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In Rayleigh–Bénard convection, the size of a flow domain and its aspect ratio Γ (a ratio
between the spatial length and height of the domain) affect the shape of the large-scale
circulation. For some aspect ratios, the flow dynamics includes a three-dimensional
oscillatory mode known as a jump rope vortex (JRV); however, the effects of varying
aspect ratios on this mode are not well investigated. In this paper, we study these aspect
ratio effects in liquid metals, for a low Prandtl number Pr = 0.03. Direct numerical
simulations and experiments are carried out for a Rayleigh number range 2.9 × 104 ≤
Ra ≤ 1.6 × 106 and square cuboid domains with Γ = 2, 2.5, 3 and 5. Our study
demonstrates that a repeating pattern of a JRV encountered at aspect ratio Γ ≈ 2.5 is the
basic structural unit that builds up to a lattice of interlaced JRVs at the largest aspect ratio.
The size of the domain determines how many structural units are self-organised within
the domain; the number of the realised units is expected to scale as Γ 2 with sufficiently
large and growing Γ . We find the oscillatory modes for all investigated Γ ; however, they
are more pronounced for Γ = 2.5 and 5. Future studies for large-aspect-ratio domains of
different shapes would enhance our understanding of how the JRVs adjust and reorganise
at such scaled-up geometries, and answer the question of whether they are indeed the
smallest superstructure units.

Key words: Bénard convection, turbulent convection

1. Introduction

Thermal convection manifests not only in various geophysical and astrophysical systems,
but also in smaller-scale phenomena ranging from industrial processes to our daily
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lives such as household heating. One of the classical and probably the most intensively
investigated configurations of natural thermal convection is Rayleigh–Bénard convection
(RBC) (Bodenschatz, Pesch & Ahlers 2000; Ahlers, Grossmann & Lohse 2009; Chillà &
Schumacher 2012). In RBC, the heated and cooled surfaces are placed orthogonal to the
gravity vector, and the fluid layer is heated from below and cooled from above. Thermal
expansion causes warm fluid to rise and cool fluid to sink. At sufficiently large Rayleigh
number Ra ≡ αgΔH3/(κν), the resulting turbulent convective flow self-organises through
an inverse energy cascade from small-scale thermal turbulence to large flow structures.
Here, α is the isobaric thermal expansion coefficient, ν is the kinematic viscosity, κ is
the thermal diffusivity, Δ is the temperature difference between the heated and cooled
surfaces, H is the distance between these surfaces (i.e. the height of the container),
and g denotes the acceleration due to gravity. Investigation of thermal convection in
low-Prandtl-number fluids (Prandtl numbers Pr � 1) is of particular importance for a
better understanding of convection on the surfaces of stars, where Pr can be as low as 10−8,
and in the case of liquid metals, for numerous technical applications, e.g. the advancement
of cooling technology (see e.g. Frick et al. 2015; Schumacher, Götzfried & Scheel 2015;
Scheel & Schumacher 2016; Teimurazov & Frick 2017; Teimurazov, Frick & Stefani 2017;
Zürner et al. 2019; Zwirner et al. 2020a, 2022; Pandey et al. 2022).

In RBC, at sufficiently large Ra, the flow is self-organised into a large-scale circulation
(LSC), or a turbulent thermal wind, the concept of which is an important ingredient in
the heat and momentum transport theory (Grossmann & Lohse 2000, 2001, 2011), and
boundary-layer theory for natural thermal convection (Shishkina et al. 2015; Ching et al.
2019; Tai et al. 2021). The resulting flow structures depend strongly on the Rayleigh
number Ra, which is a measure of the thermal forcing that drives convection in the system,
and on the Prandtl number Pr ≡ ν/κ , which describes the diffusive properties of the
considered fluid. In addition, the geometric characteristics of the container, especially the
shape of the container and, in particular, the aspect ratio Γ of its spatial length L and
height H, Γ ≡ L/H, influence the global flow structure and the mean characteristics of
the flow (Shishkina 2021; Ahlers et al. 2022).

Turbulent RBC in a cylindrical container with equal height and diameter (aspect ratio
Γ = 1) is the most extensively studied. For containers with Γ ≈ 1, the principal structure
of the LSC can be delineated as follows. There exists a vertical plane (called the LSC
plane), in which the LSC is observed as a big domain-filling roll with two smaller
secondary rolls in the corners, while in the orthogonal vertical plane, the LSC for this
geometry of the container is seen as a four-roll structure, with an inflow at mid-height
(Shishkina, Wagner & Horn 2014). Not only is the LSC generally unsteady, but also
the LSC path can exhibit dynamic behaviour. Thus in containers with Γ ≈ 1, the LSC
can display various modes of periodic or chaotic oscillations that can take the form of
sloshing, precession and torsion (Cioni, Ciliberto & Sommeria 1997; Funfschilling &
Ahlers 2004; Xi, Lam & Xia 2004; Sun, Xia & Tong 2005; Brown & Ahlers 2006,
2007; Xi & Xia 2007, 2008; Funfschilling, Brown & Ahlers 2008; Zhou et al. 2009;
Sugiyama et al. 2010; Assaf, Angheluta & Goldenfeld 2011; Stevens, Clercx & Lohse
2011; Wagner, Shishkina & Wagner 2012; Sakievich, Peet & Adrian 2020; Cheng et al.
2022). The sloshing mode is associated with the motion of the LSC plane in the radial
direction, while the precession and torsion modes are related to the azimuthal motion
of the LSC plane (Horn, Schmid & Aurnou 2021; Cheng et al. 2022). In the precession
mode, the entire LSC plane drifts in the azimuthal direction, while in the torsion mode,
the azimuthal motion of the LSC plane in the upper half of the container is generally

977 A16-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

93
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.936


The structural unit of oscillatory large-scale circulation

in the direction opposite to the motion of the LSC plane in the lower half of the
container.

In slender containers with aspect ratio Γ < 1, a single big-roll structure of the LSC is
not as stable as in the case Γ = 1 (Xi & Xia 2008; Weiss & Ahlers 2011, 2013; Zwirner,
Tilgner & Shishkina 2020b; Schindler et al. 2022). For Γ < 1, the turbulent LSC can be
formed of several dynamically changing convective rolls that are stacked on top of each
other (van der Poel et al. 2012; Zwirner et al. 2020b). The mechanism that causes the
twisting and breaking of a single-roll LSC into multiple rolls is the elliptical instability
(Zwirner et al. 2020b). In the case Γ < 1, the heat and momentum transports, which
are represented by the Nusselt number Nu and Reynolds number Re, are always stronger
for a smaller number of the rolls that form the LSC. This was proven in experiments for
Γ = 1/2 (Xi & Xia 2008; Weiss & Ahlers 2011, 2013), and simulations for Γ = 1/5
(Zwirner & Shishkina 2018; Zwirner et al. 2020b).

By contrast, for wide containers with Γ > 1, the more rolls of the LSC mean the more
efficient heat transport (van der Poel et al. 2012; Wang et al. 2020), also in highly turbulent
cases. For Γ > 1, the rolls or roll-like structures are attached to each other and aligned in
horizontal directions (Hartlep, Tilgner & Busse 2003; von Hardenberg et al. 2008; Emran
& Schumacher 2015). In the two-dimensional case, the range of possible aspect ratios of
particular convective rolls, and hence the total number of the rolls in any confined domain,
are restricted, and there exist quite accurate theoretical estimates for the lower and upper
bounds of possible aspect ratios of the rolls (Wang et al. 2020; Shishkina 2021).

For three-dimensional domains, the typical length scales of the self-organised coherent
turbulent flow structures are not yet well-studied, and their accurate prediction remains
an unsolved problem so far. These flow structures can be identified as turbulent
superstructures (Pandey, Scheel & Schumacher 2018; Stevens et al. 2018; Green et al.
2020; Krug, Lohse & Stevens 2020; Berghout, Baars & Krug 2021), since their lifetime
is much larger than the free-fall time, and their length scales are generally larger than the
typical length scale in RBC, which is the height of the container H. Several studies suggest
that the characteristic length scale of these coherent turbulent large-scale flow structures
increases with growing Ra; see e.g. Hartlep et al. (2003), Pandey et al. (2018), Akashi et al.
(2019) and Krug et al. (2020). Depending on the considered parametric space of Ra, Pr and
Γ in different studies, different preferable length scales of the turbulent superstructures
are reported, which are always larger that the container height H. Thus the values of order
10H (Busse 1994), or between 6H and 7H (Hartlep et al. 2003; Pandey et al. 2018; Stevens
et al. 2018), were proposed. Although the typical horizontal wavelengths of the turbulent
superstructures generally grow with Ra, they tend to decrease with decreasing Prandtl
number (Pandey et al. 2018). This fact is pretty remarkable, since decreasing Pr is usually
associated with even stronger turbulence, therefore one might expect a certain similarity
to the situation when Ra is increased.

Recent laboratory and numerical experiments show that in an intermediate range of
moderate aspect ratios, Γ � 1.4, the LSC displays a low-frequency oscillatory dynamics
(Vogt et al. 2018; Horn et al. 2021; Akashi et al. 2022; Cheng et al. 2022). The precession,
sloshing and torsional (ST) dynamics of the LSC, which dominates at Γ = 1, is replaced
by a mode that can be described as a jump rope vortex (JRV). In this flow pattern, a
curved vortex is formed, which swirls around the cell centre in the direction opposite
to the LSC direction, resembling the motion of a swirling jump rope; see figure 1(e).
This phenomenon was first demonstrated for liquid-metal convection in a cylinder with
aspect ratio Γ = 2 (Vogt et al. 2018). Numerical simulations showed that the JRV exists
also for a cylindrical container of the aspect ratio Γ = √

2, and that the JRV structure is
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(a)

(b)

(c)

(e)

(d )

Figure 1. Phase-averaged streamlines in RBC for Pr = 0.03, Ra = 106, as obtained in direct numerical
simulations for different aspect ratios (a) Γ = 5, (b) Γ = 3, (c) Γ = 2.5, (d) Γ = 2 (box) for square
cuboid domains (new simulations) and (e) Γ = 2 (cylinder), adapted from Vogt et al. (2018), available under
CC BY-NC-ND 4.0. These streamlines envelop the oscillating vortex, and the colour scale is according to
the vertical velocity component uz. Blue (red) corresponds to a negative (positive) value of uz, indicating a
downward (upward) direction of the flow. The structures in the lower-aspect-ratio cases (Γ = 2, 2.5 and 3) are
building units of the structure formed within the largest-aspect-ratio case (Γ = 5).

present not only in low-Pr liquid-metal convection, but also in water at Pr = 4.38 (Vogt
et al. 2018). This has been confirmed in several other experiments and simulations of
comparable aspect ratios for both water and liquid metal (Horn et al. 2021; Cheng et al.
2022; Li et al. 2022). However, no JRV was detected in a Γ = 3 cylinder (Cheng et al.
2022).

Flow measurements in containers of different shapes, such as a cuboid domain with
Γ = 5 (Akashi et al. 2022), showed that the strongly oscillating velocity and temperature
fields could also be attributed to the presence of the JRV-like structures. However, instead
of only one vortex, four JRVs interlaced in that case. The ends of the JRVs cross
perpendicularly at a certain point in space (see figure 1a). Here, the detached (opposite)
JRVs oscillate π out of phase, whereas adjacent JRVs do so with a lag of π/2. Akashi
et al. (2022) demonstrated that the JRVs can form a lattice structure of different vortices,
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The structural unit of oscillatory large-scale circulation

Geometry Γ Pr Ra
Dominant type

of LSC References

Cylinder 1 4.38 1.0 × 108 ST Vogt et al. (2018)
Cylinder 1 0.025 1.12 × 106 ST Vogt et al. (2018),

(JRV exists) Horn et al. (2021)
Cylinder 1.4 0.02 1.0 × 104 ≤ Ra ≤ 1.0 × 105 JRV Cheng et al. (2022)
Cylinder 1.7 0.02 5.7 × 104 ≤ Ra ≤ 8.6 × 105 JRV Cheng et al. (2022)
Cylinder 2 4.38, 5.7 7.6 × 107 ≤ Ra ≤ 6.1 × 108 JRV Vogt et al. (2018),

Li et al. (2022)
Cylinder 2 0.02, 0.025 3.1 × 104 ≤ Ra ≤ 5.1 × 106 JRV Vogt et al. (2018),

Horn et al. (2021),
Cheng et al. (2022)

Cuboid 2 0.03 1.0 × 106 JRV Present work
Cuboid 2.5 0.03 1.2 × 105 ≤ Ra ≤ 1.0 × 106 JRV Present work
Cuboid 3 0.03 2.9 × 104 ≤ Ra ≤ 2.7 × 105 Rolls Present work
Cuboid 3 0.03 3.2 × 105 ≤ Ra ≤ 1.6 × 106 JRV Present work
Cylinder 3 0.02 1.0 × 104 ≤ Ra ≤ 1.4 × 105 Rolls Cheng et al. (2022)
Cuboid 5 0.025, 0.03 6.5 × 104 ≤ Ra ≤ 1.0 × 106 JRV Akashi et al. (2019,

2022)
and present work

Table 1. Details on the type of LSC observed for different control parameters.

which determines a fundamental flow mode that for the considered combinations of Ra
and Pr can dominate the dynamics at moderate, and possibly also very large, aspect ratios.

Although JRVs have also been detected in water with moderate Pr ≈ 5, the liquid
metal offers a number of advantages for such studies. The velocity field in liquid-metal
convection is strongly inertia dominated due to its low viscosity and high density. As
a result, the JRV-induced oscillations reach much stronger amplitudes than in water or
air. While the velocity field in low-Pr liquid metal at comparable temperature gradients
is significantly more turbulent than that of water or air, the temperature field exhibits
considerably more coherence than the velocity field due to the large thermal diffusivity.
Thus the JRV-induced oscillations can be detected very well both in the velocity field and
in the temperature field. As such, liquid metals are well suited to investigate the JRV-like
flow dynamics.

The objective of the present work is to investigate in more detail the aspect ratio and
geometry dependence of the three-dimensional oscillatory JRV-like LSC in liquid-metal
thermal convection. In particular, we investigate how increasing aspect ratios result in a
lattice of oscillatory flow pattern via the formation of JRVs, starting from the smallest
structural building block to that of the more interlaced JRVs at a higher aspect ratio. To
this end, we study the LSC dynamics in RBC of liquid metal with Pr = 0.03 in square
cuboids with different aspect ratios, which vary from 2 to 5, using both experimental
and numerical approaches. Table 1 summarises previous studies and our present work to
highlight the gap our study fills. For the first time, we investigate the dominant oscillation
modes of the LSC in cuboids with Γ = 2, 2.5 and 3. For the case Γ = 5, we extended
the parameter range compared to Akashi et al. (2022) by increasing Ra and the numerical
resolution.
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2. Methods

2.1. Direct numerical simulations
Thermal convection under the assumption of the Oberbeck–Boussinesq approximation is
described by the following Navier–Stokes, energy and continuity equations:

Dtu = ν ∇2u − ∇p + αg(T − T0)ez, (2.1)

DtT = κ ∇2T, (2.2)

∇ · u = 0. (2.3)

Here, Dt denotes the substantial derivative, u = (ux, uy, uz) is the velocity vector field, p is
the reduced kinematic pressure, T is the temperature, T0 = (T+ + T−)/2 is the arithmetic
mean of the top (T−) and bottom (T+) temperatures, and ez is the unit vector that points
upwards. The considered domain is a square cuboid with the height H and equal width
W and length L, W = L, so that the domain aspect ratio equals Γ ≡ L/H. The system
(2.1)–(2.3) is closed by the following boundary conditions: no-slip for the velocity at all
boundaries, u = 0; constant temperatures at the end face of the box, i.e. T = T+ at the
bottom plate at z = 0, and T = T− at the top plate at z = H; and adiabatic boundary
condition at the sidewalls, ∂T/∂n = 0, where n is the vector orthogonal to the surface.
Equations (2.1)–(2.3) are non-dimensionalised by using the height H, the free-fall velocity
uff , the free-fall time tff , and the temperature difference between the heated plate and the
cooled plate, Δ,

uff ≡ (αgHΔ)1/2, tff ≡ H/uff , Δ ≡ T+ − T−, (2.4a–c)

as units of length, velocity, time and temperature, respectively.
The resulting dimensionless equations are solved numerically using the latest version

(Reiter et al. 2021; Reiter, Zhang & Shishkina 2022) of the direct numerical solver
Goldfish (Shishkina et al. 2015; Kooij et al. 2018), which applies a fourth-order
finite-volume discretisation on staggered grids. Three-dimensional direct numerical
simulations (DNS) were performed for square cuboid domains with the aspect ratios
Γ = 2, 2.5, 3 and 5. The utilised staggered computational grids, which are clustered near
all rigid walls, are sufficiently fine to resolve the Kolmogorov microscales (Shishkina et al.
2010); see tables 2 and 3.

2.2. Experimental set-up
A schematic of the experimental set-up is presented in figure 2 along with the measuring
positions of ultrasound probes. The set-up consists of a cuboid vessel with base area
L × L = 200 × 200 mm2 and height H = 66 mm, resulting in aspect ratio Γ ≈ 3. The
top and bottom plates of this vessel are made of copper, whereas the sidewalls are made
of polyvinyl chloride (PVC) of 30 mm thickness. This vessel is filled with a eutectic
liquid-metal alloy GaInSn of gallium, indium and tin, which serves as the working fluid
in the experiment. Thermophysical properties of GaInSn are reported in Plevachuk et al.
(2014). In particular, the melting point of GaInSn is 10.5 ◦C, and the Prandtl number is
Pr ≈ 0.03.

The liquid layer enclosed within the vessel is heated from the bottom and cooled from
the top by adjusting the temperature of water flowing through channels in the copper
plates. The temperature of water in these channels is held constant at set temperatures
via two external thermostats. To minimise heat losses, the tubes transporting the hot
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Γ Pr Ra Nx Ny Nz Nθ Nv δθ /H δv/H hK hDNS/hK

2 0.03 1.0 × 106 600 600 300 35 10 9.9 × 10−2 2.5 × 10−2 3.9 × 10−3 0.94

2.5 0.03 1.2 × 105 750 750 300 58 16 1.7 × 10−1 4.4 × 10−2 7.9 × 10−3 0.47
1.0 × 106 750 750 300 33 9 9.4 × 10−2 2.4 × 10−2 3.8 × 10−3 0.97

3 0.03 1.0 × 105 720 720 240 47 13 1.7 × 10−1 4.4 × 10−2 8.3 × 10−3 0.56
4.05 × 105 780 780 260 46 15 1.2 × 10−1 3.2 × 10−2 5.2 × 10−3 0.95
1.0 × 106 900 900 300 34 9 9.6 × 10−2 2.4 × 10−2 3.8 × 10−3 0.96

5 0.03 1.2 × 105 1500 1500 300 56 16 1.7 × 10−1 4.2 × 10−2 7.8 × 10−3 0.47
1.0 × 106 1500 1500 300 33 9 9.3 × 10−2 2.4 × 10−2 3.8 × 10−3 0.97

Table 2. Details on the conducted DNS, including the numbers of nodes Nx, Ny, Nz in the directions x, y and z,
respectively; the number of the nodes within the thermal boundary layer, Nθ , and within the viscous boundary
layer, Nv ; the relative thickness of the thermal boundary layer, δθ /H, and the viscous boundary layer δv/H; the
Kolmogorov microscale hK , and the relative mean grid stepping hDNS/hK .

and cold water and the entire vessel are wrapped in about 30 mm thick insulating foam
tubes and additional envelope. Two platinum resistance thermometers (Pt-100) (accuracy
±0.005 K) have been utilised to monitor accurately the temperatures of water entering
(Tin) and leaving (Tout) the hot and cold plates, respectively. These temperature readings
are essential in measuring the non-dimensional convective heat transport, the Nusselt
number Nu, expressed as Nu = Φ̇/Φ̇cond. Here, Φ̇cond = λL2Δ/H is the conductive heat
flux, with λ being the thermal conductivity of the liquid metal, and Φ̇ = ρcpV̇(Tin − Tout)
is the total heat flux exchanged in the set-up, whereas cp is the isobaric heat capacity of
water, and V̇ is the flow rate of the circulating water determined via an axial turbine flow
sensor at the cooling outlet of the set-up.

Prior to measurements, calibrations are performed. To account for the measurement
uncertainty and heat losses of the set-up, hose split valves are used to split cold and hot
water outlets, respectively. One set of a cold and hot pair is used to feed the top plate, and
the other set to feed the bottom plate, while ensuring that the temperature of both the plates
remained at a set temperature 20 ◦C using the external thermostats. Once the temperature
in the plates reaches an equilibrium, an hour-long time series of temperature readings
from both sets of thermocouples is recorded. Using the least squares method, offsets from
each of these thermocouples are extracted, which are then used to correct the temperature
measurements. This procedure gives a lower threshold of temperature difference attainable
for the set-up; measurements below Δ ≤ 0.22 ◦C are untenable. The range of measured
temperature difference realised in this set-up was 0.27 ◦C ≤ Δ ≤ 16 ◦C, with Rayleigh
number in the range 2.9 × 104 ≤ Ra ≤ 1.6 × 106. Experimental results presented here
(see table 3) are recorded after the temperature difference between the hot and the cold
plates reached a constant value, when the system attains thermal equilibrium.

Principles of ultrasound Doppler velocimetry (UDV), a technique used widely for
opaque flow diagnostics, are implemented to determine the fluid velocity (Tsuji et al. 2005;
Eckert, Cramer & Gerbeth 2007). Nine UDV transducers (TR0805SS, Signal Processing
SA) are installed in direct contact with the fluid. Each of these transducers acquires
an instantaneous velocity profile sequentially along the measuring lines as shown in
figure 2 using multiplexing. The velocity measurements are performed with resolution
approximately 0.5 mm s−1 and sampling frequency 1 Hz.
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Figure 2. Schematics of the experimental set-up: (a–c) three projections showing (a) the top view and (b,c)
two side views; and (d) a three-dimensional sketch, illustrating the positions of all ultrasound transducers. Each
ultrasound transducer is marked with a letter that indicates the distance to the bottom (‘T’ – close to the top,
‘M’ – matching the middle plane, ‘B’ – close to the bottom) followed by a number. All dimensional distances
in (a–c) are given in mm. Blue and red colours indicate the cooled and heated plates, respectively.

For the numerical results, statistical equilibrium or convergence is reached after several
hundreds of free-fall time units. Throughout this paper, the length, velocity and time are
made non-dimensional using the cell height H, the free-fall velocity uff , and the free-fall
time unit tff ≡ H/uff , respectively; see (2.4a–c).
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The structural unit of oscillatory large-scale circulation

Γ Pr Ra f0H2/κ f0(H + L′)2/κ Nu

2 DNS 0.03 1.0 × 106 9.69 87.22 5.07

2.5 DNS 0.03 1.2 × 105 2.60 31.81 2.92
DNS 1.0 × 106 7.21 88.32 5.30

3 DNS 0.03 1.0 × 105 2.92
DNS 4.05 × 105 3.32 53.10 4.04
DNS 1.0 × 106 5.22 83.52 5.18

3.03 Exp. 0.03 2.9 × 104 2.14
Exp. 3.5 × 104 2.37
Exp. 6.2 × 104 2.67
Exp. 6.4 × 104 2.55
Exp. 6.8 × 104 2.73
Exp. 6.9 × 104 2.71
Exp. 9.4 × 104 2.96
Exp. 1.0 × 105 2.95
Exp. 1.1 × 105 3.02
Exp. 1.2 × 105 3.12
Exp. 1.6 × 105 3.37
Exp. 2.7 × 105 3.60
Exp. 3.2 × 105 3.62 58.81 3.70
Exp. 4.1 × 105 4.61 74.93 3.89
Exp. 5.1 × 105 5.09 82.61 4.19
Exp. 6.3 × 105 5.73 93.13 4.43
Exp. 7.7 × 105 6.21 100.81 4.61
Exp. 8.6 × 105 6.56 106.54 4.79
Exp. 9.4 × 105 6.72 109.18 4.85
Exp. 1.0 × 106 7.22 117.24 4.99
Exp. 1.2 × 106 7.57 123.00 5.18
Exp. 1.3 × 106 8.02 130.25 5.27
Exp. 1.6 × 106 8.53 138.60 5.51

5 DNS 0.03 1.2 × 105 3.21 39.33 3.04
DNS 1.0 × 106 8.65 105.95 5.40

Table 3. Details on the conducted DNS and experiments.

2.3. Phase averaging procedure
To analyse the three-dimensional flow dynamics from the experimental data, the whole
field mapping of the velocity flow field is required, which is currently not possible using
the UDV techniques. However, this sort of flow-field measurements can be assessed via
the numerical techniques. The flow pattern consists of oscillatory coherent structures
over several range of scales. To visualise the coherent structures, it is advisable to
remove the background turbulent fluctuations using statistical means. Pandey et al. (2018)
implemented an averaging method, which was later adopted by Akashi et al. (2022) in the
form of a phase averaging algorithm. In this algorithm, one complete oscillation period,
τOS = 1/fOS, is equally divided into certain (e.g. 16) intervals or phases. Averaging of the
temperature and velocity field data is carried out within each of these phases. This method
reveals the underlying coherent structures in a flow field with high oscillations, such as
that encountered in the three-dimensional cellular regime by Akashi et al. (2022).

Vogt et al. (2018) used conditional averaging to showcase the three-dimensional
structures of the JRVs in a cylinder. The method of conditional averaging is similar to that
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of the phase averaging process, with the only difference in the choice of the conditioning
intervals. In the conditional averaging approach, the intervals for one complete cycle are
divided into seven intervals bounded by multiples of standard deviations of the average
temperature of the fluid.

In the present study, the phase averaging method is applied to the simulation data,
which cover 16 oscillation periods for the cases Γ = 2.5, 3, 5 and 8 oscillation periods
for the case Γ = 2. Every oscillation period is divided into 16 phases, and each phase
is represented by 20 snapshots of all flow fields. Then the corresponding snapshots are
averaged within each phase. Finally, the conditional averaging is applied to the flow fields
within each phase and for all oscillation periods, which gives a phase-averaged temporal
evolution of all flow fields during the period.

3. Results

The results of all conducted DNS and experiments are summarised in table 3. For all
experimental and numerical data for sufficiently large Ra, an oscillatory behaviour of the
LSC was identified. As in the cases Γ = √

2 and 2 of a cylindrical container (Vogt et al.
2018), the JRV-like oscillatory structures leave imprints on almost all flow characteristics,
for the considered ranges of Ra and Γ of a cuboid domain. The oscillatory behaviour of
the LSC is reflected in temporal evolution of the temperature and particular components
of the velocity fields, and is also seen in the vertical heat flux temporal evolution. Here,
we are focusing on the cases of higher Ra with the JRV dominance, rather than on cases of
lower Ra, where unsteady convection rolls are dominant and JRVs are absent. Transition
from convection rolls to large-scale cellular structures with JRV in turbulent RBC with
increasing Ra for Γ = 5 is described in detail in Akashi et al. (2019).

Once the dominating frequency f0 is evaluated (we will discuss this in more detail later),
one can analyse the mean flow dynamics within the time period that lasts τOS = 1/f0. For
that, the temporal evolution of the flow fields, which are obtained in the DNS, are split
into separate periods, according to the dominating frequency f0, then a phase-averaged
temporal evolution of all flow fields during the period is calculated.

Our DNS for Ra = 106 and Pr = 0.03, and two different aspect ratios, Γ = 5 and 2.5,
show a very remarkable similarity of the global flow structure and its dynamics. In figure 3,
phase-averaged instantaneous temperature distributions in horizontal cross-sections are
presented, which are considered at distances z = 0.5H (figures 3a,b,e, f ) and z = 0.85H
(figures 3c,d,g,h) from the bottom plate, and at the times t = 0 and 0.5τOS. This figure
shows patches of upwelling (hot) and downwelling (cold) fluid, with the hot patches
connected by a diagonal ridge of upwelling fluid. These patches rotate anticlockwise in
the time interval [0, 0.5τOS] (see supplementary movie 1), suggesting the presence of
oscillatory flow dynamics that periodically changes the flow topology. For fixed values
of Ra and the cell height H, the spatial length of the convection cell in the case Γ = 5
is twice as large as in the case Γ = 2.5 for the same Ra and H. Therefore, for any fixed
z, one can expect a similarity of the flow pattern in the horizontal cross-section at the
height z in the case Γ = 2.5 with the flow pattern in the 1/4 of the area of the horizontal
cross-section at the same height z in the case Γ = 5. Indeed, figure 3 shows that the
temperature distribution in the region marked with black dashed lines for Γ = 5 (figures
3a–d) is very similar to the temperature distribution in the corresponding cross-sections
for Γ = 2.5 (figures 3e–h) if considered at the same phase.

To gain more evidence for this similarity, we evaluate the horizontal components of
the velocity, uy and ux, along the lines marked T1 and T2 in figures 3(c,d) (Γ = 5)
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Figure 3. Phase-averaged snapshots of the temperature at a distance z from the bottom: (a,b,e, f ) z = 0.5H,
and (c,d,g,h) z = 0.85H, for different container aspect ratios (a–d) Γ = 5 and (e–h) Γ = 2.5, as obtained in
the simulations for Ra = 106 and Pr = 0.03 (see supplementary movie 1 available at https://doi.org/10.1017/
jfm.2023.936). The virtual probe lines T1 and T2 (see also figure 4) are indicated with dashed white lines. The
black squares indicate the areas that correspond to the areas of the container with Γ = 2.5.

and compare them with the corresponding horizontal components of the velocity along
the lines marked T1 and T2 in figures 3(g,h) (Γ = 2.5). The temporal evolutions of
these velocity components for Γ = 5 and 2.5 are compared in figure 4 for Ra = 106 and
z = 0.85H. One can see that the lower halves of the spatio-temporal velocity maps in
figures 4(a,b), which correspond to the measurements along the lines T1 and T2 within
the 1/4 area that is marked in figures 3(c,d) with the black dashed lines, mimic the
spatio-temporal velocity maps in figures 4(c,d), which correspond to the measurements
along the lines T1 and T2 in figures 3(g,h).

Qualitatively, the signals for Γ = 5 and 2.5 are similar; however, the frequency of the
oscillations in the latter case is slightly lower than that in the former case, with six versus
five oscillations during the same time interval. Also, at Γ = 5, the signal seems to be less
stable than in the case Γ = 2.5.

Figure 5 shows a comparison of the experimental and simulation results for the same
Γ = 3 and Ra = 106. Here, a comparison of the temporal evolution of the horizontal
components of the velocity is made at exactly the same locations in the DNS and in
the experiment. One can see good qualitative agreement between the experimental and
simulation data. However, the dominant frequency obtained in the experiment is slightly
higher compared to the frequency evaluated from the simulation data. More precisely, we
obtained on average 11 oscillations in the experiment versus 9 oscillations in the DNS for
the same time interval.
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Figure 4. Spatio-temporal velocity maps for Ra = 106 at z = 0.85H, as obtained in the DNS at the virtual
probe lines (a,c) T1 and (b,d) T2, for the aspect ratios (a,b) Γ = 5 and (c,d) Γ = 2.5. The black dashed lines
in (a,b) correspond to the measurements in the cuboid with Γ = 2.5 (c,d), respectively.

3.1. Three-dimensional cellular flow dynamics
Figure 6 shows phase-averaged streamlines in RBC for Pr = 0.03, Ra = 106, as obtained
in the DNS for cuboid domains for all considered aspect ratios Γ at the beginning (t = 0)
and at the middle (t = 0.5τOS) of the oscillation period. There are four interlacing JRVs in
the case Γ = 5 (figures 6a,b). The flow structure resembles a cellular structure that was
observed previously in Akashi et al. (2022) for Γ = 5 and Ra ≈ 1.2 × 105. There are only
two JRVs for the aspect ratios Γ = 3 (figures 6c,d) and Γ = 2.5 (figures 6e, f ), which is
in contrast to a lattice of four JRVs in the Γ = 5 case. What is more striking is that the
JRVs in the Γ = 3 and 2.5 cells represent a quadrant of the JRV lattice of the Γ = 5 cell
(see also figure 1). Only one vortex is observed in the convection cell with Γ = 2. This
dynamic interplay between changing aspect ratio and organisation of the JRVs highlights
the influence of shape and size of the geometry of the container (see supplementary movies
2–4). It also raises an important question as to whether there is a certain hierarchy in these
systems when it comes to the reorganisation of JRVs within a container.

A closer look at the three-dimensional flow structure for Γ = 2.5 shows how the
two vortices connect to each other in the central part of the box (see figure 7(a) and
supplementary movie 5). In this case, the JRVs are connected with two vortices in the
upper part and two vortices in the lower part of the domain. The fluid in the lower vortex
pair rises, and in the upper pair descends near the centre, implying an outward jet along a
horizontal plane at mid-height (z = H/2). Locations of these vortices are determined by
the temperature field. Near the hot bottom (cold top) plate, the zones of ascending warm
(descending cold) streams remain connected by a diagonally running ridge (figures 7b,c).
Figures 7(d,e) show the same phase-averaged streamlines, but the connecting vortices
in the lower central part of the domain are highlighted in blue in figure 7(d), while the
connecting vortices in the upper part of the domain are highlighted in red in figure 7(e).
Thus colours here reflect the distance z from the bottom plate, i.e. the vertical coordinate
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Figure 5. Spatio-temporal velocity maps for Ra = 106, as obtained in the DNS (left column) and in the
experimental measurements (right column), for the aspect ratio Γ = 3. The numerical data are probed
at exactly the same locations where the UDV sensors are located in the experiment: (a,b) T3, (c,d) B3,
(e, f ) T2, (g,h) B2, (i, j) T1, (k,l) B4 and (m,n) M3.
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t = 0 t = 0.5τOS
(a) (b)

(c) (d)

(e) ( f )

(g) (h)

Figure 6. Phase-averaged streamlines in RBC for Pr = 0.03, Ra = 106, as obtained in our DNS for
parallelepiped domains with different aspect ratios: (a,b) Γ = 5, (c,d) Γ = 3, (e, f ) Γ = 2.5 and (g,h) Γ = 2.
Blue (red) corresponds to a negative (positive) value of the vertical velocity component uz.

of the structure. For clarity, all other streamlines are shown transparently. It is also worth
noting that for the same Ra, the JRVs are more stable and better pronounced for Γ = 2.5
compared to Γ = 3.

Figure 8 shows in detail the specifics of the spatio-temporal velocity and temperature
maps for Γ = 2. In this case (see figures 6e, f ), there is only one vortex that rotates in
the direction opposite to the LSC direction. Note that for the considered Ra = 106, the
LSC is oriented along a vertical wall of the container rather than diagonally. The flow
pattern is similar to that obtained for the Γ = 2 cylinder (Vogt et al. 2018). To examine
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uz

0 1
z/H

T– T+
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(d ) (e)

(c)

Figure 7. Phase-averaged (a,d,e) streamlines and (b,c) temperature isosurfaces for Ra = 106, Γ = 2.5, t =
0.25τOS as obtained in our DNS. Blue (red) corresponds to negative (positive) values of (a) the vertical velocity
component uz and (b,c) temperature. Vortices in the lower and upper parts of the domain are highlighted in (d,e),
respectively. For convenience, all other streamlines outside the centre of the domain are shown transparent in
(d,e). Colours in (d,e) correspond to the vertical coordinate z.

this similarity, we evaluate at the mid-height, at z = 0.5H (figure 8a), the horizontal
component of the velocity ux and the temperature along the straight line marked in the
figure as ‘M’ and along the circle marked ‘C’, which correspond to the lines along the
diameter and along the mid-plane circumference of an inscribed cylinder (as considered
in Vogt et al. 2018), respectively.

The dominant frequency f0 is visible in the spatio-temporal maps of both velocity
(figure 8b) and temperature (figure 8c). Figure 8b resembles figure 2(c) in Vogt et al.
(2018).

The spatio-temporal maps of the temperature along the circle ‘C’ (figure 8d) also look
similar to those in figure 4(a) of Vogt et al. (2018), and indicate the presence of a dominant
frequency. It is worth noting that the oscillations of the LSC orientation, which are
characterised by the azimuthal angle ξLSC, and computed here using the single-sinusoidal
fitting method by Cioni et al. (1997) (indicated with the green line in figure 8d), are
strong – although in the cuboid domain, the LSC direction is expected to be more stable
compared to that of a cylindrical domain. This is demonstrated clearly by longer time
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Figure 8. Data for Ra = 106, Γ = 2, as obtained in our DNS. (a) Measurement positions in the mid-plane
at z = 0.5H: the central straight line marked ‘M’ and the circle marked ‘C’ are shown in black and blue,
respectively. Spatio-temporal (b) velocity and (c) temperature maps along the M-line. (d) Spatio-temporal
temperature map along the C-circle. The instantaneous position angle of the LSC is marked with the green line
(cf. figure 4 in Vogt et al. (2018) for a cylinder with the same Γ and Ra).

series, which are presented in figure 9. In contrast to the relatively short time interval
with only 9 oscillation periods, when the LSC orientation was mostly stable (figure 8), the
longer time series reveals quite strong temporal oscillations of the azimuthal angle ξLSC
(figure 9c). Spatio-temporal maps for both velocity and temperature (figures 9a,b) show
that intervals with relatively stable regular oscillations alternate with intervals with less
stable signals. This leads to difficulties for conditional averaging in this case. Therefore,
as mentioned in § 2.3, we used averaging for only 8 oscillation cycles for Γ = 2, whereas
for other values of Γ the averaging was performed for 16 oscillation cycles.

3.2. Oscillation frequency
Any periodic oscillation of the JRV has a certain dominant frequency f0. For each studied
case, these frequencies were extracted from both the velocity and temperature time series.
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Figure 9. Data for Ra = 106 and Γ = 2, as obtained in our DNS. A figure similar to figure 8(b–d), but the time
series is longer. Spatio-temporal (a) velocity and (b) temperature maps along the M-line. (c) Spatio-temporal
temperature map along the C-circle. The instantaneous position angle of the LSC is marked with the green line.

For experimental data, the dominant frequency is determined based on the same method as
described in Akashi et al. (2022), using the entire time series available (1200 free-fall times
that cover at least 40 turnover times τTO). The power spectral densities (PSDs) calculated
from velocity time series are averaged both spatially along the respective measuring line
and temporally over the duration of the measurement. In the simulations, the dominant
frequency has the same value at all points where it was detected; it is determined by
calculating PSDs from the points along the virtual probing lines whose shortened time
series are shown in figures 4, 5 and 8. For simulation data, the duration of the time
series for statistics covers at least 17 oscillation periods. Supplementary movies 2–4 show
the flow structure during oscillations, and it is seen clearly that the strongest dominating
oscillation frequency f0 corresponds to JRV and not to sloshing or torsion motions. The
frequencies were non-dimensionalised using the dissipative time scale. Two length scales
were used for the dissipative time scale: the height of the domain H, and the overall
path length of the LSC, following Cheng et al. (2022), is approximated coarsely as 2l,
l ≡ H + L′, where L′ = 2H, 2.5H, 3H and 5/2H for Γ = 2, 2.5, 3 and 5, respectively. Note
that in the latter case, L′ = 5/2H, since for the Γ = 5 container, the flow pattern consists
of two JRV building blocks, repeated in both horizontal directions, as shown above.
The diffusion times are then τκ = H2/κ and τ l

κ = (H + L′)2/κ , with the corresponding
diffusion frequencies fk = 1/τκ = κ/H2 and f l

k = 1/τ l
κ = κ/(H + L′)2 respectively.

Figure 10 shows the values of the dominant frequencies f0 versus Ra for all considered
values of Γ . The data from the present study are shown in red and blue, and all other data
are shown in grey. The values that the frequencies take in different flow configurations
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Figure 10. Dominant frequencies f0, which are non-dimensionalised using the dissipative time scales
(a) (H + L′)2/κ and (b) H2/κ , as functions of Ra. Here, L′ = 2H, 2.5H, 3H and 5/2H for Γ = 2, 2.5, 3
and 5, respectively.

are presented in table 3. Variation of f0, normalised with the dissipative time scale
(H + L′)2/κ , is shown in figure 10(a), as a function of Ra. One can see that our new
experimental data for Γ = 3 (red circles) and those from Akashi et al. (2022) for Γ = 5
(grey circles) collapse onto one master scaling line. Note that for Γ = 3, the oscillatory
JRV mode occurs at higher Ra compared to the case Γ = 5. The so-called roll regime
at lower Ra does not have clear dominant frequencies, therefore only data for the cases
where an oscillatory mode exists are presented in the figure. A comparison between the
experimental and simulation results for Γ = 3 shows that the oscillation frequency values
obtained in the experiment (as shown already in figure 5) are slightly higher than that
evaluated from the simulation data for Γ = 3.

The normalised frequencies obtained numerically for Γ = 3, 2.5 and 2 are very close
to each other. For Γ = 5, which is the only case with two JRV building blocks, the
normalised frequency is generally higher than the frequencies for other Γ (cf. crosses
and asterisk at Ra = 106). The dimensionless frequency obtained numerically for Γ = 5
at Ra = 106 is in very good agreement with the scaling line for Γ = 5 reported in Akashi
et al. (2022) and with the new experimental data for Γ = 3. For a lower Rayleigh number,
Ra = 1.2 × 105, the dimensionless frequency obtained numerically for Γ = 5 is also in
very good agreement with the numerical and experimental data from Akashi et al. (2022).
Experimental data for a Γ = 2 cylinder from Vogt et al. (2018) and Cheng et al. (2022)
give scaling relations with slightly lower exponent values for the considered Ra range;
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Γ = 5 (DNS Akashi et al. 2022)

(0.216 ± 0.008)Ra0.226±0.003, Γ = 3 (Exp.)

Figure 11. Scaling of the Nusselt number Nu with the Rayleigh number Ra, for all studied Γ .

they locate slightly below the fitting lines for Γ = 3 and 5. The frequency value from our
Γ = 2 box simulations is close to that for Γ = 2 cylinder experimental data from Vogt
et al. (2018). The numerical data for all considered Γ are located between the fitting lines
obtained in the experiments for Γ = 3, 5 box and cylinder Γ = 2.

To sum up, all the experimental and numerical data show a very similar frequency
dependence, as one can see in an f0 versus Ra plot, across all aspect ratios with the
frequency normalisation based on the path length l. In figure 10(b), we normalise the
frequency f0 with the thermal diffusion time τκ = H2/κ . In that case, without taking into
account the spatial length of the vortex path, the deviation between the data points for
Γ = 5 and 2.5 remains the same (as the length scale is the same for these two cases),
while the data points for Γ = 3 move down and the points for Γ = 2 move significantly
up. We conclude that the spatial length of the domain is an important control parameter,
which together with the height of the fluid layer determines the relevant length and the
scaling relations for the oscillation frequency.

3.3. Heat transport
In this subsection, the effect of the flow dynamics on the heat transport is discussed. The
volume-averaged Nusselt number Nuvol can be evaluated from the simulation data as

Nuvol = 〈Ωz〉V,t, (3.1)

where Ωz is a component of the full heat flux vector Ω ≡ (uT − κ ∇T)/(κΔ/H) along
the vertical axis, and 〈·〉V,t denotes the the time–volume average. In the experiments, the
Nusselt numbers Nu are computed as discussed in § 2.2.

The global heat transport scaling across various Ra is shown in figure 11. The flow
dynamics does not seem to have any dramatic effect on the heat transport. This is true
for all studied aspect ratios. The cases without oscillations are shown in the figure with
open symbols. The fitted curve gives a scaling relation Nu = 0.22 × Ra0.23, which differs
slightly from Nu = 0.166 × Ra0.25 reported by Vogt, Horn & Aurnou (2021). However,
this difference can be attributed to the difference in the geometry of the cell. The heat
transport depends on Γ , and the values of Nu vary slightly with Γ at fixed Ra. The
dependence is not monotonically increasing, e.g. at Ra = 106, the value of Nu at Γ = 2.5
is slightly higher than at Γ = 3.
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Figure 12. Phase-averaged Nusselt number Nu(t) during one oscillation period, as evaluated from the DNS
for Ra = 106 and different aspect ratios Γ of a parallelepiped container.

An interesting feature of the JRV regimes is that the Nusselt numbers, which are
computed using the phase-average method as discussed in § 2.3, demonstrate an oscillatory
behaviour during the JRV cycle. This is demonstrated for one period of oscillation in
figure 12. Qualitatively, the oscillatory behaviour of the local vertical heat flux Nu(t)
during the JRV cycle is the same for all considered Γ . It is clear that Nu shows oscillatory
behaviour with distinct peaks of maxima and minima. This sort of behaviour was also
reported in a previous study of Akashi et al. (2022) for Γ = 5. However, the amplitude of
the oscillations for a certain given Ra is different: it decreases with increasing Γ .

In addition to figure 12 that shows the volume-averaged Nusselt number Nuvol during
one oscillation period, we present in figure 13 the values of Nu that are computed
over the surfaces: Nubot at the bottom plate, Nutop at the top plate, and Numid over the
horizontal cross-section in the middle plane at z = 0.5H. Compared to Nuvol, for all
studied values of Γ , there is a shift between Nu evaluated at the plates (Nubot, Nutop) and
the volume-averaged Nusselt number Nuvol. The maxima and minima of Nu, calculated at
the horizontal walls, occur always slightly later than they appear in the Nuvol evolution.
Here, Nubot and Nutop are synchronised with each other; Numid seems to be less smooth and
gives a larger difference between the maximum and minimum values compared to Nubot
and Nutop. The vertical profile of the phase-averaged Nusselt number (see supplementary
movie 6) demonstrates the interaction between the boundary layers and bulk flow during
the JRV cycle.

Figure 14 shows phase-averaged isosurfaces of the full heat transport vector Ω as
obtained in the DNS for cuboid domains at the beginning (t = 0) and at the middle
(t = 0.5τOS) of the oscillation period. The isosurfaces of the full heat transport vector
Ω follow the JRV flow structure at all considered Γ values (cf. figure 6).

Figure 15 demonstrates Ω-isosurfaces together with the distribution of the magnitude
|Ω| in the horizontal cross-section at z = 0.5H for Γ = 5 and 2.5. The heat flow is realised
mainly in the gaps between the isosurfaces that envelop the JRVs. Thus the JRVs are not
efficient in transporting the heat and are located in the areas of minimum heat flux.

Figure 16 shows the vertical component of the local heat flux Ωz at z = 0.5H for Γ = 5
and 2.5. Analogously to figure 3 with the temperature distributions, here one can see a
similarity of the Ωz distribution pattern in the case Γ = 2.5 with the pattern in the 1/4
of the area in the case Γ = 5 (see supplementary movie 7). But the resemblance is not
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0.25τOS0 0.5τOS 0.75τOS τOS 0.25τOS0 0.5τOS 0.75τOS τOS
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Numid Nuvol

Nubot Nutop
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Nu

(a) (b)
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Figure 13. Evolution of the phase-averaged Nusselt number Nu(t) during one oscillation period, as evaluated
from the DNS for Ra = 106 and (a) Γ = 2, (b) Γ = 2.5, (c) Γ = 3 and (d) Γ = 5. Here, Nu is calculated over
the top and bottom plates, over the horizontal cross-section in the middle plane at z = 0.5H and over the entire
volume.

complete, probably because of the influence of the sidewalls. How sidewalls affect the
movements of vortices is a subject for future study.

4. Discussion

We have presented a combined numerical and experimental investigation of a liquid-metal
convection flow in different geometries. The Prandtl number in these investigations is
Pr ≈ 0.03, and the Rayleigh numbers are in the range 2.9 × 104 ≤ Ra ≤ 1.6 × 106. The
investigations focus on the influence of the size of the flow domain (via its aspect ratio)
on the dominant oscillation modes of the large-scale circulation (LSC). Results for four
different cuboid domains with varying spatial length-to-height aspect ratios Γ = 5, 3, 2.5
and 2 were compared with the results of a cylindrical Γ = 2 cell.

The results show that the oscillations in all aspect ratios investigated are due to the
presence of jump rope vortices. A jump rope vortex (JRV) forms at the centre of the LSC,
and moves analogously to a swirling jump rope. However, the direction of motion of the
JRV is opposite to the direction of flow of the LSC. The JRV, which was first discovered
in a cylindrical Γ = 2 convection cell (Vogt et al. 2018), also forms in a square cuboid
domain of aspect ratio Γ = 2, as demonstrated in this work. The appearance of the JRV is
almost identical in both the cylindrical and cuboid domains of the same aspect ratio. If a
cylinder is cut out numerically from the rectangular cell, then the similarity becomes more
pronounced, also with respect to the JRV-induced sidewall temperature distribution.
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t = 0 t = 0.5τOS
(a) (b)

(c) (d )

(g) (h)

(e) ( f )

Figure 14. Isosurfaces of the magnitude of the full heat transport vector Ω ≡ (uT − κ∇T)/(κ Δ/H), for (a,b)
Γ = 5, (c,d) Γ = 3, (e, f ) Γ = 2.5 and (g,h) Γ = 2, as obtained in the simulations for Ra = 106. The surfaces
are coloured by the temperature: blue (red) corresponds to the temperature below (above) the arithmetic mean
of the top and bottom temperatures.

In domains with larger spatial length, the appearance of the JRVs changes. For domains
with aspect ratios Γ = 2.5 and 3, the vortices form an orthogonal cross that periodically
rotates alternately clockwise and anticlockwise. In a Γ = 5 cell, a lattice of four JRVs
interlace each other, which oscillate in a synchronised manner. Therefore, a key finding of
this work is that the JRV is an extremely robust flow feature that adapts and reorganises
depending on different aspect ratios of a domain, with ability to form an intricate lattice of
repetitive flow structures in large-aspect-ratio containers. Moreover, our findings further
reinforce that the shape of the domain does matter: we encounter the presence of a JRV
in a square cuboid with Γ = 3, whereas Cheng et al. (2022) did not find any evidence of
a JRV in a cylinder of the same aspect ratio. The frequency of the oscillations shows a
consistent scaling for the different aspect ratios, with good agreement between numerics
and experiment. Slight deviations between the different aspect ratios are likely due to the
non-uniform path length of the LSC for the different aspect ratios.
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0 20 0 25

t = 0

(a) (b)

|Ω| |Ω|
Figure 15. Isosurfaces of the magnitude of the full heat transport vector Ω are shown together with the |Ω|
distribution at z = 0.5H for (a) Γ = 5 and (b) Γ = 2.5, for Ra = 106. The JRV-like vortex structures are
associated with the minimal heat flux.
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Figure 16. Phase-averaged vertical component of the local heat flux Ωz at z = 0.5H for (a,b) Γ = 5 and (c,d)
Γ = 2.5, for Ra = 106. The black squares indicate the areas that correspond to the areas of the container with
Γ = 2.5 (see supplementary movie 7).

The heat transport scaling relations show only minor (if any) deviations between
different flow pattern regimes. The data from the regime close to the onset,
convection-roll-dominated regime and the turbulent JRV regime collapse on a master
curve. However, the oscillations of the JRV are visible clearly in the time evolution of
the Nusselt number. The frequency of the Nu oscillations is thereby twice as high as

977 A16-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

93
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.936


A. Teimurazov, S. Singh, S. Su, S. Eckert, O. Shishkina and T. Vogt

that of the JRVs. The maxima of the Nusselt numbers occur when the horizontal velocity
components reach a minimum during the JRV cycle (see Akashi et al. 2022).

Questions that are difficult to answer based on both experimental and numerical
approaches are whether the JRV structures have an upper Ra number limit and whether
they are displaced subsequently by other structures as soon as Ra exceeds a certain
critical value. In the previous experiments, detected JRVs were stable over two orders
of magnitude in Ra (see Vogt et al. 2018). Since the flows in these measurements and
simulations are already in a turbulent state, one might expect that the JRV-like oscillatory
structures can occur for even larger Ra. It is worth noting that the JRVs not only occur for
low Prandtl numbers like that studied here, but have also been detected in a Γ = 2 cylinder
for water, which has approximately two orders of magnitude higher Pr (Vogt et al. 2018;
Li et al. 2022).

Our study poses a few more questions for future studies that potentially could be
investigated, such as the following. What is the role of the no-slip sidewalls? Will the JRVs
survive in the case of free-slip or periodic boundary conditions? How do the JRVs behave
in even larger containers with even higher spatial length domains, and what role do they
play in formation of convective turbulent superstructures? The present study suggests that
in the case of large Γ , the global structure of the oscillatory mode can be thought of as a
lattice of interlaced JRV-like building blocks found for the aspect ratio Γ ≈ 2.5, repeated
spatially. However, such investigations come with their own challenges. Numerical cost
increases with the square of the domain aspect ratio, whereas the stabilising influence
of the sidewalls decreases with increasing aspect ratios, giving the flow more degrees of
freedom, which results in JRVs that are less stable. This makes intractable the detection
of the JRVs by known experimental techniques or by numerical techniques such as
conditional averaging. Current ongoing research efforts at the HZDR aim to tackle this
problem head-on by investigating experimentally the dynamics of oscillatory liquid-metal
thermal convection in a square cuboid with a large aspect ratio Γ = 25, which is under
construction at the time of writing this paper.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.936.
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