A NOTE ON THE LATTICE OF DENSITY PRESERVING MAPS

SEJAL SHAH AND T.K. DAS

We study here the poset DP(X) of density preserving continuous maps defined on a Hausdorff sapce X and show that it is a complete lattice for a compact Hausdorff space without isolated points. We further show that for countably compact T_3 spaces X and Y without isolated points, DP(X) and DP(Y) are order isomorphic if and only if X and Y are homeomorphic. Finally, Magill's result on the remainder of a locally compact Hausdorff space is deduced from the relation of DP(X) with posets IP(X) of covering maps and $E_K(X)$ of compactifications respectively.

0. INTRODUCTION

Throughout the spaces considered (usually denoted by symbols X, Y) are Hausdorff and the maps are continuous. A map $f: X \to Y$ is called a *density preserving* map if Int $\operatorname{Cl} f(A) \neq \phi$, whenever Int $A \neq \phi$, $A \subseteq X$ ([1]). Two density preserving maps f and g with domain X and range Rf and Rg respectively are said to be equivalent $(f \approx g)$ if there exists a homeomorphism $h: Rf \rightarrow Rg$ satisfying $h \circ f = g$. We identify equivalent density preserving maps on a fixed domain X, and denote by DP(X) the set of all such equivalent classes of density preserving maps. The relation \leq defined on DP(X) by $g \leq f$ if there exists a continuous map $h: Rf \to Rg$ such that $h \circ f = g$ turns out to be a partial order relation. Recall that a perfect irreducible continuous surjection is called a *covering map*. In Section 1 we prove that if X is a compact space without isolated points, then DP(X) is a complete lattice. In Section 2, we determine the order structure of DP(X) by proving that for countably compact T_3 spaces X and Y without isolated points, DP(X) and DP(Y) are order isomorphic if and only if X and Y are homeomorphic. Section 3 is devoted to the natural relation of DP(X) with the poset IP(X) of covering maps on X ([3]) and the poset $E_K(X)$ of compactifications of a locally compact space X([2]). We show that if U is an open dense set in a compact space X then DP(X,U) = IP(X,U), where IP(X,U) (respctively DP(X,U) is the poset of all covering (respectively density preserving-) maps f on X satisfying $|f^{-1}(f(x))| = 1$ for each x in U. Using this result we deduce Magill's result which states that for locally compact spaces X and Y, $E_K(X)$ and $E_K(Y)$ are order isomorphic if and only if $\beta X - X$ and $\beta Y - Y$ are homeomorphic ([2]).

Received 12th January, 2005

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/05 \$A2.00+0.00.

S. Shah and T.K. Das

[2]

1. LATTICE DP(X)

We immediately have the following lemmas.

LEMMA 1.1. DP(X) is a partially ordered set.

LEMMA 1.2. Let $f, g \in DP(X)$ be such that $g \leq f$. Then the map $h : Rf \to Rg$ satisfying $h \circ f = g$ is a density preserving map.

PROOF: Let $A \subseteq Rf$ be such that $\operatorname{Int} A \neq \phi$. Then by setting $f^{-1}(A) = A^*$, we get $\phi \neq \operatorname{Int} \operatorname{Cl} g(A^*) = \operatorname{Int} \operatorname{Cl} (h \circ f)(A^*) \subseteq \operatorname{Int} \operatorname{Cl} h(A)$. Hence h is a density preserving map.

REMARK 1.3. Fibres of a surjective density preserving map $f: X \to Y$ are closed nowhere dense subsets of X, where X is a space without isolated points.

DEFINITION 1.4: For $f \in DP(X)$, define $\wp(f) = \{f^{-1}(y) \mid y \in Rf\}$.

From here onwards we assume that members of DP(X) are quotient maps. If X is compact, this condition is automatically satisfied.

LEMMA 1.5. Let $f, g \in DP(X)$. Then $f \leq g$ if and only if $p(g) \subseteq p(f)$.

PROOF: Let $f \leq g$ then there exists $h : Rg \to Rf$ satisfying $h \circ g = f$. If $g^{-1}(y) = A \in \wp(g)$ and if h(y) = x, then $A \subseteq (h \circ g)^{-1}(x) = f^{-1}(x)$. Conversely, suppose $\wp(g) \subseteq \wp(f)$, then for $z \in Rg$ take the unique $y \in Rf$ for which $g^{-1}(z) \subseteq f^{-1}(y)$ and define $h : Rg \to Rf$ by h(z) = y. Clearly h is continuous, $h \circ g = f$ and hence $f \leq g$.

NOTE 1.6. Two maps f and g are equivalent if and only if p(f) = p(g).

LEMMA 1.7. Let X be a compact space without isolated points. Then DP(X) is a complete upper semi-lattice.

PROOF: Let S be a non-empty subset of DP(X) and let $Z = \prod \{Rf \mid f \in S\}$. Consider the natural evaluation map $g: X \to Z$ such that $\pi_f(g(p)) = f(p)$, where $\pi_f: Z \to Rf$ is the f^{th} projection map. Set T = g(X), $\pi'_f = \pi_f|_T$ and define $g': X \to T$ by g'(p) = g(p), $p \in X$. It is easy to verify that g' is the least upper bound of S.

THEOREM 1.8. Let X be a compact space without isolated points. Then DP(X) is a complete lattice.

PROOF: Since a constant map onto its image is a density preserving map and any two such maps are equivalent, DP(X) has the minimum element. The required result now follows from Lemma 1.7 and the fact that a complete upper semilattice with minimum element is a complete lattice.

Density preserving maps

2. ORDER STRUCTURE OF DP(X)

The order structure of the poset DP(X) is always determined by the topology on X, that is, if spaces X and Y are homeomorphic then DP(X) and DP(Y) are order isomorphic. We show here that the converse is true when X and Y are countably compact T_3 spaces without isolated points. The following terms and results are along the lines of [2, Lemmas 6, 9 and 10]. Throughout this section, our spaces are without isolated points.

DEFINITION 2.1: A Map $f \in DP(X)$ is said to be

- (i) primary if $\wp(f)$ has at most one non-singleton member.
- (ii) dual if it is primary and p(f) contains exactly one doubleton.

NOTATION. If for some $f \in DP(X)$, $\wp(f)$ contains *n* non-singleton members, say K_1, K_2, \ldots, K_n , then *f* is denoted by $(f, K_1, K_2, \ldots, K_n)$. In particular, if *K* is a non-singleton closed nowhere dense set in *X*, then (f, K) denotes the natural density preserving map defined on *X* obtained by collapsing *K* to a point.

LEMMA 2.2.

- I A map $f \in DP(X)$, $f \neq id_X$ is primary (respectively dual) if and only if there do not exist dual points g, $h \in DP(X)$ (respectively $g \in DP(X)$) such that $f \wedge g = f \wedge h \neq f$ and the only dual points greater than $g \wedge h$ are g and h (respectively $f < g < id_X$).
- II For two closed nowhere dense subsets K_1 and K_2 of X,

$$(f, K_1) \wedge (g, K_2) = \begin{cases} (h, K_1, K_2), & \text{if } K_1 \cap K_2 = \phi \\ (h, K_1 \cup K_2), & \text{if } K_1 \cap K_2 \neq \phi \end{cases}$$

III An oder isomorphism $\varphi : DP(X) \to DP(Y)$ maps dual points to dual points.

DEFINITION 2.3: A bijection $f : X \to Y$ is called a *cln-bijection* if $\{f(A) \mid A$ is a closed nowhere dense subset of $X\} = \{B \mid B \text{ is closed nowhere dense subset of } Y\}$.

LEMMA 2.4. Let $\varphi : DP(X) \to DP(Y)$ be an order isomorphism. Then there exists a cln-bijection $F : X \to Y$ such that $f \in DP(X)$ implies $\wp(\varphi(f)) = \{F(A) \mid A \in \wp(f)\}$.

PROOF: Take $p \in X$ and choose distinct points $q, r \in X - \{p\}$. By Lemma 2.2(III), $\varphi(f, \{p,q\}), \varphi(g, \{p,r\})$ are dual points of DP(Y) say $(\overline{f}, \{a,b\})$ and $(\overline{g}, \{c,d\})$ respectively. Clearly $(\overline{f}, \{a,b\}) \wedge (\overline{g}, \{c,d\}) = \varphi(f \wedge g, \{p,q,r\})$. If $\{a,b\} \cap \{c,d\} = \phi$, then $(\overline{f}, \{a,b\}) \wedge (\overline{g}, \{c,d\}) = (\overline{f} \wedge \overline{g}, \{a,b\}, \{c,d\}); (f, \{p,q\}), (g, \{p,r\}), (h\{q,r\})$ are three dual points greater than $(f \wedge g, \{p,q,r\})$ and $(\overline{f}, \{a,b\}), (\overline{g}, \{c,d\})$

are two dual points greater than $(\overline{f} \land \overline{g}, \{a, b\}, \{c, d\})$ which is not possible. Therefore $\{a, b\} \cap \{c, d\} \neq \phi$, in fact it is a singleton, say $\{a\}$. Define $F : X \to Y$ by F(p) = a. Note that the choice of a does not depend on the choice of r and q. In general, if $f \in DP(X)$ is of the form (f, H) and if $\varphi(f, H) = \overline{f}$, then it is easy to verify that $\overline{f} = (\overline{f}, K)$ for some closed nowhere dense subset K of Y. Further, if $p, q \in H, p \neq q$ then $(g, \{p, q\}) \ge (f, H)$ which implies $(\overline{g}, \{a, b\}) \ge (\overline{f}, K)$ therefore $F(\{p, q\}) = \{a, b\} \subseteq K$ and hence $F(H) \subseteq K$. Similarly we can use φ^{-1} to define $\overline{F} : Y \to X$ and obtain $\overline{F}(K) \subseteq H$. Observe that $\overline{F} \circ F$ is identity on X. In fact, if $p \in X$ and $q \in X - \{p\}$, then $\varphi(f, \{p, q\})$ is dual point say $(\overline{f}, \{a, b\})$ and $F(p) \in \{a, b\}$. Assume F(p) = a. Suppose $\overline{F}(a) \neq p$. Then $\overline{F}(a) = q$. Choose $r \in X - \{q, p\}$ then there exists $c \in Y$ such that $\varphi(g, \{p, r\})$ is a dual point say $(\overline{g}, \{a, c\})$. Since $\overline{F}(a) \in \{p, r\}$ and $\overline{F}(a) \neq p$, therefore $\overline{F}(a) = r$, a contradiction. Similaraly, $F \circ \overline{F}$ is identity on Y. We have also shown in the process that if $\varphi(f, H) = (\overline{f}, K)$, then F(H) = K.

Recall that a subset A of countably compact T_3 space X without isolated points is closed if and only if whenever $B \subseteq A$ and $\operatorname{Cl}_X B$ is nowhere dense in X then $\operatorname{Cl}_X B \subseteq A$. Using this fact, Lemma 2.4 and the technique of [3, Theorem 1.1], we have the following.

THEOREM 2.5. Let X and Y be countably compact T_3 spaces without isolated points. Then DP(X) and DP(Y) are order isomorphic if and only if X and Y are homeomorphic.

NOTE 2.6. The map $f: Q \cup \{p\} \to Q \cup \{q\}$ in [3, example 3.9] defined by f(x) = x if $x \in Q$ and f(p) = q, where p and q are remote points of Q such that Stone's extension of no self-homeomorphism of Q maps p to q, is a cln-bijection between non countably compact spaces which is not a homeomorphism.

3. DP(X) AND IP(X)

DEFINITION 3.1: For a subset A in X we define

$$DP(X,A) = \left\{ f \in DP(X) \mid \left| f^{-1}(f(x)) \right| = 1, \text{ for all } x \in A \right\}.$$

NOTE 3.2.

- (i) DP(X, A) is a poset with respect to the order defined on DP(X).
- (ii) If $g \in DP(X, A)$, $f \in DP(X)$ and $g \leq f$, then $f \in DP(X, A)$.

THEOREM 3.3. Let A be a subset of a compact space X containing all isolated points of X. The DP(X, A) is a complete upper semilattice.

PROOF: Follows from Lemma 1.7 and Note 3.2(ii).

THEOREM 3.4. Let A_i be any subset of X_i containing all isolated points of X_i , i = 1, 2 and $\varphi : DP(X_1, A_1) \to DP(X_2, A_2)$ be an order isomorphism. Then there is a cln-bijection $F: X_1 - A_1 \to X_2 - A_2$.

PROOF: Follows along the lines of Lemma 2.4.

THEOREM 3.5. Let A be a dense subspace of a space X. Then every f in DP(X, A) is irreducible.

PROOF: Let $f \in DP(X, A)$. F be a proper closed subset of X and f(F) = Rf. Then for every $y \in (X - F) \cap A$, $|f^{-1}(f(y))| \neq 1$ which contradicts the choice of f.

COROLLARY 3.6. If X is compact and A is dense in X then DP(X, A) = IP(X, A). In particular, if X is locally compact the $DP(\alpha X, X) = IP(\alpha X, X)$, where αX is a compactification of X.

PROOF: Set $D_C(X, A) = \{f \in DP(X, A) \mid f \text{ is closed}\}$. Observe that $D_C(X, A) \subseteq IP(X)$ and $D_C(X, A) = DP(X, A)$.

NOTE 3.7. In general, if A is not dense then $D_C(X, A) \subseteq IP(X)$ need not be true. For example take X = [0, 1], A = [0, 1/2) and define $f : X \to X$ by

$$f(x) = \begin{cases} 2x, & 0 \leq x \leq \frac{1}{2} \\ \frac{3}{2} - x, & \frac{1}{2} \leq x \leq 1 \end{cases}$$
 Clearly $f \in D_C(X, A) - IP(X).$

We recall the following result [3, Lemma 3.11].

LEMMA 3.8. Let X be a locally compact space. The function $\psi : IP(\beta X, X) \to E_K(X)$ defined by $\psi(f) = \beta X | \varphi(f)$ is an order isomorphism, where $\beta X | \varphi(f)$ is the natural compactification of X obtained by collapsing each fibre in $\varphi(f)$ to a point.

We now deduce following result due to Magill [2, Theorem 12].

THEOREM 3.9. Let X and Y be locally compact spaces. Then $E_K(X)$ and $E_K(Y)$ are order isomorphic if and only if $\beta X - X$ and $\beta Y - Y$ are homeomorphic.

PROOF: If $E_K(X)$ and $E_K(Y)$ are ordered isomorphic, then by Corollary 3.6 and Lemma 3.8, $DP(\beta X, X)$ and $DP(\beta Y, Y)$ are order isomorphic and hence Theorem 3.4 gives a cln-bijection $F : \beta X - X \to \beta Y - Y$. Since all closed subsets in $\beta X - X$ are nowhere dense, F is a closed map. Similarly F^{-1} is also a closed map.

References

- [1] T. Das, 'On projective lift and orbit spaces', Bull. Austral. Math. Soc. 50 (1994), 445-449.
- K. Magill, 'The lattice of compactifications of a locally compact space', Proc. London Math. Soc. 28 (1968), 231-244.

0

[6]

[3] J. Porter and R. Woods, 'The poset of perfect irreducible images of a space', Canad. J. Math. 41 (1989), 193-212.

Department of Mathematics Faculty of Science The M.S. University of Baroda Vadodara - 390002 India e-mail: skshah2002@yahoo.co.in tarunkd@yahoo.com

6