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Quasisymmetrically Minimal Moran Sets

Mei-Feng Dai

Abstract. M. Hu and S. Wen considered quasisymmetrically minimal uniform Cantor sets of Haus-
dorff dimension 1, where at the k-th set one removes from each interval I a certain number n of open
subintervals of length c|I|, leaving (1 + 1) closed subintervals of equal length. Quasisymmetrically
Moran sets of Hausdorff dimension 1 considered in the paper are more general than uniform Cantor
sets in that neither the open subintervals nor the closed subintervals are required to be of equal length.

1 Introduction

It is well known that quasiconformal homeomorphisms of a Euclidean space R",
n > 2 can distort the Hausdorff dimension of subsets. For example, the von Koch
snowflake is a quasiconformal image of the circle, but has dimension log4/log 3.
While the dimensions of sets of Hausdorff dimension zero or n must be preserved,
Gehring and Viisild [3] constructed for any 3 € (0, n), a compact set Eg C R" with
dimg¢ Eg = 3 and for any f3, B € (0,n),a quasiconformal map f: R" — R" with
E;» = f(Eg). Bishop [1] showed that the dimension of any compact set E C R”
of positive dimension can be raised arbitrarily close to # by a quasiconformal (qua-
sisymmetric if n = 1) homeomorphisms of R"”. Then Tyson [9] showed that for
1 < a < n there is a compact set E C R” with Hausdorff dimension « so that
dimg¢ f(E) > « for all quasiconformal maps f: R” — R". But according to Tukia
[8], a set in R of Hausdorff dimension 1 may not be minimal for 1-dimensional
quasisymmetric maps. On the other hand, by Kovalev [7], if 0 < dimy E < 1,
then for every ¢ > 0 there is an n-dimensional quasisymmetric map f such that
dimg¢ f(E) < e. Thus, no sets in R” of dimg¢ € (0,1) can be quasisymmetriclly
minimal. Recently, Hakobyan [4] and Hu and Wen [5] proved that middle interval
Cantor sets and uniform Cantor sets of Hausdorff dimension 1 are all minimal. These
are the known examples of minimal sets in R of Hausdorff dimension 1. Our results
hold for those Moran sets E := E({ng}, {0k}, {cx}) with dimg E = 1 for which any
basic interval of order k + 1 is smaller than any basic interval of order k. These sets
include the middle interval Cantor sets and uniform Cantor sets in [4,5]. We prove
that they are also minimal for 1-dimensional quasisymmetric maps (See Theorem
3.1) and illustrate Theorem 3.1 by Example 3.2.
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2 Preliminary

Let X,Y be metric spaces and f: X — Y be a topological homeomorphism. The
map f is called quasisymmetric if there is a homeomorphism 7: [0,00) — [0, c0)
such that

(2.1)

0 - f@| _ (lx—d
fo — @) = i = bI)

for all triples a, b, x of distinct points in X. When X =Y = R", we also say that f
is an n-dimensional quasisymmetric map. We call a set E C R" quasisymmetrically
minimal, if dimg¢ f(E) > dimg¢ E for any n-dimensional quasisymmetric map f.

By the definition of quasisymmetric maps, an increasing homeomorphism
f: R — Ris quasisymmetric if and only if

LWl

T

for all pairs of adjacent intervals I, J of equal length, where M = n(1), n is as in
(2.1). In this case we also say that f is M-quasisymmetric. The following property of
M-quasisymmetric maps is very useful for us.

Lemma 2.1([5,10]) Let f be an M-quasisymmetric map. Then
U _ 1D 171\ ?
1+M)™? l < <4 =
om0 ()" < 7y < 40 j7)
for all pairs ], I of intervals with ] C I, where

(2.2) 0<p=log,(1+M ") <1<qg=log,(1+M).

We define the Moran set E := E({m}, {0}, {ck}). Let {m}32, be a bounded
sequence of positive integers. Then {0¢}2, = (dk1,...,0kn+1) and {c}2, =
(Ck1s - - - 5 Ckm) are sequences of real numbers in (0, 1) with

ng+1

Nk 3
ch’j <1, and Z(Sk,j'{' =1
i =1 j=1

for each k. Suppose {Ei}°, is a nested sequence of closed sets in [0, 1] satisfying the
following conditions:

(i) For each k >1, Ej is a union of disjoint closed intervals, i.e., Ex = Uf\il Eyi,
where Ny = HLl(m +1). (Wecall E; (i = 1,...,Ni) the basic interval of

order k).

(ii) Let Ep=[0, 1]. At level k, each interval I from Ej_; is replaced by sy + 1 subin-
tervals whose lengths are proportional to the 6 ; (j = 1,...,n + 1) and the
gaps between that are proportional to the ¢ ; (j = 1, ..., n). The leftmost one

and I have the same left endpoint, and the rightmost one and I have the same
right endpoint.
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The set E =: E({m}, {8k}, {cx}) = Mo Ex is called a Moran set.
Lemma 2.2 ([6]) IfE = E({n}, {6}, {ck}) is a Moran set, then

dimg¢ E = lim inf s,
k— o0

where {sy }i>1 satisfies the equality

k ni+l

(2.3) H Z 5 =1.

i=1 j=1

Lemma 2.3 Let E = E({n}, {0k}, {ck}) be a Moran set. If dimgc E = 1. Then

(i)
k ni+l
lim (H Z(S 7]) =
k—o0 i
(ii)
lim 1z:<i:cl—])a—0
k—oo k i n;
forany0 < a < 1.
(iii)
Hi:0<i<k Y7, c;>me}
lim J ' =
k— o0 k

forany e € (0, 1), where # denotes the cardinality.

Proof (i) From Holder’s inequality

rzjl:arer(rX: at)’ (Zb")%, <k<1andllc+% 1),

we get
ni+1 1 nj+1 1
2151‘.,1' > (Z ) (Zl‘ffj) k
j= j=1 j=
. ni+1 1
=+ D' 7o) =12,k
=1
Then
k ni+1 ni+1 1
H261]>H<n1+1> ()
i=1 j=1 i=1 j=1
k ni+1 1
—H<n1+1> I
i=1 j=1
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From (2.3), we get

k ni+l
> 6> H(n, + 1),
i=1 j=1
k ni+l1 1 k
log(HZ&-,j) > (1 — ;) Zlog(n,— +1).
i=1 j=1 i=1

It follows that

o < Zk log(n; + 1) .
B Zl 110g(111+1)—10g(]_[1 IZ"’H )

Note that 1 > dimgp E > dimgc E = 1. We get

1
1= hm sx < lim =
k— o0 1— log(l_[ Z L xr)

>k log(n +1)

We can see that . '
+
im log(ITi—, Z? 1 11)
k—o0 Z - log(nj+1)

The reverse inequality is obvious, so

k n;
im log(I [, Z] +11 9i ) —0
k—o0 25:1 log(n; + 1)

Because {y} is bounded, we can set N = 1+ sup,{#,}. One has H:;l(ni +1) < NK

it follows that . iy
log(I[i, Z] 1 11)

1m

k—o00 klogN
Therefore,
k ni+l l/k
li x =1.
Jim (T 6) =1
i=1 j=1
(ii) Since
k ni+l 1 1 k ni+1 1 n;
. K . .
i (130 0)" < fim p 32300 = lim 3 32(1- 2)
i=1 j=1 i=1 j=1 i=1 j=1
1 k n;
S gm iy S
i=1 j=
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By conclusion (i), we have
n; k

N L RN e
im 22305 S Jim g3 cai=o

k— o0 .
i=1 j=1

which together with Jensen’s inequality yields

forany 0 < a < 1.
(iii). Fix € € (0, 1). Then we have from conclusion (ii) that

fHi:0<i <Kk, Z?l_lCiJZn,‘E} ni 1 ki

- 1 i, ij
K SEZE%ZEZZ%_}O

as k tends to oo. |

Lemma 2.4 Leta=1— %/, Onehas1—4mx > (1 —x)*"*! forall x € (0, q)

and positive integers m < N.

Proof Let f(x) = 1 —4mx — (1 — x)*"*! (m < N,0 < x < a). We consider the

function
4x 1/4x
glx) = <4x+ 1) '
Because
1 4x+ 1 1
/
~ [y ( )+ } >0, forx>0.
) [4x2 "\ T prery ) RAC orx
We can get
4m N 4N \
( ) < ( ) =1l—a<l1-—x
4dm+ 1 4N + 1
It follows that
fl(x) = —dm+ (4m+ 1)(1 — )" > —dm + (4m + 1) m__y
dm+ 1

So f(x) > f(0) = 0. Thatis, 1 — 4mx > (1 — x)*"*! for all x € (0, a) and positive
integers m < N. ]
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3 Main Theorem

Theorem 3.1 Let E = E({m}, {0k}, {ck}) be a Moran set with dimy E = 1 for
which any basic interval of order k+ 1 is smaller than any basic interval of order k. Then
dimg¢ f(E) = 1 for all 1-dimensional quasisymmetric maps f.

Proof In order to prove dimg¢ f(E) > 1, it suffices to show that dimg¢ f(E) > d for
any d € (0,1). For this purpose, given d € (0, 1), a probability measure p on f(E)
will be defined so that the inequality

(3.1) u(n <l

holds for any interval ] C R, where C is a positive constant independent of J. Then
the mass distribution principle yields dimg¢ f(E) > d (see [2]). Let f: R — R be
an M-quasisymmetric map and d € (0, 1). Without loss of generality, assume that
£(0,1]) = [0, 11.

First note that E has a tree structure where each level k — 1 parent interval has
exactly n + 1 children, and the same is true for f(E). Now we define a probability
measure p on f(E) as follows. Let p([0,1]) = 1. For every k > 1 and every com-
ponent interval Jy_; of f(Ex—1), let Jxo, Jk1,- - ., Jkn, denote the n; + 1 component
intervals of lying in J;_,. Define
| Jiil?

| Je—11la

,u(]k,i) = u(]k—l)a izovla"'7nka

where || Ji—i[la = 31, [Jki]?. We are going to show that the measure i satisfies
w()) < C|]|d for any J C [0, 1], where C is a positive constant independent of ], we
do this in two steps.

Step 1. Suppose that ] is a component interval of f(Ey). For every i, 0 < i < k,
let J; be the component interval of f(E;) such that

(3.2) J=JkC k-1 C---C N CJo=1[0,1].
Then by the definition of the measure y,

pl)) 1 | Ji—1] | | Ji—1] Tl Tl

14 Wk=illa Wi=2lla — Wolla — Wk=tlla  Whlla [ Jolla”
a L
Jilla .
r = , i=0,1,...,k—1.
Ak

The above equality can be rewritten as
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To prove (3.1), it suffices to show

k
(3.3) lim [ ri—; =oco uniformly.

k—o0 i=1

Given an i,1 < i < k, we are going to estimate r;_;. Let J;_; be the component
interval of f(E;_;) in the sequence (3.2). Recall that J; C J;_; isa component interval
of f(E;). Let Ji1, Ji2,- .-, Jin; be the other n; component intervals of f(E;) lying in
Ji—1. Let Gj1, Gy, . . ., Giy, be the n; gaps between these #; + 1 intervals. Put

Loy = f'Uim),
L= "',
Lj=f"Uy, j=1,...,m.

Then I;, Ii1, Iip, . . ., Iiy, are basic intervals of E; lying in the basic interval I;_; of
E;_,. Since f is M-quasisymmetric, it follows from Lemma 2.1 and the construction

of E that
|Gijl b
3.4 : 4c ) :172a , Hi,
( ) |Ii—1| - L] J !
and that
il 1 [Lij| 9
(3.5) max — Zmax{i( ’ ) }
i i i LI+ M2\ L
o1 ( =30 CiJ) a
~ (1+M)? n+1

1 (1—2'}’;161‘4)4

>
~— (1+M)?2 N
where p, g are numbers defined as in (2.2). The equality (3.4) yields

il + il + -+ Viw| _ Vical = 1Gial = -+ = |G|
[Ji—1] [Jic1]

i
>1-4) .
j=1

(3.6)

The equality (3.5) implies that

N

],d+ ],‘d+...+ ].Hd dq
(3.7) riog = Lisa 11||]il|d i > Oél(l *Zci,J) )
=1

where ag = (1 + M)~ 2N—44,
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The estimate (3.7) is not enough to give (3.3); we need a more explicit form of
r;_1 for some i. Let

"G\ P
S =49i:1<i< l) }
(k, p) {1 l_z_k,(zni <a
j=1
Then by conclusion (iii) of Lemma 2.3, one has

(3.8) im Sk p)

k— o0 k

It is obvious that
xg x4+l

> 1
(x0 + 21 + -+ + x5, )4
for0<d<1,x,>0,i=0,1,...,n. So
il + 1T+ i) X+ x4
(3.9) 7= d:Oé2>1,
(L + 1 Tial + -+ [ Tim) (X0 + X1 + -+ x)
where xy = ‘]Ul = ‘llf”l

Fori € S(k, p) we get from (3.6) and (3.9),

n;

|d . |d - |d d
+ +o i
(3.10) fi_g = Uil + il i za2[1—4zc?]

Ui—1|d hJ

j=1

Note that n; < N and (3" “iye ¢ S(k, p). From Holder’s inequality, we get

j=1 n

Z] . l < m (Z 6;1,} )P. Then Lemma 2.4 together with (3.10) yields

n; n;

‘ Cii\P d ! G i\ P (4n;+1)d
3.11 o >o¢[1—4n-<§ —’)} >a{17<§ —’)] )
( ) i—1 = 2 1 j:1 n; = 2 : n;

Now we are in a position to prove (3.3). Using the estimate (3.7) for i ¢ S(k, p)
and the estimate (3.11) for i € S(k, p), we get

Ci,j pq (4ni+1)d
(3.12) Hr, = al(l—Zc,]> 11 az[l—(zn—i) |
i¢S(k.p) ieS(k,p) j=1
> Exi,
where
k—i5(k.p) N U Sk p)
& = a H (1_ l]) 2 )
i¢S(k,p) j=1
n;
Cz] p1 (4ni+1)d
= 11 - (23]
Mk H [ 2,
ie€S(k,p) j=1
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It is clear that

(3.13)

k— o0

M.-E Dai

lim fk =

due to conclusion (i) of Lemma 2.3 and equality (3.8). On the other hand, since
log(1 —x) > —2xforall 0 < x < 1, conclusion (ii) of Lemma 2.3 together with the

equality (3.8) yields

k
ieS(k,p)
>
ie€S(k,p)
S(k,p
—8N ¢
> — Z(

as k tends to co. This implies

(3.14)

k— o0

1lognk flog 11 {1—
%i Z log[l—(z

lim n

Cijj

P (4ni+1)d
)]

(>

j=1
Gij

)]

.
=1 '

.
=1 '
n;

> )

=

It follows from (3.12), (3.13), and (3.14) that

k

(I1

i=1

lim inf
k— o0

As a;p > 1, equality (3.3) then follows.

=

Z ).

Ti—l)

Step 2. It remains to prove (3.1) for any interval J C [0, 1]. The length di; (i =

1,...,Ni) of each basic interval of order k can be written as di; = 61,02, - - - Ok.iy»
i=1,...,m+1,1=1,... k and listed as follows:

dl,la d1,2a tee 7dl,N1a

d2,17 d2,27 cee 7d2.N27

dr_21,dr—22, .-+,

11, dk—12, ...,

di1,dio, -

korl,la dk+1,27 LR
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We let di,, = min,; di;, diy = max;dy;. Note that dy,, > djs1m. So for any
interval J C [0, 1], let k be the unique positive integer such that | f~!(J)| has only
two cases:

Casel: dy_1,m < |f'(J)] < dx—1m. (This case will appear when dy_;,, #
dr—1.m)-

Case2: dim < |f1())| < di—1,m-

First we discuss Case 1. Note that
dit < dx1m < || < diim < dram:

We find that the set f~!(]) meets at most two basic intervals of E;_, and hence at
most 2(nx—; + 1)(ng + 1) basic intervals of E;. Equivalently, the set ] meets at most
2(nk—1 + 1)(ng + 1) component intervals of f(E).

Let Ji, L2, .-y Ju, b < 2(ng—1 + 1)(ng + 1), be those component intervals of f(E)
meet J. Using the conclusion of Step 1, we get

h
(3.15) p() < pOh) + p(Jo) + -+ p(Ji) < C YR

i=1

In addition, since dypr < |f~'(J)|, we easily see that f~'(J;) C 3f~'()),i =
1,...,h, where 3f~!(]) is the interval of length |3 f~'(])| concentric with f~1(]).
So by Lemma 2.1, we have

L < |fGFON <310+ M), i=1,2,...,h,

where g = log, (1 + M). Let K = 39(1 + M)* > 0 be a constant depending only on
M. This together with (3.15) gives

u(J)) < Ch(K|])? < 2N*CKY|J|*.

This proves u(J) < C|J|%.

Now we discuss Case 2. Note that di s < |f~'())| < dk—1.m < dk—1.m-

We find that the set f~!(J) meets at most two basic intervals of E;_; and hence at
most 2(ny + 1) basic intervals of E. Equivalently, the set ] meets at most 2(ny + 1)
component intervals of f(Ej).

Let Ji, )2, ..., Ji,l < 2(ng + 1), be those component intervals of f(E;) meeting J.
Using the conclusion of Step 1, we get

1
(3.16) p(J) < pOh) + p) + -+ p(J) < C Yl

i=1

In addition, since diar < |f71(])], we easily see that f~1(J;)) C 3f~()), i =
1,...,L Sowehave | ;| < |[f3f ()| < K]|J|,i = 1,2,...,L This together with
(3.16) gives u(J) < CIK?|J|4 < 2NCK?|J|. This proves u(J) < C|J|". [ |
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Exmple 3.2 We construct a class of non-uniform Moran sets
E = E(m}, {0k}, {a})-

Let n; = 2 for all positive k. Then Ny = 3, {06330 = (0,15 0k 2, 0k 3), and {cx } 22, =
(ck1sck2)- Let 0 < A < $and 0 < & < X. We choose {8 }° and {c}72; as follows.
(1) Let 61}1 = 1,§+52’51’2 = %761,3 = 17/\3762. And C1,1> €12 in (0, 1) satisfy
C1,1 + C1p = A.
(ii) Let

R e 1—X— )\ | R N
623

021 = 30—n 0 T 3a-n 0 PT T E30-N

. . 2
And ¢, 625 1n (0, 1) satisfy ¢, 1 + ¢2 = 1A—A-

(iii) Let
1= A= A2 — oo — Ak ghel
61{,1: —1 )
31— A— - — A1)
[ P LR
5](‘2: —1\’
31— A— - — A1)
1_)\_)\2__“_)\k_5k+1
51(.3: k—1
31— A— - — A0
And ¢k, k2 in (0, 1) satisfy cx ) + ¢ = ﬁ
(iv) Let
| I S VI Vs R
6k+1,1: 3(1_)\__)\]() ’
1_/\_/\2__.__/\k+1
6k+1,2: 3(1_)\__)\]() )
[ W P V.o R
Oke13 = IE I P— T
)\k+1

And ¢gs1,15 Cea1 2 I (0, 1) satisty coen 1 + Gher 2 = 75— -
We claim that the class of non-uniform Moran sets satisfies the conditions in The-
orem 3.1.

Proof (1) We have dl‘l = 5171, d1,2 = 61’2, d173 = 51’3,

1—XA—e2 1-—2)\
> .

3
di=1—-)\ dim=ds=
; 1,j ) 1, 13 3 3
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(ii) Notice that

dr1 = di1621, drp = di102,, dr3 = dy1023,
drs = di20,1, drs = d120,, drs = di1203,
dy7 = dy 36,1, dyg = dy 30, dyo = dy 3053
We have
i 1—A— )\
Zdlj =(di1 + dl,z +di13)(01 + 0op + 52,3) =(1- A)ﬁ
-1
=1-X—\,
and
1—A+e? 1-A—-X+¢&
d = d = .
2M 3 3(1-))
(1—(>\—52)) (1 —/\—()\2—53)>
- 32(1-\)
1
< ?
Then 1—20 1 2(1-3)
i —d S N
L 2 > 32 EER
It follows that d, ,, > d, u.
(iii) Notice that
dr1 = dik—1,10k1, drp = di—1,10k2, drs = di—1,10k 3,
dra = di—120k1, drs = di—120k2, dre = di—120k3,

dk73k_2 = dk—173k*16k,17 dk’3k_1 = dk—173k*16k,27 dk’j,k = dk—1,3k*16k,3-

We have
3* 3kt
de,j = (de—l,j) (61 + 02 + Ok 3)
j=1 =1
L—A—- =)
:(1_/\__.__/\k—1)1_>\_“._)\k71
=1 —A—-..— )\

)
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and

M.-F. Dai
Ak = dize = 013023+ Ok 3
R e e [ P Lo
o 3 3(1 —)\) 3(1— X+ — N 1)
(I—=A=X)---(1=X---= XD
N =D PERD L D U [ D Py U U
3k(1_)\)(1_)\_)\2)...(1_)\..._)\k71)
_ G PR LT6 R DU L )
o 3k(1 — )\)
- (IT=Aeo= X )@ = A= X DL
3k(1 = \)
(1=2))7
CO3R( = N3
Since (1 —2X) — (1 — A\)* = A(1 — 3A + A\?) > 0, we have dy ,, > lgfk.
(iv) Notice that
i1 = dx 10k, dri12 = dk10ki1,2, dys = di10k113,
dir1.4 = dx20ks11, k15 = Ak 20k41 2, dre = di20k+13,

Ay g = dpseliir1, sy = disilirr, iy sin = diselin 3.

We have

3k+1 3k
Z dp1,j = (Z dk.j) (01,1 + Oks12 + Oke13)
j=1 j=1
kl—)\—---—)\kﬂ
=(1=-A— - - —
( A A)l_)\_..._)\k
S I N L
derim = dk+1,1 = 51,152,1 s 5k+1,1
I e N e B e e = B R S o
B 3 3(1—0) 31— A —---— A1)
1_)\_.”_)\k+1+8k+2
31— A== A
(I=A+A)1 = A= X+ X) (1= X — - = M\
.(1_)\_”__)\k+1+/\k+2)
BT — Ao (1= A= — AD (1T =X — - — \K)
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1-(Q=X)- Q=A== XDl =-A—--- = )5
B (L —A) (L= A= = ML= A — - = NK)
1

= 3

Hence
1-—2\ 1 _2(1—3/\)

3k 3kl 3k+1

dim — Ak v > > 0.

It follows that d ,, > dit1 M.
Let £(E) denote the Lebesgue measure of E. From (1)—(4), we can get

1-2)

LE)=1-A=XN—.-MN_...=o—__ ">y
B X~

It then follows that dimg¢ E({nx}, {0k}, {ck}) = 1. [ |

The class of non-uniform Moran sets that we constructed satisfies the conditions
in Theorem 3.1. Therefore, dimg¢ f(E) = 1 for all 1-dimensional quasisymmetric

maps f.
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