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Abstract
Bayesian inference is a powerful tool in gravitational-wave astronomy. It enables us to deduce the properties of merging compact-object
binaries and to determine how these mergers are distributed as a population according to mass, spin, and redshift. As key results are increas-
ingly derived using Bayesian inference, there is increasing scrutiny on Bayesian methods. In this review, we discuss the phenomenon of
model misspecification, in which results obtained with Bayesian inference are misleading because of deficiencies in the assumed model(s).
Such deficiencies can impede our inferences of the true parameters describing physical systems. They can also reduce our ability to dis-
tinguish the ‘best fitting’ model: it can be misleading to say that Model A is preferred over Model B if both models are manifestly poor
descriptions of reality. Broadly speaking, there are two ways in which models fail. Firstly, models that fail to adequately describe the data
(either the signal or the noise) have misspecified likelihoods. Secondly, population models—designed, for example, to describe the distribu-
tion of black hole masses—may fail to adequately describe the true population due to a misspecified prior. We recommend tests and checks
that are useful for spotting misspecified models using examples inspired by gravitational-wave astronomy. We include companion python
notebooks to illustrate essential concepts.
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1. Introduction

Bayesian inference and parameter estimation are the cornerstones
of gravitational-wave astronomy. The Bayesian framework is used
to derive posterior distributions for parameters such as the masses
and spins of merging pairs of neutron stars and black holes.
Examples range from the progenitor of the first detected gravi-
tational wave, GW150914 (Abbott et al. 2016b) and the binary
neutron star merger, GW170817 (Abbott et al. 2017), to the many
sources now presented in the catalogues of gravitational-wave
transients published by the LIGO–Virgo–KAGRA Collaboration
(Abbott et al. 2019a; Abbott et al. 2021d,a,b) and independent
authors (e.g., Venumadhav et al. 2019, 2020; Olsen et al. 2022).
Using Bayesian inference, we obtain values for the marginal like-
lihood (also known as the evidence), which are used for model
selection. Model selection has been used, for example, to com-
pare models of the neutron star equation of state (Abbott et al.
2020b), assess the most likely progenitors of intermediate-mass
black hole merger GW190521 (Abbott et al. 2020c; Romero-Shaw
et al. 2020; Bustillo et al. 2021), and study gravitational-wave
events for evidence of modified gravity (e.g., Ghosh 2022).

A second layer of Bayesian analysis is built upon this
foundation to study the population properties of merging
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binaries. Hierarchical models are used to estimate population
hyper-parameters describing how sources of gravitational waves
are distributed according to mass, spin, redshift, and so on. This
has been key in, for example, the discovery of features in the dis-
tribution of binary black hole masses (Abbott et al. 2020a, 2021c).

Results obtained with Bayesian inference are only as reliable
as the underlying model. The compact-object binary parameters
reported in gravitational-wave transient catalogues are derived
using models that describe physical systems; only if these mod-
els are sufficient descriptors of the true system can these results be
meaningful. Bayesian inference can tell us that one model is a bet-
ter explanation for the data than another. For example, Bayesian
techniques have been used to suggest that intermediate-mass black
hole merger GW190521 shows signs of non-zero orbital eccen-
tricity (Romero-Shaw et al. 2020). However, Bayesian inference
on its own does not tell us if either the quasi-circular or eccen-
tric gravitational waveforms considered provide an adequate fit to
the GW190521 data. Similarly, Bayesian inference has been used to
suggest that the distribution of primary black hole mass is better fit
by a broken power-law distribution than a power-law distribution
with no break (Abbott et al. 2020a). However, Bayesian inference
on its own does not tell us if either of these models is adequate to
describe the observed distribution of primary black hole masses.

As the gravitational-wave catalogue grows and gravitational-
wave detector sensitivity improves, we begin to see more events
that push the boundaries of our understanding of the Universe.
This makes it ever more important to test the validity of our mod-
els. A signal model that is valid for systems with mass ratios q≥
0.125 may be invalid for a mass ratio of q= 0.001. A detector noise
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model adequate for an event with signal-to-noise ratio SNR= 30
may inadequately represent the detail contained within an SNR=
100 signal. Additionally, as the number of gravitational-wave sig-
nal detections grows, the resolving power of the combined dataset
increases. This makes it ever more important to test the validity
of population models. A population model for the distribution of
binary black hole redshifts that works reasonably well for a dozen
events may be unsuitable for a catalogue with hundreds of events.

In this Article, we describe different ways in which models
can fail and lay out commonly used tests that can be carried out
to reveal these failures, often beginning with visualisation. For
a broader discussion of how visualisation can assist in solving
Bayesian inference problems, see Gabry et al. (2017). We discuss
workarounds for misspecified models, including model redesign
and data coarsening (Miller & Dunson 2019; Thomas & Corander
2019). For an idea of how Bayesian inference problems may be
solved through a careful workflow and iterative model redesign of
the prior and likelihood, see both Betancourt (2020) and Gelman
et al. (2020). While we cast many examples in the language of
gravitational-wave astronomy, we endeavour to use sufficiently
general language so that this review is useful to a broad audi-
ence. For additional resources, we refer the reader to Chapters
6-7 of Gelman et al. (2013), respectively devoted to ‘Model check-
ing’ and ‘Evaluating, comparing, and expanding models.’ See also
‘Model Checking and Sensitivity Analysis’ in Andreon & Weaver
(2015).

Almost all of the Subsections in this review follow the same
formula. After introducing a concept, we provide a bullet list of
recommended tests. This list is followed by a demonstration, which
illustrates the tests with simple examples. This layout is designed
to help researchers scan the Article to quickly find the misspecifi-
cation tests they are looking for. Our recommended tests do not
constitute an exhaustive list of the ways in which one may test for
misspecification. In addition, an analysis that passes all of these
tests may still suffer from misspecification—there is no silver bul-
let to detect all forms of misspecification! Furthermore, models of
complex physical processes will always be somewhat deficient; as
statistician George Box famously stated, ‘all models are wrong, but
some are useful’ (Box 1976). Nonetheless, the tests recommended
here provide a starting point for checking the suitability of models
for the task at hand: that is, to provide a ‘good enough’ descrip-
tion of the data that meaningful inferences can be made. All of the
demonstration code is available in jupyter notebook form here:
tinyurl.com/bf4n9vw5. There is a dedicated notebook for each
Section.

Broadly speaking, two different kinds of models are required
to do an inference calculation. Every such calculation requires a
model for the distribution of the data—the likelihood function—
and a model for the distribution of the parameters—the prior.
The remainder of this Article is organised as follows. In Section 2,
we discuss the importance of data visualisation. In Section 3, we
describe misspecification of the data: misspecified likelihood func-
tions. In Section 4, we describe misspecification of population
models: misspecified priors. In Section 5, we describe how appar-
ent outliers may or may not be signs of model misspecification.
We provide closing thoughts in Section 6.

2. Preface: The importance of visualisation

Below we describe many goodness-of-fit tests that can be used
to determine the suitability of different models. However, even

Figure 1. Anscombe’s Quartet: a demonstration of the importance of data visualisa-
tion. While these datasets appear very different when plotted, they have identical
summary statistics: mean x̄= 9, ȳ= 7.50, sample variance s2x = 9, s2y = 4.125± 0.003,
x− y correlation coefficient 0.816, linear regression line yR = 3.00+ 0.500xR, and lin-
ear regression coefficient of determination R2 = 0.67. An Anscombe’s Quartet notebook
is provided to demonstrate the calculation of these summary statistics for these
datasets.

the most carefully crafted tests are no replacement for sanity
checks with visualisation. Plotting data, we can sometimes see
obvious model failures that we might not have thought to check
a priori. The importance of visualisation is dramatically illus-
trated by Anscombe’s Quartet (Anscombe 1973): four 11-point
datasets with noticeably different trends that nonetheless have
near-identical simple descriptive statistics.a

The four datasets that comprise Anscombe’s Quartet are plot-
ted in Figure 1. By studying these graphs, one can begin to
diagnose anomalies: for example, two of the data sets each contain
a single outlier that skews the correlation coefficient (lower left)
or implies the existence of a relationship that is not supported by
the rest of the data (lower right). We can also see that the dataset
in the top right would be better-specified by a non-linear relation-
ship between x and y. The Quartet is a cautionary tale to those who
wish to establish the ‘goodness’ of their model: if one’s model does
not well-specify one’s data, then the calculated ‘goodness’ metric
is not to be trusted. The starting point for any exploration of mis-
specification, therefore, should be to visually compare the model
and the data.

3. Likelihoodmisspecification

3.1. Basics

Models for the data are built on assumptions about the nature
of both the noise and signal being measured. The data model is
described by the likelihood function

L(d|θ), (1)

where d is the data and θ is a set of parameters describing the noise
and/or signal.b The likelihood function is a normalised probability

aFor a more recent and creative example, see the Datasaurus Dozen (Cairo 2016).
bThroughout, we follow the notation from Thrane & Talbot (2019).
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density function for the data, not for the parameters θ (see Thrane
& Talbot 2019, for more details):∫

d(d)L(d|θ)=1, (2)∫
dθ L(d|θ) �=1. (3)

It is useful to define a marginal likelihood, which is also known as
the Bayesian evidence:

L(d)=
∫

dθL(d|θ)π(θ). (4)

Here, π(θ) is the prior distribution for the parameters θ . The
marginal likelihood is a model for the data, averaged over reali-
sations of θ .

A well-known example of a model for gravitational-wave data
is the Whittle likelihood model for Gaussian time-series noise,
shown here for a single frequency bin:

L(d̃|θ)= 1
2πσ 2 e

−|d̃|2/2σ 2 . (5)

Here, d̃ represents the frequency-domain gravitational-wave strain
while σ 2 is related to the noise power spectral density (PSD) P and
the frequency bin width �f :

σ 2 = P
4�f

. (6)

Equation (5) is an example of a parameter-free model of the
data. If, for example, a gravitational-wave signal from a compact
binary coalescence is present, then the likelihood depends on the
�15 parameters associated with a compact binary coalescence
(component masses, spins, etc.),

L(d̃|θ)=
∏
k

1
2πσ 2

k
e−

∣∣∣d̃k−h̃k(θ)
∣∣∣2/2σ 2

k . (7)

Here, h̃k(θ) is a model for the frequency-domain strain from a
gravitational-wave signal given binary parameters θ in frequency
bin k. Sometimes, hk(θ), which can be defined in either the time
domain or the frequency domain, is referred to as ‘the waveform
model.’

Examining Equation (7), we can see various ways in which the
likelihood can be misspecified, which we represent diagrammat-
ically in Figure 2. First, the waveform h(θ) may be misspecified,
which can lead to well-documented systematic error (Ohme et al.
2013; Wade et al. 2014; Ashton & Khan 2020; Gamba et al. 2021;
Huang et al. 2021). This is an example of a misspecified signal
model. Second, the noise model can be misspecified. There are
typically two ways that this can happen. One possibility is that the
functional form of the likelihood is correct, but the noise PSD is
misspecified. A number of papers have proposed different meth-
ods for estimating the noise PSD in order to minimise this form
of misspecification, for example, Littenberg & Cornish (2015),
Cornish & Littenberg (2015), Chatziioannou et al. (2019).

The other possibility is that the functional form of the like-
lihood is itself misspecified. This may occur because of non-
Gaussian noise artefacts (Röver, Meyer, & Christensen 2010) or
uncertainty in the noise PSD (Talbot & Thrane 2020; Biscoveanu
et al. 2020; Banagiri et al. 2020), both of which yield broader tails
than the Whittle distribution. Likewise, marginalising over cali-
bration uncertainty broadens the likelihood function (Sun et al.

Figure 2. Forms of misspecification that we explore in this Article. Individual events
can be misspecified if the model for the noise or the signal is not an adequate descrip-
tion of reality. The population of events may also be misspecified. This manifests
itself as prior misspecification, which can impact both individual analyses (where
the prior may be restricted to a limited portion of the true extent of the posterior)
and population analyses (where the goal is to uncover the true distribution of the
population).

2020; Payne et al. 2020; Vitale et al. 2021).c Covariance between
neighbouring frequency bins induced from finite measurements
of continuous noise processes can also lead to misspecification if
not correctly accounted for (Talbot et al. 2021; Isi & Farr 2021).
In the subsequent Subsections, we describe tests for these different
forms of misspecification.

3.2. Testing for amisspecified signal model

In order to test for a misspecified waveform, it is sometimes useful
to look at the whitenedd residuals of the data in frequency

r̃(f |θ)≡ d̃(f )− h̃(f |θ)
σ (f )

, (8)

and time

r(t|θ)=F−1 [
r̃(f |θ)] , (9)

whereF−1 is the discrete inverse Fourier transform. Residuals can
be useful to test for waveform misspecification because the differ-
ences between waveform models are clearly seen in the time and
frequency domain.e Additionally, if there is a terrestrial noise arte-
fact (glitch) present in the data, it is likely to appear clearly in the
residuals. For example, in Abbott et al. (2016b), the best-fit, time-
domain residuals for GW150914 were shown to be consistent with
Gaussian noise (see Figure 1 of Abbott et al. 2016b), helping to
show that the data are well explained by a gravitational waveform
in Gaussian noise.

cTechnically, calibration error is a form of signal misspecification in which the gravita-
tional waveform λ(f )h̃(f ) includes a calibration correction λ(f ). However, marginalising
over calibration uncertainty changes the functional form of the likelihood like the other
examples in this list.

dWhitening is the process by which frequency-domain data d̃(f ) are normalised by the
frequency-dependent noise d̃(f )→ d̃(f )/σ (f ).

eTo see an example of residual analysis from optical astronomy, we direct the reader to
the two-dimensional light intensity profiles in Weinzirl, Jogee, & Barazza (2008).
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Figure 3. The correctly specified waveform (pink) and the misspecified waveform
(grey) used in Section 3.2, plotted in the time domain.

Recommended tests:

• Plot the whitened residuals in both time r(t) and frequency
|r̃(f )| and visually inspect for consistency with zero. In the
frequency domain, the set of r̃(f ) are approximately indepen-
dent measurements with Gaussian uncertainty equal to unity.
Include residual curves for many posterior-distribution draws
of θ in order to show theoretical uncertainty. A word of cau-
tion: the time-domain residuals are highly covariant in real
data, and so it is less straightforward to interpret misspecifi-
cation in the time domain than in the frequency domain.

• As a first step, look for consistency by eye. If there are signs
of misspecification, one may quantify the inconsistency, for
example, ‘the residuals are five standard deviations away from
zero at 500 Hz.’ While post hoc analysis is helpful for catching
egregiousmisspecification, in an ideal world, one should define
the consistency tests a priori for unbiased tests. In practice, this
is not always possible.

Demonstration:f Our signal model is a sine-Gaussian chirplet
(i.e., a sine wavemultiplied by a Gaussian function).We create two
synthetic sets of data with Gaussian noise. The correctly specified
data contains a signal that matches our model. The second dataset
contains an intentionally misspecified signal: the same sine wave
as before, but multiplied by a Tukey window. In both datasets, we
assume Gaussian noise with a known power spectral density. In
Figure 3, we plot these two simulated signals.

It is worth pausing to distinguish this discussion of model
misspecification from the similar-but-different topic of model
selection. If we were discussingmodel selection, we would keep the
data fixed and compare it two different signal models. However,
misspecification occurs when the analyst has not conceived of the
correct model to test. Therefore, since we are discussing misspec-
ification, we keep the model fixed and consider two hypothetical
datasets: one correctly specified and one misspecified.

In the right-hand panel of Figure 4a, we display the time-
domain residuals obtained when we subtract the sine-Gaussian
waveform model from the misspecified data. In the left-hand
panel, we show the time-domain residuals obtained from subtract-
ing the same waveform model from the correctly specified data. If

fMisspecified signal model notebook.

the waveform is correctly specified, the residuals should be consis-
tent with our Gaussian noise model as in the left panel. Although
it is sometimes possible to see misspecification in the time-domain
data (for example, when there is a short glitch), the misspecifica-
tion may be more apparent in the frequency domain as is the case
here.

In Figure 4b, we plot the amplitude spectral density of the
residuals. Again, the left-hand panel shows the residuals for the
correctly specified signal while the right-hand panel shows the
residuals for the misspecified signal. While the correct waveform
yields residuals consistent with the noise amplitude spectral den-
sity, the misspecified signal produces a peak in the amplitude
spectral density that is conspicuously outside of the 90% range
predicted by the model (shown in pink).

In order to assess the overall goodness of fit, it can be use-
ful to plot the cumulative density function (CDF) of the residuals
alongside the theoretical CDF predicted by the model. The CDF
may be constructed from residuals in the time domain (to high-
light transient phenomena), but more often, misspecification is
most apparent using whitened frequency-domain residuals. An
illustration of the CDF test is provided in Figure 4c, where we
plot the CDF of the time-domain residuals. While there is only
one realisation of the data (grey), we can generate arbitrarily
many realisations of the theoretical CDF (pink). The thickness
of the pink CDF shows the variability from 100 different real-
isations.(This is similar to, although not the same as, Gelman’s
posterior predictive checks (e.g., Gelman et al. 2013; Gelman &
Rohilla Shalizi 2010). Gelman’s checks involve drawing realisa-
tions from the histogram of the posterior probability distribution
under the assumption of the model, and checking how proba-
ble it is for the model to produce realisations that are consistent
with the observed data. This is something that we return to in
Section 4. Here, we draw realisations from the noise model in
order to establish the range over which it can credibly vary.)

To determine if the residuals agree with the model, one can
employ any of the many established hypothesis-testing tools avail-
able to determine if measured samples are drawn from the theo-
retical distribution. For example, the Kolmogorov-Smirnov (KS)
statistic,

Dn =max
f

∣∣∣CDF(f |measured)−CDF(f |predicted)
∣∣∣, (10)

is the maximum difference between the measured CDF of the data
and the predicted CDF given n frequency bins. (The Anderson-
Darling test is also commonly used to determine if measured
samples are drawn from a predicted distribution.) The Dn statis-
tic can be converted into a p-value with a look-up table that does
not depend on the functional form of the CDF. The Kolmogorov-
Smirnov p-values for the correctly specified data and misspecified
dataset are provided in the legends of Figure 4c. The small p-
value in the right panel suggests that our signal model is indeed
misspecified.

Sometimes one may wish to inspect the data within a particu-
lar time or frequency interval. In this case, it can be enlightening
to draw hundreds of distributions from the model, and count the
number of times that the model CDF in this bin is above the CDF
of the data. The fraction of draws above the CDF in this bin consti-
tutes a p-value; if the data are correctly specified, the p-value will
follow a uniform distribution. Thus, a p-value very close to 0 or
1 indicates that the data in this bin deviate significantly from the
model. However, care must be taken if more than one p-value is
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Figure 4. Identifying amisspecified signal model. The left-hand column shows tests performed on data containing a signal consistent with the sine-Gaussian pulsemodel that we
test against. The right-hand column shows the same tests performed on data containing a different signal.
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calculated in the same set of data—while each p-value is uniformly
distributed, the set of p-values from one dataset are correlated with
each other.

Both of the tests described above assume that the predicted
model is non-parametric. That is, the distribution of the residuals
does not depend on any parameters. If the predicted distribu-
tion depends on one or more parameter θ , then we must rely on
Monte Carlo methods to determine if the distributions agree. For
example, we may calculate

D′
n =max

f

∣∣∣CDF(f |meas.)−CDF(f |θ̂ , pred.)
∣∣∣, (11)

which is a KS-type statistic using the maximum-likelihood param-
eters θ̂ . Since we use the data to estimate θ̂ , D′

n is not distributed
according to the Kolmogorov distribution. (It is easier to get
smaller differences between the measured and predicted CDFs
when the theoretical CDF varies depending on the parameters.)
However, we can still calculate a p-value by generating synthetic
data to empirically estimate the distribution ofD′

n, which amounts
to a generalisation of Lilliefors test (Lilliefors 1967). We demon-
strate such a calculation below in Subsection 4.2 in the context of
prior misspecification; see in particular Figure 7a.

3.3. Testing for a misspecified noise model

In order to observe noise misspecification and deviations from the
Whittle likelihood, it is again useful to look at the distributions of
residuals. By comparing the observed residuals to the theoretical
likelihood distribution, it is possible to see, for example, if five-
sigma deviations are more common than expected.

Recommended tests:

• Create a histogram representing the probability density func-
tion of the data; or, alternatively, plot the CDF of r, |r̃|, the
whitened residuals. It is sometimes also useful to plot the distri-
bution of the whitened residual power |r̃|2; see Talbot & Thrane
(2020), Chatziioannou et al. (2019). Include residual curves
for many posterior distribution draws of θ in order to show
theoretical uncertainty.

• For fixed models with no parameters, calculate a goodness-of-
fit statistic using, for example, the KS test. When models have
parameters, calculate the goodness of fit for the maximum-
likelihood parameters.

• Plot the difference in the cumulative density functions
(empirical - expected) as a function of the expected CDF as
in Talbot & Thrane (2020), Chatziioannou et al. (2019). This is
like a probability–probability (’PP’) plot, in which the fraction
of repeated measurements is plotted against the confidence
level at which the known truth value exists, for data model
checking.

• Bootstrapping methods—in which real data is used as a sam-
pling distribution for synthetic data—can often be helpful
for diagnosing noise misspecification. In gravitational-wave
astronomy, new noise realisations can be created by boot-
strapping data residuals (Cannon, Hanna, & Keppel 2013;
Cannon, Hanna, & Peoples 2015; Ashton, Thrane, & Smith
2019) or using time slides (Dal Canton et al. 2014; Usman et al.
2016); both methods were integral to the first gravitational-
wave detections (e.g., Abbott et al. 2016a). However, all boot-
strap methods ultimately break down due to saturation effects

(Wa̧s et al. 2010); it is impossible to simulate all possible noise
realisations using a finite dataset. In astro-particle physics,
using instruments such as Super-Kamiokande, sidereal time
scrambling is used to estimate typical fluctuations in signal
strength due to noise (Thrane et al. 2009).

Demonstration:g We demonstrate how to diagnose noise mis-
specification. The true noise is Gaussian with a mean μ = 0 and
standard deviation σ = 1. The misspecified noise is distributed
according to the Student’s t distribution with ν = 5 degrees of
freedom. These parameters are chosen so that the noise profiles
appear, at first glance, to be consistent with each other.

We display histograms of each noise dataset in Figure 5a. The
region that the model predicts 90% of the data to lie within is also
shown in these plots. The histograms both appear to largely lie
within this 90% credible region, with the Student’s t-distributed
data only visibly deviating in the tails.

Next, we Fourier transform our datasets and compare the 90%
range predicted by the noise model against histograms of the data
in the frequency domain (Figure 5a). In the frequency domain, the
misspecified datamore clearly strays outside of the range predicted
by the model. We then create a CDF of the frequency-domain
data, comparing again to the 90% range predicted by the model
(Figure 5b). We find a reasonable KS test p-value for the correctly
specified data and an extreme p-value for the misspecified data, as
expected. Finally, we compare the data to the model by plotting
the data CDF against the difference between the data CDF and the
model CDF (Figure 5c). In this final test, it is clear that the data is
not well-represented by the model.

4. Prior misspecification

In the previous Section, we discussed various ways in which the
likelihood can be misspecified and how we can detect this mis-
specification. Now we turn our attention to the misspecification of
the prior, π(θ), a distribution that describes our prior knowledge
of the parameters θ .

4.1. Priors with no hyper-parameters

In some cases, we can be very confident in our priors. For exam-
ple, since there is no preferred direction in the Universe, the best
prior for inclination angle ι (the angle between the orbital angu-
lar momentum and the line of sight) is uniform in cos ι. In other
situations, we are not confident in the form of the prior distribu-
tion. In these cases, it can be useful to formalise this theoretical
uncertainty using a conditional prior

π(θ |	). (12)
Here, 	 is a ‘hyper-parameter’ we may vary to alter the shape of
the prior for θ . In this Subsection, we focus on priors with no
hyper-parameters while we cover parameterised priors in the next
Subsection.

Recommended tests:

• Make a CDF plot comparing the reconstructed distribution of
θ to the expected distribution of θ . In order to obtain a recon-
structed distribution, obtain posterior samples for N different
events, each weighted with the population model to be tested.

gMisspecified noise model notebook.
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Figure 5. Identifying amisspecified noisemodel. The left-hand column shows tests performedwith a correctly specified Gaussian noisemodel while the right-hand column shows
the same tests with the same Gaussian model, but performed against a misspecified Student’s-t distribution.
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Draw one posterior sample from each of the N events to make
a realisation of the reconstructed distribution. Do this many
times to make many realisations. Plot CDFs of the many real-
isations alongside the population model being tested. If the
data agrees with the model, the CDFs should overlap. If the
two CDFs do not overlap, the model is a poor description of
the data. It is worth noting that a model can pass this test
while still being quite badly misspecified. Abbott et al. (2021e)
found evidence for negatively aligned spins in a population
of compact-object binaries, but this was later shown to be a
model-dependent feature (Roulet et al. 2021; Galaudage et al.
2021). This test may be particularly unreliable if there is a sharp
feature in the data that is not captured by the prior.

• If a more quantitative test is desired, one may calculate the KS-
statistic for each CDF. If the best-fitting reconstruction has a p-
value below a certain threshold, for example p-value≤ 0.00005
(Benjamin et al. 2017), then the model is not a good fit to the
data.

• One may also identify problem areas of model under- or over-
production by quantifying the discrepancies between the data
draw CDFs and the model over the parameter space. This facil-
itates statements like ‘99% of the time, the model produces too
many binary black hole events withm1 > 80M	’.

Demonstration.h We simulate data d consisting of some physi-
cal parameter x and noise n:

d = x+ n. (13)

The noise is Gaussian distributed with zero-mean and unit vari-
ance. The values of x are drawn from the true prior distri-
bution: a Gaussian distribution with mean μ = 10 and width
σ = 2. However, in order to demonstrate prior misspecification,
we employ as our prior a Laplacian with the same mean and vari-
ance as the true distribution. The true prior distribution and the
misspecified prior distribution are compared in Figure 6a.

We create a simulated dataset of N = 1000 events. In each
case, we construct Gaussian likelihood curves of mean μi = di.
The posterior for each value of xi is proportional to the likelihood
multiplied by the prior. We draw 50 posterior samples from each
of these simulated posteriors in order to create 50 CDF curves;
see Figure 6b. We make two versions of this plot: one with the
correctly specified prior and one with the misspecified prior.

It is also sometimes useful to plot the data CDF minus the
model CDF. We include an example of this plot in Figure 6c. In
this case, we see that the misspecified prior yields disagreements
in the CDF in the distribution tails; the difference between pink
model and grey data is, in general, inconsistent with zero when
the model CDF is ≈0.1 and ≈0.9.

4.2. Hyper-parameterised priors

We are particularly concerned with population models (some-
times called ‘hierarchical models’), where the prior for the param-
eters θ is conditional on a set of hyper-parameters 	, describing
the shape of the prior distribution:

π(θ |	). (14)

hMisspecifided prior: unparameterised case notebook.

While data models are built on assumptions about the nature of
noise, population models are built on assumptions about astro-
physics. For example, if we assume that the distribution of primary
black hole mass m1 follows a power-law distribution with spectral
index α,

π(m1|α)∝mα
1 , (15)

then α ∈ 	 is a hyper-parameter for the distribution ofm1 ∈ θ .
Hyper-parameters are frequently a convenient way of describ-

ing systematic theoretical uncertainty. For example, consider a
parameter x drawn from a Gaussian distribution N (x|μ, σ ) with
mean μ and width σ . If we do not know the precise value of μ

or σ , our misspecification tests should take this uncertainty into
account. We repeat the tests from the previous Subsection for the
case of a hyper-parameterised prior.

Here is a summary of the differences that arise from the addi-
tion of a hyper-parameter. One must generate random draws
of the hyper-parameter 	. Then generate draws of the model
CDF for each random draw of 	, and weight posterior sam-
ples using the population predictive distribution—the conditional
prior, marginalised over uncertainty in the hyper-parameters:

ppd(θ)=
∫

d	 π(θ |	)p(	|d). (16)

Here p(	|d) is the posterior for the hyper-parameters. Take care
not to double-count; the posterior for 	 used to reweight event k
should not be informed by event k; see, for example, Essick et al.
(2022).

Demonstration:i We assume a Gaussian prior for parameter x
with uncertain μ and width σ . We simulate N = 1000 true events,
xtrue, from two populations (priors): one Gaussian-distributed and
one Laplacian-distributed, both with the samemeansμG, and with
widths σG and σL, respectively. For each population, we calculate
the maximum-likelihood detected value of each event, xmeas by
offsetting it by a random number drawn from a Gaussian of the
same width as the likelihood distribution, σmeas. The mean average
of these maximum-likelihood values is the maximum-likelihood
estimate for the population prior mean, μE, and the measured
population prior width is σE = σmeas/

√
N. The estimated mean of

the population posterior is described by

μP = σ−2
E μE + σ−2μ(
σ−2
E + σ−2

) = μE

σ 2
E

(
σ−2
E + σ−2

) , (17)

since μ = 0. The estimated width is

σP = (
σ−2
E + σ−2)− 1

2 . (18)

The width of the posterior predictive distribution is

σpp =
√

σ 2
P + σ 2, (19)

the width of a cross product of the uncertainty distribution of
width σ and the posterior width σP. The population-weighted
width for each individual event’s posterior is

σx =
(
σ−2
E + σ−2

pp

)− 1
2 . (20)

We drawM = 100 samples from each of these posteriors of mean
xmeas and width σx. In practice, we do this by drawing N samples

iMisspecified prior: parameterised case notebook.
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Figure 6. Plots illustrating how model misspecification may manifest for an unparameterised population model, with a correctly specified dataset shown in the left-hand plots,
and the misspecified case in the right-hand plots.

M times from the population posterior. The CDFs of these draws
can then be compared to the model CDF.

Since we have used the data to estimate the hyper-parameters
(μ, σ ), we cannot use the standard KS test to ascertain the degree

of misspecification. Instead, we must define our own KS-like test
for the p-value using the distance between the model and data. We
calculate 100 KS distances between the model and draws from the
model. We can histogram this data to show the distribution of KS
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distances expected if themodel is a good fit to the data; see the pink
histogram in Figure 7a. We measure the KS distance between the
average data realisation and the data-conditioned model, which
is shown by a grey line in Figure 7a. The p-value equates to the
fraction of the model KS distance distribution above the data KS
distance. In Figure 7b, we plot the 90% credible bands of the
parameterised model and compare against the 90% credible range
of the data. Despite being conditioned on the same data, the mis-
specified model strays outside of the credible band of the data and
achieves a p-value of only 0.01. Finally, in Figure, we show the
same CDFs with the CDF of themodel subtracted, and plot against
the model CDF. This has the effect of emphasising the extent of
the mismatch between the data and the misspecified model, while
the well-specified model contains the median data draw over the
entire range.

4.3. Models with more than one dimension

It is difficult to look for model misspecification in more than one
or two dimensions. Tests like those described in this Article so far
can be extended, but the tell-tale signs of misspecification (e.g.,
detectable structure in residuals) can be difficult to see in large-
dimensional spaces. However, there are some tools available.

• Make two-dimensional scatter plots. If themodel does not have
any parameters, it can be represented by contours while the
data can be represented with two-dimensional error bars or
credible intervals.

• If the model is subject to theoretical uncertainty (i.e., it is
described by hyper-parameters), it may be necessary to draw
multiple contours. However, the plot can be difficult to read if
there are more than two variables.

• There is no standardised test for goodness of fit in two or
more dimensions. Boutique tests designed to identify partic-
ular forms of misspecification can work well, but one must
beware trial-factor penalties when designing the test after
looking at the data.

5. More symptoms of model misspecification

5.1. Posterior stability

In the previous Sections we describe tests to find misspecification.
However, misspecification is sometimes manifest from surprising
results. One such example is a phenomenon we refer to as ‘poste-
rior instability.’ Let us consider the posterior for some parameter
(call it θ) and imagine how this posterior changes as we accu-
mulate data. On average, we expect the posterior to narrow as
we include more information. It also tends to shift around, but
only within the bounds of the previous credible regions. It would
be surprising if the addition of data produced a posterior favour-
ing θ = 3 when an earlier posterior (calculated with less data)
disfavoured θ = 3 with high credibility.

In such cases we say that the posterior is not stable to the
addition of data. This can be indicative of model misspecification.
An example from gravitational-wave astronomy is the maximum
black hole mass parameter, which proved to be unstable moving
from GWTC-1 (Abbott et al. 2019b) to GWTC-2 (Abbott et al.
2020a), under the assumption that the primary black hole mass
distribution is a power law with a sharp cut-off. When the mass
model was improved to allow for additional features (deviations

from a power law Talbot & Thrane 2018), the maximum-mass
parameter stabilised.j For another example of posterior instabil-
ity from optical astronomy, see Liu et al. (2018), Zhu & Thrane
(2020).

5.2. Outliers

Outliers are symptom of misspecification closely related to pos-
terior stability (Fishbach, Farr, & Holz 2020; Essick et al. 2022).
An outlier is an event with a parameter value appearing inconsis-
tent with the rest of the distribution—in the context of a particular
population model. Let us imagine that the distribution of events
in our dataset (characterised by parameter θ) seem well-described
by a normal prior with mean zero and unit variance: N (θ |μ =
0, σ = 1. If we subsequently observed an event with θ � 10, this
could indicate that our prior model (a normal distribution) is
inadequate.

Commonly, population outliers are identified using a ‘leave-
one-out’ analysis method that compares an inferred distribu-
tion with and without the potentially anomalous data point; see
Fishbach et al. (2020). However, care must be taken to take into
account trial factorsk since, in any catalogue, some event has to
be the most extreme. The statistics required for a careful leave-
one-out analysis are too complicated for us to summarise here.
Instead we refer the reader to Essick et al. (2022), which describes
a ‘coarse-graining’ method to identify outliers.

6. Discussion: Living with misspecification

Misspecified models can lead to flawed inferences. While it is not
always practical, models should, when possible, be subjected to an
array of visualisations and checks for misspecification. In an ideal
world, models found to bemisspecified should be improved so that
they pass these checks. In particular, one may refine one’s model in
order to better capture features of the data (e.g., Gao & Ho 2017;
Gabry et al. 2017), although this kind of post hoc data fitting can
cause obvious biases in inferred results. Iteratively adding com-
plexity can also cause computational costs to skyrocket, and each
addition has the potential to add further misspecification.

Thus, in practice, model refinement is not always possible. For
example, as data becomes more informative at higher signal-to-
noise ratios (SNR), even subtle imperfections can lead to signs of
misspecification. For example, if one attempts to fit a template to
an optical image of a distant (but clearly resolved) galaxy, there will
always be non-negligible residuals because our best templates are
no match for the high signal-to-noise ratio of optical astronomy
data.

One option in such cases is to apply coarsening to blur the data.
For example, one may employ a coarsened posterior, conditional
on the distance between the model and the data being below some
threshold, but not zero (see Miller & Dunson 2019, for a detailed
description of posterior coarsening). An alternative form of coars-
ening is to add a non-parameteric error term to the revised model
to account for unknown or independent influences in the data; for
example, Bhatt et al. (2017) use a Gaussian random field to gener-
atemultiplicative factors to the terms in their parameterisedmodel
for malaria mapping.

jAnother example: many inferences in Abbott et al. (2020a) appear to be unstable with
respect to the inclusion of the extreme mass ratio event GW190814, suggesting that the
models in that work are not adequate to accommodate this event.

kSome literature refers to the ‘look elsewhere effect,’ for example, Gross &Vitells (2010).
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Figure 7. Model misspecification for a parameterised population model, with the correctly specified case demonstrated in the left-hand side of the lower two plots, and the
misspecified case demonstrated on the right.
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While the low-SNR regime has its own inference challenges,
it can be more forgiving when confronted with misspecification.
For example, the inclusion of nuisance parameters has helped to
understand high-energy gamma-ray emission from the galactic
centre (Storm, Weniger, & Calore 2017; Armand & Calore 2021;
Bartels et al. 2018), resolve temporally varying structure in the
brightness profile of the accretion disc around a supermassive
black hole (Arras et al. 2022) and to assess the existence of a cor-
relation between COVID-19 viral load and age (Guardiani et al.
2021).

Although we have described a number of ways in which mod-
els can be tested for misspecification, one must ultimately accept
that all physical models are—to some degree—misspecified (Box
1976). The question, therefore, is not whether a model is wrong,
but whether it is adequate. If a model does a ‘good enough’ job of
describing a signal (that is, it is not obviously misspecified), then we
may still able to use it to inform us about the Universe.
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