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A NOTE ON THE FIBONACCI QUOTIENT Fp^/p. 

BY 

H . C. W I L L I A M S 

ABSTRACT. In this note a formula analogous to Eisenstein's well 
known formula is presented for Fp_e/p, where Fn is the nth 
Fibonacci number (Fo = 09F1 = 1), p an odd prime, and 

p = ±l (mod 5) 

p = ±2 (mod 5). 
f 1 p S : 

l - l P = = 

2 P - 1 - [ P / 5 ] /—X\k 
This formula is: 

2 P - 1 - [ P / 5 ] /—l\k 

1. Introduction. Let Fn be the nth Fibonacci number, where F o = 0, F1 = l, 
and Fk+1 = Fk +F k_ 1 . It is well known that if p (^ 5) is a prime, then 

p | Fp_e, where e •u when p = ±1 (mod 5) 
p _ e ' ' - 1 when p = ±2 (mod 5) 

That is, e = (5 | p), where (a | p) is the Legendre Symbol. In 1960 Wall [5] 
posed the problem of whether there exists a prime p such that p 2 | Fp_e. It is 
still not known whether such a prime exists although it is known (Williams, 
unpublished) that it must exceed 109. This problem is analogous to the famous 
problem concerning the existence of primes p such that 

2 p - ^ l (modp2). 

Here, however, two solutions 1093 and 3511 are known. There are no other 
solutions for p < 5 . 4 x l 0 9 (Brillhart et al [2]; Lehmer, unpublished). 

One rather pretty result concerning the Fermât quotient ( 2 p _ 1 - l ) / p is that 
of Eisenstein (cf. Dickson [3, p. 105]). 

(1.1) ( 2 p - i - i ) / p s - l Ç ( ^ k
( r n o d p ) (p^2) . 

In [1] Andrews found formulae which are analogous to (1.1) for Fp_Jp. These 
results were given as 

Fp_l/P = 2 ( - 1 ) ^ I ( m + 1 | 5 ) ( - 1 | m )
( m o d p ) 

m=7,5(modl0) P m 

|m|<p 
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for p = ±1 (mod 5) and 

Fp+1/p = 2 ( - i y — I ( m + 1 | 5 ) ( - 1 | m ) (modp) 
m = l,5(mod 10) V m 

|m|<p 

for p = ±2(mod5). Unfortunately, these rather complicated formulae are not 
as attractive as the simple formula of (1.1). In this note we present a much 
simpler formula than those given above for Fp_e. Our method of proof is 
elementary and quite different from that of [1]. 

2. Preliminary results. Let a, |3 be the zeros of x2-x -1 and let {L„} be the 
Lucas sequence defined by L0 = 2, Lt = l, Lk+1 = Lk+Lk_1. From the Binet 
formulae, 

(2.1) Ln = an + pn 

(2.2) Fn = (an-pn)/(a-p\ 

it is easy to derive the well-known results 

\*"3) ZLjn+m = i->n-Lm ~r jrnrm, 

(2.5) L_n = {-ITK, F-n = (-Dn+1Fn, 

(2.6) L2
n-5Fl = 4(-ir. 

In the work that follows we assume that p is an arbitrary but fixed prime 
which is neither 2 nor 5. From (2.3), (2.4), and (2.5), we see that 

(2.7) 2 V . = 5 F p - e L > , 

(2.8) 2FP = FP_. + 6V«-

On putting n = p-s in (2.6) and using the fact that p |Fp_e, we get Lp_e=4 
(mod p2) or 

(Lp_E-2)(Lp_e + 2) = 0(modp2). 

Since Lp_e=2e (mod p) (see for example, Lehmer [4, p. 423]) and 
p X (Lp_e - 2 , Lp_E +2), we see that 

(2.9) Lp_E=2e(modp2). 

It follows from (2.9) and (2.8) that 

(2.10) Fp_E^2£(Fp-s)(modp2) . 

3. The main result. Since a + (3 = 1 and a|3 = - 1 , we can put 

(3.1) a = -cj-<o4, p 
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where co is a primitive 5th root of unity; that is, 

(3.2) <o4 + <o3 + a>2 + <o + l = 0. 

Put 

T * = P f LiP^) 0' = 0,1, 2, 3, 4), 

where [pi5] is the largest integer less than p/5. We note that 

(3.3) IT-2". 
i=0 

We are now able to prove 

THEOREM 1. With the symbols defined above we have 

5FP = e ( 5 T 0 - 2 p - 2 ) (mod p2). 

Proof. From (2.1), (2.2), and (3.1), we get 

(-cu3-o)2 + a) + co4)Pp=(co + co4)p-(co3 + co2)p 

---icy—tcv 
= co~p(T0 + co2T1 + a)4T2 + coT3 + w3T4 

-co2p(T0 + a)T1 + co2T2 + co3T3 + co4T4) 

and 

- L p = co"p(To + co2T1 + co4T2 + a)T3 + co3T4) 

+ cu2p(T0 + coT1 + co2T2 + co3T3 + cu4T4). 

If p = 1 (mod 5), we get 

(3.4) - L p - 2 T 3 + co2(T0+T4) + co(T1 + T4) + co4(T0+T2) + co3(T2+T1) 

and 

( -CO 3 -CO 2 + CO + Û)4)FP = CO 2 (T 4^ 

Thus, 

a>2(T4-To + Fp) + û>(T 1 -T 4 -F p ) + û> 4(To-T 2-F p) + c«>3(T2-T1 + Fp) = 0. 

Since (3.2) is irreducible, we can only have 

(3.5) FP = T 0 - T 4 = T 1 - T 4 = T 0 - T 2 = T 1 - T 2 

and 

(3.6) T2=T4, T0 = T1. 

https://doi.org/10.4153/CMB-1982-053-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1982-053-0


1982] FIBONACCI QUOTIENTS 369 

Hence, from (3.3) and (3.6), we get 

(3.7) T3 + 2T0 + 2T2 = 2P 

and from (3.4), (3.6), and (3.7), we have 

(3.8) L P = 5 ( T 0 + T 2 ) - 2 P + 1 . 

Since e = 1, we find from (2.7), (2.9), (3.5), and (3.8) that 

(3.9) 5 T 2 ^ 2 p - 2 ( m o d p 2 ) . 

The result of the theorem now follows from (3.5) and (3.9). 
It can be shown in a similar manner that this same result is true for p = 2, 3, 

4 (mod 5). • 
We are now able to give our main result as 

THEOREM 2. If p is any prime except 2 or 5, then 

~ p - l - [ p / 5 ] / i \ k 

(3-10) F p _ . /p=f T {-^- (mod p). 

Proof. From (2.10) and the result of Theorem 1, we have 

(3.11) F p _ e - ! ( 5 ( T 0 - l ) - 2 " - 2 ) ( m o d p 2 ) . 

Since 

and 

( ^ ) - y ( - D i + 1 ( m o d p 2 ) ( 0 < i < p ) 

we see that 

L p / 5 ] / 1 \ k + l 

5 ( T 0 - 1 ) - P I - ^ - ( m o d p 2 ) 
k=i fc 

Using this result together with (1.1) and (3.11), we get 

_ 2 / P y 1 ( - l ) k [ p ^ 5 ] ( - l )^ 

3 \ = 1 K k = l K 7 

2 P - l - [ p / 5 ] ( _ 1 ) k 

(mod p). D 
k = i 

This result (3.10) is much simpler than the results given by Andrews and 
seems to be more strictly analogous to (1.1). Unfortunately, the method of 
proof here made use of very special properties of the Fibonacci sequence. It is 
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not known whether simple results, results similar to (1.1) or (3.10) exist for 
other Lucas sequences such as the Pell sequence. 
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