ∈ �B
→∗(t).

— We have to prove that, for all k ∈ {1, . . . , pc}, tk ∈ [B : SB
0]Tk . Since t ∈ SB

0 ,

we have pc = 0. Therefore, the property holds since there is no k ∈ {1, . . . , pc}.
— We have to prove that, for all k ∈ {pc + 1, . . . , qc}, tk ∈ Tk . This holds since

t ∈ SB
0 .

— Finally, we have to prove that Σc(oSc (t)) � 1. This holds since t ∈ SB
0 and

thus Σc(oSc (t)) � 0.

• a = a′ + 1.

1. If c � a′, then (1) holds by induction hypothesis (1) on (a′, b, c). Otherwise,

c = a′ + 1. If b = c, then (1) holds trivially. Otherwise, b � a′ and (1) holds

by induction hypothesis (1) and (3) on (a′, b, a′), and transitivity of �.

2. If c � a′, then (2) holds by induction hypothesis (2) and (3) on (a′, b, c), and

transitivity of �. Otherwise, (2) holds trivially.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 21

3. Let t ∈ SB
a′+1. We prove that t ∈ SB

a′+2:

— t ∈ SN since, by definition, SB
a′+1 ⊆ SN.

Let now (c,	t, 	T) ∈ �B
→∗(t) and k ∈ {1, . . . , qc}.

— Assume that k � pc. Since t ∈ SB
a′+1, we have tk ∈ [B : SB

a′]Tk . Therefore,

tk ∈ [B : SB
a′+1]Tk since B occurs only positively in Tk and SB

a′ ⊆ SB
a′+1

by induction hypothesis (3) on (a′, a′, a′).

— Assume that k > pc. Then, tk ∈ Tk since t ∈ SB
a′+1.

— Since t ∈ SB
a′+1, we have Σc(oSc (t)) � a′+1. Therefore, Σc(oSc (t)) � a′+2.

• a is an infinite limit ordinal. Then, SB
a = lub{SB

b | b < a}.
1. If c < a, then (1) follows by induction hypothesis (1) on (c, b, c). Otherwise,

c = a. If b = c, then (1) holds trivially. Otherwise, b < c and (1) holds by

definition of lub.

2. (2) holds by definition of lub.

3. Let t ∈ SB
a . We have to prove that t ∈ SB

a+1.

After (1), SB|a is monotone. Therefore, by Lemma 1, SB
a =

⋃
{SB

b | b < a}
and t ∈ SB for some b < a. Now, since a is a limit ordinal, b + 1 < a.

Therefore, by induction hypothesis (2) on (b + 1, b, b), SB
b ⊆ SB

b+1 and

t ∈ SB
b+1. We now prove that t ∈ SB

a+1:

— t ∈ SN since SB
b is a computability predicate.

Let now (c,	t, 	T) ∈ �B
→∗(t) and k ∈ {1, . . . , qc}.

— Assume that k � pc. Since t ∈ SB
b+1, we have tk ∈ [B : SB

b]Tk . Therefore,

tk ∈ [B : SB
a]Tk since B occurs only positively in Tk and SB

b ⊆ SB
a .

— Assume that k > pc. Then, tk ∈ Tk since t ∈ SB
b+1.

— Since t ∈ SB
b+1, we have Σc(oSc (t)) � b + 1. Therefore, Σc(oSc (t)) � a + 1.

�

Lemma 8 For every sort B, SB
h = B.

Proof

By Lemma 5, SB
a ⊆ B. Now, since B = DB

h , where DB is the default stratification, it

suffices to prove that, for all a, DB
a ⊆ SB

h , that is, for all a, there is b < h such that

DB
a ⊆ SB

b . We proceed by induction on <	 and a.

• DB
0 = ⊥ ⊆ SB

0 .

• Let a be an infinite limit ordinal smaller than h. By induction hypothesis, for

all b < a, DB
b ⊆ SB

h . Therefore, DB
a = lub{DB

b | b < a} ⊆ SB
h .

• Let now a + 1 < h. By induction hypothesis, DB
a ⊆ SB

h .

Since h is a successor cardinal, it is regular, that is, it is equal to its cofinality.

And since it is uncountable, it is ω-complete, that is, every countable subset of

h has a least upper bound in h.

Let c = sup(X) where X = {oSB (t) | t ∈ DB
a}. Since |X| � |DB

a | � |�| � ω, we

have c < h and DB
a ⊆ SB

c .

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

22 F. Blanqui

Let now d = sup(X ∪ Y) where Y is the set of the ordinals Σc(oSc (t)) such

that there are t ∈ DB
a and (c,	t, 	T) ∈ �B

→∗(t). Since |Y | � ω (DB
a ⊆ SN and →

is finitely branching), we have sup(Y) < h and thus d < h. Since h is a limit

ordinal, d + 1 < h.

We now prove that DB
a+1 ⊆ SB

d+1. Let t ∈ DB
a+1. Then, t ∈ SN. Let now

(c,	t, 	T) ∈ �B
→∗(t) and k ∈ {1, . . . , qc}. If k > pc, then tk ∈ Tk . Otherwise,

tk ∈ [B : DB
a]Tk . Since B occurs only positively in Tk , we have [B : DB

a]Tk ⊆
[B : SB

c]Tk . Since c � d and SB is monotone by Lemma 7, we have [B :

SB
c]Tk ⊆ [B :SB

d]Tk . Finally, Σc(oSc (t)) � d. Therefore, t ∈ SB
d+1. �

This ends the proof that SB is a stratification of B. We now see some of its

properties:

Lemma 9

• t ∈ SB
0 iff t ∈ B and, for all (c,	t, 	T) ∈ �B

→∗(t), Σc(oSc (t)) = pc = 0.

• t ∈ SB
a+1 iff t ∈ B and, for all (c,	t, 	T) ∈ �B

→∗(t), Σc(oSc (t)) � a + 1 and, for all

k ∈ {1, . . . , pc}, oSc,k (tk) � a.

Proof

• Immediate.

• Assume that t ∈ SB
a+1. Then, t ∈ B. Assume moreover that (c,	t, 	T) ∈ �B

→∗(t).

Then, Σc(oSc (t)) � a + 1 and, for all k ∈ {1, . . . , pc}, tk ∈ [B : SB
a]Tk = Sc,k

a .

Hence, oSc,k (tk) � a. Conversely, if oSc,k (tk) � a, then tk ∈ [B :SB
a]Tk .

�

Lemma 10 If (c,	t, 	T) ∈ �B and c	t ∈ B, then

• oSB (c	t) � Σc(oSc (t)),

• oSB (c	t) > oSc,k (tk) for all k ∈ {1, . . . , pc}.

Proof

Let a = oSB (c	t). Since SB is continuous, by Lemma 3, either a = 0 or a = b+ 1 for

some b.

• If a = 0, then c	t ∈ SB
0 and Σc(oSc (t)) � a by definition of SB

0 . Otherwise,

c	t ∈ SB
b+1 and Σc(oSc (t)) � a by definition of SB

b+1.

• If a = 0, then c	t ∈ SB
0 and pc = 0. So, there is no k ∈ {1, . . . , pc}. Otherwise,

c	t ∈ SB
b+1 and tk ∈ [B :SB

b]Tk . Thus, oSc,k (tk) � b < a.

�

Lemma 11 If t ∈ B, then oSB (t) = δ sup(R ∪ S ∪ T), where

• δa = a + 1 if a is an infinite limit ordinal, and δa = a otherwise;

• R = {oSB (t′) | t→ t′};
• S = {oSc,k (tk) + 1 | (c,	t, 	T) ∈ �B, t = c	t, k ∈ {1, . . . , pc}};
• T = {Σc(oSc (t)) | (c,	t, 	T) ∈ �B, t = c	t}.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 23

Proof

Let a = sup(R ∪ S ∪ T) and b = oSB (t).

We first prove that b � δa. Let t′ such that t→ t′. Then, b � oSB (t′) by Lemma 3.

Assume now that (c,	t, 	T) ∈ �B and t = c	t. By Lemma 10, b � Σc(oSc (t)) and, for

all k ∈ {1, . . . , pc}, b > oSc,k (tk). Therefore, b � a.

Since SB is continuous, b cannot be an infinite limit ordinal. So, if a is an infinite

limit ordinal, then b > a and b � a + 1 = δa. Otherwise, δa = a and b � δa.

Now, to have b � δa, we prove that t ∈ SB
δa using Lemma 9:

• Case δa = 0. Then, a = 0. Let (c,	t, 	T) ∈ �B
→∗(t).

— Case t = c	t. Then, S = ∅, pc = 0 and Σc(oSc (t)) = 0. Therefore, t ∈ SB
0 .

— Case t→ t′ →∗ c	t. Then, oSB (t′) = 0. So, pc = 0, Σc(oSc (t)) = 0 and t ∈ SB
0 .

• Case δa = a′ + 1. Let (c,	t, 	T) ∈ �B
→∗(t).

— Case t = c	t. First, Σc(oSc (t)) � sup(T) � a � δa = a′ + 1. Second, if

k ∈ {1, . . . , pc}, then oSc,k (tk) < oSc,k (tk) + 1 � sup(S) � a � δa. Therefore,

oSc,k (tk) � a′ and t ∈ Sδa.

— Case t→ t′ →∗ c	t. First, Σc(oSc (t)) � a′+1 since, by Lemma 10, Σc(oSc (t)) �
oSB (c	t) and, by Lemma 3, oSB (c	t) � oSB (t′) � sup(S) � a � δa. Second, if

k ∈ {1, . . . , pc}, then oSc,k (tk) � a′ since, by Lemma 10, oSc,k (tk) < oSB (c	t)

and, by Lemma 3, oSB (c	t) � oSB (t′) � sup(R) � a � δa = a′ + 1. So,

t ∈ Sδa.

�

Note that taking Σc(a) � sup{ak + 1 | k ∈ {1, . . . , pc}} gives the same notion of

size as taking Σc(a) = 0. On the other hand, if Σc(a) � sup{ak + 1 | k ∈ {1, . . . , pc}},
then Σc gives the size of irreducible terms of the form c	t:

Corollary 1 Assume that Σc is strictly extensive wrt recursive arguments (i.e. ak <

Σc(a) if k ∈ {1, . . . , pc}) and Σc(a) is never an infinite limit ordinal. Then, for all

(c,	t, 	T) ∈ �B such that c	t ∈ B and c	t is irreducible, we have oSB (c	t) = Σc(oSc (t)).

Proof

Since c	t is irreducible, R = ∅. Let a = Σc(oSc (t)). Since a > oSc,k (tk) whenever

k ∈ {1, . . . , pc}, oSB (c	t) = δa. Since a is not an infinite limit, δa = a. �

Corollary 2 Assume that Σc is monotone wrt every argument, strictly extensive

wrt recursive arguments and never returns an infinite limit ordinal. Then, for all

(c,	t, 	T) ∈ �B with c	t ∈ B, we have oSB (c	t) = Σc(oSc (t)).

Proof

We proceed by induction on 	t with ←prod as well-founded relation. Assume that

c	t→ u. Then, there are	u such that u = c	u and	t→prod 	u. Hence, oSc (u) �prod oSc (t)

and, by induction hypothesis, oSB (c	u) = Σc(oSc (u)). So, oSB (c	u) � Σc(oSc (t)) since

Σc is monotone. Therefore, oSB (c	t) = Σc(oSc (t)). �

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

24 F. Blanqui

Finally, we are going to prove that, if → is locally confluent, hence confluent on

strongly normalizing terms (Newman, 1942), then the size of a term is equal to the

size of its normal form when its type is a strictly positive sort:

Definition 9 (Strictly positive sorts) A sort B is strictly positive if, for every

constructor c : 	T ⇒ B and argument k ∈ {1, . . . , qc}, Tk is positive wrt B and

either Tk is a strictly positive sort4 C <	 B or Tk is of the form 	U ⇒ B with

Pos(B, 	U) = ∅.

Examples of strictly positive sorts are Peano numbers and Howard constructive

ordinals.

Lemma 12 Assume that → is locally confluent and, for every constructor c, Σc is

monotone wrt every argument, strictly extensive wrt recursive arguments and never

returns an infinite limit ordinal. Then, for every strictly positive sort B and term

t ∈ B, oSB (t) = oSB (t↓), where t↓ is the normal form of t.

Proof

First note that oSB (t↓) � oSB (t) since t →∗ t↓. We now prove that, for all strictly

positive B, for all t ∈ B, oSB (t) � oSB (t↓), hence that oSB (t) = oSB (t↓), by induction

on (B, oSB (t), t) with (<	, <,←)lex as well-founded relation. By Lemma 11, oSB (t) =

δ sup(R ∪ S ∪ T). Since Σc is strictly extensive, oSB (t) = δ sup(R ∪ T). Since oSB (t↓)
cannot be an infinite limit ordinal, it is sufficient to prove that sup(R∪T) � oSB (t↓).

Assume that t→ u. Then, oSB (u) � oSB (t). Hence, by induction hypothesis on the

second or third component, oSB (u) � oSB (u↓) = oSB (t↓).
Assume now that (c,	t, 	T) ∈ �B and t = c	t. By Corollary 2, oSB (t) = Σc(oSc (t))

and oSB (t↓) = Σc(oSc (t↓)). Since Σc is monotone, it suffices to prove that, for all

k ∈ {1, . . . , qc}, oSc,k (tk) � oSc,k (tk↓). Since B is strictly positive, there are two cases:

• Tk is a strictly positive sort C <	 B. Then, by induction hypothesis on the first

component, oSc,k (tk) = oSC (tk) � oSC (tk↓) = oSc,k (tk↓).
• There is 	U such that Tk = 	U ⇒ B and Pos(B, 	U) = ∅. Then, by Lemma 4,

oSc,k (tk) = sup{oSB (tk	u) |	u ∈ 	U} and oSc,k (tk↓) = sup{oSB (tk↓	u) |	u ∈ 	U}. Let

	u ∈ 	U. Since oSB (tk↓	u) � oSB (tk	u) < oSB (t), by induction hypothesis on the

second component, oSB (tk	u) = oSB (tk↓	u). Therefore, oSc,k (tk) = oSc,k (tk↓).

�

We end this section by introducing the reflexive and transitive closure of the

notion of accessible argument (Definition 4) and prove some properties about it.

In order to keep track of the sort with respect to which the size is measured, we

consider a relation on triples (t, T ,B) made of a term t, its type T and the sort B

used to measure the size of t in [B : SB]T .

4 This is a restriction wrt the definition given in Coquand & Paulin-Mohring (1988), where Tk can be
any type where B does not occur.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 25

Definition 10 (Accessible subterm) We say that (u,U,C) is accessible in (t, T ,B),

written (u,U,C) �a (t, T ,B), if (u,U,C) = (t, T ,B) or there are (c,	t, 	T) ∈ �B and

k ∈ {1, . . . , qc} such that t = c	t, T = B and (u,U,C) �a (tk, Tk,B
c
k), where Bc

k = B if

k � pc, and Bc
k is given by the size function of c if k > pc (see Definition 7).

For example,

• (x,N,N) is accessible in (s x,N,N) if s : N⇒ N;

• (f,N ⇒ O,O) is accessible in (lim f,O,O) if lim : (N⇒ O)⇒ O;

• (x,N,N) is accessible in (pair (s x) y,P,P) if pair : N⇒ N⇒ P and s : N⇒ N;

• (x,B ⇒ C,B) is not accessible in (c x,B,B) if c : (B ⇒ C) ⇒ B, because B

occurs negatively in B⇒ C and thus qc = 0.

Note that �a is stable by substitution, and that C occurs only positively in U

whenever (u,U,C) �a (t, T ,B), where �a is the strict part of �a.

Lemma 13 If (u,U,C) �a (t, T ,B) and t ∈ T , then u ∈ U.

Proof

We proceed by induction on �a. If (u,U,C) = (t, T ,B), this is immediate. Otherwise,

there are (c,	t, 	T) ∈ �B and k ∈ {1, . . . , qc} such that t = c	t, T = B and (u,U,C) �a

(tk, Tk,B
c
k). By definition of �̃(B), we have tk ∈ Tk . So, by induction hypothesis,

u ∈ U. �

4 Termination criterion

In this section, we describe a termination criterion that capitalizes on the fact that

some terms can be assigned an ordinal size. The idea is simple: if for every rewrite

step fl → r and every function call gm in r, the size of m is strictly smaller than the

size of l, then there cannot be any infinite reduction.

The idea, dating back to Hughes et al. (1996), consists of introducing symbolic

expressions representing ordinals and logical rules for deducing information about

the size of terms, namely, that it is bounded by some expression. Hence, termination

is reduced to checking the decreasingness of symbolic size expressions.

Following these authors, we replace every sort B by a pair (B, a), written Ba, where

a is a symbolic expression from an algebra interpretable in ordinals, so that a term

is of size-annotated type Ba if it is of type B and of size smaller than or equal to

the interpretation of a. The typing rules of Figure 2 are then easily turned into

valid deduction rules on size annotations. Moreover, the monotony of stratifications

naturally induces a notion of subtyping on size-annotated types: a term of type Ba
is also of type Bb if a � b.

4.1 Size-annotated types

In the previously mentioned works, only two particular algebras have been

considered so far. First, the successor algebra (Definition 12). Second, when h is

restricted to ω (e.g. when inductive types are restricted to first-order data types), the

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

26 F. Blanqui

algebra of Presburger arithmetic generated from the symbols 0, s and + interpreted

by zero, the successor function and the addition on natural numbers respectively,

the first-order theory of which is decidable (Presburger, 1929).

Other algebras are however interesting as we shall see in some examples. For

instance, the max-successor algebra, that is, the successor algebra extended by a max

operator, and the max-plus algebra, that is, the algebra generated by the symbols 0,

1, + and max.

So, in the following, we consider an arbitrary size algebra and prove general results

under some conditions on it. Then, in Section 9, we prove that these conditions are

in particular satisfied by the successor algebra.

Definition 11 (Size algebra) A size algebra is given by

• a first-order term algebra A built from a set V of size variables α, β, . . . and a

set F of size function symbols f, g, . . . of fixed arity, disjoint from V;

• a quasi-order �A on A stable by substitution: aϕ �A bϕ whenever a �A b and

ϕ :V→A;

• a strict order <A ⊆ �A also stable: aϕ <A bϕ whenever a <A b and ϕ :V→A;

• for each size function symbol f ∈ F of arity n, a function fh : hn → h so that,

for every valuation μ : V→ h, aμ � bμ (aμ < bμ resp.) whenever a �A b (a <A b

resp.) where, as usual, αμ = μ(α) and (fa1 . . . an)μ = fh(a1μ, . . . , anμ).

A size algebra is monotone if every size function symbol is monotone wrt �A in every

argument, that is, f	a �A f	b whenever 	a (�A)prod
	b. Given a size substitution ϕ and

a set V of variables, let ϕ|V = {(α, αϕ) | α ∈ V }.

Let a �ext b (a <ext b resp.) iff, for all μ, aμ � bμ (aμ < bμ resp.). Note that

(�ext, <ext) satisfies the above conditions and, for every pair of relations (�A, <A)

satisfying the above conditions, we have �A ⊆ �ext and <A ⊆ <ext. So, one can

always take �ext (<ext resp.) for �A (<A resp.).

As remarked in Giesl et al. (2002), the strict part of a stable quasi-order �A, that

is �A = �A − �A, is not necessarily stable. On the other hand, its stable-strict part

<A is stable, where a <A b iff, for all closed substitution ϕ, aϕ �A bϕ.

The simplest size algebra is:

Definition 12 (Successor algebra) The successor size algebra is obtained by taking

• F = C ∪ {s} where C is an infinite set of constants and s a unary symbol

interpreted by the successor function5;

• <A is the smallest strict ordering on A such that, for all a, a <A s a;

• �A is the reflexive closure of <A.

Although this algebra may seem overly simple, it is already sufficient to overtake

the Coq termination checker (see Section 6 for various examples using it). We will

study the properties of this algebra in Section 9.

5 h is closed by successor since it is a limit ordinal.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 27

Definition 13 (Size-annotated types) The set
A of annotated types is defined as

follows:

• If T is a type, then T ∈
A.

• If B is a sort and a a size expression, then Ba ∈
A.

• If U and V belong to
A, then U ⇒ V ∈
A.

Let Var(T) be the set of size variables occurring in T .

Given an annotated type T , let |T | be the type obtained by removing every

annotation.

Given a sort B, a size expression a and a type T , let Annot(T ,B, a) be the

annotated type obtained by annotating in T every occurrence of B by a.

The definition of positive (s = +) and negative (s = −) positions in a type

(Definition 3) is extended to annotated types as follows:

• Poss(Bb) = {1p | p ∈ Poss(b)}.
• Poss(α) = {ε | s = +}.
• Poss(f) = {ε | s = +} if f is of arity 0.

• Poss(f b1 . . . bn) = {ip | i ∈ Mon+(f), p ∈ Poss(bi)} ∪ {ip | i ∈ Mon−(f), p ∈
Pos−s(bi)} if f is of arity n > 0,

where Mon+(f) (Mon−(f) resp.) is the set of arguments in which f is monotone

(anti-monotone resp.) wrt �A.

In order to combine terms with annotated and unannotated types, we extend A

by a greatest element ∞ and identify B∞ with B:

Definition 14 (Top-extension of a size algebra) The top-extension of a size algebra

A is a set A = A ∪ {∞} with ∞ /∈ A. Given B ∈ 	, let B∞ = B (we identify B∞ and

B). Given size expressions a, b ∈ A, let a �∞
A b if a �A b or b = ∞. Given ϕ : V→ A,

let aϕ = ∞ if a contains a variable α such that ϕ(α) = ∞, and aϕ be the usual

substitution otherwise. Terms distinct from ∞ are called finite.

We now propose to users a syntactic way to specify their own notions of size

through the annotation of constructor types. We assume that every constructor type

is annotated in a way that allows us to define a size function, hence a stratification

for every sort, and thus an interpretation of every annotated type in computability

predicates. To this end, we use notations similar to the ones of Definition 7:

Definition 15 (Annotated types of constructors) We assume that every c ∈ � with

Θ(c) = T1 ⇒ . . .⇒ Trc ⇒ B is equipped with an annotated type Θ(c) = T1 ⇒ . . .⇒
Trc ⇒ Bσc with

• for all i ∈ {1, . . . , qc}, Ti = Annot(Ti,B
c
i , α

c
i);

• for all i ∈ {qc + 1, . . . , rc}, Ti = Ti;

• αc
1, . . . , α

c
pc ∈ V;

• αc
pc+1, . . . , α

c
qc ∈ V ∪ {∞};

• the variables of {αc
1, . . . , α

c
qc} are either pairwise equal or pairwise distinct;

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

28 F. Blanqui

• for all i ∈ {1, . . . , pc}, Bc
i = B;

• for all i ∈ {pc + 1, . . . , qc} with αc
i ∈ V, Bc

i occurs in Ti;

• for all i ∈ {pc + 1, . . . , qc} with αc
i ∈ V, Pos(Bc

i , Ti) ⊆ Pos+(Ti);

• σc ∈ A;

• for all i ∈ {1, . . . , qc}, Pos(αc
i , σ

c) ⊆ Pos+(σc) (σc is monotone wrt every αc
i);

• for all i ∈ {1, . . . , pc}, αc
i <A σ

c (σc is strictly extensive wrt recursive arguments).

The semantics of these annotations is given by the next definition. The intuition is

that the size of a term of the form c	t will be given by the interpretation in ordinals

of σc with each αc
i , the abstract size of the ith argument of c, interpreted by the

actual size of ti in [Bc
i :SBc

i]Ti.

We now extend the interpretation of types in computability predicates to annotated

types, by defining a size function Σc for each constructor c:

Definition 16 (Interpretation of size-annotated types) First, for each constructor c

with Θ(c) as in Definition 15, we define a size function Σc (see Definition 7) as

follows:

Σc(a) =

⎧⎨
⎩

0 if σc = ∞

σcν otherwise where ν(α) =

{
ai if α = αc

i and all the αc
i ∈ V are distinct

sup{ai | i ∈ {1, . . . , qc}, αc
i ∈ V} otherwise

Then, given a valuation μ : V→ h, we interpret annotated types as follows:

• Bμ = B.

• Baμ = SB
aμ if a ∈ A, where S is the stratification defined by Σ (see

Definition 8).

• (U ⇒ V)μ = Uμ⇒ Vμ.

Note that Σc is monotone wrt every argument and strictly extensive wrt recursive

arguments since σc so is.

Note also that, by definition of sup, if α is distinct from every αc
i , then ν(α) = 0.

In the successor algebra, a constructor c can always be annotated as in Definition

15 above by taking:

Example 2 (Canonical annotations in the successor algebra) The canonical type of a

constructor c in the successor algebra is obtained by taking

• αc
1 = . . . = αc

pc ,

• αc
pc+1 = . . . = αc

qc = ∞,

• σc ∈ V if pc = 0,

• σc = s αc
1 otherwise.

In this case, we get Σc(a1, . . . , aqc) = sup{a1 + 1, . . . , apc + 1}, that is, the size is the

constructor height, the size of a constant being 0.

For the constructors of the sort O of Howard’s constructive ordinals, we get:

• zero : Oα, σ
zero = α and Σzero = 0;

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 29

• succ : Oα ⇒ Osα, Bsucc
1 = O, αsucc

1 = α, σsucc = s α and Σsucc(a) = a + 1;

• lim : (N⇒ Oα)⇒ Osα, Blim
1 = O, αlim

1 = α, σlim = s α and Σlim(a) = a + 1.

Remark that we could have zero of size 2 by simply taking zero : Ns(s α) instead.

For the constructors of the sort T of binary trees with labels in a sort B <	 T, we

get:

• leaf : B⇒ Tα, Bleaf
1 = B, αleaf

1 = ∞, σleaf = α, and Σleaf (a) = 0;

• node : Tα ⇒ Tα ⇒ B ⇒ Tsα, Bnode
1 = Bnode

2 = T, αnode
1 = αnode

2 = α, σnode = s α

and Σnode(a, b, c) = sup{a + 1, b + 1}.

Note that, in the successor algebra, constructors with at least two accessible

arguments (e.g. node) cannot have functional annotated types (because there is only

one non-nullary symbol, namely s).

4.2 Termination conditions

An important ingredient of the termination criterion is the way the sizes of

function arguments are compared. In frameworks where functions are defined by

fixpoint and case analysis, exactly one argument must decrease at a time. Here, we

allow the comparison of various arguments simultaneously, possibly through some

interpretation functions ζ.

Since not every term can be assigned a notion of size, and since two function calls

can have different numbers of arguments, we first need to specify what arguments

have to be taken into account and how their sizes are compared:

Definition 17 (Order on function calls) We assume given

• a well-founded quasi-ordering � on (precedence) that we extend into a well-

founded quasi-ordering on � ∪ � ∪ by taking s < f whenever s ∈ � ∪ �
and f ∈ ;

• for every f : T1 ⇒ . . .⇒ Trf ⇒ B:

— a number qf such that, for all i ∈ {1, . . . , qf}, Ti is a sort Bf
i (the first qf

arguments of f are the arguments that will be taken into account for proving

termination);

— an annotated type Θ(f) = T1 ⇒ . . .⇒ Trf ⇒ Bσf such that

– for all i ∈ {1, . . . , qf}, Ti = Annot(Bf
i ,B

f
i , α

f
i);

– for all i ∈ {qf + 1, . . . , rf}, Ti = Ti;

– 	αf are distinct variables;

– σf ∈ A;

– Var(σf) ⊆ {	αf};
— for each X ∈ {A, h}, a set �f

X , a quasi-order �f
X on �f

X , a well-founded

relation <f
X ⊆ �f

X and a map ζX : Xqf →�f
X such that

– (�f
X,�

f
X,<

f
X) = (�g

X,�
g
X,<

g
X) whenever f � g;

– 	aμ <g,f
h
	bμ whenever 	a <g,f

A
	b and μ : V→ h;

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

30 F. Blanqui

– 	a <g,f
A 	c whenever 	a (�∞

A)prod
	b and 	b <g,f

A 	c, that is, (�∞
A)prod◦ <g,f

A ⊆ <
g,f
A ;

– 	a <g,f
h
	c whenever 	a <g,f

h
	b and 	b �prod	c, that is, <g,f

h
◦ �prod ⊆ <

g,f
h

;

where (x1, . . . , xqg) <
g,f
X (y1, . . . , yqf) iff g � f and ζ

g
X(x1, . . . , xqg) <f

X

ζ f
X(y1, . . . , yqf).

The condition <
g,f
h
◦ �prod ⊆ <

g,f
h

is used in Theorem 1 (in the case (app-decr)).

On the other hand, the condition (�∞
A)prod◦ <g,f

A ⊆ <
g,f
A is only used in Lemma 22.

Note that, because <g,f
A is only defined on terms of A, if 	a (�∞

A)prod
	b and 	b <g,f

A 	c,

then 	a must be in A too since, by definition, a �∞
A b iff a �A b or b = ∞.

In the following, we may drop the exponent f when there is no ambiguity.

In the coming termination criterion, a function call f	t will give rise to a pair (f , ϕ)

where ϕ : {	αf} → A maps αf
i to the size of ti.

We therefore define a quasi-ordering on pairs (f , ϕ) as follows. Given h ∈ �∪�∪,

ψ : {	αh} → A (with {	αh} = ∅ if h ∈ � ∪�), f ∈ , ϕ : {	αf} → A, let

(h, ψ) <A (f , ϕ) if h < f or 	αhψ <h,f
A 	αfϕ.

Its counterpart on pairs (f , μ) is defined similarly as follows. Given h ∈ �∪�∪,

ν : {	αh} → h, f ∈ , μ : {	αf} → h, let (h, ν) <h (f , μ) if h < f or 	αhν <h,f
h
	αfμ.

For the sake of simplicity, we assume that termination arguments come first. This

is not a real restriction since arguments can always be permuted if needed.

For ζ f
X , one can often take the identity (assuming that qf = qg whenever f � g).

In Example 7, we use a different function. When ζ f
X is the identity, one can for

instance take for �f
A (�f

h resp.) the lexicographic or multiset extension (Dershowitz

Fig. 3. Computability closure of (f , ϕ).

Fig. 4. Subtyping rules.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 31

& Manna, 1979) of �A (� resp.), or some combination thereof, for which one can

easily prove the compatibility of �f
A (�f

h resp.) with �∞
A (� resp.). Indeed, we have

(�∞
A)prod ◦ (<A)lex ⊆ (<A)lex since �∞

A ◦ �A ⊆ �A, and <lex ◦ �prod ⊆ <lex.

We can now state our general termination theorem. In Section 6, we will provide

many examples of rewrite systems whose termination is implied by it.

Theorem 1 (Termination criterion) Assume that constructor types are annotated as

in Definition 15. By Definitions 16 and 8, this provides us with a size function Σ

and a stratification S. Assume moreover that →R is finitely branching and no σc

can be interpreted by an infinite limit ordinal.

Then, the relation → = →β ∪→R terminates on the set
 of well-typed terms if,

for each rule l → r ∈ R ⊆
2, l is of the form f	l, the type of f is annotated as in

Definition 17, |	l| � qf and there are

– a typing environment Γ : FV(r)→
A with, for every (x,U) ∈ Γ, an integer kx

such that x occurs in lkx , a sort Bx occurring only positively in |U| and a size

variable αx such that U = Annot(|U|,Bx, αx), indicating how to measure the

size of x6;

– finite symbolic size upper bounds ϕ : {	αf} → A for l1, . . . , lq;

such that

• Monotony. For all i ∈ {1, . . . , qf}, Pos(αf
i , σ

f) ⊆ Pos+(σf);

• Accessibility. For every (x,U) ∈ Γ, one of the following holds:

— x = lkx and U = Tkxϕ,

— Tkx is a sort and (x, |U|,Bx) �a (lkx , Tkx , Tkx);

• Minimality.7 For all substitutions θ with	lθ ∈ 	T , there exists a valuation ν such

that

— for all (x,U) ∈ Γ, o[Bx:SBx]|U|(xθ) � αxν,

— for all i ∈ {1, . . . , qf}, αf
iϕν = oSBi (liθ);

• Subject-reduction and decreasingness.

Γ �f
ϕ r : T|	l|+1 ⇒ . . .⇒ Trf ⇒ Bσfϕ, where �f

ϕ is defined in Figures 3 and 4.

Proof

Computability of constructors. We first prove that, for all (c, μ,	t) with Θ(c) = T1 ⇒
. . . ⇒ Tr ⇒ B, Θ(c) = T1 ⇒ . . . ⇒ Tr ⇒ Bσ as in Definition 15 (we drop the c’s in

exponents), |	t| = r and (∀i)ti ∈ Tiμ, we have c	t ∈ Bσμ. First, we have c	t ∈ SN since
	t ∈ SN and there is no rule of the form c	l → r. Second, by Proposition 1, for every

i ∈ {1, . . . , q}, we have Tiμ ⊆ Ti since Ti = Annot(Ti,Bi, αi) and Pos(Bi, Ti) ⊆
Pos+(Ti). Therefore, c	t ∈ B. Now, if σ = ∞, then we are done. Otherwise, we are

left to prove that oSB (c	t) � σμ. By Corollary 2, oSB (c	t) = Σ(oS(t)). By definition,

Σ(oS(t)) = σν where ν is defined in Definition 16. Since σ is monotone and

6 Note that, if we do not care about the size of x, or if no sort occurs only positively in U, then we can
always take for Bx any sort not occurring in U.

7 Lemma 17 provides a syntactic condition for checking minimality in the successor algebra.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

32 F. Blanqui

Var(σ) ⊆ {	α}, it suffices to prove that, for all i, such that αi ∈ V, αiν � αiμ. If all

the αi ∈ V are distinct, then αiν = oSi (ti) � αiμ since ti ∈ Tiμ and αi occurs only

positively in Ti. Otherwise, all the αi ∈ V are equal. If there is no αi ∈ V, then the

property holds trivially. Otherwise, all the αi ∈ V are equal to some variable α and

αν = sup{oSi (ti) | αi = α} � αμ since, for all i such that αi = α, ti ∈ Tiμ and α occurs

only positively in Ti.

Computability of function symbols. We now prove that, for all ((f , μ),	t) with

Θ(f) = T1 ⇒ . . .⇒ Tr ⇒ B and Θ(f) = T1 ⇒ . . .⇒ Tr ⇒ Bσ as in Definition 17 (we

drop the f ’s in exponents), |	t| = r and (∀i)ti ∈ Tiμ, we have f	t ∈ Bσμ, by induction

on ((f , μ),	t) with (<h,←prod)lex as well-founded relation (1). Since f	t is neutral, it

suffices to prove that, for all u such that f	t → u, we have u ∈ Bσμ. There are two

cases:

a. u = f	u and	t →prod 	u. Since computability is preserved by reduction, (∀i)ui ∈
Tiμ. Therefore, by induction hypothesis (1), u ∈ Bσμ.

b. 	t =	lθ	u, f	l → r ∈ R and u = rθ	u. Let ν be the valuation given by minimality.

For all i � q, αiϕν = oSBi (liθ). Since liθ ∈ Tiμ and Ti = Biαi , we have ϕν � μ

(*).

i. Correctness of the computability closure. We prove that, for all (Γ, t, T , θ), if

Γ �f
ϕ t : T and xθ ∈ Uν when (x,U) ∈ Γ, then tθ ∈ Tν, by induction on �f

ϕ

(2).

• (app-decr) By induction hypothesis (2), wiθ ∈ Viψν. There are three cases:

— h ∈ �. Then, hθ	wθ ∈ Vψν since ψ = ∅ and hθ ∈ (V ⇒ V)ν by

assumption.

— h ∈ � and V = 	U ⇒ Cσ . For all 	u ∈ 	Uψν, we have h	wθ	u ∈ Cσψν by

computability of constructors. Therefore, by Definition 2, h	wθ ∈ Vψν.
— h ∈ and V = 	U ⇒ Cσ . Since (h, ψ) <A (f , ϕ) and 	aν <h,f

h
	bν whenever

	a <
h,f
A
	b, we have (h, ψν) <h (f , ϕν). Since ϕν � μ and <h,f

h
◦ �prod ⊆ <

h,f
h

,

we have (h, ψν) <h (f , μ). Hence, for all 	u ∈ 	Uψν, we have h	wθ	u ∈ Cσψν

by induction hypothesis (1). Therefore, by Definition 2, h	wθ ∈ Vψν.
• (lam) Wlog. we can assume that x /∈ dom(θ) ∪ FV(θ). We have (λxUw)θ =

λxU(wθ) ∈ Uν ⇒ Vν because, for all u ∈ Uν, (wθ){(x, u)} ∈ Vν (cf.

remarks after Definition 1) since (wθ){(x, u)} = wθ′ where θ′ = θ ∪ {(x, u)}
and wθ′ ∈ Vν by induction hypothesis (2).

• (sub) We prove that Uν ⊆ Vν whenever U � V by induction on � (3):

— (size) If b = ∞, then Baν ⊆ B by definition. Otherwise, aν � bν and

Baν =SB
aν ⊆ SB

bν = Bbν since SB is monotone.

— (prod) Let t ∈ Uν → Vν and u′ ∈ U ′ν. By induction hypothesis (3),

U ′ν ⊆ Uν. Hence, u ∈ Uν and tu ∈ Vν. By induction hypothesis (3),

Vν ⊆ Vν ′. Thus, tu′ ∈ V ′ν.
— (refl) Immediate.

— (trans) By induction hypothesis (3) and transitivity of ⊆.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 33

ii. Computability of the matching substitution: For all (x,U) ∈ Γ, xθ ∈ Uν. By

assumption, there is k such that x occurs in lk , and lkθ ∈ Tkμ. After the

accessibility condition, there are two cases:

• x = lk and U = Tkϕ. If k > q, then Tk = Tk and Tkμ = Uν. Therefore,

xθ ∈ Uν since lkθ ∈ Tkμ. If k � q, then Tk = Bαk for some sort B. By

minimality, αkϕν = oSB (lkθ). Therefore, xθ ∈ Uν since U = Bαkϕ.

• Tk is a sort and (x, |U|,Bx) �a (lk, Tk, Tk). By Lemma 13, xθ ∈ |U| since,

by assumption, lkθ ∈ Tk . By assumption, U = Annot(|U|,Bx, αx) and

Pos(Bx, |U|) ⊆ Pos+(|U|). By minimality, o[Bx:SBx]|U|(xθ) � αxν. Therefore,

xθ ∈ Uν.
iii. We can now end the proof that u ∈ Bσμ. Since Γ �f

ϕ r : Vϕ with V =

T|	l|+1 ⇒ . . . ⇒ Tr ⇒ Bσ , and xθ ∈ Uν whenever (x,U) ∈ Γ by (ii), we have

rθ ∈ Vϕν by (i). Hence, u = rθ	u ∈ Bσϕν. We now prove that Bσϕν ⊆ Bσμ.

If σ = ∞, then Bσϕν = Bσμ. Otherwise, we have ϕσ �= ∞ since ϕ : {	α} → A.

Moreover, we have seen in (ii) that, for all k � q, Tk = Bαk for some sort

B and αkϕν = oSB (lkθ). Since lkθ ∈ Tkμ, αkϕν � αkμ. Now, by monotony,

Pos(αk, σ) ⊆ Pos+(σ). Therefore, by Proposition 1, Bσϕν ⊆ Bσμ.

Computability of well-typed terms. Now, it is easy to prove that every well-typed

term is computable by proceeding as for the correctness of the computability closure:

if Γ � t : T and xθ ∈ U whenever (x,U) ∈ Γ, then tθ ∈ T . We just detail the case of a

function symbol f with Θ(f) = T1 ⇒ . . .⇒ Tr ⇒ B and Θ(f) = T1 ⇒ . . .⇒ Tr ⇒ Bσ .

After Definition 2, f ∈ Θ(f) iff, for all 	t ∈ 	T such that |	t| = r, f	t ∈ B. By

assumption, for all i ∈ {1, . . . , q}, Ti is a sort Bi. Let μ be the valuation mapping,

for every i ∈ {1, . . . , q}, αi to the smallest ordinal hi < h such that SBi
hi

= Bi. Then,

ti ∈ Biμ and, by computability of function symbols, f	t ∈ Bσμ ⊆ B. Finally, we

conclude by noting that the identity substitution is computable (cf. remark after

Definition 1). �

It is worth remarking that this criterion is modular since the above conditions

are for each rule. Hence, if both R1 and R2 satisfy the criterion with the same

parameters, then R1 ∪R2 satisfies the criterion too.

We now discuss each condition in turn.

Accessibility. The accessibility is easy to check. As explained in Section 2.5, not

every subterm of a computable term is computable. The definition of computability

ensures that all accessible subterms so are (Lemma 13). The accessibility condition

ensures that each free variable x of the right-hand side is accessible in some li.

Hence, every instance of x is computable if the arguments of f so are. Now, when x

is accessible in a termination argument (kx � qf), there must be a sort Bx with respect

to which the size of the instances of x are measured. Since x can be instantiated by

terms of any size, the type of x should be of the form Annot(|U|,Bx, αx), that is,

every occurrence of Bx should be annotated by some size variable αx, and no other

sort should be annotated.

Subject-reduction and decreasingness. This condition enforces two properties at

once. First, the right-hand side has the same type as the left-hand side. This subject-

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

34 F. Blanqui

reduction property is required since the interpretation of a type has to be stable by

reduction. So, there should be no rule f	l → r such that the size of r is strictly bigger

than the size of f	l. Second, by (app-decr), in every function call h	t, the symbolic

upper bounds ψ of the actual sizes of the termination arguments of h are strictly

smaller than those of f	l given by ϕ.

In (app-decr), ψ is any size substitution of the size variables of 	V . This rule works

like the rule for type instantiation in Hindley–Milner type system (Hindley, 1969;

Milner, 1978) except that, here, ψ is not a type substitution but a size substitution.

Hence, if s is declared of type Nα ⇒ Nsα, then, by (app-decr), �f
ϕ s : Na ⇒ Nsa

for any size expression a. This means that, in annotated types, size variables are

implicitly universally quantified.

The rule (app-decr) is a compact formulation that subsumes in a single rule the

usual rules of simply typed λ-calculus for variables (Γ �f
ϕ x : T if (x, T) ∈ Γ),

constructors and function symbols (Γ �f
ϕ c : Tψ if (c, T) ∈ Θ and ψ is any size

substitution), and application (Γ �f
ϕ tu : V if Γ �f

ϕ t : U ⇒ V and Γ �f
ϕ u : U), with

the following restrictions on application and function symbols. First, the head of

an application cannot be an abstraction: �f
ϕ only accepts terms in β-normal form

since rule right-hand sides usually so are. Second, if an application is headed by a

function symbol g, then g < f (note that h < f whenever h ∈ � ∪�), or we have

g � f , g applied to at least qg arguments, and the sizes of the arguments of g,

represented by ψ, are smaller than ϕ in <A.

Hence, in (app-decr), h is either a variable of Γ, in which case 	V ⇒ V is the type

of h declared in Γ, or a constructor or function symbol, in which case 	V ⇒ V is

the annotated type of h declared in Θ. In addition, if h is a variable, a constructor

symbol or a function symbol strictly smaller than f , then h can be applied to any

number of arguments compatible with its type. On the other hand, if h is a function

symbol equivalent to f , then it must be applied to at least qh arguments, and the

abstract sizes of these arguments, given by the size substitution ψ, must be strictly

smaller than ϕ in <A.

In the examples below, we will however use (var), (cons) and (prec) to denote the

rule (app-decr) when h is variable, a constructor or a function symbol smaller than

f , respectively.

Note that the typability of r may require two variables x and y to have the

same size over-approximation, that is, to have αx = αy . This will always be the

case in the successor algebra when x and y are two recursive arguments of a

constructor because, in this algebra, the types of constructor arguments are annotated

by the same variable. For instance, if x and y are the first two arguments of

node : Tα ⇒ Tα ⇒ B⇒ Tsα, we must have αx = αy .

Note also that the termination conditions do not require l itself to be typable

in �f
ϕ. Hence, for instance, assuming that B has two constructors c : Bα ⇒ Bsα

and b : Bα ⇒ Bα ⇒ Bsα, we can handle the rule f (b x1 (c x2)) → f x2 by taking

Γ = [x2 : Bαx2] and αf
1ϕ = sαx2 . On the other hand, we cannot handle the rule

f (b x1 (c x2)) → f (b x1 x2). Indeed, in this case, we can have oSB (b x1θ x2θ) =

oSB (b x1θ (c x2θ)) if o(x2θ) < o(x1θ): the height is not a decreasing measure in

this case.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 35

The relation �f
ϕ is similar to the notion of computability closure introduced in

Blanqui et al. (2002) and Blanqui (2016) except that, when comparing function

arguments, it uses the sizes given by the type system instead of the structure of

terms. As already mentioned in the introduction, using the size information instead

of the structure of terms relates our termination technique to well-founded monotone

algebras (Manna & Ness, 1970; Van de Pol, 1996; Hamana, 2006), semantic labeling

(Zantema, 1995; Hamana, 2007) or the notion of size-change principle (Lee et al.,

2001; Hyvernat, 2014). Now, as remarked in (Blanqui, 2006a) and (Kusakari &

Sakai, 2007), the notion of computability closure itself has strong connections with

the notion of dependency pair (Arts & Giesl, 2000). It is also a tool for defining

and strengthening the higher order RPO (Blanqui, 2006b; Jouannaud & Rubio,

2007; Blanqui et al., 2015). Finally, some relations between these notions have been

formally established: size-change principle and dependency pairs (Thiemann & Giesl,

2005), semantic labeling and RPO (Kamin & Lévy, 1980), dependency pairs and

RPO (Dershowitz, 2013), and size-based termination and semantic labeling (Blanqui

& Roux, 2009).

The decidability of �f
ϕ will be studied in Section 7 and following.

Monotony. The monotony condition is easy to check. It requires the size of terms

generated by f to be monotone wrt the sizes of its termination arguments. It can

always be satisfied by taking σf = ∞. It is also satisfied if A is monotone. This

condition also appears in Abel (2004) and Barthe et al. (2004). It is necessary

because, in the rule (app-decr), ψ is not necessarily minimal: it may be set to a

strict upper bound by using the rule (sub) beforehand. This could lead to invalid

deductions wrt sizes. Take, for instance, the subtraction on natural numbers defined

by the rules of Figure 1 and assume that sub : Nα ⇒ Nβ ⇒ Nα−β in the size algebra

with �A = �ext and 0, s and − interpreted by 0, successor and minus, respectively.

Then, given f : Nα ⇒ N with sub < f , the rule f (s x) → f (sub (s x) x) satisfies the

other conditions. Indeed, take Γ = [x : Nx] and ϕ = {(α, s x)}. By (var), �f
ϕ x : Nx.

By (cons), �f
ϕ s x : Ns x. By (sub), �f

ϕ x : Ns x. By (prec), Γ �f
ϕ sub (s x) x :

Ns x−s x. By (sub), Γ �f
ϕ sub (s x) x : N0 (while oDN (sub (s x) x) > 0!). Therefore,

Γ �f
ϕ f (sub (s x) x) : N since 0 <A s x, but the system does not terminate since

f (s x)→ f (sub (s x) x) → f (s x).

Minimality. Since ϕ provides symbolic upper bounds only, this does not suffice

for getting termination. We also need ϕ to be minimal. Indeed, consider the rule

f x→ f x with f : Nα ⇒ N and Γ = [x : Nx]. By taking αϕ = s x, one has Γ �f
ϕ f x : N

since Γ �f
ϕ x : Nx and x <A s x.

In Theorem 1, minimality is expressed in the most general way by using

the interpretation of annotated types in computability predicates. With some

acquaintance, it is not too difficult to check this condition by hand on simple

systems as shown in Example 3. In fact, we think that it is always possible to find a

minimal ϕ when the type of every constructor c is annotated in the max-successor

algebra (extension of the successor algebra with a max operator) in the canonical

way, that is, by taking σc ∈ V if pc = 0 and σc = s(maxαc
1 . . . α

c
pc) with distinct

variables for αc
1, . . . , αpc otherwise. However, in this paper, we want to focus on the

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

36 F. Blanqui

successor algebra and, in this case, minimality may not be satisfiable whatever ϕ is.

This is due to the fact that, in the successor algebra, one often needs to approximate

the sizes of two distinct term variables by the same size variable. Indeed, in the

successor algebra, there is no function symbol of arity � 2. Hence, the annotated

type of a binary constructor can only be of the form Bα ⇒ Bα ⇒ Bσ with the same

size variable α for both arguments.

In the following section, we study in more details the size of constructor terms

when the size is defined as the height like it is the case with the canonical

annotations of constructor types in the successor and max-successor algebras.

Then, we give a syntactic condition for minimality to be satisfied in the successor

algebra.

5 Minimality property when the size is defined as the height

In this section, we provide sufficient conditions for the minimality condition of

Theorem 1 to be satisfied when the notion of size is the height and the size of

constants is 0, that is, when, for every constructor c, we have

Σc(a1, . . . , aqc) = sup{a1 + 1, . . . , apc + 1}.

After Definition 16, this can be achieved in the successor algebra by taking the

canonical annotation for constructor types (cf. Example 2).

To check the minimality condition, we need to know how the size of a term of

the form tθ depends on the sizes of the subterms xθ where x is a variable of t. To

this end, we introduce a number of definitions to express what are the subterms that

contribute to the size of a term and how they contribute to it:

Definition 18 (Recursive subterms) Let � be the set of triples (u,U, k) made of a

term u, a type U and a number k ∈ �. Given a sort B and (u,U, k) ∈�, let

Sub1
B(u,U, k) =

⎧⎨
⎩
{(ui, Ui, k + 1) | i ∈ {1, . . . , pc}}

if there is (c,	u, 	U) ∈ �B such that u = c	u and U = B

∅ otherwise

Then, let →B be the relation on finite sets of triples such that S →B S ′ if there

is d ∈ S such that Sub1
B(d) �= ∅ and S ′ = (S − {d}) ∪ Sub1

B(d) (we replace d by

Sub1
B(d)). We say that a set S ⊆ � is a set of B-recursive subterms of a term t if

{(t,B, 0)} →∗
B S .

For instance, if a : B, c : B ⇒ B, pc = 1, b : B ⇒ B ⇒ B, pb = 2 and

t = b(c(ca))x, then {(t,B, 0)} →B {(c(ca),B, 1), (x,B, 1)} →B {(ca,B, 2), (x,B, 1)} →B

{(a,B, 3), (x,B, 1)}.

Lemma 14 If S is a set of B-recursive subterms of t ∈ B, then

oSB (t) = sup{o[B:SB]U(u) + k | (u,U, k) ∈ S}.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 37

Proof

Let M(S) = {o[B:SB]U(u) + k | (u,U, k) ∈ S}. The lemma trivially holds for

S = {(t,B, 0)}. Hence, if suffices to check that, if it holds for S and S →B S ′,

then it holds for S ′ too. So, assume that there is (c	u,B, k) ∈ S such that

Sub1
B(c	u,B, k) �= ∅. Then, M(S ′) = (M(S)−{o[B:SB]U(u)+ k})∪{o[B:SB]Ui

(ui)+ k+1 |
i ∈ I} where I = {1, . . . , pc}. But, by Corollary 2, o[B:SB]B(c	u) = oSB (c	u) =

Σc(oSc,1 (u1), . . . , oSc,pc (upc)) = sup{oSc,i (ui) + 1 | i ∈ I} = sup{o[B:SB]Ui
(ui) + 1 | i ∈ I}.

Therefore, supM(S) = supM(S ′). �

Lemma 15 If S is a set of B-recursive subterms of t and θ is a substitution, then

Sθ = {(uθ,U, k) | (u,U, k) ∈ S} is a set of B-recursive subterms of tθ.

Proof

The lemma holds for S = {(t,B, 0)}. Hence, if suffices to check that, if it holds for S

and S →B S
′, then it holds for S ′ too. But Sub1

B(uθ,U, k) = Sub1
B(u,U, k)θ. �

Note that →B terminates (it acts on finite sets and replaces a term by smaller

subterms) and is confluent (it is orthogonal). Hence, every finite set has a→B-normal

form.

Definition 19 (Simple terms) Given a sort B and a term t, let SubB(t) be the →B-

normal form of {(t,B, 0)}. A term t of sort B is simple if, for all (u,U, k) ∈ SubB(t),

either u ∈ � or there is (c,	u, 	U) ∈ �B such that u = c	u, U = B and pc = 0 (c has

no recursive argument).

Lemma 16 If t is a simple term of sort B and tθ ∈ B, then

oSB (tθ) = sup({dB(t)} ∪ {o[B:SB]V (xθ) + dxB(t) | (x, V) ∈ VarB(t)})

where

• VarB(t) = {(x,U) | ∃k, (x,U, k) ∈ SubB(t)},
• dxB(t) = sup{k | ∃U, (x,U, k) ∈ SubB(t)},
• dB(t) = sup{k | ∃u, ∃U, (u,U, k) ∈ SubB(t)}.

Proof

By Lemma 15, SubB(t)θ is a set of B-recursive subterms of tθ. Hence, by Lemma

14, oSB (tθ) = sup{o[B:SB]U(u) + k | (u,U, k) ∈ SubB(t)θ} = sup{o[B:SB]U(uθ) + k |
(u,U, k) ∈ SubB(t)}. Let (x, V) ∈ VarB(t). Since t is well-typed, for all (x, V ′) ∈
VarB(t), we have V ′ = V . Hence, sup{o[B:SB]U(uθ) + k | (u,U, k) ∈ SubB(t), u =

x} = o[B:SB]V (xθ) + dxB(t). Let now (u,U, k) ∈ SubB(t) with u /∈ �. Since t is simple,

there is (c,	u, 	U) ∈ �B such that u = c	u, U = B and pc = 0. By Corollary 2,

o[B:SB]U(c	uθ) = oSB (c	uθ) = Σc(oSc,1 (u1θ), . . . , oSc,pc (upcθ)) = sup{oSc,i (uiθ) + 1 | i ∈
{1, . . . , pc}} = 0. Therefore, sup{o[B:SB]U(uθ) + k | (u,U, k) ∈ SubB(t), u /∈ �} = dB(t)

and oSB (tθ) = sup({dB(t)} ∪ {o[B:SB]V (xθ) + dxB(t) | (x, V) ∈ VarB(t)}. �

To carry on with the previous example, t = b(c(ca))x is simple and

we have oSB (tθ) = sup{oSB (c(ca)) + 1, oSB (xθ) + 1} = sup{3, oSB (xθ) + 1} =

sup{dB(t), oSB (xθ) + dxB(t)}.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

38 F. Blanqui

Assume now that we are under the conditions of Theorem 1 for some rule

f	l → r ∈ R, typing environment Γ = [x1 : U1, . . . , xn : Un] and substitution

ϕ : {	α} → A. In particular,

Θ(f) = B1α1
⇒ . . .⇒ Bqαq

⇒ Tq+1 ⇒ . . .⇒ Tr ⇒ Bσ

with 	α distinct variables, σ ∈ A and Var(σ) ⊆ {	α}.
Assume, moreover that, for all j ∈ {1, . . . , q}, lj is a simple term of sort Bj and

there are nj ∈ � and γj ∈ V such that αjϕ = snj γj .

Then, after Lemma 16, the minimality property is equivalent to the following

purely numerical problem on ordinals: for all a1, . . . , an (for the sizes of x1θ, . . . , xnθ,

respectively), there are b1, . . . , bn (for αx1ν, . . . , αxnν, respectively) and c1, . . . , cq (for

γ1ν, . . . , γqν, respectively), such that

1. (∀j)(∀k) bj = bk if αxj = αxk ,

2. (∀j)(∀k) cj = ck if γj = γk ,

3. (∀j)(∀k) bj = ck if αxj = γk ,

4. (∀j) aj � bj ,

5. (∀j) cj + nj = sup({dBj (lj)} ∪ {am + dxmBj
(lj) | xm ∈ dom(SubBj (lj))}.

The first three constraints are coherence conditions for ν to be well-defined. The

last two correspond to the first and second conditions of the minimality property,

respectively.

One of the problems for these inequations to be satisfied is when two arguments

of f , say l1 and l2, share some variable but have distinct sets of variables, or

when shared variables occur at different depths. Take, for instance, l1 = x1 and

l2 = b (c x1) (c x2) with constructors annotated in the canonical way in the successor

algebra, that is, c : Bα ⇒ Bsα and b : Bα ⇒ Bα ⇒ Bsα. Then, for having b x1 x2 in

the right-hand side, we need to take αx1 = αx2 = γ1 = γ2. In this case, the minimality

condition says that, for all a1, a2, there is b such that a1 � b, a2 � b, a1 = b + n1

and sup{a1 + 2, a2 + 2} = b + n2, which is not possible. Take now l1 = b (c x1) (c x2)

and l2 = b (c (c x1)) (c x2). Again, for having b x1 x2 in the right-hand side, we need

to take αx1 = αx2 = γ1 = γ2. In this case, the minimality condition says that, for

all a1, a2, there is b such that a1 � b, a2 � b, sup{a1 + 2, a2 + 2} = b + n1 and

sup{a1 + 3, a2 + 2} = b + n2, which is not possible either.

We now give sufficient conditions for the above set of inequations to be satisfied:

Lemma 17 Under the conditions of Theorem 1, assume that constructor types are

annotated in the canonical way in the successor algebra (cf. Example 2). Then, the

minimality property is satisfied if, for all j ∈ {1, . . . , q}:

a. lj is a simple term of sort Bj;

b. there are nj ∈ � and γj ∈ V such that αjϕ = snj γj;
c. nj � inf(range(Dj));

d. for all k ∈ {1, . . . , q}, if γj = γk , then nj = nk , dBj (lj) = dBk (lk) and Dj = Dk;

e. for all x ∈ dom(Γ), if γj = αx then x ∈ dom(Dj);

where Dj = {(x, dxBj (lj)) | x ∈ dom(SubBj (lj))}, SubB(l) is introduced in Definition 19,

dB and dxB are defined in Lemma 16.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 39

Proof

Let ci = sup({dBi (li)} ∪ {ap + d | (xp, d) ∈ Di}) − ni. It is well-defined since ni �
inf(range(Di)) � dBi (li). Now, let bi = cm if αxi = γm for some m, and bi = sup{ap |
αxp = αxi} otherwise. It is well-defined since, if γj = γk , then cj = ck because nj = nk ,

dBj (lj) = dBk (lk) and Dj = Dk . We now prove that the five numerical constraints

equivalent to minimality are satisfied:

1. Assume that αxj = αxk . If αxj = γm, then bj = cm = bk .

Otherwise, bj = sup{am | αxm = αxj} = bk .

2. Assume that γj = γk . Then, cj = ck .

3. Assume that αxj = γk . Then, bj = ck .

4. For all j, aj � bj . Indeed, if αxj = γm, then bj = cm � aj since xj ∈ dom(Dm).

Otherwise, bj = sup{ap | αxp = αxj} � aj .

5. For all j, cj + nj = sup({dBj (lj)} ∪ {am + dxmBj
(lj) | xm ∈ dom(SubBj (lj))}) by

definition of cj .

�

For instance, with the last rule of Figure 1, div (s x) (s y) → s (div (sub x y) (s y)),

if we take div : Nα ⇒ N⇒ Nα, Γ = [x : Nx, y : Ny], α
x = x, αy = y and ϕ = {(α, s x)},

we have n1 = 1, γ1 = x = αx and D1 = {(x, 1)}. So, the conditions above are satisfied.

On the contrary, if l1 = c x1, l2 = b (c x1) (c x2), α
x1 = αx2 = γ1 = γ2, n1 = 1

and n2 = 2, then (d) is not satisfied because γ1 = γ2 but D1 = {(x1, 1)} and

D2 = {(x1, 2), (x2, 2)}.

6 Examples

In this section, we show various examples whose termination can be established by

using Theorem 1. In proofs of �f
ϕ judgments, (var), (cons) and (prec) will refer to the

specialization of (app-decr) to variables, constructors and function symbols smaller

than f , respectively.

We will use the following sorts and constructors with N <	 L and N <	 O:

• B: the sort of booleans with the constructors true : B and false : B.

• N: the sort of natural numbers with the constructors 0 : N and s : N⇒ N.

• O: the sort of Howard’s constructive ordinals with the constructors

zero : O, succ : O⇒ O and lim : (N⇒ O)⇒ O.

• L: the sort of lists with the constructors nil : L and cons : L⇒ N⇒ L.8

Unless stated otherwise, we always use the successor algebra (Definition 12) and,

for constructor types, the canonical annotations (Example 2).

Example 3 (Division) Consider the function symbols sub (substraction) and div

(division) both of type N⇒ N⇒ N defined by the rules of Figure 1.

8 We permuted the usual order of the arguments of cons so that its type conforms to Definition 4.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

40 F. Blanqui

We take sub < div. For annotated types, we take, for each f ∈ {sub, div},
Θ(f) = Nα ⇒ N ⇒ Nα, qf = 1, Bf1 = N, αf1 = α, which expresses the fact that these

functions are not size-increasing. And, for ζsub
X and ζdiv

X , we take the identity.

We now detail the conditions of Theorem 1 for each rule in turn (monotony is

trivial).

1. sub x 0 → x. Take Γ = [x : Nx], k
x = 1, Bx = N, αx = x and ϕ = {(α, x)}.

Then, Nx = Annot(N,Bx, αx), and:

• Accessibility. x is accessible since x = lkx and Nx = Nαϕ.

• Minimality. One could use Lemma 17. We give a direct proof instead. Let

θ be such that xθ ∈ N. We have to prove that there exists ν such that

oSN (xθ) � αxν and αϕν = oSN (xθ). It suffices to take ν(x) = oSN (xθ).

• Subject-reduction. By (var), �sub
ϕ x : Nx = Nαϕ.

2. sub 0 y → 0. Take Γ = ϕ = ∅. Then,

• Minimality. Let θ be such that yθ ∈ N. We have to prove that there exists ν

such that αϕν = oSN (0). It suffices to take ν(α) = oSN (0).

• Subject-reduction. By (cons), �sub
ϕ 0 : Nα = Nαϕ.

3. sub (s x) (s y) → sub x y. Take Γ = [x : Nx, y : Ny], k
x = 1, Bx = N,

αx = x, ky = 2, By = N, αy = y, ϕ = {(α, s x)}. Then, Nx = Annot(N,Bx, αx),

Ny = Annot(N,By, αy) and:

• Accessibility. x is accessible since (x,N,N) �a (lkx ,N,N). y is accessible since

(y,N,N) �a (lky ,N,N).

• Minimality. Let θ be such that s xθ ∈ N and s yθ ∈ N. We have to prove that

there exists ν such that oSN (xθ) � αxν, oSN (yθ) � αyν and αϕν = oSN (s xθ) =

oSN (xθ) + 1. It suffices to take ν(x) = oSN (xθ) and ν(y) = oSN (yθ).

• Subject-reduction. Let � = �sub
ϕ . By (var), � x : Nx and � y : Ny . By (app-

decr), � sub x y : Nx since x <A s x. Therefore, by (sub), � sub x y : Ns x =

Nαϕ.

4. div 0 (s y) → 0. Like for rule (2).

5. div (s x) (s y) → s (div (sub x y) (s y)). Take Γ = [x : Nx, y : Ny], k
x = 1,

Bx = N, αx = x, ky = 2, By = N, αy = y and ϕ = {(α, s x)}. Then, Nx =

Annot(N,Bx, αx), Ny = Annot(N,By, αy) and:

• Accessibility and minimality like for rule (3).

• Subject-reduction. Let � = �div
ϕ . By (var), Γ � x : Nx and Γ � y : Ny .

By (prec), Γ � sub x y : Nx. By (cons), Γ � s y : Ns y . By (app-decr),

Γ � div (sub x y) (s y) : Nx since x <A s x. Finally, by (cons), Γ �
s (div (sub x y) (s y)) : Nsx = Nαϕ. �

Example 4 (Map and filter) Consider the function symbols map : L ⇒ (N ⇒ N) ⇒
L,9 if : L⇒ L⇒ B⇒ L and filter : L⇒ (N⇒ B)⇒ L defined by the rules:

9 We permuted the usual order of the arguments of map so that its type conforms to Definition 17.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 41

map nil f → nil

map (cons l x) f → cons (map l f) (f x)

if x y true → x

if x y false → y

filter nil f → nil

filter (cons l x) f → if (cons (filter l f) x) (filter l f) (f x)

For annotated types, we could take in the successor algebra, map : Lα ⇒ (N ⇒
N) ⇒ Lα, qmap = 1, Bmap

1 = L, αmap
1 = α, if : Lα ⇒ Lα ⇒ B ⇒ Lα, qif = 2,

Bif
1 = Bif

2 = L, αf
1 = αf

2 = α, filter : Lα ⇒ (N ⇒ B) ⇒ Lα and qfilter = 1, expressing the

fact that these functions are not size-increasing.

Unfortunately, the annotated type of if does not satisfy the conditions of Definition

17 because αif
1 = αif

2 (the variables αif
i should be distinct). There are however two

solutions to get around this problem:

1. Annotate if in the max-successor algebra by taking if : Lα ⇒ Lβ ⇒ B⇒ Lmaxαβ .

2. Introduce a new type C >	 L with constructor cond : Lα ⇒ Lα ⇒ B ⇒ Cα, a

new function symbol newif : Cα ⇒ Lα with qnewif = 1, and define newif and

filter by the following rules instead:

newif (cond x y true) → x

newif (cond x y false) → y

filter nil f → nil

filter (cons l x) f → newif (cond (cons (filter l f) x) (filter l f) (f x))

One can easily check the conditions on annotated types and the monotony

condition.

For the other conditions, we only detail the case of the last rule of filter by taking

Γ = [f : N ⇒ B, x : N, l : Ll], ϕ = {(α, s l)}, kf = 2, any sort distinct from N and

B for Bf (we do not care about the size of f), αf = f, kx = 1, any sort distinct

from N for Bx (we do not care about the size of x), αx = x, kl = 1, Bl = L, αl = l,

newif < filter, cond < filter and the identity for ζfilter.

One can easily check the accessibility and minimality conditions.

We now check subject-reduction. Let � = �filter
ϕ . By (var), Γ � x : N and Γ � l : Ll .

By (var), Γ � f x : B. By (app-decr), Γ � filter l f : Ll since l <A s l. By (cons),

Γ � cons (filter l f) x : Ls l . By (sub), Γ � filter l f : Ls l since l �∞
A s l. By

(cons), Γ � cond (cons (filter l f) x) (filter l f) (f x) : Ls l . Therefore, by (prec),

Γ � newif (cond (cons (filter l f) x) (filter l f) (f x)) : Ls l = Lαϕ. �

Example 5 (Gödel’ system T and Howard’ system V) Consider the recursor on

natural numbers recN
T : N ⇒ T ⇒ (N ⇒ T ⇒ T) ⇒ T from Gödel’ system T

(Gödel, 1958), and the recursor on ordinals recO
T : O ⇒ T ⇒ (O ⇒ T ⇒ T) ⇒

((N ⇒ O) ⇒ (N ⇒ T) ⇒ T) ⇒ T from Howard’ system V (Howard, 1972) defined

by the following rules:

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

42 F. Blanqui

recN
T 0 u v → u

recN
T (s x) u v → v x (recN

T x u v)

recO
T 0 u v w → u

recO
T (succ x) u v w → v x (recO

T x u v w)

recO
T (lim f) u v w → w f (λnN.recO

T (f n) u v w)

For the annotated types of function symbols, take recN
T : Nα ⇒ T ⇒ (N ⇒ T ⇒

T) ⇒ T and recO
T : Oα ⇒ T ⇒ (O⇒ T ⇒ T)⇒ ((N⇒ O)⇒ (N⇒ T)⇒ T) ⇒ T .

We now detail the subject-reduction condition for the last rule of f = recO
T with

Γ = [f : N ⇒ Oβ, u : T , v : O ⇒ T ⇒ T ,w : (N ⇒ O) ⇒ (N ⇒ T) ⇒ T],

ϕ = {(α, s β)} and the identity for ζ f . Let � = �f
ϕ and Δ = [n : N]Γ. By (var),

Γ � f : N ⇒ Oβ and Δ � f : N ⇒ Oβ , Δ � u : T , Δ � v : O ⇒ T ⇒ T ,

Γ � w : (N ⇒ O) ⇒ (N ⇒ T) ⇒ T and Δ � w : (N ⇒ O) ⇒ (N ⇒ T) ⇒ T . By (var),

Δ � f n : Oβ . By (app-decr), Δ � recO
T (f n) u v w : T since β <A s β. By (lam),

Γ � λnN.recO
T (f n) u v w : N⇒ T . By (sub), Γ � f : N ⇒ O since N⇒ Oβ � N⇒ O.

Finally, by (var), Γ � w f (λnN.recO
T (f n) u v w) : T . �

Example 6 (Quicksort) Let P be the sort of pairs of lists with the constructor pair :

L ⇒ L ⇒ P, and C be the sort with the constructor cond : P ⇒ P ⇒ B ⇒ C. Then,

let the functions fst, snd : P ⇒ L, le : N ⇒ N ⇒ B, if : C ⇒ P, pivot : L ⇒ N ⇒ P,

qs : L⇒ L⇒ L and qsort : L⇒ L be defined by the rules:

fst (pair l m) → l

snd (pair l m) → m

if (cond true p q) → p

if (cond false p q) → q

le 0 y → true

le (s x) 0 → false

le (s x) (s y) → le x y

pivot nil y → pair nil nil

pivot (cons l x) y → if (cond (pair (cons p1 x) p2) (pair p1 (cons p2 x)) (le x y))

where p1 = fst p, p2 = snd p, p = pivot l y

qs nil m → m

qs (cons l x) m → qs p1 (cons (qs p2 m) x)

where p1 = fst p, p2 = snd p, p = pivot l x

qsort l → qs l nil

For the annotated types of constructors, we take the canonical annotations except

for pair : Lα ⇒ Lα ⇒ Pα and cond : Pα ⇒ Pα ⇒ B ⇒ Cα. Hence, a term of type Pα
is a pair of lists of length smaller than or equal to α.

Now, for function symbols, we take fst, snd : Pα ⇒ Lα, if : Cα ⇒ Pα, pivot : Lα ⇒
N ⇒ Pα, which expresses the fact that these functions are not size-increasing, and

le : Nα ⇒ N⇒ B, qs : Lα ⇒ L⇒ L and qsort : Lα ⇒ L.

We now detail the subject-reduction condition for the case of the last rule of

qs by taking Γ = [x : N, l : Ll , m : L], ϕ = {(α, s l)}, fst, snd, pivot < qs and the

identity for ζqs. Let � = �qs
ϕ . By (var), Γ � x : N, Γ � l : Ll and Γ � m : L. By (prec),

Γ � p : Pl , Γ � p1 : Ll and Γ � p2 : Ll . Since l <A s l, by (app-decr), Γ � qs p2 m : L.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 43

By (cons), Γ � cons (qs p2 m) x : L. Finally, since l <A s l, by (app-decr) again,

Γ � qs p1 (cons (qs p2 m) x) : L.

We proved the termination of this system. However, we cannot express that qsort

is not size-increasing, that is, take qsort : Lα ⇒ Lα. To do so, we need a more precise

type system with existential quantifiers and constraints on size variables where pivot

can be given the type:

(∀α)Lα ⇒ N⇒ (∃β)(∃γ)(α = β + γ)Lβ × Lγ (Blanqui & Riba, 2006). �

We now give an example using interpretation functions ζ f
X different from the

identity:

Example 7 (Reverse) List reversal can be defined as follows (Huet & Hullot, 1982):

last nil x → x

last (cons l y) x → last l y

revremlast nil x → nil

revremlast (cons l y) x → rev (cons (rev (revremlast l y)) x)

rev nil → nil

rev (cons l x) → cons (revremlast l x) (last l x)

where rev : L⇒ L, revremlast : L⇒ N⇒ L and last : L⇒ N⇒ N.

Since we have a first-order data type, we can assume that h = ω. Let A be the

size algebra with the constant 1 interpreted by 1 and the binary function symbol +

interpreted by the addition. Let �A and <A be �ext and <ext, respectively (cf. remark

after Definition 11).

Consider the fourth rule. Take cons : Lα ⇒ N⇒ Lα+1, rev : Lα ⇒ Lα, revremlast :

Lα ⇒ N ⇒ Lα, Γ = [x : N, y : Ny, l : Ll] and ϕ = {(α, l + 1)}. One can easily

check monotony, accessibility and minimality. We now check subject-reduction. Let

� = �revremlast
ϕ . For comparing termination arguments, take rev � revremlast,

ζrev(a) = 2a (formally a+a) and ζrevremlast(a) = 2a+1. By (var), Γ � x : N, Γ � y : N

and Γ � l : Ll . By (app-decr), Γ � revremlast l y : Nl since ζrevremlast(l) = 2l + 1 <A

ζrevremlast(l + 1) = 2(l + 1) + 1 = 2l + 3. By (app-decr), Γ � rev (revremlast l y) : Nl
since ζrev(l) = 2l < 2l+3. By (cons), Γ � cons (rev (revremlast l y)) x : Ll+1. Finally,

by (app-decr), we get Γ � r : Ll+1, where r = rev (cons (rev (revremlast l y)) x),

since ζrev(l + 1) = 2l + 2 < 2l + 3. �

We end this series of examples with one using non-standard constructor size

annotations:

Example 8 (Normalization of conditionals) Let C be the sort of conditional

expressions with the constructors at : C and if : C3 ⇒ C. Following Boyer &

Moore (1979), one can define a normalization function nm : C⇒ C as follows:

nm at → at

nm (if at y z) → if at (nm y) (nm z)

nm (if (if u v w) y z) → nm (if u (nm (if v y z)) (nm (if w y z)))

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

44 F. Blanqui

In Paulson (1986) is given a measure on terms due to Shostak that is decreasing

in recursive calls. Hence, we can prove the termination of nm by using the following

annotated types: at : Cα, if : Cα ⇒ Cβ ⇒ Cγ ⇒ C(α+1)(β+γ+3) and nm : Cα ⇒ Cα. One

can easily check the monotony condition.

Now, for the third rule, let Γ = [u : Cu, v : Cv, w : Cw, y : Cy, z : Cz], ϕ = {(α, a)}
where a = ((u+1)(v+w+3)+1)(y+z+3)) = uvy+uvz+uwy+uwz+3uv+3uw+3uy+

3uz+vy+wy+vz+wz+9u+3v+3w+4y+4z+12, ζnm be the identity, and � = �nm
ϕ .

One can easily check monotony, accessibility and minimality. We now check subject-

reduction. By (cons), Γ � if v y z : C(v+1)(y+z+3) and Γ � if w y z : C(w+1)(y+z+3). By

(app-decr), Γ � nm (if v y z) : C(v+1)(y+z+3) since (v+1)(y+z+3) = vy+vz+y+z+3 <A

a, and Γ � nm (if w y z) : C(w+1)(y+z+3) since (w+1)(y+z+3) = wy+wz+y+z+3 <A a.

Finally, by (app-decr), Γ � nm (if u (nm (if v y z)) (nm (if w y z))) : Cb where b =

(u + 1)((v + 1)(y + z + 3) + (w + 1)(y + z + 3) + 3) since b = uvy + uvz + uwy +

uwz + 2uy + 2uz + vy + vz + wy + wz + 9u + 2y + 2z + 9 <A a. So, by (sub),

Γ � nm (if u (nm (if v y z)) (nm (if w y))) : Ca. �

7 Decidability of �f
ϕ

In this section, we provide an algorithm for deciding the relation �f
ϕ used in Theorem

1 and defined in Figures 3 and 4, under general conditions on the size algebra A. We

will prove in Section 9 that these conditions are satisfied by the successor algebra.

The differences between �f
ϕ and the usual typing relation for simply typed λ-

calculus are the following. First, the set of typable symbols is restricted to those

smaller than or equivalent to f . Second, the application of t to u is restricted to the

terms t whose head is not an abstraction. Moreover, when the head of t is a symbol

equivalent to f , the number of arguments must be bigger than qf and the size of the

arguments must be decreasing.

If we remove the decreasingness condition, we get the relation �f defined by the

same rules as those of �f
ϕ except (app-decr) replaced by

(app)

(h, 	V ⇒ V) ∈ Γ ∪Θ h < f ∨ (h � f ∧ |	V | � qh)

ψ : {	αh} → A (∀i)Γ �f wi : Viψ

Γ �f h	w : Vψ

that is (app-decr) without the decreasingness condition (h, ψ) <A (f , ϕ). Hence,

deciding Γ �f
ϕ t : T can be reduced to finding a derivation of Γ �f t : T where, at

each (app) node, the decreasingness condition is satisfied.

In Section 7.1, we provide an algorithm for deciding �f . Then, in Section 7.2, we

show how to use this algorithm to decide �f
ϕ.

7.1 Decidability of �f

First note that, in a given typing environment Γ, a typable term t may have several

and even infinitely many types for two reasons. First, in (app), the size variables

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 45

of function types can be instantiated arbitrarily. Second, subtyping is generally not

bounded. For instance, in the successor algebra, Nα � Nsα � . . .

The relation �f differs from Curry and Feys’ typing relation with functional

characters or type schemes (a type with type variables) (Curry & Feys, 1958) in

two points. First, our type schemes are not built from type variables but from size

variables. Second, we have a subtyping relation. We will however see that some

techniques developed for Curry and Feys’ type system or, more generally, Milner’s

type system (Milner, 1978) and its extensions, can be adapted to our framework.

The decidability of type-checking in Curry and Feys’ system has been proved

by Hindley (1969). Hindley’s algorithm is based on the fact the set of types of a

typable term has a smallest element wrt some ordering �. Hence, to decide whether

Γ � t : T , the algorithm proceeds in two steps. First, it computes the smallest type

of t, say U, and then checks whether U � T .

In Curry and Feys’ system, � is the instantiation ordering: a type-scheme U is

an instance of a type-scheme T , or T is more general than U, written T � U, if

Tθ = U for some substitution θ. Huet (1976) proved that every non-empty set of

terms has a greatest lower bound wrt �. So, in particular, {T | Γ � t : T } has a

greatest lower bound if t is typable in Γ.

For computing the most general type, Hindley uses an algorithm based on

unification (Herbrand, 1930; Robinson, 1965). Unifying two terms T and U consists

in solving the equation T = U, that is, in finding a substitution θ such that Tθ = Uθ.

Huet (1976) proved that solving T = U is equivalent to finding an �-upper bound

to both T and U. He also showed that every non-empty bounded set of terms has

a least upper bound wrt �. Hence, every solvable unification problem has a most

general solution.

Hindley’s work was later extended in many directions by considering richer

types, more complex constructions or by improving the algorithm computing the

most general type-scheme. One of the most advanced generalizations seems to be

Sulzmann’s HM(X) system (Sulzmann, 2001), where the type variables of a type

scheme are required to satisfy a formula of an abstract constraint system X. For his

system, Sulzmann provides a generic constrained-type inference algorithm assuming

a procedure for solving constraints in X. It would be interesting to study whether

our framework can fit in this general setting. However, in this paper, we will simply

follow Hindley’s approach.

But, since we also have subtyping, we define � as follows:

Definition 20 (More general type) We say that an annotated type T is more general

than another annotated type U, written T � U, if there is a substitution θ such that

Tθ is a subtype of U, i.e. Tθ � U.

One can easily check that � is a quasi-ordering.

Definition 21 (Subtyping problem) A subtyping problem P is either ⊥ or a finite set

of subtyping constraints, a subtyping constraint being a pair of types (T ,U) written

T �? U. It has a solution ϕ : V → A if P �= ⊥, dom(ϕ) ⊆ Var(P) and, for all

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

46 F. Blanqui

Fig. 5. Type inference algorithm.

T �? U ∈ P , Tϕ � Uϕ. Let SolA(P) be the set of all the solutions of P . A solution

ϕ is more general than another solution ψ, written ϕ � ψ, if there is θ such that

ϕθ �∞
A ψ, i.e. there is θ such that, for all α, αϕθ �∞

A αψ. Finally, let ≡ be the

equivalence relation � ∩ �.

Again, one can easily check that the ordering � on substitutions is a quasi-

ordering.

In order to compute the most general type of a term, we make the following

assumptions:

• Every solvable subtyping problem P has a most general solution mgs(P).

• There is an algorithm for deciding whether a subtyping problem is solvable

and, if so, computing its most general solution.

We will see in Section 9 that these assumptions are satisfied when types are

annotated in the successor algebra. On the other hand, they are not generally

satisfied in an algebra with addition.

Now, following Hindley (1969), the computation of the most general type is defined

by the rules of Figure 5 where Γ �f t ↑ U means that, in the typing environment

Γ, the most general type of t is U. In the case of an application h	w, the algorithm

proceeds as follows:

1. Check that h is declared. Let T be its declared type.

2. Check that h can take n = |	w| arguments, i.e. T is of the form 	V ⇒ V with

|	V | = n.

3. If h is a function symbol equivalent to f , check that |	V | � qh.

4. Try to infer the types of every wi.

5. If this succeeds with Ui for the type of wi, then rename the variables of every

Ui using a permutation ρi, so that, for all i, Uiρi has no variable in common

with T and, for all i �= j, Uiρi and Ujρj have no variable in common.

6. Finally, try to compute the most general solution η of the problem {U1ρ1 �?

V1, . . . , Unρn �? Vn} and return Vη in case of success.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 47

Example 9 To carry on with Example 3, let r = s (div (sub x y) (s y)) be the

right-hand side of the last rule of Figure 1. We would like to infer the type of r in

Γ = [x : Nx, y : N] when s : Nα ⇒ Nsα, sub : Nα ⇒ N ⇒ Nα and div : Nα ⇒ N ⇒ Nα.

Let � = �div and assume wlog that x is a constant of the successor algebra.

By (inf-app), we get (1) Γ � x ↑ Nx and (2) Γ � y ↑ N. From (1) and (2),

by (inf-app), we get (3) Γ � sub x y ↑ Nx since, as we shall see in Section 9.2,

mgs{Nx �? Nα,N �? N} = {(α, x)}. From (2), by (inf-app), we get (4) Γ � s y ↑ N since

mgs{N �? Nα} = {(α,∞)}. From (3) and (4), we get (5) Γ � div (sub x y) (s y) ↑ Nx
since mgs{Nx �? Nα,N �? N} = {(α, x)}. From (5), by (inf-app), we get Γ � r ↑ Nsx

since mgs{Nx �? Nα} = {(α, x)}. �

We now prove that this algorithm is correct and complete wrt �f , when the size

algebra is monotone and the algorithm is applied to an environment Γ having no

size variables. To extend in the next section this result to �f
ϕ, we need to make

derivations explicit:

Definition 22 (Derivation) Derivations of Γ �f t : T are defined as follows:

• If (h, 	V ⇒ V) ∈ Γ ∪Θ and, for all i, πi is a derivation of Γ �f wi : Viψ, written

πi � Γ �f wi : Viψ, then a(Γ, h	w, ψ,	π) is the derivation of Γ �f h	w : Vψ whose

last rule is (app).

• If π�Γ, x : U �f v : V , then l(π) is the derivation of Γ �f λxUv : U ⇒ V whose

last rule is (lam).

• If π�Γ �f t : U and U � V , then s(π, V) is the derivation of Γ �f t : V whose

last rule is (sub).

Simarly, derivations of Γ �f t ↑ T are defined as follows:

• If (h, 	V ⇒ V) ∈ Γ ∪ Θ, 	ρ are permutations satisfying the conditions of (inf-

app) and, for all i, πi � Γ �f wi ↑ Ui, then i(Γ, h	w,	ρ,	π) is the derivation of

Γ �f h	w ↑ Vη whose last rule is (inf-app).

• If π � Γ, x : U �f v ↑ V , then l(π) is the derivation of Γ �f λxUv ↑ U ⇒ V

whose last rule is (inf-lam).

Given a derivation π for π � Γ �f t : T , we write π � Γ �f
ϕ t : T if, at every

(app) node in π, the decreasingness condition of (app-decr) is satisfied, that is, if

Γ �f
ϕ t : T .

Note that Γ �f t ↑ T has at most one derivation.

Lemma 18 If π � Γ �f t : T , then, for every size substitution ϕ, πϕ� Γϕ �f t : Tϕ.

Proof

Straightforward induction using the fact that �A and thus �∞
A and � are stable by

substitution. In the case of (app), by induction hypothesis, we have Γϕ �f wi : Viψ
′

with ψ′ = ψϕ. Therefore, by (app), Γϕ �f h	w : Vψ′ = (Vψ)ϕ. �

Lemma 19 (Correctness wrt. �f) If π � Γ �f t ↑ T and Var(Γ) = ∅, then there is |π|
such that |π|� Γ �f t : T . In particular, for (inf-app), |i(Γ, h	w,	ρ,	π)| = a(Γ, h	w, η,	υ),

where υi = s(|πi|ρiη, Viη).

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

48 F. Blanqui

Proof

By induction on Γ �f t ↑ T . We only detail the case (inf-app). By induction

hypothesis, Γ �f wi : Ui. By Lemma 18, Γ �f wi : Uiρiη since Var(Γ) = ∅. Since

Uiρiη � Viη, by (sub), Γ �f wi : Viη. Therefore, by (app), Γ �f h	w : Vη. �

Lemma 20 If ϕ �∞
A ψ and, for all α, Pos(α, T) ⊆ Pos+(T), then Tϕ � Tψ.

Proof

We say that T ∈
A∪A is δ ∈ {+,−} if, for all α, Pos(α, T) ⊆ Posδ(T). We first prove

that (*) if a is δ then aϕ(�∞
A)δaψ where, for any relation R, R+ = R and R− = R−1.

We proceed by induction on a:

• a is a variable α. Then, δ = + and αϕ �∞
A αψ since ϕ �∞

A ψ.

• a = fa1 . . . an. Let i ∈ {1, . . . , n}. If i ∈ Monε(f) (cf. Definition 13), then ai is δε

and, by induction hypothesis, aiϕ(�∞
A)δεaiψ. If i /∈ Mon+(f) ∪Mon−(f) then

ai contains no variable and aiϕ = aiψ. Therefore, by monotony of f in every

i ∈Mon+(f), anti-monotony of f in every i ∈Mon−(f) and transitivity, we get

aϕ(�∞
A)δaψ.

We now prove that, if T is δ, then Tϕ �δ Tψ, by induction on T .

• T = U ⇒ V . Then, U is −δ and V is δ. So, by induction hypothesis,

Uϕ �−δ Uψ and Vϕ �δ Vψ. Therefore, by (prod), (U → V)ϕ �δ (U ⇒ V)ψ.

• T = Ba. Then, a is δ and, by (*), aϕ �∞
A aψ. Therefore, by (size), Tϕ � Tψ.

�

Lemma 21 (Completeness wrt �f) In monotone algebras, if π � Γ �f t : T and

Var(Γ)=∅, then there are U and π ↑ such that π ↑ �Γ �f t ↑ U and U � T . In

particular, a(Γ, h	w, ψ,	π)↑ = i(Γ, h	w,	ρ,	π ↑) where 	ρ are permutations satisfying the

conditions of rule (inf-app).

Proof

We proceed by induction on Γ �f t : T . We only detail the case (app) when h ∈ �∪.

By induction hypothesis, Γ �f wi ↑ Ui and there is χi such that Uiχi � Viψ. Wlog. we

can assume that dom(χi) ⊆ Var(Ui). Let now ρ1, . . . , ρn be permutations satisfying

the conditions of (inf-app), and ξ = {(α, αψ) | α ∈ Var(V ⇒ V)} ∪ {(α, αρ−1
i χi) |

α ∈ Var(Uiρi), 1 � i � n}. Then, for all i, Uiρiξ = Uiχi � Viψ = Viξ. Therefore,

P = {U1ρ1 �? V1, . . . , Unρn �? Vn} is solvable, η = mgs(P) exists and there is χ

such that ηχ �∞
A ξ. Hence, by (inf-app), Γ �f h	w ↑ Vη. By the monotony condition,

variables occur only positively in V . Therefore, by Lemma 20, Vηχ � Vξ = Vψ.

Hence, Vη � Vψ. �

7.2 Decidability of �f
ϕ

We now prove that, when the size algebra is monotone, for checking Γ �f
ϕ t : T ,

it is sufficient to check whether there are U and χ such that Γ �f t ↑ U, Uχ � T

and also that, if one denotes by υ the (unique) derivation of Γ �f t ↑ U, then

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 49

|υ|χ� Γ �f
ϕ t : Uχ, that is, at every (app) node in |υ|χ, the decreasingness condition

is satisfied.

Lemma 22 In monotone algebras, if π�Γ �f t : T , πξ′ �Γ �f
ϕ t : Tξ′ and ξ �∞

A ξ
′,

then πξ � Γ �f
ϕ t : Tξ.

Proof

By induction on π � Γ �f t : T , we only detail the case (app) when h � f . We have

(h, 	V ⇒ V) ∈ Θ, πi � Γ �f wi : Viψ, πiξ
′ � Γ �f

ϕ wi : Viψξ
′ and 	αhψξ′ <h,f

A 	αfϕ. By

induction hypothesis, πiξ � Γ �f
ϕ wi : Viψξ. Since ξ �∞

A ξ′ and the size algebra is

monotone, we have ψξ �∞
A ψξ′. Since (�∞

A)prod◦ <h,f
A ⊆ <

h,f
A (cf. Definition 17), we

have 	αhψξ <h,f
A 	αfϕ. Therefore, πξ � Γ �f

ϕ h	w : Vψξ. �

Lemma 23 (Completeness wrt �f
ϕ) Let A be a monotone algebra. Assume that π �

Γ �f
ϕ t : T and Var(Γ) = ∅. By lemma 21, there are U and χ such that π ↑ Γ �f t ↑ U

and Uχ � T . Then, |π ↑ |χ� Γ �f
ϕ t : Uχ.

Proof

We prove that if π � Γ �f
ϕ t : T , Var(Γ) = ∅, π↑ � Γ �f t ↑ U and Uχ � T , then

s(|π↑|χ, T) � Γ �f
ϕ t : T , by induction on π � Γ �f

ϕ t : T . We only detail the case

(app-decr) when t = h	w, (h, 	V ⇒ V) ∈ Θ, T = Vψ,	αhψ <h,f
A 	αfϕ and U = Vη where

η is given by the rule (inf-app). We have π = a(Γ, h	w, ψ,	π), π↑ = i(Γ, h	w,	ρ,	π↑),
|π↑| = a(Γ, h	w, η,	υ) where υi = s(|πi ↑|ρiη, Viη), |π↑|χ = a(Γ, h	w, ηχ,	υχ) and, for all

i, πi � Γ �f
ϕ wi : Viψ, πi ↑ � Γ �f wi ↑ Ui and Uiχi � Viψ for some χi. By induction

hypothesis, s(|πi ↑|χi, Viψ) � Γ �f
ϕ wi : Viψ. In particular, |πi ↑|χi � Γ �f

ϕ wi : Uiχi,

that is, |πi ↑|ρiξ � Γ �f
ϕ wi : Uiρiξ, where ξ is defined in the proof of Lemma

21. Since ηχ �∞
A ξ, by Lemma 22, we get |πi ↑|ρiηχ � Γ �f

ϕ wi : Uiρiηχ. Hence,

υiχ � Γ �f
ϕ wi : Viηχ. Moreover, since 	αhηχ �∞

A 	α
hξ = 	αhψ and 	αhψ <

h,f
A 	αfϕ, we get

	αhηχ <
h,f
A 	αfϕ by assumption on <h,f

A . Therefore, s(|π↑|χ, T) � Γ �f
ϕ t : T . �

The previous lemmas assume that there are no size variables in Γ. So, to use these

lemmas, we need to be able to replace size variables by constants (aka eigenvariables).

Under this assumption, we can conclude:

Theorem 2 (Decidability of �f
ϕ) Assume that A is an algebra such that

• A is monotone;

• A contains an infinite set of constants C such that, if a �A b (a <g,f
A
	b resp.)

then, for all c ∈ C and e ∈ A, aδ �A bδ (aδ <g,f
A
	bδ resp.), where δ replaces

every c by e;

• < is decidable and, for all g � f , <g,f
A is decidable;

• the satisfiability of a subtyping problem is decidable;

• every satisfiable problem P has a most general solution mgs(P) that is

computable.

Given Γ, t and T , one can decide whether Γ �f
ϕ t : T by using the algorithm of

Figure 6.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

50 F. Blanqui

Proof

• Correctness. Assume that the algorithm succeeds. Then, Γγ �f
ϕγ t : Uχ and

Uχ � Tγ. By (sub), Γγ �f
ϕγ t : Tγ. Then, by applying δ = γ−1, we get

Γ �f
ϕ t : T .

• Completeness. Assume that the algorithm fails in step 1 or 2 then, by Lemma

21, t is not typable in Γγ. Therefore, it is not typable in Γ either. Finally, if

the algorithm fails in step 3 then, by Lemma 23, there is no derivation of

Γγ �f
ϕγ t : Tγ. Therefore, there is no derivation of Γ �f

ϕ t : T either.

�

Fig. 6. Algorithm for deciding whether Γ �f
ϕ t : T .

That the successor algebra satisfies the first two conditions follows from Lemma

25.

Example 10 To carry on with Example 9, we now would like to check whether

Γ � r : Nαϕ where � = �div
ϕ and ϕ = {(α, s x)}. We have seen that Γ �div r ↑ Ns x.

Hence, χ is the identity and we are left to check that, in every (app) node with

h � div, the decreasingness condition is satisfied. Here, it amounts to check that, in

the (app) node for (div (sub x y) (s y)), the size annotation for the type of sub x y,

that is x, is smaller than αϕ = s x, which is indeed the case. �

8 Reducing subtyping problems to size problems

For the type inference algorithm we just saw, we assumed the existence of an

algorithm to compute the most general solution of a subtyping problem. In this

section, we show how a subtyping problem can be reduced to solving constraints

in A. As subtyping is not syntax directed, we first prove that it is equivalent to

a syntax-directed relation. To this end, we prove that the rules (refl) and (trans)

are redundant, that is, they can be eliminated, following a proof technique used by

Curien & Ghelli (1992):

Theorem 3 T � U iff T �a U, where �a is defined by the rules (size) and (prod)

only.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 51

Proof

We first prove that (refl) can be eliminated, hence that � = �′ where �′ is the

relation defined by (size), (prod) and (trans) only. Indeed, using the reflexivity of

�∞
A , one can easily prove that T �a T , by induction on T .

We now prove that, in turn, (trans) can be eliminated, hence that � = �a. More

precisely, we prove that, if π is a derivation of A �′ B of height n, then A �a B, by

induction on n. We proceed by case on the last rule:

(size) Immediate.

(prod) Assume that U ⇒ V �′ U ′ ⇒ V ′ ends with (prod). By induction hypothesis,

U ′ �a U and V �a V
′. Hence, by (prod), U ⇒ V �a U

′ ⇒ V ′.

(trans) Assume that T �′ U and U �′ V . By induction hypothesis, T �a U and

U �a V . If T �a U ends with (size), then T = Ba, U = Bb and a �∞
A b.

Therefore, U �a V ends with (size) too, V = Bc and b �∞
A c. Hence, by

transitivity of �∞
A , T �a V . Similarly, if U �a V ends with (size), then

T �a U ends with (size) and T �a V . So, we are left with the case where

both T �a U and U �a V ends with (prod):

π11

A′ �a A

π12

B �a B
′

(prod)
A⇒ B �a A

′ ⇒ B′

π21

A′′ �a A
′

π22

B′ �a B
′′

(prod)
A′ ⇒ B′ �a A

′′ ⇒ B′′

(trans)
A⇒ B �′ A′′ ⇒ B′′

But A⇒ B �′ A′′ ⇒ B′′ can also be proved as follows:

π21

A′′ �a A
′

π11

A′ �a A
(trans)

A′′ �′ A

π12

B �a B
′

π22

B′ �a B
′′

(trans)
B �′ B′′

(prod)
A⇒ B �′ A′′ ⇒ B′′

The derivation heights of A′′ �′ A and B �′ B′′ are strictly smaller than the

derivation height of A⇒ B �′ A′′ ⇒ B′′. Therefore, by induction hypothesis,

A′′ �a A and B �a B
′′. Hence, by (prod), A⇒ B �a A

′′ ⇒ B′′.

�

As a consequence, we can prove that a subtyping problem can be reduced to an

equivalent size problem as follows:

Definition 23 (Size problem) A size constraint is a pair of size expressions (a, b),

written a �? b. A size problem P is either ⊥ or a finite set of size constraints. It has

a solution ϕ : V→ A if P �= ⊥, dom(ϕ) ⊆ Var(P) and, for all a �? b ∈ P , aϕ �∞
A bϕ.

A solution ϕ is finite if ϕ : V→ A. Let SolA(P) (SolA(P) resp.) be the set of the (finite

resp.) solutions of P .

We define the size problem associated to a subtyping problem as follows:

• |∅| = ∅,
• |P ∪ Q| = |P | ∪ |Q| if |P | �= ⊥ and |Q| �= ⊥,

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

52 F. Blanqui

• |{Ba �? Bb}| = {a �? b},
• |{U ⇒ V �? U ′ ⇒ V ′}| = |{U ′ �? U,V �? V ′}|,
• |P | = ⊥ otherwise.

Lemma 24 Sol(P) = SolA(|P |).

Proof

We proceed by induction on P . We only detail the case where P = {T �? T ′}:

• Let ϕ ∈ Sol(P). Then, Tϕ �a T ′ϕ. If T = Ba, then T ′ = Bb and ϕ ∈
SolA({a �? b}) = SolA(|P |). Otherwise, T = U ⇒ V , T ′ = U ′ ⇒ V ′ and

ϕ ∈ Sol({U ′ �? U,V �? V ′}). By induction hypothesis, ϕ ∈ SolA(|U ′ �?

U|) ∩ SolA(|V �? V ′|) = SolA(|P |).
• Let ϕ ∈ SolA(|P |). If T = Ba, then T ′ = Bb and ϕ ∈ Sol(P). Otherwise,

T = U ⇒ V , T ′ = U ′ ⇒ V ′, ϕ ∈ SolA(|U ′ �? U|) ∩ SolA(|V �? V ′|). By

induction hypothesis, ϕ ∈ Sol(U ′ �? U) ∩ Sol(V �? V ′) = Sol(P).
�

To go further, we need to make more assumptions on the size algebra.

9 Solving size problems in the successor algebra

We have seen in the previous section that solving a subtyping problem can be

reduced to solving inequalities in A. In this section, we consider a specific size

algebra A, the successor algebra, and prove that, in this algebra, the solvability of a

size problem is decidable in polynomial time, and that solvable size problems have

a most general solution that can be computed in polynomial time too.

The relations �A and <A of the successor algebra (Definition 12) are equivalently

defined by the rules of Figure 7. We start by proving basic properties of �A, the

quasi-ordering � and its associated equivalence relation ≡ on size substitutions

introduced in Definition 21.

a ≤A a

a <A b

a ≤A b a <A sa

a <A b b <A c

a <A c

Fig. 7. Ordering in the successor algebra.

Lemma 25

• a �A b (a <A b resp.) iff there is k � 0 (k > 0 resp.) such that b = ska.

• sa <A sb iff a <A b.

Proof

• One can easily check a �A ska by induction on k � 0. We have a �A a by

definition. Assume now that a �A ska. Since ska <A sk+1a holds by definition,

we get a �A sk+1a by transitivity.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 53

Similarly, once can easily check a <A ska by induction on k � 1. We have

a <A sa by definition. Assume now that a <A ska. Since ska <A sk+1a by

definition, we get a <A sk+1a by transitivity.

We now prove that, if a <A b, then there is b′ such that b = sb′ and a �A b
′, by

induction on the derivation height of a <A b. If b = sa, then this is immediate.

Otherwise, there is c such that a <A c and c <A b. By induction hypothesis,

there is b′ such that b = sb′ and c �A b
′. Therefore, a �A b

′ since �A is the

reflexive closure of <A and <A is transitive.

We finally prove that there is k � 0 whenever a �A b, by induction on b. If

a = b, this is immediate. If a <A b, then there is b′ such that b = sb′ and a �A b
′.

By induction hypothesis, b′ = ska for some k � 0. Therefore, b = sk+1a.

• If sa <A sb, then sb = sk+1sa for some k. Therefore, b = sk+1a. Conversely, if

a <A b, then b = sk+1a for some k. Therefore, sb = sk+1sa.

�

It follows that the successor algebra is monotone and also that �A and �∞
A are

orderings, as well as their pointwise extensions to substitutions.

Definition 24 (Successor and head parts of a substitution) To a substitution ϕ : V→
A, we associate two unique maps ϕs : V → � and ϕh : V → V ∪ C ∪ {∞} such that,

for all α, αϕ = sαϕsαϕh with αϕs = 0 if αϕh = ∞.

Lemma 26 ϕ � ψ iff there is ρ : V→ V ∪ C ∪ {∞} such that ϕρ �∞
A ψ.

Proof

The “if” part is immediate. We now prove the “only if” part. Assume that there is θ

such that ϕθ �∞
A ψ. Let ρ = θh|Var(ϕh), where Var(ϕh) =

⋃
{Var(αϕh) | α ∈ dom(ϕh)}.

We now check that ϕρ �∞
A ψ. If αϕh /∈ V, then αϕρ = αϕθ �∞

A αψ. Otherwise,

αϕρ = sαϕsαϕhθh �∞
A sαϕs+αϕhθsαϕhθh = αϕθ �∞

A αψ. �

Lemma 27 Let V be a set, and V1 and V2 be subsets of V . If ρ1 : V1 → V2 and

ρ2 : V2 → V1 are injections, then there is a permutation ξ : V → V such that

ξ|V1
= ρ1.

Proof

By Cantor–Bernstein theorem, V1 and V2 are equipotent. Hence, V1 − V2 and

V2 − V1 are equipotent as well. Let ν be any bijection from V2 − V1 to V1 − V2, and

ξ = {(α, αρ1) | α ∈ V1} ∪ {(α, αν) | α ∈ V2 − V1}. The function ξ is a bijection on

V1 ∪ V2 and ξ|V1
= ρ1. �

Lemma 28 ϕ2 ≡ ϕ1 iff ϕ2 = ϕ1ξ for some permutation ξ : V→ V.

Proof

If “if” part is immediate. We now prove the “only if” part. Huet (1976) proved

this result when �∞
A is the equality. His proof can be adapted to our more general

situation since α �∞
A β iff α = β. By assumption and Lemma 26, there are ρ1, ρ2 :

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

54 F. Blanqui

V → V ∪ C ∪ {∞} such that ϕ1ρ1 �∞
A ϕ2 and ϕ2ρ2 �∞

A ϕ1. By stability, we have

ϕ1ρ1ρ2 �∞
A ϕ2ρ2. Hence, by transitivity, ϕ1ρ1ρ2 �∞

A ϕ1. Similarly, ϕ2ρ2ρ1 �∞
A ϕ2.

We now prove that ρ1 is an injection from V1 to V2, where Vi =
⋃
{Var(βϕi) |

β ∈ V } and V = dom(ϕ1) ∪ dom(ϕ2). Let α ∈ V1. Then, there is β ∈ V such that

α ∈ Var(βϕ1). Hence, βϕ1 = skα for some k ∈ �. Since ϕ1ρ1ρ2 �∞
A ϕ1, we have

βϕ1ρ1ρ2 = skαρ1ρ2 �∞
A βϕ1 = skα. Therefore, αρ1ρ2 = α and ρ1 is an injection on V1.

We now prove that γ = αρ1 ∈ V2. Since ϕ1ρ1 �∞
A ϕ2, we have βϕ1ρ1 = skγ �∞

A βϕ2.

We now prove (*) for all δ ∈ V, if δϕ1 �= ∞, then δϕ2 �= ∞. Indeed, if δϕ2 = ∞ then,

since ϕ2ρ2 �∞
A ϕ1, we have δϕ2ρ2 = ∞ �∞

A δϕ1 which is not possible since δϕ1 �= ∞.

Applying (*) with δ = β, we get βϕ2 = sk+lγ for some l, and γ ∈ V2.

Similarly, ρ2 is an injection from V2 to V1. So, by Lemma 27, there is a permutation

ξ : V → V with ξ|V1
= ρ1. We now prove that, for all α, αϕ1ξ = αϕ2. If α /∈ V , this

is immediate. Otherwise, we proceed by case on αϕ1:

• αϕ1 = ∞. Since αϕ1ρ1 �∞
A αϕ2, we have αϕ1ξ = αϕ2 = ∞.

• αϕ1 = skβ. Then, β ∈ V1 and αϕ1ξ = skβρ1. Since ϕ1ρ1 �∞
A ϕ2, we have

skβρ1 �∞
A αϕ2. By (*), we have αϕ2 �= ∞ since αϕ1 �= ∞. So, αϕ2 = sk+lβρ1 for

some l. Since ϕ2ρ2 �∞
A ϕ1, we have αϕ2ρ2 = sk+lβρ1ρ2 �∞

A skβ. Thus, l = 0

and αϕ1ξ = αϕ2.

• αϕ1 = skc. Since ϕ1ρ1 �∞
A ϕ2, we have skc �∞

A αϕ2. By (*), we have αϕ2 �= ∞
since αϕ1 �= ∞. Hence, αϕ2 = sk+lc for some l. Since ϕ2ρ2 �∞

A ϕ1, we have

sk+lc �∞
A skc. Therefore, l = 0 and αϕ1ξ = αϕ2.

�

9.1 Satisfiability

To check whether a problem is satisfiable, we are going to introduce a terminating

rewrite system that will put the problem into some normal form whose satisfiability

is easy to establish. To do so, we first need to extend the successor algebra as follows:

Definition 25 (Successor–iterator algebra) Let B be the following multi-sorted

algebra:

• Sorts: A interpreted by h, and N interpreted by ω.

• Function symbols: 0 : N interpreted by 0, sN : N→ N and s : A→ A interpreted

by the successor function, c : A for every c ∈ C, s : N×A→ A, with s(a, b) written

sab, interpreted as the iteration of the successor function: (sab)μ = bμ+ aμ.

• Variables: the variables α, β, . . . ∈ V are of sort A. In addition, we assume given

a set VN, disjoint from V ∪ C, of variables x, y, . . . of sort N, and an injection

x : V→ VN.
• <B = <A.

• �B = <A ∪ �A where �A is the smallest congruence satisfying the following

semantically valid equations on terms of sort A:

s0α �A α

ssNxα �A s(sxα)

sx(sα) �A s(sxα)

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 55

In the top-extension of B, B, the symbol ∞ is of sort A. Let Vars(a) be the variables

of sort s occurring in a. A problem is constant-free if it contains no constants c ∈ C.

Note that, in a multi-sorted algebra, substitutions map a variable of sort s to a

term of sort s (hence a substitution cannot map a variable of sort N to ∞), and

constraints are pairs of terms of the same sort. A problem is of sort s if all its

constraints are of sort s.

One can easily check that, when oriented from left to right, the equations defining

�A form a confluent and terminating rewrite system. Hence, every term has a unique

normal form and two equivalent terms have the same normal form. So, wlog, we

can always assume that terms are in normal form, in which case �A is the equality

and �B is �A.

In the following, we use the letters e and f (k and l resp.) to denote arbitrary

(closed resp.) terms of sort N. Closed terms of sort N are isomorphic to natural

numbers. Hence, we identify sN . . . sN0 (k times sN) with k, denote sN . . . sNx (k times

sN) by x+ k, and call a problem of sort N an integer problem. However, skα will not

denote ssN ...sN0α (k times sN) but its normal form s . . . sα (k times s).

Given a problem P in A, since SolB(P) may contain solutions not expressible in A,

we consider the following subset instead:

Definition 26 (N-closed solutions) A term a ∈ B is N-closed if VarN(a) = ∅. A solution

to a problem P is N-closed if it maps every α ∈ Var(P) to an N-closed term. Let

Sol∅
B
(P) (Sol∅B(P) resp.) be the set of all the N-closed (finite resp.) solutions of P .

Lemma 29

• A term of sort A belongs to A iff it is N-closed.

• Given a problem P in A, SolA(P) = Sol∅
B
(P).

Proof

• This is immediate if a = ∞. Otherwise, a = s . . . ssx1 . . . sxnb with b ∈ V ∪ C. If

a ∈ A, then n = 0 and a is N-closed. Conversely, if a is N-closed, then n = 0 and

a ∈ A.
• Immediate consequence of the previous property. �

Note that a N-closed solution maps every variable of sort N to an integer. Hence,

for an integer problem P , Sol∅
B
(P) = Sol∅B(P) (solutions to integer problems are

always finite) and, given ϕ,ψ ∈ Sol∅B(P), ϕ � ψ iff ϕ �� ψ, i.e. for all x ∈ Var(P),

xϕ �� xψ.

Now, to a problem in B, we associate a graph as follows:

Definition 27 (Graph associated to a problem in B) Let H = V ∪ VN ∪ C ∪ {0}. To a

problem P in B, we associate a directed graph G(P) on H ∪ {∞} with the following

labeled edges:

• x k−l−→ y for each constraint x+ k �? y + l ∈ P with x, y ∈ VN ∪ {0}.
• 0

0−→ y for each variable y ∈ VarN(P).

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

56 F. Blanqui

• α k−l−→ β for each constraint skα �? slβ ∈ P .

• α ∞−→ ∞ for each α ∈ VarA(P).

• ∞ 0−→ β for each constraint ∞ �? slβ ∈ P .

• c
0−→ β for each constraint sec �? slβ ∈ P .

The weight of a path a1
k1−→ . . .

kn−→ an+1 is Σni=1ki, where k +∞ = ∞. A cycle (i.e.

when an+1 = a1) is positive if its weight is > 0.

Let �P be the smallest quasi-ordering on H (we exclude ∞) such that a �P b iff

there is a path from a to b in G(P).

A triple (α, c, d) such that c �P α, d �P α and c �= d, is called incompatible.

For instance, the graph of the problem P = {c �? α, sα �? β, β �? α} is

c α β ∞0 1

∞

0

∞

If we replace α by xα ∈ VN, β by xβ ∈ VN and c by 0, we get the integer problem

I(P) = {0 �? xα, xα + 1 �? xβ, xβ �? xα} whose graph is

0 xα xβ
0

0

1

0

Following Pratt (1977), an integer problem P has an integer solution iff G(P) has

no positive cycles, which can be decided in polynomial time “e.g. by forming the

max/+ transitive closure of the graph and searching for a self-edge with a positive

label.”

In the graph of I(P), the cycle xα
1→ xβ

0→ xα has weight 1 and thus is positive.

So, I(P) has no integer solution. On the other hand, P can be solved by taking

α = β = ∞.

Next, we introduce a data structure used to transform an arbitrary problem into

a problem in normal form using the rules of Figure 8:

Definition 28 (Configuration) A term is admissible if it contains at most one variable.

A constraint a �? b is admissible if both a and b are admissible.

A configuration C is ⊥ or a tuple (C0, C1, C2, C3, C4) with

• C0 ⊆ V,

• C1 ⊆ V,

• C2 is a finite map from V to C,

• C3 is a set of admissible constraints of sort N,

• C4 is a set of admissible constraints of sort A,

• C0, C1, dom(C2) and Var(C4) are pairwise disjoint,

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 57

• VarN(C3) = {xα | α ∈ dom(C2)},
• VarN(C4) ⊆ {xα | α ∈ dom(C2)}.

Let Sol∅
B
(C) = Sol∅

B
(π(C)) and Var(C) = Var(π(C)), where π(⊥) = ⊥ and

π(C0, . . . , C4) is the union of

• {α �? ∞ | α ∈ C0},
• {∞ �? α | α ∈ C1},
• {α �? sxαc | (α, c) ∈ C2} ∪ {sxαc �? α | (α, c) ∈ C2},
• C3 ∪ C4.

C is normal if there is no D such that C � D where � is defined in Figure 8.

Finally, given C and ψ, let

• σ0(C,ψ) = {(α, αψ) | α ∈ C0},
• σ1(C) = {(α,∞) | α ∈ C1},
• σ2(C,ψ) = {(α, sxαψc) | (α, c) ∈ C2},
• σ3,4(C,ψ) = {(α, αψ) | α ∈ Var(C3 ∪ C4)},
• σ4A(C,ψ) = {(α, αψ) | α ∈ VarA(C4)}.

C0 records the variables with no constraints, C1 records the variables that must

be set of ∞, C2 records the variables that must be set to a value of the form

skc, C3 contains the constraints on integer variables, and C4 contains all the other

constraints.

Note that Figure 8 describes an infinite set of rules since a stands for an arbitrary

size expression of sort A, e and f for arbitrary size expressions of sort N, k for an

arbitrary natural number, α for an arbitrary size variable of sort A, c and d for

arbitrary constants, and P �Q for an arbitrary set with two disjoint parts, P and Q.

(∞) removes the constraints of the form a �? ∞ that are always satisfied, and

records in C0 variables not occurring elsewhere.

(∞α1) detects variables that must be set to ∞ because they belong to a positive

cycle.

(∞α2) detects variables α that must be set to ∞ because some constraints imply

that it should otherwise be set to a term of the form skc and some other

constraints that it should be set to a term of the form sld with c �= d.

(∞c) detects an unsatisfiable constraint of the form ∞ �? sec.

(cd) detects an unsatisfiable constraint of the form sec �? sfd with c �= d.

(cc) replaces a constraint of the form sec �? sfc by the integer constraint e �? f.

(αc) replaces a constraint of the form skα �? sec by recording in C2 that α must

be set to a term of the form sxαc, propagating it in other constraints and

recording in integer constraints the fact that xα + k �? e.

The rule (∞α2) is not necessary for deciding the satisfiability of a problem. It is

included here because it is useful to compute a most general solution in next section.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

58 F. Blanqui

Fig. 8. Rules for computing the normal form of a problem.

Lemma 30

1. Sol∅
B
(C)={σ0(C,ϕ) ∪ σ1(C) ∪ σ2(C,ψ)∪σ3,4(C,ψ) |ϕ N-closed, ψ ∈ Sol∅

B
(C3∪C4)}.

2. For all problems P in A, (∅, ∅, ∅, ∅, P) is a configuration and SolA(P) =

Sol∅
B
(∅, ∅, ∅, ∅, P).

3. In a configuration, every term of sort A is of the form ∞, sα or sec.

4. If C is a configuration and C � D, then

a. D is a configuration.

b. If D �= ⊥, then Var(C) ⊆ Var(D).

c. Correctness: if ϕ ∈ Sol∅
B
(D), then ϕ|Var(C) ∈ Sol∅

B
(C).

d. Completeness: if ψ ∈ Sol∅
B
(C), then ψ = ϕ|Var(C) for some ϕ ∈ Sol∅

B
(D).

5. The relation � terminates.

6. If (∅, ∅, ∅, ∅, P) �∗ C �= ⊥, then Var(C) = Var(P) ∪ Var(C3).

Proof

1. Let S(C)={σ0(C,ϕ)∪σ1(C)∪σ2(C,ψ)∪σ3,4(C,ψ) |ϕ N-closed, ψ ∈ Sol∅
B
(C3∪C4)}.

One can easily check that S(C) ⊆ Sol∅
B
(C). Assume now that ϕ ∈ Sol∅

B
(C). Then,

ϕ = σ0(C,ϕ) ∪ σ1(C) ∪ σ2(C,ψ) ∪ σ3,4(C,ψ) where ψ = ϕ|Var(C3∪C4). Indeed, if

α ∈ C1, then ∞ �? α ∈ π(C). Hence, αϕ = ∞. Now, if(α, c) ∈ C2, then π(C)

contains α �? sxαc and sxαc �? α. Hence, αϕ = sxαϕc and xαϕ = xαψ since

{xα | α ∈ dom(C2)} ⊆ VarN(C3).

2. One can easily check that (∅, ∅, ∅, ∅, P) is a configuration. The fact that SolA(P) =

Sol∅
B
(∅, ∅, ∅, ∅, P) directly follows from the previous property.

3. Straightforward.

4. a. One can easily check that all the conditions defining what is a configuration

are preserved by each rule. In particular, (αc) replaces α by sxαc, hence every

term of D is admissible if every term of C so is.

b. Straightforward.

c. Straightforward.

d. We only detail the following cases:

• Rule (αc). We have (skα)ψ �∞
A (sec)ψ = seψc. So, αψ �= ∞ and (skα)ψ =

sk(αψ) �A seψc. By Lemma 25, there is l such that seψc = slsk(αψ).

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 59

Hence, there is m such that αψ = smc and eψ = l + k + m. Let now

ϕ = ψ ∪ {(xα, m)}. We have αϕ = αψ = smc = (sxαc)ϕ and (xα + k)ϕ =

m+ k � l + k + m = eψ = eϕ. Therefore, ϕ ∈ Sol∅
B
(D) and ϕ|Var(C) = ψ.

• Rule (∞α1). We first prove that, if α1
k1−→ . . .

kn−→ αn+1 is a path in

G(Q), ψ ∈ Sol∅
B
(Q) and k = Σni=1ki � 0 (k < 0 resp.), then skα1ψ �∞

A αn+1ψ

(α1ψ �∞
A s−kαn+1ψ resp.) (*), by induction on n. If n = 1, this is immediate.

We now prove it for n+ 1.

— Case k � 0. By induction hypothesis, skα1ψ �∞
A αn+1ψ.

– Case kn+1 � 0. Then, skn+1αn+1ψ �∞
A αn+2ψ.

· Case k + kn+1 � 0. By monotony and transitivity, sk+kn+1α1ψ �∞
A

αn+2ψ.

· Case k + kn+1 < 0. Impossible.

– Case kn+1 < 0. Then, αn+1ψ �∞
A s−kn+1αn+2ψ and, by transitivity,

skα1ψ �∞
A s−kn+1αn+2ψ.

· Case k + kn+1 � 0. Since −kn+1 � k, sk+kn+1α1ψ �∞
A αn+2ψ.

· Case k + kn+1 < 0. Since k < −kn+1, α1ψ �∞
A s−k−kn+1αn+2ψ.

— Case k < 0. Symmetric to previous case.

Assume now that Q is constant-free and G(Q) is a positive cycle. If

G(Q) contains ∞, then αψ = ∞ for all α ∈ Var(Q). Otherwise, G(Q) is

α1
k1−→ . . .

kn−→ αn+1 = α1. Hence, skα1ψ �∞
A α1ψ with k = Σni=1ki > 0.

Therefore, α1ψ = ∞ and αψ = ∞ for all α ∈ Var(Q).

• Rule (∞α2). We first prove that (a) for any problem P , if β �P α by a

path of length n, ϕ ∈ Sol∅
B
(P) and βϕ = ∞, then αϕ = ∞, by induction

on n. If n = 0, this is immediate. Otherwise, there is spβ �? sqγ ∈ P with

γ �P α by a path of length n− 1. Since ϕ ∈ Sol∅
B
(P) and βϕ = ∞, we have

∞ �∞
A sqγϕ. Therefore, γϕ = ∞ and, by induction hypothesis, αϕ = ∞.

We now prove that (b) if β �P α by a path of length n, ϕ ∈ Sol∅
B
(P)

and βϕ = skc for some k, then either αϕ = ∞ or αϕ = sic for some

i, by induction on n. If n = 0, this is immediate. Otherwise, there is

spβ �? sqγ ∈ P with γ �P α by a path of length n− 1. Since ϕ ∈ Sol∅
B
(P)

and βϕ = skc, we have sp+kc �∞
A sqγϕ. If γϕ = ∞, then, by (a), αϕ = ∞.

Otherwise, γϕ = slc for some l and, by induction hypothesis, either

αϕ = ∞ or αϕ = sic for some i.

Hence, if (α, c, d) is incompatible in C4 and ϕ ∈ Sol∅
B
(C4), then αϕ = ∞.

5. Every rule decreases the number of constraints in C4 except rule (∞α2). In

(∞α2), this number is unchanged but the number of variables decreases. Since

the number of variables in C4 never increases, the system terminates.

6. Straightforward.

�

The properties 4(c) and 4(d) give Sol∅
B
(C) = {ϕ|Var(C) | ϕ ∈ Sol∅

B
(D)} whenever

C � D.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

60 F. Blanqui

Definition 29 (Affine problem) A constraint is affine if it is of sort N, of the form

skα �? slβ or of the form sec �? slβ. A problem is affine if all its constraints are

affine.

Lemma 31 In any normal configuration C �= ⊥, C4 is an affine problem with no

positive cycles and no incompatible triples.

Proof

By Lemma 30, every term of sort A occurring in C is of the form ∞, skα or sec.

Now, C4 cannot contain a constraint of the form:

• a �? ∞ because of rule (∞),

• ∞ �? slβ because of rule (∞α1),

• ∞ �? sfd because of rule (∞c),

• skα �? sfd because of rule (αc),

• sec �? sfd because of rules (cc) and (cd).

Therefore, a constraint in C4 can only be either of the form skα �? slβ or of the

form sec �? slβ. Moreover, G(C4) cannot have positive cycles because of rule (∞α1),

and cannot have incompatible triples because of rule (∞α2). �

Since affine problems of sort A are always satisfiable (by setting their variables to

∞), we can conclude:

Fig. 9. Algorithm for deciding the satisfiability of a problem P in the successor algebra.

Theorem 4 (Satisfiability) The satisfiability of a size problem in the successor algebra

is decidable in polynomial time wrt the number of symbols by the algorithm of

Figure 9.

Proof

Let |P | be the number of symbols in P . Constructing G(P) requires at most

�Var(P) + �P steps, where �X is the cardinal of X. But Var(P) � 2�P since there

are at most two variables per constraint, and 2�P � |P | since every constraint is of

size 2 at least. Therefore, constructing G(P) requires at most 3|P |/2 steps.

Whether there is a positive cycle in a graph is decidable in polynomial time (Pratt,

1977). Whether there is an incompatible triple in a graph can be done in polynomial

time too. Hence, whether a rule can be applied is decidable in polynomial time.

Now, since � terminates, the algorithm describes a computable function.

We now prove that it is correct and complete. If C = ⊥, then, by completeness,

P is unsatisfiable. Otherwise, C = (C0, C1, C2, C3, C4). If G(C3) has a positive cycle

then, by completeness, P is unsatisfiable. Otherwise, let ϕ3 ∈ Sol∅
B
(C3). Then, one

can easily check that ϕ = ϕ3 ∪{(α,∞) | α ∈ Var(C1)∪Var(C4)}∪ {(α, sxαϕ3c) | (α, c) ∈

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 61

C2} ∈ Sol∅
B
(C). Therefore, by correctness, ϕ|Var(P) ∈ SolB(P) = SolA(P) and P is

satisfiable.

Finally, to prove that the complexity for computing C is polynomial, it suffices

to show that the number of rewrite steps and the size |C| = |π(C)| of intermediate

configurations C are polynomially bounded by |P |.
By definition of �, Var(C) ⊆ Var(P) ∪ {xα | α ∈ Var(P)} and �Var(C) �

2�Var(P) � 2|P |. So, after the termination proof, the number of rewrite steps

is � �P × 2|P | � |P |2.
Let ‖C‖∞ be the maximum size of a constraint in π(C). No rule but (αc) can

make ‖C‖∞ increase. ‖C‖∞ can be increased by at most 2 for each replacement of

a variable α by sxαc. However, there cannot be more than two such replacements

in a constraint since, after two such replacements, there is no variable of sort A

anymore. Therefore, ‖C‖∞ � ‖P‖∞ + 4 � |P | + 4. Now, �π(C) � 5�P � 5|P |/2
since �C0 + �C1 + �C2 � 2�Var(P) � 4�P and �C3 + �C4 � �P . Therefore, |C| �
‖C‖∞ × �C � (|P |+ 4)× 5|P |/2. �

Our procedure can be related to the one described in Barthe et al. (2005) where,

like many works on type inference, the authors consider constrained types. But they

do not bring out the properties of the size algebra and, in particular that, in the

successor algebra, satisfiable sets of constraints have a most general solution as we

shall see in next section.

Example 11 Let P = {c �? α, sα �? β, β �? α, d �? β}. We have (∅, ∅, ∅, ∅, P)

� (∅, {α}, ∅, ∅, {c �? ∞,∞ �? β, β �? ∞, d �? β}), by (∞α2) since c �P α and d �P α;

� (∅, {α, β}, ∅, ∅, {c �? ∞,∞ �? d}), by (∞α1) since ∞ 0→ β
∞→ ∞ is positive;

� ⊥, by (∞c). �

Example 12 Let P = {α �? sc, β �? α}. We have (∅, ∅, ∅, ∅, P)

� (∅, ∅, {(α, c)}, {xα �? 1}, {β �? sxαc}), by (αc);

� (∅, ∅, {(α, c), (β, c)}, {xα �? 1, xβ �? xα}, ∅), by (αc) again. This is a normal form

and the graph of {xα �? 1, xβ �? xα} has no positive cycle, so it is satisfiable (the

solutions for (xα, xβ) are (0, 0), (1, 0) and (1, 1)). �

9.2 Computing the most general solution

We now turn to the problem of whether, in the successor algebra A, a satisfiable

problem P has a most general solution and, if so, how to compute it.

Let mgsA(P) (mgsA(P) resp.) be the set of most general (finite resp.) solutions of

P , and mgs∅
B
(C) (mgs∅B(C) resp.) be the set of most general (finite resp.) N-closed

solutions of C .

We first prove a refinement of Lemma 26 to N-closed solutions of a configuration:

Lemma 32 Given ϕ,ψ ∈ Sol∅
B
(C), ϕ � ψ iff there is ρ : V → V ∪ C ∪ {∞} such that

dom(ρ) ⊆ VarA(C) and, for all α ∈ C0 ∪ Var(C3) ∪ VarA(C4), αϕρ �∞
A αψ.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

62 F. Blanqui

Proof

⇒ By Lemma 26, there is ρ : V ∪ VN → V ∪ VN ∪ C ∪ {0,∞} such that ϕρ �∞
A ψ.

Since ϕ and ψ are N-closed, we also have ϕ(ρ|V) �∞
A ψ. Indeed, if α ∈ VN, then

αϕ(ρ|V) = αϕ = αϕρ �∞
A αψ. Let now α /∈ Var(C). Then, α(ρ|V) = αϕ(ρ|V) �∞

A

αψ = α. Therefore, α(ρ|V) = α and dom(ρ|V) ⊆ VarA(C).

⇐ After Lemma 26, it is enough to prove that, for all α ∈ V ∪ VN, αϕρ �∞
A αψ. By

assumption, the property holds if α ∈ C0 ∪ Var(C3) ∪ VarA(C4). If α ∈ C1, then

αϕ = ∞ = αψ and αϕρ �∞
A αψ. If (α, c) ∈ C2, then αϕ = sxαϕc, αψ = sxαψc.

Since xα ∈ Var(C3) and ϕ is N-closed, we have xαϕ = xαϕρ �∞
A xαψ. Therefore,

αϕρ �∞
A αψ. Since VarN(C4) ⊆ Var(C3), we are left with the case where

α /∈ Var(C). But, in this case, αϕ = αψ = αρ = α since dom(ϕ), dom(ψ)

and dom(ρ) are all included in Var(C). �

We now prove that the most general solutions of a problem P in A can be obtained

from the most general N-closed solutions of the normal form of (∅, ∅, ∅, ∅, P).

Lemma 33 Assume that (∅, ∅, ∅, ∅, P) �∗ C .

• Correctness: if ϕ ∈ mgs∅
B
(C), then ϕ|Var(P) ∈ mgsA(P).

• Completeness: if ψ ∈ mgsA(P), then there is ϕ ∈ mgs∅
B
(C) such that ϕ|Var(P) = ψ.

Proof

Note that Var(C) = Var(P) ∪ Var(C3).

• Let ϕ ∈ mgs∅
B
(C). By correctness of �, ϕ|Var(P) ∈ SolA(P). Let now ψ ∈ SolA(P).

By completeness of �, there is ϕ′ ∈ Sol∅
B
(C) such that ψ = ϕ′|Var(P). Since

ϕ = mgs(C), ϕ � ϕ′. By Lemma 32, ϕρ �∞
A ϕ

′ for some ρ : V→ V∪C∪{∞} such

that dom(ρ) ⊆ VarA(C) = Var(P). Therefore, for all α ∈ V ∪ VN, αϕ|Var(P)ρ �∞
A

αϕ′|Var(P) and ϕ|Var(P) � ϕ′|Var(P) = ψ.

• Let ψ ∈ mgsA(P). By completeness of �, there is ϕ ∈ Sol∅
B
(C) such that ψ =

ϕ|Var(P). Assume now that there is ϕ′ ∈ Sol∅
B
(C) such that ϕ �� ϕ′. By correctness

of �, ϕ′|Var(P) ∈ SolA(P). Since ψ = mgs(P), ψ = ϕ|Var(P) � ϕ′|Var(P), that is,

there is ρ such that, ϕ|Var(P)ρ �∞
A ϕ′|Var(P). Since ϕ �� ϕ′, there is x such that

xϕρ ��∞
A xϕ′. Since ϕ|Var(P)ρ �∞

A ϕ′|Var(P), x = xβ for some β ∈ Var(P). By

definition of Sol∅
B
(C), there is c such that βϕ = sxϕc and βϕ′ = sxϕ

′
c. Hence,

sxϕc �∞
A sxϕ

′
c and xϕ ��∞

A xϕ
′. Contradiction. �

We now prove that the most general N-closed solutions of (C0, C1, C2, C3, C4) can

be obtained from the most general N-closed solutions of C3 ∪ C4.

Lemma 34 Let C = (C0, C1, C2, C3, C4) be a configuration.

• Correctness: if ψ ∈ mgs∅
B
(C3∪C4) and, for all α ∈ VarA(C4), Var(αψ)∩C0 = ∅,10

then σ1(C) ∪ σ2(C,ψ) ∪ σ3,4(C,ψ) ∈ mgs∅
B
(C).

• Completeness: if ϕ ∈ mgs∅
B
(C), then ϕ|Var(C3∪C4) ∈ mgs∅

B
(C3 ∪ C4).

10 Thanks to Lemma 28, this condition can always be satisfied by applying some permutation to ψ.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 63

Proof

• Let ψ′ = σ1(C) ∪ σ2(C,ψ) ∪ σ3,4(C,ψ) and ϕ ∈ Sol∅
B
(C). We have ϕ3,4 =

ϕ|Var(C3∪C4) ∈ Sol∅
B
(C3 ∪ C4). Since ψ ∈ mgs∅

B
(C3 ∪ C4), ψ � ϕ3,4. By applying

Lemma 32 on (∅, ∅, ∅, C3, C4), there is ρ : V→ V ∪ C ∪ {∞} such that dom(ρ) ⊆
VarA(C4) and, for all α ∈ Var(C3) ∪ VarA(C4), αψρ �∞

A αϕ3,4. Then, let ρ′ =

{(α, αϕ) | α ∈ C0} ∪ {(α, αρ) | α ∈ VarA(C4)}. We prove that ψ′ � ϕ by using

Lemma 32. We have dom(ρ′) ⊆ VarA(C) by definition. If α ∈ C0, then αψ′ρ′ =

αρ′ = αϕ by definition. If α ∈ Var(C3), then αψ′ρ′ = αψρ′ = αψρ because ψ is

N-closed, and αψρ �∞
A αϕ3,4 = αϕ. If α ∈ VarA(C4), then αψ′ρ′ = αψρ′ = αψρ

since Var(αψ) ∩ C0 = ∅ by assumption, and αψρ �∞
A αϕ3,4 = αϕ.

• We first check that ϕ|C0
maps variables to variables and is injective. Let

α ∈ C0 and ϕ′ = ϕ|Var(C)−{α}. Then, ϕ′ ∈ SolB(C) too since, by definition of

configuration, α /∈ Var(Ci) for every i > 0. Hence, ϕ � ϕ′, that is, there is ρ

such that αϕρ �∞
A αϕ′ = α. Therefore, αϕ is a variable γ. Assume now that

γ = βϕ for some β ∈ C0. Then, ϕ′′ = ϕ|Var(C)−{α,β} ∈ SolB(C) too. Hence,

ϕ � ϕ′, that is, there is ρ′ such that γρ′ �∞
A αϕ′ = α and γρ′ �∞

A βϕ′ = β.

Therefore, α = γρ′ = β.

So, by taking in Lemma 27 V = V, V1 = C0, V2 = ϕ(C0), ρ1 = {(α, αϕ) | α ∈ C0}
and ρ2 = {(αϕ, α) | α ∈ C0} (the inverse of ρ1), there is a permutation ξ : V→ V

such that ξ|C0
= ϕ|C0

. By Lemma 28, ϕξ−1 is a mgs of C too. So, wlog, we can

assume that ϕ|C0
is the identity.

We now prove that ϕ3,4 = ϕ|Var(C3∪C4) ∈ mgs∅
B
(C3 ∪ C4). Let ψ ∈ SolB(C3 ∪ C4).

By Lemma 30 (1), ψ′ = σ1(C)∪ σ2(C,ψ)∪ σ3,4(C,ψ) ∈ Sol∅
B
(C). Hence, ϕ � ψ′.

By Lemma 32, there is ρ : V→ V ∪ C ∪ {∞} such that dom(ρ) ⊆ VarA(C4) and,

for all α ∈ C0∪Var(C3)∪VarA(C4), αϕρ �∞
A αψ

′. For all α ∈ Var(C3)∪VarA(C4),

αϕ3,4ρ = αϕρ �∞
A αψ

′ = αψ. Therefore, by Lemma 32, ϕ3,4 � ψ.

�

Next, we prove that, for all affine problems P with no incompatible triples (like

C3 ∪ C4 in a normal configuration C), the set of finite N-closed solutions of P is in

bijection with the set of finite N-closed solutions of:

Definition 30 (Integer problem associated to an affine problem) Given an affine

problem P , let I(P) be the integer problem obtained by replacing in P every

constraint skα �? slβ by xα + k �? xβ + l, and every constraint sec �? slβ by

e �? xβ + l.

Lemma 35 If P is an affine problem with no incompatible triples, then

1. there is a strictly monotone map ψ �→ ψ́ from (Sol∅B(I(P)),�) to (Sol∅B(P),�);

2. there is a monotone map ϕ �→ ϕ̀ from (Sol∅B(P),�) to (Sol∅B(I(P)),�);

3. for all ψ ∈ Sol∅B(I(P)), ψ̌ = ψ;

4. for all ϕ ∈ Sol∅B(P), there is ρ : V→ V ∪ C such that ϕ = bϕρ, hence bϕ � ϕ;

5. correctness: if ψ ∈ mgs∅B(I(P)), then ψ́ ∈ mgs∅B(P);

6. completeness: if ϕ ∈ mgs∅B(P), then ϕ̀ ∈ mgs∅B(I(P)).

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

64 F. Blanqui

Proof

Let �P be the symmetric and transitive closure of �P and η : H/�P → H be any

function such that, for all equivalence classes X, η(X) ∈ X (H and �P are introduced

in Definition 27). Such a function always exists because equivalence classes are

non-empty. Because P has no incompatible triples, an equivalence class modulo �P

cannot contain two different constants. Hence, we can assume that η(X) = c iff

c ∈ X.

Given ψ ∈ Sol∅B(I(P)), let ψ́ = {(x, xψ) | x ∈ VarN(P)} ∪ {(α, sxαψα∗) | α ∈ VarA(P)}
where α∗ = η([α]P) and [α]P is the equivalence class of α modulo �P .

Given ϕ ∈ Sol∅B(P), let ϕ̀ = {(x, xϕ) | x ∈ VarN(P)} ∪ {(xα, αϕs) | α ∈ VarA(P)} (ϕs
is introduced in Definition 24).

1. We first check that ψ́ ∈ Sol∅B(P) whenever ψ ∈ Sol∅B(P), that is, ψ́ satisfies every

constraint of P . This is immediate for constraints of sort N. Otherwise, since P

is affine, there are two cases. If skα �? slβ ∈ P , then α∗ = β∗ and xαψ + k �A

xβψ+ l. Hence, (skα)ψ́ = sk+αψα∗ �A sl+βψβ∗ = (slα)ψ́. If sec �? slβ ∈ P , then

β∗ = c and eψ �A xβψ + l. Therefore, (sec)ψ́ = seψc �A sβψ+lβ∗ = (slβ)ψ́.

Next, one can easily check that ψ �→ ψ́ is injective (ψ1 = ψ2 whenever ψ́1 = ψ́2)

and monotone wrt �A (ϕ́ �A ψ́ whenever ϕ �A ψ) and thus wrt �. Therefore,

ψ �→ ψ́ is strictly monotone wrt. �.

2. We first check that ϕ̀ ∈ Sol∅B(I(P)) whenever ϕ ∈ Sol∅B(P). If skα �? slβ ∈ P ,

then (skα)ϕ = sαϕs+kαϕh �A (slβ)ϕ = sβϕs+lβϕh. So, αϕh = βϕh and xαϕ̀+k �A

xβϕ̀ + l. Assume now that sec �? slβ ∈ P . Then, (sex)ϕ = seϕsc �A (slβ)ϕ =

sβϕs+lβϕh. So, c = βϕh and eϕ̀ �A xβϕ̀+ l.

We now check that ϕ �→ ϕ̀ is monotone. Let ϕ1, φ2 ∈ Sol∅B(P) such that

ϕ1 � ϕ2. Hence, there is ρ : V→ C ∪ V such that ϕρ �A ψ. Therefore, ϕ̀ �A ψ̀.

3. Immediate.

4. Let ρ the map from V to V ∪ C such that, if α∗ ∈ V, then α∗ρ = αϕh. The

map ρ is well-defined since ϕh is invariant by �P : if α �P β, then αϕh = βϕh.

Now, one can easily check that ϕ = bϕρ. If α∗ = c, then there is a constraint

skc �? slα ∈ P . Since ϕ ∈ Sol∅B(P), αϕh = c and αbϕρ = sαϕsα∗ρ = αϕ.

Otherwise, αbϕρ = sαϕsα∗ρ = sαϕsαϕh = αϕ.

5. Let ϕ ∈ Sol∅B(P). By 2, ϕ̀ ∈ Sol∅B(I(P)) and ψ � ϕ̀. By 1, ψ́ � bϕ. By 4, bϕ � ϕ.

Therefore, ψ́ � ϕ.

6. Let ψ ∈ Sol∅B(I(P)). By 1, ψ́ ∈ Sol∅
B
(P) and ϕ � ψ́. By 2, ϕ̀ � ψ̌. By 3, ψ̌ = ψ.

Therefore, ϕ̀ � ψ.

�

Lemma 36 Every satisfiable integer problem has a smallest N-closed solution that

can be computed in polynomial time.

Proof

Let P be a satisfiable integer problem whose variables are x1, . . . , xn. We first prove

that P is equivalent to a problem in the dioid (�
n×n
max,⊕,⊗) where �max = �∪ {±∞},

⊕ = max and ⊗ = + both applied component wise (Baccelli et al., 1992).

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 65

Wlog. we can assume that P contains no constraints of the form 0+k � 0 (since P

is satisfiable, these constraints are always satisfied and thus can be removed). Hence,

P contains only constraints of the form xi + k �? xj , 0+ k �? xj or xi + k �? 0, that

is, in the syntax of (�max,⊕,⊗), k ⊗ xi � xj , k � xj or xi � −k.
Given a problem P , let aij = sup{k ∈ �max | xj+k �? xi ∈ P }, bij = sup({0}∪{k ∈

�max | 0 + k �? xi ∈ P }) (we add 0 because solutions must be non-negative) and

cij = inf{−k ∈ �max|xi + k �? 0 ∈ P } with, as usual, sup ∅ = −∞ and inf ∅ = +∞.

Note that, in b and c, every column is the same (bij and cij do not depend on j).

We now prove that, if ψ ∈ Sol∅
B
(P), then there is x ∈ �

n×n
max such that (a⊗ x)⊕ b �

x � c and, for all j, xij = xiψ (the columns of x are equal). For all i and j, the

set of inequations {k ⊗ xi � xj | xi + k �? xj ∈ P } is equivalent to aji ⊗ xi � xj
since k � aji and (−∞) ⊗ xi = −∞ � xj . Hence, {aji ⊗ xi � xj | i ∈ {1, . . . , n}}
is equivalent to

⊕n
i=1 aji ⊗ xi � xj . By taking xil = xi for all l, we therefore get

(a ⊗ x)jl � xjl . Similarly, for all j and l, {k � xj | 0 + k �? xj ∈ P } ∪ {0 � xj}
(implicit in P) is equivalent to bjl � xjl . Therefore, (a⊗ x)⊕ b � x. Finally, for all i,

{xi � −k | xi + k �? 0 ∈ P } is equivalent to xil � cil for all l, that is, x � c.

Because we proceeded by equivalence, we also have the converse: if (a⊗ x)⊕ b �
x � c, then ψl ∈ Sol∅

B
(P) where ψl is the substitution such that xiψl = xil (lth column

of x).

By Theorem 4.75 in Baccelli et al. (1992), (a ⊗ x) ⊕ b � x has a∗ ⊗ b as smallest

solution, where a∗ =
⊕

k∈� a
k , ak+1 = ak ⊗ a and a0 is the matrix with 0 on the

diagonal and −∞ everywhere else. Since P is satisfiable, G(P) has no positive cycles.

Hence, a∗ =
⊕n

k=0 a
k (Cuninghame-Green, 1979) (Theorem 3.20 in Baccelli et al.

(1992)). Therefore, ψ ∈ Sol∅
B
(P) iff a∗ ⊗ b � c, and the smallest solution of P is the

function ψ such that xiψ =
⊕n

k=1 a
∗
ik ⊗ bk1, which can be computed in polynomial

time. �

Therefore, we can now conclude:

Fig. 10. Algorithm computing a most general solution in the successor algebra.

Theorem 5 In the successor algebra, any satisfiable size problem has a most general

solution that can be computed in polynomial time following the algorithm of

Figure 10.

Proof

Correctness. By Lemma 36, ψ ∈ mgs∅B(I(C3 ∪C4)). By Lemma 35 (5), ψ́ ∈ mgs∅B(C3 ∪
C4) ⊆ mgs∅

B
(C3 ∪C4). By Lemma 34 (1), ϕ = σ1(C)∪σ2(C, ψ́)∪σ3,4(C, ψ́) ∈ mgs∅

B
(C).

By Lemma 33 (1), ϕ|Var(P) = σ1(C) ∪ σ2(C, ψ́) ∪ σ4A(C, ψ́) ∈ mgsA(P).

Complexity. After Theorem 4, C3 ∪ C4 is of polynomial size wrt the size of P .

The computation of I(C3 ∪ C4) is linear. After Lemma 36, the computation of ψ is

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

66 F. Blanqui

polynomial. After Lemma 35 (1), the computation of ψ́ is polynomial. Therefore,

the algorithm of Figure 10 is polynomial. �

Example 13 In Example 12, we have seen that the normal form of (∅, ∅, ∅, ∅, P) where

P = {α �? sc, β �? α} is (∅, ∅, {(α, c), (β, c)}, C3, ∅) with C3 = {xα �? 1, xβ �? xα}.
Following Lemma 36, by taking x1 = xα and x2 = xβ , the corresponding max-linear

system is (a⊗ x)⊕ b � x � c where a11 = sup{k | xα + k �? xα ∈ C3} = sup ∅ = −∞,

a12 = sup{xβ + k �? xα ∈ C3} = sup{0} = 0, a21 = sup{k | xα + k �? xβ ∈ C3} =

sup ∅ = −∞, a22 = sup{k | xβ + k �? xβ ∈ C3} = sup ∅ = −∞, b1 = sup({0} ∪ {k |
k �? xα ∈ C3}) = sup{0} = 0, b2 = sup({0} ∪ {k | k �? xα ∈ C3}) = sup{0} = 0,

c1 = inf{k | xα �? k ∈ C3} = inf{1} = 1 and c2 = inf{k | xβ �? k ∈ C3} =

inf ∅ = +∞. To summarize, we have a =
(

−∞ 0
−∞ −∞

)
, b =

(
0
0

)
and c =

(
1

+∞

)
.

One can easily check that, if x =
(

xα
xβ

)
, then (a ⊗ x) ⊕ b =

(
xβ ⊕ 0

0

)
, hence that

(a⊗ x)⊕ b � x � c is equivalent to xβ ⊕ 0 � xα � 1 and 0 � xβ � +∞, which is C3.

Now, a0 =
(

0 −∞
−∞ 0

)
and a2 =

(
−∞ −∞
−∞ −∞

)
. Hence, a∗ = a0 ⊕ a =

(
0 0
−∞ 0

)
and a∗ ⊗ b =

(
0
0

)
. So, the smallest solution of C3 is ψ́ = {(xα, 0), (xβ, 0)} and the

smallest solution of P is σ1(C) ∪ σ2(C, ψ́) ∪ σ4A(C, ψ́) = {(α, c), (β, c)}. �

10 Conclusion

We have presented a general and modular termination criterion for the combination

of β-reduction and user-defined rewrite rules, based on the use of type-checking

with size-annotated types approximating a semantic notion of size defined by the

annotations given to constructor symbols. This extends to rewriting-based function

definitions and more general notions of size, an approach initiated by Hughes, Pareto

and Sabry for function definitions based on a fixpoint combinator and case analysis

(Hughes et al., 1996).

First, we have shown that these termination conditions can be reduced to solving

problems in the quasi-ordered algebra used for size annotations. Then, we have

shown that the successor algebra (successor symbol with arbitrary constants) enjoys

nice properties: decidability of the satisfiability of sets of inequalities (in polynomial

time), and existence and computability of a most general solution for satisfiable

problems (in polynomial time too). As a consequence, we have a complete algorithm

for checking the termination conditions in the successor algebra.

We have implemented a simple heuristic that turns this termination criterion into

a fully automated termination prover for higher order rewriting called HOT (2012),

which tries to detect size-preserving functions and, following Abel & Altenkirch

(2002), to find a lexicographic ordering on arguments. Combined with other

(non-)termination techniques (Jouannaud & Okada, 1991; Blanqui, 2000; Blanqui

et al., 2002), HOT won the 2012 international competition of termination provers

(Termination competition, 2017) for higher order rewriting against THOR (2014)

and Wanda (2015). It could be improved by replacing the lexicographic ordering

by the size-change principle (Lee et al., 2001; Hyvernat, 2014), and using abstract

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 67

interpretation techniques for annotating function symbols (Telford & Turner, 2000;

Chin & Khoo, 2001). A more complete (and perhaps more efficient) implementation

would be obtained by encoding constraints into a SAT problem and send it to

state-of-art SAT solvers (Fuhs et al., 2007; Ben-Amram & Codish, 2008; Codish

et al., 2011).

A natural following is to study other size algebras like the max-successor algebra

(i.e. the successor algebra extended with a max operator), the plus algebra (i.e.

the successor algebra extended with addition) or their combination, the max-plus

algebra. Indeed, the richer the size algebra is, the more precise the typing of function

symbols is, and the more functions can be proved terminating.

Following Blanqui & Riba (2006), it is also possible to consider full Presburger

arithmetic (Presburger, 1929) and handle conditional rewrite rules, by extending the

system with explicit quantifiers and constraints on size variables, in the spirit of

HM(X) (Sulzmann, 2001). Simplification of constraints is then an important issue

in practice (Pottier, 2001).

We have presented this criterion in Church’ simply typed λ-terms but, following

Blanqui (2005b), it should be possible to extend it to richer type systems with

polymorphic and dependent types. Similarly, we considered matching modulo α-

congruence only but, following Blanqui (2016), it should be possible to extend it to

rewriting modulo some equational theory and to rewriting on β-normal forms with

matching modulo βη as used in Klop’s combinatory reduction systems (Klop et al.,

1993) or Nipkow’s higher order rewrite systems (Mayr & Nipkow, 1998).

Another interesting extension would be to consider size-annotated types in the

computability path ordering Blanqui et al. (2015), following Kamin and Lévy’s

extension of Dershowitz’ RPO (Dershowitz, 1979b; Kamin & Lévy, 1980) and

Borralleras and Rubio’s extension of Jouannaud and Okada’s higher order RPO

(Jouannaud & Rubio, 1999; Borralleras & Rubio, 2001).

Acknowledgments

I would like to thank Christophe Raffalli for a short but useful discussion on max-

plus algebra, and Nachum Dershowitz, Jean-Pierre Jouannaud and Sylvain Schmitz

for their comments on the introduction and the conclusion. I also want to thank

very much the anonymous referees for their very careful reading and the numerous

remarks and suggestions they made. This greatly helped me to improve the article.

References

Abel, A. (2004) Termination checking with types. Theor. Inform. Appl. 38(4), 277–319.
Abel, A. (2006) A Polymorphic Lambda-Calculus with Sized Higher-Order Types, Ph.D. thesis.

Germany: Ludwig-Maximilians-Universität München.
Abel, A. (2008) Semi-continuous sized types and termination. Log. Methods Comput. Sci. 4(2),

1–33.
Abel, A. (2010) MiniAgda: Integrating sized and dependent types. In Proceedings of

the Workshop on Partiality and Recursion in Interactive Theorem Provers, Electronic

Proceedings in Theoretical Computer Science, vol. 43.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

68 F. Blanqui

Abel, A. (2012) Type-based termination, inflationary fixed-points, and mixed inductive-

coinductive types. In Proceedings of the 8th Workshop on Fixed-points in Computer

Science, Electronic Proceedings in Theoretical Computer Science, vol. 77.
Abel, A. & Altenkirch, T. (2002) A predicative analysis of structural recursion. J. Funct.

Program. 12(1), 1–41.
Ackermann, W. (1925) Begründung des ”tertium non datur” mittels der Hilbertschen Theorie

der Widerspruchsfreiheit. Math. Ann. 93, 1–36.
Agda. (2017) Accessed March 8, 2018. Available at: http://wiki.portal.chalmers.se/

agda/pmwiki.php.
Amadio, R. & Coupet-Grimal, S. (1997) Analysis of a Guard Condition in Type Theory

(preliminary report). Technical Report 3300. France: INRIA.
Amadio, R. & Coupet-Grimal, S. (1998) Analysis of a guard condition in type theory

(Extended abstract). In Proceedings of the 1st International Conference on Foundations

of Software Science and Computation Structures, Lecture Notes in Computer Science, vol.

1378.
Arts, T. (1996) Termination by absence of infinite chains of dependency pairs. In Proceedings

of the 21st Colloquium on Trees in Algebra and Programming, Lecture Notes in Computer

Science, vol. 1059.
Arts, T. & Giesl, J. (2000) Termination of term rewriting using dependency pairs. Theor.

Comput. Sci. 236, 133–178.
ATS. (2018) Accessed March 8, 2018. Available at: http://www.ats-lang.org/.
Avanzini, M. & Moser, G. (2010) Closing the gap between runtime complexity and polytime

computability. In Proceedings of the 21st International Conference on Rewriting Techniques

and Applications, Leibniz International Proceedings in Informatics, vol. 6.
Baccelli, F., Cohen, G., Olsder, G. J. & Quadrat, J.-P. (1992) Synchronization and Linearity:

An Algebra for Discrete Event Systems. Wiley.
Barbanera, F., Fernández, M. & Geuvers, H. (1997) Modularity of strong normalization in

the algebraic-λ-cube. J. Funct. Program. 7(6), 613–660.
Barthe, G., Frade, M. J., Giménez, E., Pinto, L. & Uustalu, T. (2004) Type-based termination

of recursive definitions. Math. Struct. Comput. Sci. 14(1), 97–141.
Barthe, G., Grégoire, B. & Pastawski, F. (2005) Practical inference for type-based termination

in a polymorphic setting. In Proceedings of the 7th International Conference on Typed

Lambda Calculi and Applications, Lecture Notes in Computer Science, vol. 3461.
Barthe, G., Grégoire, B. & Pastawski, F. (2006) CICb: Type-based termination of recursive

definitions in the calculus of inductive constructions. In Proceedings of the 13th

International Conference on Logic for Programming, Artificial Intelligence and Reasoning,

Lecture Notes in Computer Science, vol. 4246.
Barthe, G., Grégoire, B. & Riba, C. (2008) Type-based termination with sized products. In

Proceedings of the 22nd International Conference on Computer Science Logic, Lecture

Notes in Computer Science, vol. 5213.
Ben-Amram, A. M. & Codish, M. (2008) A SAT-based approach to size change termination

with global ranking functions. In Proceedings of the 14th International Workshop on Tools

and Algorithms for the Construction and Analysis of Systems, Lecture Notes in Computer

Science, vol. 4963.
Berger, U. (2005) Continuous semantics for strong normalization. In Proceedings of the 1st

Conference on Computability in Europe, Lecture Notes in Computer Science, vol. 3526.
Berger, U. (2008) A domain model characterising strong normalisation. Ann. Pure Appl. Log.

156(1), 39–50.
Blanqui, F. (2000) Termination and confluence of higher-order rewrite systems. In Proceedings

of the 11th International Conference on Rewriting Techniques and Applications, Lecture

Notes in Computer Science, vol. 1833.
Blanqui, F. (2004) A type-based termination criterion for dependently-typed higher-order

rewrite systems. In Proceedings of the 15th International Conference on Rewriting

Techniques and Applications, Lecture Notes in Computer Science, vol. 3091.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 69

Blanqui, F. (2005a) Decidability of type-checking in the calculus of algebraic constructions

with size annotations. In Proceedings of the 19th International Conference on Computer

Science Logic, Lecture Notes in Computer Science, vol. 3634.

Blanqui, F. (2005b) Definitions by rewriting in the calculus of constructions. Math. Struct.

Comput. Sci. 15(1), 37–92.

Blanqui, F. (2006a) Higher-order dependency pairs. In Proceedings of the 8th International

Workshop on Termination.

Blanqui, F. (2006b) (HO)RPO Revisited. Technical Report 5972. France: INRIA.

Blanqui, F. (2016) Termination of rewrite relations on λ-terms based on Girard’s notion of

reducibility. Theor. Comput. Sci. 611, 50–86.

Blanqui, F. & Riba, C. (2006) Combining typing and size constraints for checking the

termination of higher-order conditional rewrite systems. In Proceedings of the 13th

International Conference on Logic for Programming, Artificial Intelligence and Reasoning,

Lecture Notes in Computer Science, vol. 4246.

Blanqui, F. & Roux, C. (2009) On the relation between sized-types based termination and

semantic labelling. In Proceedings of the 23rd International Conference on Computer

Science Logic, Lecture Notes in Computer Science, vol. 5771.

Blanqui, F., Jouannaud, J.-P. & Okada, M. (2002) Inductive-data-type systems. Theor. Comput.

Sci. 272, 41–68.

Blanqui, F., Jouannaud, J.-P. & Rubio, A. (2015) The computability path ordering. Log.

Methods Comput. Sci. 11(4), 1–45.

Bonfante, G., Marion, J.-Y. & Péchoux, R. (2011) Quasi-interpretations a way to control

resources. Theor. Comput. Sci. 412(25), 2776–2796.

Borralleras, C. & Rubio, A. (2001) A monotonic higher-order semantic path ordering. In

Proceedings of the 8th International Conference on Logic for Programming, Artificial

Intelligence and Reasoning, Lecture Notes in Computer Science, vol. 2250.

Boyer, R. & Moore, J. (1979) A Computational Logic. Academic Press.

Breazu-Tannen, V. & Gallier, J. (1989) Polymorphic rewriting conserves algebraic strong

normalization. In Proceedings of the 16th International Colloquium on Automata,

Languages and Programming, Lecture Notes in Computer Science, vol. 372.

Burstall, R., Queen, D. Mac & Sannella, D. (1980) HOPE: An experimental applicative

language. In Proceedings of the ACM Symposium on Lisp and Fonctional Programming.

Cheney, J. (2003) First-Class Phantom Types. Technical Report TR2003-1901. Cornell

University.

Cherifa, A. B. & Lescanne, P. (1987) Termination of rewriting systems by polynomial

interpretations and its implementation. Sci. Comput. Program. 9(2), 137–159.

Chin, W. N. & Khoo, S. C. (2001) Calculating sized types. J. Higher-Order Symb. Comput.

14(2–3), 261–300.

Church, A. (1940) A formulation of the simple theory of types. J. Symb. Log. 5, 56–68.

Cichoń, E. A. & Touzet, H. (1996) An ordinal calculus for proving termination in term

rewriting. In Proceedings of the 21st Colloquium on Trees in Algebra and Programming,

Lecture Notes in Computer Science, vol. 1059.

cicminus. (2015) Accessed March 8, 2018. Available at: https://github.com/jsacchini/

coq.

Codish, M., Giesl, J., Schneider-Kamp, P. & Thiemann, R. (2011) SAT solving for termination

proofs with recursive path orders and dependency pairs. J. Autom. Reason. 49(1), 53–93.

Collins, G. (1975) Quantifier elimination for real closed fields by cylindrical algebraic

decompostion. In Proceedings of the 2nd GI Conference on Automata Theory and Formal

Languages. Lecture Notes in Computer Science, vol. 33.

Contejean, E., Marché, C., Tomás, A. P. & Urbain, X. (2005) Mechanically proving termination

using polynomial interpretations. J. Autom. Reason. 34(4), 325–363.

Coq. (2017) Accessed March 8, 2018. Available at: http://coq.inria.fr/.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

70 F. Blanqui

Coquand, T. & Paulin-Mohring, C. (1988) Inductively defined types. In Proceedings of the

International Conference on Computer Logic, Lecture Notes in Computer Science, vol.

417.

Coquand, T. & Spiwack, A. (2007) A proof of strong normalization using domain theory.

Log. Methods Comput. Sci. 3(4), 1–16.

Courtieu, P., Gbedo, G. & Pons, O. (2010) Improved matrix interpretation. In Proceedings of

the 36th International Conference on Current Trends in Theory and Practice of Computer

Science, Lecture Notes in Computer Science, vol. 5901.

Cousot, P. (1996) Abstract interpretation. ACM Comput. Surv. 28(2), 324–328.

Cousot, P. (1997) Types as abstract interpretations (invited paper). In Proceedings of the 24th

ACM Symposium on Principles of Programming Languages.

Cousot, P. & Cousot, R. (1979) Constructive versions of Tarski’s fixed point theorems. Pac.

J. Math. 82(1), 43–57.

Cuninghame-Green, R. (1979) Minimax Algebra. Lecture Notes in Economics and

Mathematical Systems, no. 166. SV.

Curien, P.-L. & Ghelli, G. (1992) Coherence of subsumption, minimum typing and type-

checking in F�. Log. Methods Comput. Sci. 2(1), 55–91.

Curry, H. B. & Feys, R. (1958) Combinatory Logic. North-Holland, ISBN 9780444533876.

de Bruijn, N. G. (1970) The mathematical language AUTOMATH, its usage, and some of its

extensions. In Proceedings of the 1968 Symposium on Automatic Demonstration. Lecture

Notes in Mathematics, vol. 125.

de Vrijer, R. (1987) Exactly estimating functionals and strong normalization. Indagationes

Math. 90(4), 479–493.

Dedukti. (2018) Accessed March 8, 2018. Available at: https://deducteam.github.io/.

Dershowitz, N. (1979a) A note on simplification orderings. Inform. Process. Lett. 9(5), 212–215.

Dershowitz, N. (1979b) Orderings for term rewriting systems. In Proceedings of the 20th

IEEE Symposium on Foundations of Computer Science.

Dershowitz, N. (1982) Orderings for term rewriting systems. Theor. Comput. Sci. 17, 279–301.

Dershowitz, N. (2013) Dependency pairs are a simple semantic path ordering. In Proceedings

of the 13th International Workshop on Termination.

Dershowitz, N. & Jouannaud, J.-P. (1990) Rewrite systems. In Handbook of Theoretical

Computer Science. Volume B: Formal Models and Semantics, van Leeuwen, J. (ed), Chap. 6,

pp. 243–320. North-Holland, ISBN 9780262220392.

Dershowitz, N. & Manna, Z. (1979) Proving termination with multiset orderings. Commun.

ACM 22(8), 465–476.

Dershowitz, N. & Okada, M. (1988) Proof-theoretic techniques for term rewriting. In

Proceedings of the 3rd IEEE Symposium on Logic in Computer Science.

Endrullis, J., Waldmann, J. & Zantema, H. (2008) Matrix interpretations for proving

termination of term rewriting. J. Autom. Reason. 40(2–3), 195–220.

Fiore, M., Plotkin, G. & Turi, D. (1999) Abstract syntax and variable binding. In Proceedings

of the 14th IEEE Symposium on Logic in Computer Science.

Fischer, M. & Rabin, M. (1974) Super-exponential complexity of Presburger arithmetic. In

Proceedings of the SIAM-AMS Symposium in Applied Mathematics.

Fuh, Y.-C. & Mishra, P. (1990) Type inference with subtypes. Theor. Comput. Sci. 73(2),

155–175.

Fuhs, C. & Kop, C. (2012) Polynomial interpretations for higher-order rewriting. In

Proceedings of the 23rd International Conference on Rewriting Techniques and

Applications, Leibniz International Proceedings in Informatics, vol. 15.

Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R. & Zankl, H. (2007)

SAT solving for termination analysis with polynomial interpretations. In Proceedings of

the 10th International Conference on Theory and Applications of Satisfiability Testing,

Lecture Notes in Computer Science, vol. 4501.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 71

Fuhs, C., Navarro, R., Otto, C., Giesl, J., Lucas, S. & Schneider-Kamp, P. (2008) Search

techniques for rational polynomial orders. In Proceedings of the 9th International

Conference on Artificial Intelligence and Symbolic Computation, Lecture Notes in

Computer Science, vol. 5144.

Gandy, R. O. (1980a) An early proof of normalization by A. M. Turing. In To H. B. Curry:

Essays on Combinatory Logic, Lambda Calculus and Formalism, Hindley, R. & Seldin, J. P.

(eds), Academic Press, pp. 453–455.

Gandy, R. O. (1980b) Proofs of strong normalization. In To H. B. Curry: Essays on

Combinatory Logic, Lambda Calculus and Formalism, Hindley, R. & Seldin, J. P. (eds),

Academic Press, pp. 457–477.

Gentzen, G. (1935) Die Widerspruchsfreiheit der reinen Zahlentheorie. Math. Ann. 112(1),

493–565. English translation in Szabo (1969).

Giesl, J. (1997) Termination of nested and mutually recursive algorithms. J. automated reason.

19(1), 1–29.

Giesl, J., Arts, T. & Ohlebusch, E. (2002) Modular termination proofs for rewriting using

dependency pairs. J. Symp. Comput. 34(1), 21–58.

Giesl, J., Thiemann, R., Schneider-Kamp, P. & Falke, S. (2006) Mechanizing and improving

dependency pairs. J. Autom. Reason. 37(3), 155–203.

Giménez, E. (1996) Un calcul de constructions infinies et son application à la vérification de

systèmes communiquants, PhD Thesis. France: ENS Lyon.

Giménez, E. (1998) Structural recursive definitions in type theory. In Proceedings of the 25th

International Colloquium on Automata, Languages and Programming, Lecture Notes in

Computer Science, vol. 1443.

Girard, J.-Y. (1972) Interprétation fonctionelle et élimination des coupures dans l’arithmétique

d’ordre supérieur, PhD Thesis. France: Université Paris 7.

Girard, J.-Y., Lafont, Y. & Taylor, P. (1988) Proofs and Types. Cambridge University Press.

Gödel, K. (1931) Über formal unentscheidbare Sätze der Principia Mathematica und

verwandter Systeme I. Monatshefte für Math. Phys. 38, 173–198. English translation in

v. Heijenoort (1977).

Gödel, K. (1958) Über einer bisher noch nicht benützte Erweiterung des finiten Standpunktes.

Dialectica 12(3–4), 280–287. Reprinted in Gödel (1990).

Gödel, K. (1990) Collected works – vol. 2: publications 1938–1974. Oxford University Press.

Grégoire, B. & Sacchini, J. L. (2010) On strong normalization of the calculus of constructions

with type-based termination. In Proceedings of the 17th International Conference on

Logic for Programming, Artificial Intelligence and Reasoning, Lecture Notes in Computer

Science, vol. 6397.

Hamana, M. (2006) An initial algebra approach to term rewriting systems with variable

binders. J. Higher-Order Symbol. Comput. 19(2–3), 231–262.

Hamana, M. (2007) Higher-order semantic labelling for inductive datatype systems. In

Proceedings of the 9th ACM SIGPLAN International Conference on Principles and Practice

of Declarative Programming.

Hardy, G. H. (1904) A theorem concerning the infinite cardinal numbers. Q. J. Math. 35,

87–94.

Hartogs, F. (1915) Über das Problem der Wohlordnung. Math. Ann. 76, 438–443.

Haskell. (2017) Accessed March 8, 2018. Available at: https://www.haskell.org/.

Herbrand, J. (1930) Recherches sur la théorie de la démonstration, Ph.D. thesis. France: Faculté

des sciences de Paris.

Hessenberg, G. (1909) Kettentheorie und Wohlordnung. J. für die reine und angewandte Math.

135, 81–133.

Hindley, R. (1969) The principal type-scheme of an object in combinatory logic. Trans. Am.

Math. Soc. 146, 29–60.

Hirokawa, N. & Middeldorp, A. (2005) Automating the dependency pair method. Inform.

Comput. 199(1–2), 172–199.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

72 F. Blanqui

Hirokawa, N. & Middeldorp, A. (2006) Predictive labeling. In Proceedings of the 17th

International Conference on Rewriting Techniques and Applications, Lecture Notes in

Computer Science, vol. 4098.

Hofbauer, D. & Lautemann, C. (1989) Termination proofs and the length of derivations. In

Proceedings of the 3rd International Conference on Rewriting Techniques and Applications,

Lecture Notes in Computer Science, vol. 355.

Hong, H. & Jakuš, D. (1998) Testing positiveness of polynomials. J. Autom. Reason. 21(1),

23–38.

HOT. (2012) Accessed March 8, 2018. Available at: http://rewriting.gforge.inria.

fr/hot.html.

Howard, W. A. (1970) Assignment of ordinals to terms for primitive recursive functionals of

finite type. In Intuitionism and Proof Theory: Proceedings of the Summer Conference at

Buffalo N. Y. Studies in Logic and the Foundations of Mathematics, vol. 60.

Howard, W. A. (1972) A system of abstract constructive ordinals. J. Symb. Log. 37(2), 355–374.

Hrbacek, K. & Jech, T. (1999) Introduction to Set Theory. 3rd, revised and expanded edn. M.

Dekker, Monographs and Texbooks in Pure and Applied Mathematics. Vol. 220. ISBN

9780824779153.

Huet, G. (1976) Résolution d’équations dans les langages d’ordre 1, 2, . . . , ω, Thèse d’État.

France: Université Paris 7.

Huet, G. & Hullot, J.-M. (1982) Proofs by induction in equational theories with constructors.

J. Comput. Syst. Sci. 25(2), 239–266.

Hughes, J., Pareto, L. & Sabry, A. (1996) Proving the correctness of reactive systems using

sized types. In Proceedings of the 23th ACM Symposium on Principles of Programming

Languages.

Hyvernat, P. (2014) The size-change termination principle for constructor based languages.

Log. Methods Comput. Sci. 10(1), 1–30.

Jones, N. D. & Bohr, N. (2008) Call-by-value termination in the untyped λ-calculus. Log.

Methods Comput. Sci. 4(1), 1–39.

Jouannaud, J.-P. & Okada, M. (1991) A computation model for executable higher-order

algebraic specification languages. In Proceedings of the 6th IEEE Symposium on Logic in

Computer Science.

Jouannaud, J.-P. & Rubio, A. (1999) The higher-order recursive path ordering. In Proceedings

of the 14th IEEE Symposium on Logic in Computer Science.

Jouannaud, J.-P. & Rubio, A. (2007) Polymorphic higher-order recursive path orderings. J.

ACM 54(1), 1–48.

Kahrs, S. (1995) Towards a domain theory for termination proofs. In Proceedings of the

6th International Conference on Rewriting Techniques and Applications, Lecture Notes in

Computer Science, vol. 914.

Kamin, S. & Lévy, J.-J. (1980) Available on http://www.ens-lyon.fr/LIP/REWRITING/

TERMINATION/KAMIN LEVY/kamin-levy80spo.pdf. Attempts for generalizing the recursive

path orderings. Unpublished note.

Klop, J. W., van Oostrom, V. & van Raamsdonk, F. (1993) Combinatory reduction systems:

introduction and survey. Theor. Comput. Sci. 121, 279–308.

Knaster, B. & Tarski, A. (1928) Un théorème sur les fonctions d’ensembles. Ann. de la société

polonaise de Math. 6, 133–134.

Kop, C. (2011) Higher order dependency pairs for algebraic functional systems. In Proceedings

of the 22nd International Conference on Rewriting Techniques and Applications, Leibniz

International Proceedings in Informatics, vol. 10.

Koprowski, A. & Zantema, H. (2006) Automation of recursive path ordering for infinite

labelled rewrite systems. In Proceedings of the 3rd International Joint Conference on

Automated Reasoning, Lecture Notes in Computer Science, vol. 4130.

Kuratowski, C. (1922) Une méthode d’élimination des nombres transfinis des raisonnements

mathématiques. Fundam. Math. 3(1), 76–108.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 73

Kusakari, K., Isogai, Y., Sakai, M. & Blanqui, F. (2009) Static dependency pair method

based on strong computability for higher-order rewrite systems. Ieice Trans. Inform. Syst.

E92-D(10), 2007–2015.

Kusakari, K. & Sakai, M. (2007) Enhancing dependency pair method using strong

computability in simply-typed term rewriting systems. Appl. Algebra Eng. Commun. Comput.

18(5), 407–431.

Lee, C. S., Jones, N. D. & Ben-Amram, A. M. (2001) The size-change principle for program

termination. In Proceedings of the 28th ACM Symposium on Principles of Programming

Languages.

Lucas, S. (2005) Polynomials over the reals in proofs of termination: from theory to practice.

Theor. Inform. Appl. 39, 547–586.

Manna, Z. & Ness, S. (1970) On the termination of Markov algorithms. In Proceedings of

the 3rd Hawaii International Conference on System Sciences.

Martin-Löf, P. (1975) An intuitionistic theory of types: predicative part. In Proceedings of the

1973 Logic Colloquium, Rose, H. E. & Shepherdson, J. C. (eds), Studies in Logic and the

Foundations of Mathematics, vol. 80. North-Holland, ISBN 978044410642.

Matiyasevich, Y. V. (1970) Enumerable sets are diophantine. Sov. Math. Dokl. 11, 354–358.

Matiyasevich, Y. V. (1993) Hilbert’s Tenth Problem. MIT Press.

Maude. (2015) Accessed March 8, 2018. Available at: http://maude.cs.uiuc.edu/.

Mayr, R. & Nipkow, T. (1998) Higher-order rewrite systems and their confluence. Theor.

Comput. Sci. 192(2), 3–29.

Mendler, N. P. (1987) Inductive Definition in Type Theory, Ph.D. Thesis. USA: Cornell

University.

Mendler, N. P. (1991) Inductive types and type constraints in the second-order lambda

calculus. Ann. Pure Appl. Log. 51(1–2), 159–172.

Middeldorp, A., Ohsaki, H. & Zantema, H. (1996) Transforming termination by self-labelling.

In Proceedings of the 13th International Conference on Automated Deduction, Lecture

Notes in Computer Science, vol. 1104.

Miller, D. (1991) A logic programming language with lambda-abstraction, function variables,

and simple unification. In Proceedings of the International Workshop on Extensions of

Logic Programming, Lecture Notes in Computer Science, vol. 475.

Milner, R. (1978) A theory of type polymorphism in programming. J. Comput. Syst. Sci. 17(3),

348–37s5.

MiniAgda. (2014) Accessed March 8, 2018. Available at: http://www.cse.chalmers.

se/∼abela/miniagda/index.html.
Mitchell, J. (1984) Coercion and type inference (summary). In Proceedings of the 11th ACM

Symposium on Principles of Programming Languages.

Monin, F. & Simonot, M. (2001) An ordinal measure based procedure for termination of

functions. Theor. Comput. Sci. 254(1–2), 63–94.

Moser, G. (2017) KBOs, ordinals, subrecursive hierarchies and all that. J. Log. Comput. 27(2),

1–27.

Newman, M. (1942) On theories with a combinatorial definition of ”equivalence”. Ann. Math.

43(2), 223–243.

Nipkow, T. (1991) Higher-order critical pairs. In Proceedings of the 6th IEEE Symposium on

Logic in Computer Science.

OCaml. (2017) Accessed March 8, 2018. Available at: http://ocaml.org/.

Okada, M. (1989) Strong normalizability for the combined system of the typed lambda calculus

and an arbitrary convergent term rewrite system. In Proceedings of the International

Symposium on Symbolic and Algebraic Computation.

Pareto, L. (2000) Types for Crash Prevention, PhD Thesis. Göteborg, Sweden: Chalmers

University of Technology.

Paulson, L. (1986) Proving termination of normalization functions for conditional expressions.

J. Autom. Reason. 2(1), 63–74.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

74 F. Blanqui

Peano, G. (1889) Arithmetices principia, nova methodo exposita. Fratres Bocca. Partial English

translation in v. Heijenoort (1977).

Plotkin, G. D. (1977) LCF considered as a programming language. Theorm. Comput. Sci. 5(3),

223–255.

Pottier, F. (2001) Simplifying subtyping constraints: A theory. Inform. Comput. 170(2), 153–

183.

Pratt, V. (1977) Available on http://boole.stanford.edu/pub/sefnp.pdf. Two Easy

Theories Whose Combination is Hard. Unpublished note.

Presburger, M. (1929) Über die Vollständigkeit eines gewissen Systems der Arithmetik

ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. Sprawozdanie z

I Kongresu Matematykow Krajow Slowcanskich, Warszawa, Poland.

Rathjen, M. (2006) The art of ordinal analysis. In Proceedings of the International Congress

of Mathematicians, vol. 2, pp. 45–69.

Riba, C. (2007) On the stability by union of reducibility candidates. In Proceedings of the 10th

International Conference on Foundations of Software Science and Computation Structures,

Lecture Notes in Computer Science, vol. 4423.

Riba, C. (2008) Stability by union of reducibility candidates for orthogonal constructor

rewriting. In Proceedings of the 4th Conference on Computability in Europe, Lecture

Notes in Computer Science, vol. 5028.

Riba, C. (2009) On the values of reducibility candidates. In Proceedings of the 9th International

Conference on Typed Lambda Calculi and Applications, Lecture Notes in Computer

Science, vol. 5608.

Robinson, J. A. (1965) A machine-oriented logic based on the resolution principle. J. ACM

12(1), 23–41.

Rubin, H. & Rubin, J. E. (1963) Equivalents of the Axiom of Choice. North-Holland, ISBN

9780444877086.

Sacchini, J. L. (2011) On Type-Based Termination and Dependent Pattern Matching in the

Calculus of Inductive Constructions, PhD Thesis. France: ParisTech.

Sakai, M., Watanabe, Y. & Sakabe, T. (2001) An extension of dependency pair method for

proving termination of higher-order rewrite systems. Ieice Trans. Inform. Syst. E84-D(8),

1025–1032.

Schmitz, S. (2014) Complexity Bounds for Ordinal-Based Termination (invited talk). In

Proceedings of the 8th International Workshop on Reachability Problems. Lecture Notes

in Computer Science, vol. 8762, pp. 1–19.

Scott, D. S. (1972) Continuous lattices. In Toposes, Algebraic Geometry and Logic, Lawvere,

E. (ed), Lecture Notes in Mathematics,vol. 274. Springer, pp. 97–136.

Sellink, M. P. A. (1993) Verifying process algebra proofs in type theory. In Proceedings of the

1st International Workshop on Semantics of Specification Languages.

Sprenger, C. & Dam, M. (2003) On the structure of inductive reasoning: Circular and tree-

shaped proofs in the μ-calculus. In Proceedings of the 6th International Conference on

Foundations of Software Science and Computation Structures, Lecture Notes in Computer

Science, vol. 2620.

Sternagel, C. & Middeldorp, A. (2008) Root labeling. In Proceedings of the 19th International

Conference on Rewriting Techniques and Applications, Lecture Notes in Computer Science,

vol. 5117. This paper contains errors described in Sternagel & Thiemann (2010).

Sternagel, C. & Thiemann, R. (2010) Signature extensions preserve termination – an alternative

proof via dependency pairs. In Proceedings of the 24th International Conference on

Computer Science Logic, Lecture Notes in Computer Science, vol. 6247.

Sulzmann, M. (2000) A General Framework for Hindley/Milner Type Systems with Constraints,

PhD Thesis. USA: Yale University.

Sulzmann, M. (2001) A general type inference framework for Hindley/Milner style systems.

In Proceedings of the 5th Fuji International Symposium on Functional and Logic

Programming, Lecture Notes in Computer Science, vol. 2024.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

Size-based termination 75

Szabo, M. E. (ed) (1969) Collected papers of Gerhard Gentzen. Studies in Logic and the

Foundations of Mathematics, North-Holland, ISBN 9780444534194.
Tait, W. W. (1967) Intensional interpretations of functionals of finite type I. J. Symb. Log.

32(2), 198–212.
Tarski, A. (1948) A Decision Method for Elementary Algebra and Geometry. Technical Report

R-109. USA: RAND Corporation.
Tarski, A. (1955) A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5,

285–309.
Telford, A. & Turner, D. (2000) Ensuring termination in ESFP. In Proceedings of the 15th

British Colloquium for Theoretical Computer Science, Journal of Universal Computer

Science, vol. 6(4).
TeReSe. (2003) Term rewriting systems. Cambridge Tracts in Theoretical Computer Science,

vol. 55. Cambridge University Press.
Termination competition. (2017) Accessed March 8, 2018. Available at: http://

termination-portal.org/wiki/Termination Competition.
Thiemann, R. & Giesl, J. (2005) The size-change principle and dependency pairs for

termination of term rewriting. Appl. Algebra Eng. Commun. Comput., 16(4), 229–270.
THOR. (2014) Accessed March 8, 2018. Available at: http://www.cs.upc.edu/∼albert/.
Turing, A. M. (1942) Available on http://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/

KAMIN LEVY/kamin-levy80spo.pdf. Some theorems about Church’s system. Unpublished

typescript reproduced in Gandy (1980a).
v. Heijenoort, J. (ed.) (1977) From Frege to Gödel, a Source Book in Mathematical Logic,

1879–1931. Harvard University Press.
van de Pol, J. (1993) Termination proofs for higher-order rewrite systems. In Proceedings

of the 1st International Workshop on Higher-Order Algebra, Logic and Term Rewriting,

Lecture Notes in Computer Science, vol. 816.
van de Pol, J. (1995) Two different strong normalization proofs? Computability versus

functionals of finite type. In Proceedings of the 2nd International Workshop on Higher-

Order Algebra, Logic and Term Rewriting, Lecture Notes in Computer Science, vol. 1074.
van de Pol, J. (1996) Termination of Higher-Order Rewrite Systems, PhD Thesis. NL: Utrecht

Universiteit.
van Oostrom, V. (1994) Confluence for Abstract and Higher-Order Rewriting, PhD Thesis. NL:

Vrije Universiteit Amsterdam.
Wahlstedt, D. (2007) Dependent Type Theory with First-Order Parameterized Data Types and

Well-Founded Recursion, PhD Thesis. Sweden: Chalmers University of Technology.
Walther, C. (1988) Argument-bounded algorithms as a basis for automated termination

proofs. In Proceedings of the 9th International Conference on Automated Deduction,

Lecture Notes in Computer Science, vol. 310.
Wanda. (2015) Accessed March 8, 2018. Available at: http://wandahot.sourceforge.net/.
Weiermann, A. (1998) How is it that infinitary methods can be applied to finitary mathematics?

Gödel’s T: A case study. J. Symb. Log. 63(4), 1348–1370.
Werner, B. (1994) Une Théorie Des Constructions Inductives, PhD Thesis. France: Université

Paris 7.
Wilken, G. & Weiermann, A. (2012) Derivation lengths classification of gödel’s T extending

Howard’s assignment. Log. Methods Comput. Sci. 8(1), 1–44.
Xi, H. (2002) Dependent types for program termination verification. J. Higher-Order Symbol.

Comput. 15(1), 91–131.
Xi, H. (2003) Applied type system (extended abstract). In Proceedings of the International

Workshop on Types for Proofs and Programs, Lecture Notes in Computer Science, vol.

3085.
Xi, H., Chen, C. & Chen, G. (2003) Guarded recursive datatype constructors. In Proceedings

of the 30th ACM Symposium on Principles of Programming Languages.
Zantema, H. (1995) Termination of term rewriting by semantic labelling. Fundam. Inform. 24,

89–105.
Zenger, C. (1997) Indexed types. Theor. Comput. Sci. 187(1–2), 147–165.

https://doi.org/10.1017/S0956796818000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000072

