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THE KAUFMANN-CLOTE QUESTION ON END EXTENSIONS OF
MODELS OF ARITHMETIC AND THE WEAK REGULARITY
PRINCIPLE

MENGZHOU SUN

Abstract. We investigate the end extendibility of models of arithmetic with restricted elementarity.
By utilizing the restricted ultrapower construction in the second-order context, for each n € N and any
countable model of BX,, >, we construct a proper X, ,-elementary end extension satisfying BX, ;. which
answers a question by Clote positively. We also give a characterization of the countable models of I, 5 in
terms of their end extendibility, similar to the case of B, ;. Along the proof, we introduce a new type of
regularity principle in arithmetic called the weak regularity principle, which serves as a bridge between the
model’s end extendibility and the amount of induction or collection it satisfies.

§1. Introduction. End extensions play a fundamental role in the model theory of
arithmetic and have been studied intensively. The classical MacDowell-Specker
theorem [13] showed that every model of PA admits a proper elementary end
extension. Around two decades later, Paris and Kirby [16] studied the hierarchical
version of the MacDowell-Specker theorem for fragments of PA. In fact, they
showed that for countable models, end extendibility with elementarity characterizes
the collection strength of the ground model.

THEOREM 1.1 (Paris—Kirby). Let M be a countable model of 1Ay. For eachn € N,
M satisfies B, > if and only if M has a proper X, »-elementary end extension K.

For the left-to-right direction, the above theorem does not explicitly specify what
theory the end extension K can satisfy. The amount of elementarity stated in the
theorem already implies K = I%,. Paris—Kirby’s proof actually indicates that K
cannot always satisfy IZ, |, since this would imply M | BX, 3. Moreover, for each
n € N, Cornaros and Dimitracopoulos [3] constructed a countable model of BZ,,»
which does not ¥, |-elementarily end extend to any model of IZ,,; ;. So with ¥, ,»-
elementarity, the theory that the end extension K can always satisfy lies between 1%,
and IX,,, 1, and the following question arises naturally.

QuesTiON 1.2 (Kaufmann-Clote). For n € N, does every countable model M =
BX,,. have a proper X, 2-elementary end extension K = BX,|?

The question was included in the list of open problems in [1, p. 12, Problem 33]
edited by Clote and Krajicek. It was first raised by Clote in [2], where he noted that
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2 MENGZHOU SUN

the same question in the context of models of set theory had previously been posed
by Kaufmann in [§]. In the same paper, Clote [2, Proposition 7] showed that every
countable model M = IX, ., admits a X, ,-elementary proper end extension to
some K = M-BZX, ;. which is defined as follows: M -BX, . is the class of formulas
of the form

Vx <ady p(x.y) = 3IbVx <ady<boe(xy).

where a € M and ¢(x.y) € X, with parameters in K. Cornaros and Dimitra-
copoulos [3] showed that every countable model M = BZ, ., hasa X, ,-elementary
proper end extension K = BX, (the parameter-free T, -collection). In this paper.
we give an affirmative answer to Question 1.2.

The original proof of Theorem 1.1 is based on a first-order restricted ultrapower
construction. The ultrapower is generated by a single element when viewed from
the ground model. One can show that, by relativizing the proof of the fact that
pointwise X, 1-definable models do not satisfy BZ, ; (e.g..[7. Lemma IV.1.41]),
such ultrapowers always fail to satisfy BX,, .| as required in Question 1.2. To address
this issue, we expand our model to a second-order structure that satisfies WKLy;
the end extension K will then be a second-order restricted ultrapower with respect
to this second-order structure.

For us, one of the motivations for studying this question is to find a model-
theoretic characterization of (countable) models of I%,,» analogous to Theorem 1.1.
Despite the fact that the end extension in Question 1.2 is insufficient for
characterization, a slight generalization of it will suffice. We will show that for
any countable model M |= 1A + exp, M | IE, ., if and only if M admits a proper
¥, 2-elementary end extension K = M-IZ, |, whose definition is similar to that of
M'BZnJrl .

The regularity-type principles are the keys to connecting end extensions and
the arithmetic theories satisfied by the ground model. Through the end extension,
we can employ a “nonstandard analysis” style argument to prove certain types of
regularity principles in the ground model. An example of such an argument related
to Question 1.2 is provided below.

PROPOSITION 1.3. For each n € N, let M |=1A¢. If M admits a proper X, »-
elementary end extension K |= BZ, 1|, then M satisfies the following principle:

Vx 3y <ap(x.y) = Iy <aITx o(x.y).
where a € M, p(x.y) € I1,.1 (M) and 3% x abbreviates Vb Ix > b.

PROOF. Suppose M |=Vx Iy < a p(x,y). Because M and K both satisfy B, |,
the formula Vx 3y < a ¢(x, y) is equivalent to some IT,,, ; formula in both M and K.
Then by X, »-elementarity, K = Vx Iy <a ¢(x, y). Pick some arbitraryd > M in K
and let ¢ < a such that K = ¢(d. ¢). Now foreachh € M. K | 3x > b p(x.c) and
it is witnessed by d. Transferring each of these formulas back to M by elementarity,
we have M |= 3x > b ¢(x,¢) for any b € M, which means M |= 3x p(x.¢).

We call the principle in Proposition 1.3 the weak regularity principle, and
denote it by WRy. The above proposition, together with the affirmative answer
to Question 1.2, implies that BX,,,, - WRII,;; foreach n € N.
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Similarly to the argument above, we will show that if the end extension K is a
model of M-IX, ., then the ground model M will satisfy some stronger form of the
weak regularity principle that implies 1, 5.

The paper is organized as follows. In Section 2, we present the necessary notations
and fundamental facts regarding models of arithmetic. In Section 3. we review the
definition of the second-order restricted ultrapower, and state some basic properties.
In Section 4, we provide an affirmative answer to Question 1.2 in Theorem 4.3,
and present the construction of an end extension that characterizes countable
models of IX,,, as mentioned above. In Section 5, we formally introduce the weak
regularity principle WR, and calibrate its strength within the I-B hierarchy. Finally,
combining the results of Section 4 and Section 5, we establish a model-theoretic
characterization of countable models of IX,, ;» analogous to Theorem 1.1.

§2. Preliminaries. We assume the reader is familiar with some basic concepts and
facts in the model theory of first- and second-order arithmetic [7, 9]. We reserve both
the symbols N and w for the set of standard natural numbers. For each n € N, let
¥, and IT,, be the usual classes of formulas in the arithmetic hierarchy of first-order
arithmetic. Given a model of first-order arithmetic M, X,(M) is the class of T,
formulas, potentially including parameters from M that are not explicitly shown.
I1, (M) and other formula classes are defined similarly. A formula is A, over M if
it is equivalent to both a ¥, and a I, formula in M; if M is clear from context, we
simply write A, for short. ¥, A I, is the class of formulas which is the conjunction
of a ¥, and a I, formula, and £, V I1,, is defined similarly. £¢(Z,) is the closure of
%, formulas under Boolean operations and bounded quantification. X%, I1%, A and
20(X?) are their second-order variants, respectively. Given a model of second-order
arithmetic (M, X), £0(M, X) is defined similarly to the definition of X, (M), where
the implicit parameters include both first- and second-order parameters in (M, X).
M9 (M, X) and A%(M, X) are defined similarly. Finally, 3 x ... is the abbreviation of
Vb3Ix>bh...

For each n € N, let BX, and IX, be the collection scheme and the induction
scheme for X, formulas respectively. We assume that all the BX,, include 1A, and
all the theories considered include PA™, which is the theory of the non-negative
parts of discretely ordered rings. Paris and Kirby [16, Theorem A] proved that
I¥,,, F BX, ;) F I, and none of the converses holds for each n € N. The hierarchy
of theories containing all the IZ, and B, is referred to as the I-B hierarchy. IZ° and
BX! are their second-order counterparts, respectively.

We adopt the standard pairing function, where the code of an ordered pair (a, b)
under this pairing function is denoted by (a, b). For any element ¢ in some model
M E 1A + exp, we identify ¢ with a subset of M by defining x € ¢ to mean the xth
digit in the binary expansion of c is 1. Fixing any proper cut / of M, we say that a set
A C I is coded in M if there is some ¢ € M suchthat A={x €l | M E x € c}.
We define

SSy;(M):={A C 1| Aiscodedin M}.

RCA, is the subsystem of second-order arithmetic consisting of I1X! and AJ-
comprehension. The system WKL, consists of RCAj and a statement asserting
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that every infinite binary tree has an infinite path. For each n € N, every countable
model of BZg ., admits a countable w-extension (i.e., an extension only adding
second-order objects) to some model satisfying WKLg 4 BZQ o [6].

Considering extensions of models of first-order arithmetic, we say that an
extension M C K of models of first-order arithmetic is X,-elementary, if all the
¥, (M) formulas are absolute between M and K, and we write M <5, K to denote
this. For any extension M C K and d € K, we write d > M if K = d > ¢ for any
¢ € M. Wesay that an extension M C K is an end extension, if foreveryd € K \ M,
wehaved > M .Thisisdenotedby M C. K,or M <5, K ifwealsohave M <5, K.
We say an extension M C K is proper if M # K.

Formally, for a model of second-order arithmetic (M, X), we view (M, X) as a
two-sorted first-order structure with number sort M and set sort X', where elements
in X are treated as syntactic objects and are not necessarily subsets of M. Under
this convention, we write (M, X) C (K.Y ) if it is an extension of the corresponding
two-sorted structure, i.e., M C K, X C )Y, and forany x € M and 4 € X,

(M X)Excd < (K.Y)|ExcA.

Here, on the left-hand side of the equivalence, the second-order object A4 is
interpreted by a subset of M while it is interpreted by a subset of K on the right-
hand side. In this paper, the second-order parts of our extensions usually remain
the same, i.e., X = ). We write (M, X) <50 (K.,Y) if all the (M, X) formulas
are absolute between the two structures. We say that an extension of second-order
structures is an end extension if its first-order part is an end extension. We denote
thisby (M, X) C. (K.Y).or (M, X) <ex0 (K.,Y)if we also have (M., X) <59 (K.Y).

§3. Second-order restricted ultrapowers. The second-order restricted ultrapower
resembles the usual ultrapower construction in model theory. Usually, in the model
theory of arithmetic, we take the index set for the ultrapower construction to be
the model itself, but instead of working on the class of all subsets of the model and
all functions from the model to itself, we only consider a restricted class of subsets
and functions. For completeness, we review the definition and some basic facts.
All the results in this section appear in [10] except Lemma 3.6, Corollary 3.7, and
Theorem 3.9. Throughout this section, we fix some arbitrary second-order structure
(M, X) = RCA,.

DEFINITION 3.1 (Second-order restricted ultrapower). The second-order part X’
of (M, X) forms a Boolean algebra under inclusion and Boolean operations. Let U/
be a non-principal ultrafilter on X’ whose elements are all cofinal in M, and F be the
class of all the total functions from M to M in X. Define an equivalence relation ~
on F by

f~g = {ieM]|[f(i)=g@)}elU.
where f, g € F. Let /U be the set of equivalence classes [ f] for /' € F modulo ~.

The interpretations of symbols in the language of first-order arithmetic in F /U are
defined by
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[f1+[gl=1f +gl.
[f1x[gl=1f xgl.
[f1<lg] <= {ieM|[f(i)<gli)} el

Here f + g and f x g are the pointwise addition and multiplication of / and g as
functions. M naturally embeds into F /U by identifying elements of M with constant
functions. Moreover, F /U is a proper extension of M by considering the equivalence
class of the identity function on M.

F /U admits a natural second-order expansion inherited from X, namely for
A€ X and [f] € F/U, we define

[fleAd < {ieM| f(i)eA}elU.

We denote the expanded structure of the ultrapower by (F /U, X). It is easy to show
thatfori € M and 4 € X,

MX)Eicd — (FIU.X)|=i€ A.

So we may view (F /U, X) as an extension of (M, X'), where the second-order part
remains the same. We call (F /U, X) the second-order restricted ultrapower of (M, X)
(with respect to /).

The first-order restricted ultrapower is defined similarly, but with 7 and ¢/ replaced
by the corresponding first-order definable classes. For example, in the construction
of an Aj-ultrapower, U is an ultrafilter on the class of A;-definable subsets, and F is
the class of A;-definable total functions.

From now on, we also fix an ultrafilter &/ on X whose elements are all cofinal
in M.

Generally, Lo$’s theorem does not hold for restricted ultrapowers, but a restricted
version of it does hold:

THEOREM 3.2 (Restricted Lo§’s theorem). Let (F/U,X) be the second-order
restricted ultrapower of (M, X). Then the following holds:

(1) If p(X) is a £0(M. X) formula, then
(F/UX) = o([f]) <= 34eU. AC{ie M| (M.X) [ o(f(0)}
(2) If p(x) is a A)(M. X) formula over (M, X), then

(F/U.X) Eo(lf]) <= {ie M|(M.X)Ee(f(i)} eU.
Here the right-hand side makes sense by the A?-comprehension of (M, X).

COROLLARY 3.3. (M, X) <y (F/U,Xx).

PrROOF. Let (M. X) |= Vx 3y w(x. y) for some y(x. y) € AJ(M, X). By choosing
the least witness y of w(x, y). we may assume w(x, y) defines the graph of a total
function f € F, so (M, X) = w(x, f(x)) for all x € M. In particular, for each
geFandx e M,

(M.X) |= w(g(x). fog(x)).
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Here f o g is the composition of / and g. By Theorem 3.2,

(F/U.X) = w(igl.[f o gl
for each [g] € F/U. So (F/U.X) EVx 3y w(x.y). .

We ensure that the ultrapower is an end extension of the ground model by the
following definition and lemma.

DEerFINITION 3.4. We say that U is additive, if whenever f € F is bounded, then
thereisa c € M suchthat {i € M | (i) =c} € U.

LemMA 3.5. IfU is additive, then F [U is an end extension of M.
Proor. If F/U |=[f] < b for some b € M, then we may define

0, 1ff(z) >b
f@). i f(i) <b
Then g is a bounded function in F and [g] = [f]. The additiveness of U/ implies
that there is some ¢ € M such that {i € M | g(i) = ¢} € U, thatis, F/U = [g] =

[f1=c. 4

The following lemma and corollary enable us to transfer the comprehension in
(M, X) into the ultrapower via X9-elementarity. and reduce the case of BZ,,,, to BE)
uniformly in the construction of our main result.

g(i) =

LeEmMMA 3.6. For each n > 1, if (M, X) satisfies ,-comprehension, then each
instance of ,- and I1,,-comprehension in (M, X ) is transferred to (F /U, X). Formally,
for any first-order formula ¢(x) in X,(M) or I1,(M), if there is some A € X such
that

(M. X) EVx (x € 4 ¢ ¢(x)).
then (F/U,X) EVx (x € A < p(x)) as well.

Proor. Fixsome (M, X) that satisfies ¥, -comprehension. We prove the statement
for all the ¢(x) in Z; (M) and I, (M) simultaneously by induction on k.

For k = 1, let ¢(x) be any formula in (M) or I1;(M), A € X and (M. X) &=
Vx (x € 4 ¢ ¢(x)).Since Vx (x € 4 +» p(x))isaIl)(M. X) formula. (F/U. X) |=
Vx (x € 4 <+ ¢(x)) by Corollary 3.3.

For the induction step, suppose k < n and the statement holds for all the formulas
in 2, (M) and I, (M). Take any ¢(x) := 3y w(x,y) € Ty (M) where w(x, y) €
I, (M). Suppose

(M. X)EVx (x € 4+ Fyy(x.y)) (3.6.1)

for some A4 € X. By X,-comprehension in (M, X), there exists some B € X such
that (M, X) satisfies

V(x.y) ({(x.y) € B <> y(x.p)). (3.6.2)
(3.6.1) and (3.6.2) in (M, X) imply that (M, X) also satisfies
Vx (x € 4« 3y (x,y) € B). (3.6.3)
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By the induction hypothesis and Corollary 3.3, (3.6.2) and (3.6.3) are transferred
to (F/U, X). Combining (3.6.2) and (3.6.3) in (F /U, X), we have

(F/U.X) =V¥x (x € 4+ Ty w(x, p)).
The case for p(x) € I, (M) is exactly the same. This completes the induction.

CoRrROLLARY 3.7. If (M. X) satisfies X,-comprehension for some n € N, then
M <s, ., F /U when viewed as an extension of models of first-order arithmetic.

ProOFE. Let M EVx 3Jy w(x,y) for some w(x.y)eIl,(M). By Z,-
comprehension in (M, X), there exists some 4 € X such that (M, X) satisfies
V(x.y) ({x.y) € 4 & p(x.p)).
Therefore, (M, X) also satisfies

Vx Iy (x,y) € A.

By Lemma 3.6 and Corollary 3.3, both formulas hold in (F /U, X), which implies
(F/U.x) =vx 3y w(x.y). 4

For technical reasons, we need another kind of ultrapower construction in the
model theory of arithmetic called the coded ultrapower, which appears in [15,
Theorem 9] and [11, Theorem 3]. We fix some M = I¥; and a proper end extension
M C. L such that L = TAy + exp.

DEFINITION 3.8.  Let be an ultrafilter on SSy,, (L) whose elements are all cofinal
in M, and let G be the class of all total functions mapping from M to L that are
coded in L. Then G/U is defined in the same way as F /U in Definition 3.1, and we
call it the M-coded ultrapower of L with respect to U.

For our purpose, only £0§’s Theorem for Ay formulas in G/U and the fact that
G/U =TA are needed. Their proofs essentially appear in [15, Theorem 11], but
using a slightly different definition of the coded ultrapowers.

THEOREM 3.9. Let G/U be a M-coded ultrapower of L. Then the following hold:
(1) Let o(X) be a Ag(L) formula, then
GIUEe([f]) <= {ieM|LEe(f()}eld
(2) G/U = 1.
§4. Constructions of end extensions. In this section, we present the constructions
of end extensions by the second-order restricted ultrapower construction. We first

answer Question 1.2 affirmatively. In view of Corollary 3.7, it suffices to deal with
the case in which (M. X) = B).

THEOREM 4.1.  For any countable model (M, X) |= BZ) + WKLy, there is a proper
end extension (M, X) Sext (K. X) = B).

We will give two proofs. In both of our constructions, the end extension is given by
a second-order restricted ultrapower construction. The first proof, presented below,
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was suggested by Tin Lok Wong. We ensure that the ultrapower of (M, X) satisfies
BX) by properly embedding it into a coded ultrapower as an initial segment. The
second proof, presented on Page 11, guarantees that the ultrapower satisfies BE?
directly by the construction of the ultrafilter. WKL, plays a central role in both
constructions.

THE FIRST PROOF OF THEOREM 4.1. First by [5, Theorem 4.6], there is a countable
end extension M C. L = 1A such that X = SSy,,(L).
Let

G :={g | g is a total function from M to L coded in L},
F:={f € X | f is a total function from M to M }.

For any ultrafilter &/ on X whose elements are all cofinal in M, let G/U and
(F/U,X) be the coded ultrapower (see Definition 3.8) and the second-order
restricted ultrapower with respect to U respectively. Since X = SSy,, (L), we may
regard F as a subset of G, and thus F /U naturally embeds into G/U.

We want to construct a sufficiently generic ultrafilter ¢/, such that both M and
F /U are proper initial segments of G/U. We construct ¢/ in w many stages. For
each k € N, we construct some 4, € X that is cofinal in M and Ay, D Ay.1. We
enumerate all the pairs (f, g) such that f € F and g € G as {(f%. &) }xen. and all
the bounded functions in F as {/y }rcn. Here we identify each element g € G with
some element in L that codes g.

Stage 0: Set 490 = M.

Stage 2k + 1 (F/U C. G/U): Consider

A=Ay n{x e M|LEg(x)< frlx)}.

Since L =1Ag, A € SSy,,(L) = X. If A4 is cofinal in M, then let Ay, = A.
Otherwise let A5, 1 = Ay, and proceed to the next stage.
Stage 2k + 2 (M C. F/U): Assume /i, is bounded by b € M. Then

(M. X) =3x 3y < b (x € Aoy Ai(x) = y).
Since (M, X) = BX?, there is some ¢ < b such that the set
Ac:={xeM | (M X)E x € Ayey1 N (x) =c}

is cofinal in M. A. € X by Al-comprehension in (M. X). Let Ay = A, and
proceed to the next stage.

Finally, let &/ := {4 € X | 3k € N A; C A}. It is not hard to see that U/ is an
ultrafilter and each element of U/ is cofinal in M. This completes the construction
of U.

Verification: First we verify that /U C. G/U and it is proper. We show that for
any g € Gand f € F,either G/U = [g] = [f] or there exists some ¢ € F such that
G/U = [g] = [g]. Take k € N such that ( f, gx) = (f. g). At Stage 2k, if

A:Azkﬂ{XGM|L|:g(x)<f(x)}
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is cofinal in M, then {x € M | L = g(x) < f(x)} € U. Let & € G be defined by

g(x). ifg(x) < f(x).
0.  ifglx) > f(x).

Then[g] € F/U and G/U = [g] = [g]. Otherwise, if 4 is bounded in M, then we are
forced to have {x € M | L = g(x) > f(x)} € U. By Theorem 3.9, G/U = [g] >
[f]- The fact that F/U C. G/U is proper follows from considering the constant
function g(x) = ¢ forany ¢ > M in L.

Next we verify that M C. F/U. By Lemma 3.5, it suffices to show that U/ is
additive with respect to F. Suppose & € F is bounded and 4 = /. for some k € N.
At Stage 2k + 2, the choice of Ay, forces

xeM|(M.X)E=h(x)=c}elU

for some ¢ € M, so U is additive with respect to F.

The fact that (M, X) <5 (F/U. x) follows from Corollary 3.3.

Finally we verify that (F/U.X) = BE). By Theorem 3.9. G/U |= IA,. Since
G/U is a proper end extension of F/U. (F/U.SSyx,,(G/U)) satisfies BXY. It
suffices to show that (F/U.X) embeds into (F/U.SSyyr,,(G/U)). For each

A€ X =SSy, (L). let a € L be the element that codes 4 C M. By Theorem 3.9
and Definition 3.1, it is not hard to prove that for each f € F,

(FIU.X) = [fled — (G/U.X)E[f]€a.

So we may embed the second-order part X' of (F/U,X) into SSyx,,(G/U) by
sending A4 to the subset of /U coded by a. Since (F/U. SSyx,,(G/U)) BXY. we
have (F/U. X) |= BXY. O

Even though it is simple, this construction does not reveal a syntactical proof of
the fact that BE,;» = WRIL,.i. We ensure that (F/U, X) |= BZY by embedding it
in a larger ultrapower G /U as an initial segment, and the core argument is wrapped
within the construction of G /U.

Our second construction directly guarantees each instance of BX{ in the
ultrapower, and therefore provides more insights. It relies on a simple yet powerful
lemma, which states that second-order universes of models of WKL, are closed
under the operation that produces choice functions for ranges of H?—deﬁnable multi-
valued bounded functions. The lemma also leads to a syntactical proof of the fact
that BX,,,, - WRII,, | (see Lemma 5.2).

LEMMA 4.2. Fix a model (M.X)}= WKLy. Let 0(x.y.z) € AS(M. X). If
(M, X) EVx 3y < f(x) Vz 0(x,y.z) for some total function | € X, then there
is a total function P € X such that

(M, X) =Vx (P(x) < f(x)AVz 0(x, P(x),2)).
ProoF. Consider the following tree T which is A%-definable in (M. X):

6 €T <= Vx,z <leno (c(x) < f(x) AO(x.0(x),2)).
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Obviously T is bounded by the total function f € &X', which means that for any
o € T and x < leno, we have 6(x) < f(x). We show that T is infinite. Let F(x) =
max, ., f(x'). Forany x € M, by IZ!, let g, € M be a coded sequence of length x
such that for any x’ < x and y’ < F(x),

o (x") =y = MX)EVz0K'. ). z)AVw<y =Vz0(x' w,z).
Then we have
(M X) EVX' < xVz(ox(x") < f(x)ANO(X. 0:(x),2)).

This means o, is an element of T of length x, so T is infinite. It is provable in WKL,
that every infinite bounded tree has an infinite path (see [17. Lemma IV.1.4]). Take
any such infinite path P € X of T. Clearly P satisfies the requirement as in the
statement. o

THE SECOND PROOF OF THEOREM 4.1. We construct an ultrafilter &/ on X in @
many stages. Along the construction, we gradually guarantee that the ultrapower
(F/U.X) |= BZ) and that i/ is additive.

Enumerate all the triples {(3z 6c(x.y.z). fx.2k) }ken. Where Ox(x.y,z) €
Ag(M, X) and f.g are total functions in X'. Enumerate all the bounded total
functions in X as {/ }ren. For each k € N, at Stage k we construct a cofinal set
Ay € X such that Ay D A, for all k € N, and the resulting ultrafilter U := {4 €
X |3k eNAD A}

Stage 0: Set 49 = M € X.

Stage 2k +1 ((F/U. X) = BZ(I)): At these stages we want to guarantee the
following instances of BZ(I) in (F/U, X):

Vy <lgi] 3z Oc([f k). y.2) = 3bVy <[gi] Iz < b Oc([fk]. y. 2).

The general idea is that we first try to “force” the consequent of the implication above
to be true in (F /U, X). If we succeed, then the entire instance is true. Otherwise, we
apply Lemma 4.2 to argue that the antecedent is already guaranteed to be false in
the ultrapower.

Consider the X9-definable set

A=AyN{xeM |IbVy < g (x)Iz<bO(fr(x).y.2)}.

It is provable in RCA that every cofinal X¢-definable set has a cofinal subset in
the second-order universe (see [7, Theorem 1.3.22]). If A4 is cofinal in M, then let
A1 € X be such a cofinal subset of 4 and proceed to Stage 2k + 2. If 4 is not
cofinal in M, then we let Ay, = Ay and proceed directly to Stage 2k + 2.

Stage 2k +2 (Additiveness of Uf): This part is exactly the same as the
construction of Stage 2k + 2 in the first proof of Theorem 4.1.

Finally, let & := {4 € X | 3k € N A D A;}. This completes the construction
of U.

Verification: Let (F/U, X') be the corresponding second-order restricted ultra-
power. The fact that (M, X) 4«:,2(2) (F/U. Xx) follows from the exact same reasoning

as in the first proof of Theorem 4.1. To show that (F U, X) = BXY, consider
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arbitrary instance of BX! in (F/U. X):
Vy <[gl3z 0([f1.y.2) = 3bVy <[g] Iz < b O(f].y.2).

where 0 € Ag(M, X)and[f].[g] € F/U.Here without loss of generality, we assume
that [ /] is the only first-order parameter in . Assume that at Stage 2k + 1, we
enumerate (3z 0, (x, . 2), fr.gx) = (32 0(x, y, 2), f. g). and Ay, € X is the cofinal
subset of M we obtained from the previous stage. Suppose we are in the first case of
the construction at this stage, i.c.,

A=AynN{xe M |3IbVy<gx)Iz<bO(f(x),y,2)}

is cofinal in M, then by the construction there exists some cofinal subset of 4 in
U. By Theorem 3.2, (F/U,X) = 3b Vy <[g] 3z < b O0([f]..z), so the instance
of BX{ is true. If we are in the second case, assuming that A is bounded by some
d € M. then

(M, X)) EVx>d (x € Ay — Vb Iy < g(x)Vz < b -0(f(x),y.2)).
By BX! in (M. X), this is equivalent to:
(M, X) EVx>d3Jy<g(x)(x €Ay —Vz-0(f(x),y.2)).

By Lemma 4.2, there is a total function P € X" such that

(1) (M. X) EVx>d P(x) < g(x).
(2) M. X) EVx>d (x € Ay — Vz =0(f(x), P(x).z)).

Since P is a total function, [P] € F/U. By Theorem 3.2, (1) implies (F/U, X) =
[Pl <Igl

We claim that (F/U, X) = Vz =0([f].[P]. z). Suppose not, then by Theorem 4.1,
thereissome A’ € U suchthat A’ C {x € M |3z 0(f (x). P(x).z)}.Butby(2), 4’ N
Ay is bounded by d, which contradicts the fact that A’ N Ay, € U. So (F/U, X) =
Vz =0([f].[P]. z), and the instance of BZ(I) we considered is vacuously true. O

THEOREM 4.3. For each n € N and any countable model M |= B, ., there is a
X, 12-elementary proper end extension M <.s, ., K = BZ, 1.

Proor. We first expand M to a second-order structure satisfying BEg by
adding all the X,-definable sets into the second-order universe, then we further
w-extend it to some countable (M. X) = BZS + WKL,. By Theorem 4.1, there is an
ultrapower extension (M, X) Sex (F/U. X) thatsatisfies BE{. Since all £, -definable
subsets of M are in X, (M, X) satisfies £,-comprehension and M <.s ., F/U by
Corollary 3.7.

To show that F/U = BX,. |, suppose that F/U = Vx < [g] Ty 0(x, y,[f]) for
some [g] € F/U and 6 € I1,,, where [f] € F/U is the only parameter in 6. By
I1,-comprehension in M, let A € X be so that (M, X) satisfies

n+2

V(x.y.z) ((x.y.2) € 4 < 0(x. p.2)).
The structure (F /U, X) satisfies the same formula by Lemma 3.6, and thus
(F/U.X) = Vx < [g] 3y (x.3.[f]) € 4.
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By Bx? in (F/U. X).
(F/U.X) =3 vx <[g] 3y <b (x.p.[f]) € 4.
which means F/U | 3b Vx < [g] dy < b O(x.y),s0 F/U = B, ;. -

We now proceed with the construction of end extensions in order to characterize
countable models of IX,, ». We first define M -I1%,.; for an end extension M C. K,
and introduce some equivalent definitions of it.

DEerNITION 4.4, For each n € N, let M, K be models of Ay 4+ exp and M C. K.
We say K = M-IZ, . if for any o(x) € £, 1(K)anda € M,
KEp0)AVx<a(p(x) = px+1) = Vx<ap(x).
Notice that we allow parameters from K in ¢, while the bound ¢ must be in M.

LemMMA 4.5. Foreachn € N, let M be amodel of 1Ag + exp, K =15, and M C. K.
Then the following are equivalent:
(1) K ’: M'Izn+1.
(ii) Forany ¢(x) € X, 1(K)anda € M,

K E3deVx <a(px) < xec).
(iii) Forany O(x.y) € I, (K)anda € M,
KE3IVx<a@yOo(x,y) < Iy<bixy)).

ProoFr. We show (i) < (ii) and (ii) < (iii). To show (i) = (ii), first by modifying
a standard argument, one can show that (i) implies the least number principle for
1,1 (K) formulas that are satisfied by some element of M. Then we can pick the
least ¢ < 2 € M such that

K EVx<a(p(x)—xec).

Such ¢ will code ¢(x) for x < a by the minimality of ¢. To show (ii) = (i), take
some ¢ € M that codes {x < a | K = ¢(x)}. Then, one can prove the instance of
M-IZ, | for o(x) by replacing ¢ (x) with x € ¢ and applying K |= 1A,.

To show (ii) = (iii), take some ¢ € M that codes {x < a | K =3y 0(x.y)} by
(ii). Consider the following X, | formula (over IZ,,):

D) :=FbVx<v(xcceIy<bi(x.y)).

It is not hard to show that K = ®(0) A Vv (®(v) — ®(v + 1)). By M-1Z,, (from

(i) = (i)) we have K = ®(a), which implies (iii). Finally, to show (iii) = (ii), let

o(x) :=3y 0(x. y) for some 0 € I1,(K). By (iii), there is some » € K such that
KEVx<a@y0O(x,y) < dy<bo(x,y)).

By IZ, in K, there is some ¢ € K that codes {x < a | K =3y < b 0(x,y)}. This

element ¢ will serve as a witness for (ii). -

The condition (ii) in Lemma 4.5 was first studied in [12] by Kossak. An extension
M C K is called an (n 4 1)-conservative extension if M <, ,, K and it satisfies the
condition (ii) in Lemma 4.5. In the same paper, Kossak showed that every countable
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model of IZ,,,, has a proper (n + 1)-conservative extension. The construction is also
a mild generalization of [2, Proposition 7]. For the sake of completeness, we include
a proof of this result here, employing the framework of the second-order restricted
ultrapowers.

THEOREM 4.6. For any countable model (M, X) |= 12(2)7 there is a proper end
extension (M, X) ey (K. X) such that for any £)(K, X) formula ¢(z) and a € M.

the set {z < a | (K.X) E ¢(z)} is coded in K.

PrOOF. We ensure that the ultrapower (F /U, X) satisfies the coding requirement
by maximizing each X{-definable subset of (F/U.X) that is bounded by some
element of M.

Enumerate all the pairs {(3y 0x (x. y. z). a) }ren such that 6 (x. y. z) € AJ(M. X)
and a; € M. Enumerate all the bounded total functions in X as {/ }xen. At each
stage k we construct a cofinal set 4, € X such that 4y D 4, for all k € N, and
we define the ultrafilter i := {4 € X | Ik e N A D A;}.

Stage 0: Set 49 = M.

Stage 2k + 1 (Coding Z(l) sets): Consider the following Hg formula where ¢ < 2%:

O(c) :=3x (x € Ay AVz € ¢ 3y O(x. y.2)).

Since Ay is cofinal in M, (M. X) |= ®(0). By IZ in (M. X'). there exists a maximal
co < 2% satisfying the formula above. Similar to the second proof of Theorem 4.1,
let A5, € X be a cofinal subset of the following Z(l)-deﬁnable subset of M:

{xeM|(M.X)[Ex € Ay AVz € ¢o Ty O(x.y.2)}.

Stage 2k + 2 (Additiveness of I/): This part is exactly the same as Stage 2k + 2
in the proof of Theorem 4.1.

Finally, letUf := {4 € X | 3k € N A D A, }. This completes the construction.

Verification: Let (F/U, X) be the corresponding second-order restricted ultra-
power. The fact that (M, X) ﬁe,zg (F/U. X) follows in exactly the same way as in
the second proof of Theorem 4.1.

To show the coding requirement of (F/U.X). consider any X! formula
3y 6([f].y.z) where 6 € AY(F/U.X) and a € M. Without loss of generality, we
may assume that [ f] € F /U is the only first-order parameter of 6.

Let k € N be such that the pair (3y 6(f(x).y,z),a) was considered at Stage
2k + 1 of the construction. We claim that the maximal ¢y, € M we obtained in the
construction codes {z < a | (F/U.X) =3y 0([f1.y.2)}.

On the one hand, for each z < @ such that z € ¢, since 4y, € U is a subset of
{xeM|(MX)EIyo(f(x),y.2)}.(F/U,X) =3y O0([f]. y.z) by Theorem 3.2.
On the other hand, for each z’ < a such that z’ ¢ co, if (F/U. X) E 3y 60([f].y.2).
then by Theorem 3.2 again there is some B € U such that

BC{xeM|(MX)EIo(f(x).yz)}
Since B N Ayiy1 € U, B N Ay is cofinal in M. Then we have

(M. X) = 3x(x € Ay AVz € coU{z'} 3y 0(f (x).y.2)).
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which contradicts the maximality of ¢¢ in the construction. So (F/U,X) =
=3y O([f].y.2") for z' & cy. -

THEOREM 4.7 (Kossak [12]).  For eachn € N and any countable model M = 1%, 5,
there is a ¥, y-elementary proper end extension M <5, , K EM-IZ, .

Proor. The proof is mostly the same as that of Theorem 4.3. We expand M
to a second-order structure (M, X) satisfying IES + RCA by adding all the A, ;-
definable subsets of M into the second-order universe. Such (M, X) satisfies %,-
comprehension. By Theorem 4.6, there exists an ultrapower extension (M, X) ﬁe,zg

(F/U.X) that codes all the Z(l)-deﬁnable subsets bounded by some element of M.
Since all the X,,-definable sets of M arein X, (M, X) satisfies X,-comprehension and
M <.s, , F/U by Corollary 3.7.

To show that 7 /U = M-I, ., we only need to show that F /U satisfies condition
(i) in Lemma 4.5. Let ¢(x) := 3y 0(x, y,[f]) be any X, | formula, where 6 € I,
and [f] € F/U is the only parameter in 6. Since (M, X) satisfies X, -comprehension,
there is some A € X such that (M, X) satisfies

Vix,y.z) ((x,y,z) € 4+ 0(x,y.2)).
The same formula holds in (F /U, X) by Lemma 3.6, and thus
(F/U.X) = Yx 3y (x. 3. [f]) € 4 < ().
For any a € M, there is some ¢ € K that codes
{x<a|(F/U.X) 3Ty (x.y.[f]) € 4}
Such ¢ also codes {x < a | F/U = p(x)}. -

In Section 5, we will prove the converse of Theorem 4.7 (see Theorem 5.9). We
will relate the end extension constructed in Theorem 4.7 to the weak regularity
principle, analogous to Proposition 1.3. Notably, the course of the proof will reveal
some non-trivial syntactic consequences.

§5. The weak regularity principle. In this final section, we introduce the weak
regularity principle WR, a variant of the regularity principle, and determine its
strength within the I-B hierarchy.

Mills and Paris [14] introduced the regularity principle Ry to be the universal
closure of the following formula:

Iy Iy <ap(xy) = Iy <aFx plx, p).
For any formula class T, let
RI'=T1A0U{Ry | p € T}.

Itisshownin[14] that RII, < RZ, .| < BX, ., foreach n € N. The weak regularity
principle is defined by replacing the 3°x by Vx in the antecedent of implication in
Royp.

DEFINITION 5.1. Let ¢(x, y) be a formula in first-order arithmetic with possibly
hidden variables. The weak regularity principle WRp denotes the universal closure
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of the following formula:
Vx dy <aplxy) = Iy <aIFxplx ).

For any formula class I', define
WRTI =I1A U {WRyp | p € T}.

The status of the strength of the weak regularity principle among the I-B hierarchy
is more complex in comparison with that of the regularity principle. The principles
for most natural classes of formulas are equivalent to the collection schemas, whereas
induction schemas are only equivalent to the principle for a highly restricted subclass
of 2¢(Z,41) formulas. We will show that for eachn € N, WRX((X,) and WR(Z, 41 V
I1,;) are both equivalent to B, ,. and WR(Z, | AIl,,1) is equivalent to IZ, 5.

The weak regularity principle may also be viewed as an infinitary version of the
pigeonhole principle (PHP), and similar phenomena arise with the strength of the
pigeonhole principle in the I-B hierarchy. Dimitracopoulos and Paris proved in [4]
that PHPX, . ; and PHPII,_ are equivalent to BX, . and that PHP(X,.; V I1,,1)
and PHPZ((Z, ) are equivalent to IZ,, .

LEMMA 5.2. Foreachn € N, BZ, ., - WRII, ..

PrOOF. We only show the case of # = 0 and the rest can be done by relativizing
to the X,-universal set.

Let M = BX,. We first expand M to a second-order structure satisfying BZg by
adding all A;-definable subsets of M, then further w-extend it to (M, X) satisfying
WKL, + BZY.

Suppose M |=Vx3dy<a Vz0O(x,y.z), where 0(x,y,z) € Ag(M). Applying
Lemma 4.2 for 6 and f(x) = a as a constant function, we obtain a total function
P € X such that

(M, X) =Vx (P(x) <aAVz0(x, P(x),z)).
By BXS. there is some yy < @ such that there are cofinally many x satisfying P(x)
yo. which implies M |= 3y < a 3xVz 0(x.y.z). So M = WRII;.
COROLLARY 5.3. Foreachn € N,BZ,.» F WR(Z, 1 VII,.1).

Proof. Fix n €N and let M EBZ, 5. o(x,y) €, (M) and w(x.y) €
I, (M). Suppose M =Vx Iy < a (p(x.y)Vy(x.y)) for some a € M. If
MEVx> b Jy< a y(x,y) for some b € M, then by Lemma 52, M |
3y < a 3 x y(x, y) and the conclusion holds. Otherwise, M = 3%x Iy < a p(x. y).
then by RE,, 1. M |= 3y < a 3%x o(x. y) and the conclusion holds again. -

|

REMARK. There is also a direct model-theoretic proof similar to Proposition
1.3. One only needs to notice that over BE,,;, Vx Iy < a (p(x,y) Vw(x,yp)) is
equivalent to a IT,,;, formula.

LeEMMA 5.4. For eachn € N, WR(Z, ATL,) FIZ, 1.

PrOOF. We prove for each k < n, that IX; + WR(Z, AIl,) - IZ; ;. Then the
lemma follows by induction on k. Let M = IZ; + WR(Z, ATl,) and assume
M = —IZ;. . Then there is a proper cut I C M defined by some formula ¢(y) :=
Ix 0(x,y). where 0(x, y) € TI;(M). Let

ulx,y) =vy <y ax’ <x06(x'.y").
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Then u(x,y) € I (M) over IZ;. Define
J={yeM|ME3xulxy}

It is not hard to show that J is closed downward, closed under successors, and J C [
by its definition, that is, J is a proper cut of M contained in 1.

Forany x € M,if M = u(x,y) forall y € J, then y € J is defined by u(x, y) in
M, which contradicts our assumption that M |= IZ;. So for each x € M, we may
take the largest y € J satisfying u(x, y) by IZ;. Fixing some arbitrary a > J, we
have

M EVx 3y <a (ulx.p) A—pulx. y +1)).
Applying WR(Z, AT1,), there is some yo < a such that
M = 3x (u(x. yo) A —u(x. yo + 1)).

By the definition of u(x, y), this implies yy € J and yo + 1 ¢ J, which contradicts
the fact that J is closed under successors. So M = 1%, 4. -

LeEmMA 5.5 (Independently by Leszek A. Kotodziejczyk). For each n € N,
WRZ)(Z,) F BE, 5.

ProOF. Let M = WRE((Z,). We show M = RII,, which is equivalent to BZ,,,».
By Lemma 5.4, M |=1Z,,,. Suppose M |=3x Iy < a ¢(x.y) for some ¢ €
IT,(M ), and without loss of generality, we assume M = 3y < a (0, y). For each
z € M, we find the largest x < z such that M = 3y < a ¢(x, ), and associate z
with all the witnesses y < @ such that ¢(x, ). Formally,

MEVzIy<adx<z(plxpy)AVx € (x,z) Ty <aepx'.y),
where (x, z) refers to the open interval between x and z. By WRZ(Z,,).
MEIy<aIFzax <z (plx.y) AVx € (x.2) -3y <a o(x'.y)).
which implies M = 3y < a Ix ¢(x. p). =
THEOREM 5.6. For eachn € N, WRZ((Z,) & WR(Z, 11 VIL,41) & B, 0.

PrOOF. The fact that WRX((Z,) - BZ,, follows from Lemma 5.5. The fact that
BZ, ;2 F WR(Z, 1 VI, ) follows from Corollary 5.3. For WR(Z, 1 VII,.1) F
WRZ((Z,). note that every Zy(Z, ) formula is equivalent to some A, | formula over
IZ, (see [7. Lemma 1.2.50]), and WR(Z, ;| VII,,) - IZ, by Lemma 5.4. 5

The following proposition is an analog of Proposition 1.3 for M <.s, ., K =
M-1Z, . and WR(Z, .1 AL, ). It also leads to a model-theoretic proof of the fact
that IZ,,+2 }_ WR(ZH+1 /\ Hn+1).

PROPOSITION 5.7. Let M |= 1Ay + exp. For each n € N, if there is a proper X, »-
elementary end extension M <5, , K = M-1Z,, . then M |= WR(Z,21 AlL41).

Proor. LetO(x.y.z) € L,(M).o(x.y,w) € I1,(M) and

o(x.y) =Vz0(x.y.2) AJw o(x, y.w).
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Suppose M =Vx dy < a p(x,y) forsome a € M. Over I, |, this is equivalent to
the following IT,,,, formula:

VxVh3y <a (Vz<bO(x.y.z) AJw a(x. y,w)).

M =1%,,; by Theorem 1.1, so both M and K satisfy the above formula by
elementarity. Pick some arbitrary d > M in K, then

KEVhIy<a(Vz<bO(d y.z) NJwa(d y w)).
By Lemma 4.5(iii), there is some b € K such that
KEVy<a(Nz0(d y.z) < Vz2<b0(dy.z)),
which implies
KEIy<a(Vz0(d y.z) NJwa(d. y,w)).

Pick a witness ¢ < a in M such that K EVz 0(d.c,z) AJw a(d.c,w), ie.,
K = ¢(d.c). Now for each b € M. K = 3x > b ¢(x.c), which is witnessed by
d. Transferring each of these formulas to M, we have M |= 3x > b ¢(x, ¢) for any
beM.SoM =3 p(x.c). 5

THEOREM 5.8. Foreachn €¢ N, WR(Z,;1 ATl ) < IZ,.5.

ProOF. The fact that WR(Z, .1 ATl,41) - 1Z,» follows from Lemma 5.4. For
the other direction, given any countable model M = I, ., there is a proper end
extension M <cx,,, K F M-IZ,,; by Theorem 4.7, and then M = WR(Z,41 A
I1,.,) by Proposition 5.7. =

ReEMARK. In H4jek—Pudlak [7. Lemma 1.2.49], it was shown that for each n € N,
every Xo(Z,1) formula is equivalent to the following normal form:

Orup < vy ... Qruy < v WUy oo g, v1 o Vg w1 oWy,

where k,/ € N, each Q; fori < kiseither V or 3. ¥ is a Boolean combination of X,
formulas and the variable sets {u; },<x. {vi }i<k and {w; };<; are pairwise disjoint.

Our proof of Proposition 5.7 can be refined to show that I%,., - WR¢, where
e(x,y) € Zo(X,11), and if written in the normal form above, x does not appear in
{vi}i<k.1.e., xisnot permitted to appear as the bound of any bounded quantifiers in
front of a Boolean combination of ¥, ; formulas. In contrast, the instance ¢(z, y)
used to prove WRZ((Z,) - BX, - in Lemma 5.5 starts with dx < z explicitly.

Finally, we prove the converse of Theorem 4.7, and establish the characterization
of countable models of 1X,,, as promised.

THEOREM 5.9. Let M be a countable model of 1Ay. For eachn € N, M = 15,5 if
and only if M admits a proper X, -elementary end extension K |= M-1%, ;.

Proor. The direction from left to right follows by Theorem 4.7. For the
other direction, if M <.s,,, K = M-IZ, ;1. then M = WR(Z, ATL,,;) by
Proposition 5.7, and thus M |= 1%, by Theorem 5.8. -

The main remaining problem now is to find a purely syntactic proof of
Theorem 5.8. We conjecture that a more refined tree construction similar to the
approach in Lemma 4.2 would solve the problem.
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PrOBLEM 5.10. Give a direct proof of the fact that 1Z,,, - WR(Z, 1 ATl,41)
(and also 12,1, - WR where p(x,y) € o(Z,41) as described in the remark after
Theorem 5.8) without using end extensions.
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