(C) Canadian Mathematical Society 2013

# On Complex Explicit Formulae Connected with the Möbius Function of an Elliptic Curve 

Adrian Łydka

Abstract. We study analytic properties function $m(z, E)$, which is defined on the upper half-plane as an integral from the shifted $L$-function of an elliptic curve. We show that $m(z, E)$ analytically continues to a meromorphic function on the whole complex plane and satisfies certain functional equation. Moreover, we give explicit formula for $m(z, E)$ in the strip $|\Im z|<2 \pi$.

## 1 Introduction

For a complex number $z$ from the upper half-plane let

$$
m(z)=\frac{1}{2 \pi i} \int_{C} \frac{e^{s z}}{\zeta(s)} d s
$$

where $\zeta(s)$ denotes the classical Riemann zeta function, and the path of integration consists of the half-line $s=-\frac{1}{2}+i t, \infty>t \geq 0$, the line segment $\left[-\frac{1}{2}, \frac{3}{2}\right]$ and the half-line $s=\frac{3}{2}+i t, 0 \leq t<\infty$. This function was considered in [1] and [5] where the following theorems were proved.

Theorem 1.1 (Bartz [1]) The function $m(z)$ can be analytically continued to a meromorphic function on the whole complex plane and satisfies the following functional equation

$$
m(z)+\overline{m(\bar{z})}=-2 \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \cos \left(\frac{2 \pi}{n} e^{-z}\right)
$$

The only singularities of $m(z)$ are simple poles at the points $z=\log n$, where $n$ is a square-free natural number. The corresponding residues are

$$
\operatorname{Res}_{z=\log n} m(z)=-\frac{\mu(n)}{2 \pi i}
$$

J. Kaczorowski in [5] simplified the proof of this result and gave an explicit formula for $m(z)$ in the strip $|\Im z|<\pi$.

[^0]Theorem 1.2 (Kaczorowski [5]) For $|\Im z|<\pi, z \neq \log n, \mu(n) \neq 0$ we have

$$
\begin{aligned}
m(z)=- & \sum_{n=1}^{\infty} \frac{\mu(n)}{n} e\left(-\frac{1}{n e^{z}}\right)-\frac{e^{z}}{2 \pi i} m_{0}(z) \\
& -\frac{1}{2 i}\left(m_{1}(z)+\overline{m_{1}}(z)\right)+\frac{1}{2 i}\left(F_{m}(z)+\overline{F_{m}}(z)\right)
\end{aligned}
$$

where

$$
m_{0}(z)=\sum_{n=1}^{\infty} \frac{\mu(n)}{n} \frac{1}{z-\log n}
$$

is meromorphic on $\mathbb{C}$ and

$$
\begin{aligned}
& m_{1}(z)=\frac{1}{2 \pi i} \int_{C}\left(\tan \frac{\pi s}{2}-i\right) \frac{e^{s z}}{\zeta(z)} d s \\
& F_{m}(z)=\frac{1}{2 \pi i} \int_{1}^{1+i \infty}\left(\tan \frac{\pi s}{2}-i\right) \frac{e^{s z}}{\zeta(z)} d s
\end{aligned}
$$

are holomorphic in the half-plane $\Im z>-\pi$.
In this paper we prove analogous results for the Möbius function of an elliptic curve over $(\mathbb{O})$ defined by the Weierstrass equation

$$
E /(\mathbb{O}): y^{2}=x^{3}+a x+b, \quad a, b \in(\mathbb{O}
$$

Let $L(s, E)$ denote the $L$-function of $E$ (see for instance [4, pp. 365-366]). For $\sigma=$ $\Re s>3 / 2$ we have

$$
\begin{equation*}
L(s, E)=\prod_{p \mid N}\left(1-a_{p} p^{-s}\right)^{-1} \prod_{p \nmid N}\left(1-a_{p} p^{-s}+p^{1-2 s}\right)^{-1} \tag{1.1}
\end{equation*}
$$

where $N$ is the conductor of $E$. It is well-known that coefficients $a_{p}$ are real and for $p \nmid N$ one has

$$
a_{p}=p+1-\# E\left(\mathbb{F}_{p}\right)
$$

where $\# E\left(\mathbb{F}_{p}\right)$ denotes the number of points on $E$ modulo $p$ including the point at infinity, and $a_{p} \in\{-1,0,1\}$, when $p \mid N$ (for details see [4, p. 365]). The Möbius function of $E$ is defined as the sequence of the Dirichlet coefficients of the inverse of the shifted $L(s, E)$ :

$$
\frac{1}{L\left(s+\frac{1}{2}, E\right)}=\sum_{n=1}^{\infty} \frac{\mu_{E}(n)}{n^{s}}, \quad \sigma>1
$$

Using (1.1) and the well-known Hasse inequality (see [4, p. 366, (14.32)]) we easily show that $\mu_{E}$ is a multiplicative function satisfying Ramanujan's condition $\left(\mu_{E}(n) \ll\right.$ $n^{\epsilon}$ for every $\epsilon>0$ ), and moreover

$$
\mu_{E}\left(p^{k}\right)= \begin{cases}-\frac{a_{p}}{\sqrt{p}} & \text { if } k=1 \\ 1 & \text { if } k=2 \text { and } p \nmid \Delta \\ 0 & \text { if } k \geq 3 \text { or } k=2 \text { and } p \mid \Delta\end{cases}
$$

for every prime $p$ and positive integer $k$.
Furthermore, C. Breuil, B. Conrad, F. Diamond and R. Taylor, using the method pioneered by A. Wiles, proved in [3] that every $L$-function of an elliptic curve analytically continues to an entire function and satisfies the following functional equation

$$
\begin{equation*}
\left(\frac{\sqrt{N}}{2 \pi}\right)^{s} \Gamma(s) L(s, E)=\eta\left(\frac{\sqrt{N}}{2 \pi}\right)^{2-s} \Gamma(2-s) L(2-s, E) \tag{1.2}
\end{equation*}
$$

where $\eta= \pm 1$ is called the root number.
In analogy to $m(z)$ we define $m(z, E)$ by

$$
m(z, E)=\frac{1}{2 \pi i} \int_{C} \frac{1}{L\left(s+\frac{1}{2}, E\right)} e^{s z} d s
$$

where the path of integration consists of the half-line $s=-\frac{1}{4}+i t, \infty>t \geq 0$, the simple and smooth curve $l$ (which is parametrized by $\tau:[0,1] \rightarrow \mathbb{C}$ such that $\tau(0)=-\frac{1}{4}, \tau(1)=\frac{3}{2}, \Im \tau(t)>0$ for $t \in(0,1)$ and $F(s)$ has no zeros on $l$ and between $l$ and the real axis), and the half-line $s=\frac{3}{2}+i t, 0 \leq t<\infty$.

Using (1.2) and Stirling's formula (see [4, p. 151, (5.112)]) it is easy to see that $m(z, E)$ is holomorphic on the upper half-plane.

Our main goal in this paper is to prove the following results, which are extensions of Theorems 1.1 and 1.2.

Theorem 1.3 The function $m(z, E)$ can be continued analytically to a meromorphic function on the whole complex plane and satisfies the following functional equation

$$
m(z, E)+\bar{m}(z, E)=-\frac{2 \pi}{\eta \sqrt{N}} \sum_{n=1}^{\infty} \frac{\mu_{E}(n)}{n} J_{1}\left(\frac{4 \pi}{\sqrt{N n}} e^{-\frac{z}{2}}\right)-R(z)
$$

where $R(z)=\sum \operatorname{Res}_{s=\beta} \frac{e^{i z}}{L\left(s+\frac{1}{2}, E\right)}$ (summation is over real zeros of $L\left(s+\frac{1}{2}, E\right)$ in $(0,1)$, if there are any) and $J_{1}(z)$ denotes the Bessel function of the first kind:

$$
J_{1}(z)=\sum_{k=1}^{\infty} \frac{(-1)^{k}(z / 2)^{2 k+1}}{k!\Gamma(k+2)}
$$

The only singularities of $m(z, E)$ are simple poles at the points $z=\log n, \mu_{E}(n) \neq 0$ with the corresponding residues

$$
\operatorname{Res}_{z=\log n} m(z, E)=-\frac{\mu_{E}(n)}{2 \pi i}
$$

Let $Y_{1}(z)$ be the Bessel function of the second kind and let

$$
H_{1}^{(2)}(z)=J_{1}(z)-i Y_{1}(z)
$$

denote the classical Hankel function (see [2, p. 4]). Moreover, let

$$
R^{*}(z)=\operatorname{Res}_{s=\frac{1}{2}}\left(\tan \pi s \frac{e^{s z}}{L\left(s+\frac{1}{2}, E\right)}\right)+\sum \operatorname{Res}\left(\tan \pi s \frac{e^{s z}}{L\left(s+\frac{1}{2}, E\right)}\right)
$$

summation is over real zeros of $L\left(s+\frac{1}{2}, E\right)$ in $(0,1) \backslash\left\{\frac{1}{2}\right\}$ (if there are any),

$$
\begin{gathered}
m_{0}(z, E)=\sum_{n=1}^{\infty} \frac{\mu_{E}(n)}{n^{\frac{3}{2}}} \frac{1}{z-\log n} \\
m_{1}(z, E)=\frac{1}{2 \pi i} \int_{C}(\tan \pi s-i) \frac{e^{s z}}{L\left(s+\frac{1}{2}, E\right)} d s \\
H(z, E)=\frac{1}{2 \pi i} \int_{\frac{3}{2}}^{\frac{3}{2}+i \infty}(\tan \pi s-i) \frac{e^{s z}}{L\left(s+\frac{1}{2}, E\right)} d s
\end{gathered}
$$

It is easy to see that $R(z)$ and $R^{*}(z)$ are entire functions, $m_{0}(z, E)$ is meromorphic on the whole plane, whereas $m_{1}(z, E)$ and $H(z, E)$ are holomorphic for $\Im z>-2 \pi$. With this notation we have the following result.

Theorem 1.4 For $z=x+i y,|y|<2 \pi, x \in \mathbb{R}, z \neq \log n$, and $\mu_{E}(n) \neq 0$, we have

$$
\begin{align*}
m(z, E)= & \frac{-\pi}{\eta \sqrt{N}} \sum_{n=1}^{\infty} \frac{\mu_{E}(n)}{n}\left(H_{1}^{(2)}\left(\frac{4 \pi}{\sqrt{N n}} e^{-\frac{z}{2}}\right)-\frac{2}{\pi} i\left(\frac{4 \pi}{\sqrt{N n}} e^{-\frac{z}{2}}\right)^{-1}\right)  \tag{1.3}\\
& -\frac{1}{2}\left(R(z)-i R^{*}(z)\right)+\frac{1}{2 i}(H(z, E)+\bar{H}(z, E))-\frac{e^{\frac{3}{2} z}}{2 \pi i} m_{0}(z, E) \\
& -\frac{1}{2 i}\left(m_{1}(z, E)+\overline{m_{1}}(z, E)\right)
\end{align*}
$$

## 2 An Auxiliary Lemma

We need the following technical lemma.
Lemma 2.1 Let $z=x+i y, y>0, s=R e^{i \theta}, R \sin \theta \geq 1, \frac{\pi}{2} \leq \theta \leq \pi$. Then for $R \geq R(x, y)$ we have

$$
\left|\frac{e^{s z}}{L\left(s+\frac{1}{2}, E\right)}\right| \leq e^{-y \frac{R}{2}}
$$

Proof Using (1.2), the Stirling's formula and estimate

$$
\log L(\sigma+i t, E) \ll \log (|t|+2), \quad|\sigma| \geq \frac{3}{2}, \quad|t| \geq 1
$$

(see [7, p. 304]) we obtain

$$
\begin{equation*}
\log \left|\frac{e^{s z}}{L\left(s+\frac{1}{2}, E\right)}\right|=\Re \log \frac{e^{s z}}{L\left(s+\frac{1}{2}, E\right)}=2 R \log R \cos \theta+R f(\theta, x, y)+O(\log R) \tag{2.1}
\end{equation*}
$$

where $f(\theta, x, y)=\left(x+2 \log \frac{\sqrt{N}}{2 \pi}-2\right) \cos \theta-(y+2 \theta-\pi) \sin \theta$.
For $\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}+\frac{1}{\sqrt{\log R}}$ we have

$$
f(\theta, x, y)=-(y+2 \theta-\pi)+O\left(\frac{1}{\sqrt{\log R}}\right)
$$

and hence

$$
\log \left|\frac{e^{s z}}{L\left(s+\frac{1}{2}, E\right)}\right| \leq-\frac{y R}{2}
$$

For $\frac{\pi}{2}+\frac{1}{\sqrt{\log R}} \leq \theta \leq \pi$ we have

$$
|\cos \theta| \gg \frac{1}{\sqrt{\log R}}
$$

and consequently

$$
\log \left|\frac{e^{s z}}{L\left(s+\frac{1}{2}, E\right)}\right|=-2|\cos \theta| R \log R+O(R) \leq-y R \leq-\frac{y R}{2}
$$

for sufficently large $R$, and the lemma easily follows.

## 3 Proof of Theorem 1.3

We shall first prove that $m(z, E)$ has meromorphic continuation to the whole complex plane.

Let us write

$$
\begin{aligned}
2 \pi i m(z, E) & =\int_{-\frac{1}{4}+i \infty}^{-\frac{1}{4}} \frac{e^{s z}}{L\left(s+\frac{1}{2}, E\right)} d s+\int_{l} \frac{e^{s z}}{L\left(s+\frac{1}{2}, E\right)} d s+\int_{\frac{3}{2}}^{\frac{3}{2}+i \infty} \frac{e^{s z}}{L\left(s+\frac{1}{2}, E\right)} d s \\
& =n_{1}(z)+n_{2}(z)+n_{3}(z)
\end{aligned}
$$

say.
Notice that $n_{2}(z)$ is an entire function.
We compute $n_{3}(z)$ explicitly. Term by term integration gives

$$
n_{3}(z)=-e^{\frac{3}{2} z} \sum_{n=1}^{\infty} \frac{\mu_{E}(n)}{n^{\frac{3}{2}}(z-\log n)}
$$

This shows that $n_{3}(z)$ is meromorphic on the whole complex plane and has simple poles at the points $z=\log n, \mu_{E}(n) \neq 0$, with residues

$$
\operatorname{Res}_{z=\log n} n_{3}(z)=-\mu_{E}(n)
$$

Let us now consider $n_{1}(z)$. Let $C_{1}$ consist of the half-line $s=\sigma+i,-\infty<\sigma \leq-\frac{1}{4}$ and the line segment $\left[-\frac{1}{4}+i,-\frac{1}{4}\right]$. Using Lemma 2.1, we can write

$$
n_{1}(z)=\int_{C_{1}} \frac{e^{s z}}{L\left(s+\frac{1}{2}, E\right)} d s
$$

Putting $s=\sigma+i, \sigma \leq 0$ in (2.1) we obtain

$$
\left|\frac{e^{(\sigma+i) z}}{L\left(\frac{1}{2}+\sigma+i, E\right)}\right| \ll e^{-c_{0}|\sigma| \log (|\sigma|+2)}
$$

hence $n_{1}(z)$ is an entire function.
Then for $z \in \mathbb{C}, z \neq \log n$, and $\mu_{E}(n) \neq 0$, we have

$$
m(z, E)+\bar{m}(z, E)=-\frac{1}{2 \pi i} \int_{\overline{C_{1}} \cup\left(-C_{1}\right)} \frac{e^{s z}}{L\left(s+\frac{1}{2}, E\right)} d s-R(z)
$$

where minus before a contour denotes the opposite direction.
Using the equality (1.2), we get

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{\overline{C_{1} \cup\left(-C_{1}\right)}} \frac{e^{s z}}{L\left(s+\frac{1}{2}, E\right)} d s \\
& \quad=\frac{\pi}{\eta \sqrt{N}} \sum_{n=1}^{\infty} \frac{\mu_{E}(n)}{n} \cdot \frac{1}{2 \pi i} \int_{\overline{C_{1}} \cup\left(-C_{1}\right)} \frac{\Gamma\left(s+\frac{1}{2}\right)}{\Gamma\left(\frac{3}{2}-s\right)}\left(\frac{N n e^{z}}{(2 \pi)^{2}}\right)^{s} d s
\end{aligned}
$$

The last integrand has simple poles at $s=-\frac{1}{2},-\frac{3}{2},-\frac{5}{2}, \ldots$ Computing residues we obtain

$$
\frac{1}{2 \pi i} \int_{\overline{C_{1} \cup\left(-C_{1}\right)}} \frac{\Gamma\left(s+\frac{1}{2}\right)}{\Gamma\left(\frac{3}{2}-s\right)}\left(\frac{N n e^{z}}{(2 \pi)^{2}}\right)^{s} d s=J_{1}\left(\frac{4 \pi}{\sqrt{N n}} e^{-\frac{z}{2}}\right)
$$

## 4 Proof of Theorem 1.4

Let us now consider the function

$$
m^{*}(z, E)=\frac{1}{2 \pi i} \int_{C} \tan (\pi s) \frac{e^{s z}}{L\left(s+\frac{1}{2}, E\right)} d s
$$

Using Lemma 2.1 we can write

$$
m^{*}(z, E)=\frac{1}{2 \pi i}\left(\int_{C_{1} \cup l}+\int_{\frac{3}{2}}^{\frac{3}{2}+i \infty}\right) \tan \pi s \frac{e^{s z}}{L\left(s+\frac{1}{2}, E\right)} d s=m_{a}^{*}(z, E)+m_{b}^{*}(z, E)
$$

Using again estimation

$$
\left|\frac{e^{(\sigma+i) z}}{L\left(\frac{1}{2}+\sigma+i, E\right)}\right| \ll e^{-c_{0}|\sigma| \log (|\sigma|+2)}, \quad \sigma \leq 0
$$

and $\tan (\pi(\sigma+i)) \ll 1$ it is easy to see that $m_{a}^{*}(z, E)$ is an entire function.
Moreover

$$
m_{b}^{*}(z, E)=H(z, E)-\frac{e^{\frac{3}{2} z}}{2 \pi} m_{0}(z, E)
$$

This gives the meromorphic continuation of $m^{*}(z, E)$ to the half-plane $\Im z>-2 \pi$ and $m^{*}(z, E)$ has poles at the points $\log n, n=1,2,3, \ldots, \mu_{E}(n) \neq 0$, with residues

$$
\operatorname{Res}_{s=\log n} m^{*}(z, E)=-\frac{\mu_{E}(n)}{2 \pi}
$$

Now we consider the function $\overline{m^{*}}(z, E)$. Changing $s$ to $\bar{s}$ we get

$$
\overline{m^{*}}(z, E)=\frac{1}{2 \pi i} \int_{-\bar{C}} \tan \pi s \frac{e^{s z}}{L\left(s+\frac{1}{2}, E\right)} d s, \quad \Im z<2 \pi
$$

Further we have

$$
\overline{m^{*}}(z, E)=\frac{1}{2 \pi i} \int_{-\left(\overline{C_{1}} \cup \bar{l}\right)} \tan \pi s \frac{e^{s z}}{L\left(s+\frac{1}{2}, E\right)} d s+\bar{H}(z, E)-\frac{e^{\frac{3}{2} z}}{2 \pi} m_{0}(z, E) .
$$

Then for $|\Im(z)|<2 \pi$ we have

$$
m^{*}(z, E)+\overline{m^{*}}(z, E)=-J(z, E)-\frac{e^{\frac{3}{2} z}}{\pi} m_{0}(z, E)+H(z, E)+\bar{H}(z, E)-R^{*}(z)
$$

where

$$
J(z, E)=\frac{1}{2 \pi i} \int_{\overline{C_{1}} \cup\left(-C_{1}\right)} \tan \pi s \frac{e^{s z}}{L\left(s+\frac{1}{2}, E\right)} d s
$$

Using functional equation (1.2), we get

$$
\begin{aligned}
J(z, E) & =\frac{1}{2 \pi i} \int_{\overline{C_{1}} \cup\left(-C_{1}\right)} \tan (\pi s) \frac{e^{s z} \Gamma\left(s+\frac{1}{2}\right)}{\eta \Gamma\left(\frac{3}{2}-s\right) L\left(\frac{3}{2}-s\right)}\left(\frac{\sqrt{N}}{2 \pi}\right)^{2 s-1} d s \\
& =\frac{-2 \pi}{\eta \sqrt{N}} \sum_{n=1}^{\infty} \frac{\mu_{E}(n)}{n}\left(\frac{1}{2 \pi i} \int_{\overline{C_{1}} \cup\left(-C_{1}\right)} \frac{\Gamma\left(s+\frac{1}{2}\right) \Gamma\left(s-\frac{1}{2}\right)}{\Gamma(s) \Gamma(1-s)}\left(\frac{e^{z} N n}{4 \pi^{2}}\right)^{s} d s\right)
\end{aligned}
$$

We can compute the last integral using inverse Mellin transform (see [6, p. 407])

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{\overline{C_{1}} \cup\left(-C_{1}\right)} \frac{\Gamma\left(s+\frac{1}{2}\right) \Gamma\left(s-\frac{1}{2}\right)}{\Gamma(s) \Gamma(1-s)}\left(\frac{e^{z} N n}{4 \pi^{2}}\right)^{s} d s \\
& \quad=-Y_{1}\left(\frac{4 \pi}{\sqrt{N n}} e^{-\frac{z}{2}}\right)-\frac{2}{\pi}\left(\frac{4 \pi}{\sqrt{N n}} e^{-\frac{z}{2}}\right)^{-1}
\end{aligned}
$$

Therefore

$$
J(z, E)=\frac{2 \pi}{\eta \sqrt{N}} \sum_{n=1}^{\infty} \frac{\mu_{E}(n)}{n}\left(-Y_{1}\left(\frac{4 \pi}{\sqrt{N n}} e^{-\frac{z}{2}}\right)-\frac{2}{\pi}\left(\frac{4 \pi}{\sqrt{N n}} e^{-\frac{z}{2}}\right)^{-1}\right)
$$

For $x \in \mathbb{R}, x \neq \log n$ we have

$$
\begin{aligned}
\Re\left(m^{*}(x, E)\right)= & \frac{\pi}{\eta \sqrt{N}} \sum_{n=1}^{\infty} \frac{\mu_{E}(n)}{n}\left(-Y_{1}\left(\frac{4 \pi}{\sqrt{N n}} e^{-\frac{x}{2}}\right)-\frac{2}{\pi}\left(\frac{4 \pi}{\sqrt{N n}} e^{-\frac{x}{2}}\right)^{-1}\right) \\
& -\frac{e^{\frac{3}{2} x}}{2 \pi} m_{0}(x, E)+\frac{1}{2}(H(x, E)+\bar{H}(x, E))-\frac{1}{2} R^{*}(x)
\end{aligned}
$$

Obviously

$$
m^{*}(z, E)=i m(z, E)+m_{1}(z, E)
$$

therefore we get

$$
\begin{align*}
\Im(m(x, E))=- & \frac{\pi}{\eta \sqrt{N}} \sum_{n=1}^{\infty} \frac{\mu_{E}(n)}{n}\left(-Y_{1}\left(\frac{4 \pi}{\sqrt{N n}} e^{-\frac{x}{2}}\right)-\frac{1}{\pi} \frac{e^{\frac{x}{2}} \sqrt{N n}}{2 \pi}\right)  \tag{4.1}\\
& +\frac{e^{\left(\frac{3}{2} x\right.}}{2 \pi} m_{0}(x, E)-\frac{1}{2}(H(x, E)+\bar{H}(x, E)) \\
& +\frac{1}{2}\left(m_{1}(x, E)+\overline{m_{1}}(x, E)\right)+\frac{1}{2} R^{*}(x)
\end{align*}
$$

On the other hand

$$
\begin{equation*}
\Re(m(x, E))=-\frac{\pi}{\eta \sqrt{N}} \sum_{n=1}^{\infty} \frac{\mu_{E}(n)}{n} J_{1}\left(\frac{4 \pi}{\sqrt{N n}} e^{-\frac{x}{2}}\right)-\frac{1}{2} R(x) \tag{4.2}
\end{equation*}
$$

The equations (4.1) and (4.2) imply the formula for $z \in \mathbb{R}, z \neq \log n$, and $\mu_{E}(n) \neq$ 0 , and by the analytic continuation, formula (1.3) is valid in the strip $|\Im z|<2 \pi$.

Acknowledgments This paper is a part of my PhD thesis. I thank my thesis advisor Prof. Jerzy Kaczorowski for suggesting the problem and helpful discussions.

## References

[1] K. Bartz, On some complex explicit formulae connected with the Möbius function, I. Acta Arith. 57(1991), 283-293.
[2] H. Bateman and A. Erdelyi, Higher transcendental functions. Vol. II, McGraw-Hill Book Company, 1953.
[3] C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity of elliptic curves over $Q$.
J. Amer. Math. Soc. 14(2001), 843-939. http://dx.doi.org/10.1090/S0894-0347-01-00370-8
[4] H. Iwaniec and E. Kowalski, Analytic number theory. Amer. Math. Soc., Providence, RI, 2003.
[5] J. Kaczorowski, Results on the Möbius function. J. London Math. Soc. 75(2007), 509-521. http://dx.doi.org/10.1112/jlms/jdm006
[6] D. Kaminski and R. B. Paris, Asymptotics and Mellin-Barnes integrals. Encyclopedia Math. Appl., Cambridge University Press, Cambridge, 2001.
[7] A. Perelli, General L-functions. Ann. Mat. Pura Appl. 130(1982), 287-306. http://dx.doi.org/10.1007/BF01761499

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, ul. Umultowska 87, 61-614 Poznań, Poland
e-mail: adrianl@amu.edu.pl


[^0]:    Received by the editors January 1, 2013.
    Published electronically August 10, 2013.
    AMS subject classification: 11M36, 11G40.
    Keywords: $L$-function, Möbius function, explicit formulae, elliptic curve.

