STABLE VECTOR BUNDLES ON ALGEBRAIC SURFACES

FUMIO TAKEMOTO

Let k be an algebraically closed field, and X a nonsingular irreducible projective algebraic variety over k. These assumptions will remain fixed throughout this paper. We will consider a family of vector bundles on X of fixed rank r and fixed Chern classes (modulo numerical equivalence). Under what condition is this family a bounded family? When X is a curve, Atiyah [1] showed that it is so if all elements of this family are indecomposable. But when X is a surface, he showed also that this condition is not sufficient. We give the definition of an H-stable vector bundle on a variety X. This definition is a generalization of Mumford's definition on a curve. Under the condition that all elements of a family are H-stable of rank two on a surface X, we prove that the family is bounded. And we study H-stable bundles, when X is an abelian surface, the projective plane or a geometrically ruled surface.

1. H-stable vector bundles
2. H-stable vector bundles on algebraic surfaces
3. H-stable vector bundles on geometrically ruled surfaces
4. Simple vector bundles on the projective plane
5. Stable vector bundles on abelian surfaces.

1. H-stable vector bundles.

In this paper, we use the words vector bundles and locally free sheaf of finite rank interchangeably. Let F be a coherent sheaf on X. Under our hypothesis on X, we can define an invertible sheaf Inv (F) (first Chern class cf. [5]), i.e. let E. be a finite resolution of F by locally free sheaves $E_{i} . \quad \operatorname{Inv}(F)=\bigotimes_{i}\left(\dot{\wedge} E_{i}\right)^{(-1)^{i}}$ where $\dot{\wedge}$ denotes the highest exterior power. Then $\operatorname{Inv}(F)$ depends only on F, up to canonical isomorphism. $\operatorname{Inv}(F)$ has the following properties:

PROPOSITION (1.1). i) $0 \rightarrow F_{1} \rightarrow F_{2} \rightarrow F_{3} \rightarrow 0$ is an exact sequence of coherent sheaves, then there is a canonical isomorphism $\operatorname{Inv}\left(F_{2}\right) \simeq \operatorname{Inv}\left(F_{1}\right)$ $\otimes \operatorname{Inv}\left(F_{3}\right)$.
ii) If F is locally free, then $\operatorname{Inv}(F)$ is canonically isomorphic to $\dot{\wedge} F$.
iii) If F is torsion, then $\operatorname{Inv}(F)=\mathcal{O}_{X}(D)$, where D is a positive Cartier divisor. Moreover if $\operatorname{codim}(\operatorname{Supp}(F)) \geqslant 2$, then $D=0$.
iv) If F is torsion-free, then $\operatorname{Inv}(F)^{-1}=\operatorname{Inv}\left(F^{*}\right)$, where F^{*} denotes $\operatorname{Hom}_{o X}\left(F, \mathcal{O}_{X}\right)$.

Proof. For i), ii) and iii) see [5]. iv) follows from the following lemma.

Lemma (1.2). If $0 \rightarrow F_{1} \rightarrow F_{2} \rightarrow F_{3} \rightarrow 0$ is an exact sequence of torsion-free sheaves, then $\operatorname{Inv}\left(F_{2}^{*}\right) \simeq \operatorname{Inv}\left(F_{1}^{*}\right) \otimes \operatorname{Inv}\left(F_{3}^{*}\right)$.

Proof. We have an exact sequence $0 \rightarrow \boldsymbol{F}_{3}^{*} \rightarrow \boldsymbol{F}_{2}^{*} \rightarrow \boldsymbol{F}_{1}^{*} \rightarrow \operatorname{Ext}_{\sigma_{X}}^{1}\left(\boldsymbol{F}_{3}, \mathcal{O}_{X}\right)$. Since codim $\left(\operatorname{Supp}\left(\operatorname{Ext}_{0_{X}}^{1}\left(F_{3}, \mathcal{O}_{X}\right)\right)\right) \geqslant 2$ by our assumption, $\operatorname{Inv}\left(F_{1}^{*} / \operatorname{Im}\left(F_{2}^{*}\right)\right)$ $=\mathcal{O}_{X}$ by iii).

If F is a coherent sheaf, then we can define the rank of F as the rank of F_{ξ} for a generic point ξ of X. We denote it by $r(F)$. We remark that F is torsion if and only if its rank is 0 .

Let H be an ample line bundle on X. Let $s=\operatorname{dim} X$.
Definition (1.3). A vector bundle E on X is H-stable (resp. H-semistable) if for every non-trivial, non-torsion, quotient coherent sheaf F of $E, d(E, H) / r(E)<d(F, H) / r(F) \quad($ resp. $\leqq)$, where $d(F, H)=\left(\operatorname{Inv}(F), H^{s-1}\right)$ and $($,$) is the intersection pairing.$

Definition (1.3)*. A vector bundle E on X is H-stable (resp. H -semi-stable) if for every non-zero coherent subsheaf G of E of rank $<r(E)$, $d(G, H) / r(G)<d(E, H) / r(E)$ (resp. \leqq).

It is obvious that (1.3) is equivalent to (1.3)*. And if a vector bundle E is H-stable, then for every non-zero coherent subsheaf G of $E, d(G, H)$ $\mid r(G) \leqq d(E, H) / r(E)$. Indeed, if $r(G)=r(E)$, then E / G is torsion, which induces $d(G, H) \leqq d(E, H)$ by Prop. (1.1), iii).

Remark. In Definition (1.3), we may assume F is torsion-free. Indeed for any coherent sheaf E, let F be any torsion subsheaf of E, then $d(E, H) \geqslant d(E / F, H)$ by Prop. (1.1), iii).

Proposition (1.4). i) A line bundle is H-stable.
ii) A vector bundle is H-stable if and only if it is $H^{\otimes n}$-stable for any natural number n.
iii) If L is a line bundle, then a vector bundle E is H-stable if and only if $E \otimes L$ is H-stable.
iv) A vector bundle E is H-stable if and only if E^{*} is H-stable.
v) If E and F are two vector bundles, then $E \oplus F$ is never H-stable.
vi) If a vector bundle E of rank two is not H-semi-stable, then there is a unique torsion-free quotient sheaf F of rank one of E for which $d(F, H)$ is minimum.

Proof. i), ii), iii) and v) are trivial. iv) follows from the above Remark and Prop. (1.1) iv). We show vi). In the same way as in the case of a curve, we can show that there exists a minimal H-degree quotient sheaf F of E of rank one. We may assume F is torsion-free. Let F, F^{\prime} be such sheaves. Now we have an extension $0 \rightarrow G \rightarrow E \rightarrow F \rightarrow 0$. If the composition $G \rightarrow E \rightarrow F^{\prime}$ is non-zero, then $d(F, H)=d\left(F^{\prime}, H\right) \geqq d(G, H)=$ $d(E, H)-d(F, H)$ i.e. $d(F, H) \geqq(1 / 2) d(E, H)$. This contradicts our assumption. Hence $G \rightarrow E \rightarrow F^{\prime}$ is zero, which induces $F \cong F^{\prime}$.

Definition (1.5) (Mumford [4]). A vector bundle E on a curve X is stable if and only if for every non-trivial quotient bundle F of E, $\operatorname{deg}(E) / r(E)<\operatorname{deg}(F) / r(F)$.

Proposition (1.6). Let X be a curve, and let E be a vector bundle on X. Then for any ample line bundle H, E is H-stable if and only if E is stable in the sense of Mumford.

Proof. For any closed point $x \in X$, all torsion-free modules over the discrete valuation ring $\mathcal{O}_{X, x}$ are free.

Proposition (1.7). Let E, F be H-stable bundles, where $r=r(E)=$ $r(F)$ and $d(E, H)=d(F, H)$. If $f: E \rightarrow F$ is a non-zero homomorphism, then f is an isomorphism.

Proof. Put $G=$ Image of f. By definition, we have $d(E, H) / r(E) \leqq$ $d(G, H) / r(G) \leqq d(F, H) / r(F)$, with strict inequalities holding unless $r(G)=$ r. But by assumption, the two extreme sides are equal. Thus $r(G)=$ $r=r(E)$, and we get $E \rightrightarrows G$, i.e. f is injective. Hence since $\stackrel{r}{\wedge} f: \stackrel{r}{\wedge} E$
$\rightarrow \stackrel{r}{\wedge} F$ is a non-zero homomorphism of line bundles and $d(\stackrel{r}{\wedge} E, H)=$ $d(\stackrel{r}{\wedge} F, H), \stackrel{r}{\wedge} f$ is an isomorphism, i.e. f is an isomorphism.

Corollary (1.8). An H-stable vector bundle is simple.
We say that a vector bundle E is simple if any global endomorphism of E is constant, i.e. $H^{0}(X, \operatorname{End}(E))=k$.

Remark. 1) In Prop. (1.4), ii), iii) and iv), we may replace H stability by H-semi-stability.
2) For any H-semi-stable vector bundle with $d(E, H)<0, H^{0}(E)=0$. Indeed, suppose there is a non-zero section $s \in H^{0}(E)$. Let F be the subsheaf of E generated by s. Then $F=\mathcal{O}_{X}$ and so $d(F, H)=0$.

2. H-stable vector bundles on algebraic surfaces

In this section X will be a non-singular projective surface and H will be an ample line bundle on X. Let K be the canonical line bundle on X. We begin with a trivial lemma.

Lemma (2.1). Let E be an H-semi-stable vector bundle on X. If the Euler-Poincaré characteristic $\chi(E)$ of E is positive and $d\left(E^{*} \otimes K, H\right)<0$. then $H^{0}(E) \neq 0$.

Proof. Since $E^{*} \otimes K$ is H-semi-stable, $H^{0}\left(E^{*} \otimes K\right)=0$ by the last Remark in §1. Hence $H^{2}(E)=0$ by Serre duality. Hence $H^{0}(E) \neq 0$.

Corollary (2.2). Let S be a set of H-semi-stable vector bundles of rank two on X with fixed Chern classes (modulo numerical equivalence). Then there is an integer n such that $H^{0}\left(E \otimes H^{\otimes n}\right) \neq 0$ for any $E \in S$.

Proof. For any $E \in S, \chi\left(E \otimes H^{\otimes n}\right)$ is the same polynomial in n of degree two. Since the coefficient of n^{2} is $\left(H^{2}\right), \chi\left(E \otimes H^{\otimes n}\right)$ is positive for sufficiently large n. On the other hand, $d\left(\left(E \otimes H^{\otimes n}\right)^{*} \otimes K, H\right)=-d(E, H)$ $-2 n\left(H^{2}\right)+2(K, H)<0$, for sufficiently large n. Hence we have the desired result by Lemma (2.1).

Corollary (2.3). Let S be as in Cor. (2.2). Then there are integers n_{1}, n_{2} such that for any $E \in S$, there is a coherent subsheaf F of E of rank 1 such that $n_{1} \leqq d(F, H) \leqq n_{2}$.

Proof. Let n be an integer satisfying Cor. (2.2). So there is a coherent subsheaf of E of rank 1 such that $d\left(F \otimes H^{\otimes n}, H\right) \geqslant 0$. i.e. $d(F, H) \geqslant-n\left(H^{2}\right)$. On the other hand, $d(F, H) \leqq(1 / 2) d(E, H)$ by H-semistability of E.

We say that a set A of vector bundles on X is bounded if there exists an algebraic k-scheme T and a vector bundle V on $T \times{ }_{k} X$ such that each $F \in A$ is of the form $V_{t}=V \mid t \times X$ for some closed point $t \in T$.

Theorem (2.4). Let X be a non-singular projective surface, H an ample line bundle on X, and S the set of all H-semi-stable vector bundles on X of rank two and fixed Chern classes (modulo numerical equivalence). Then S is bounded.

Proof. By a theorem of Kleiman ([3] Th. 1.13), it is sufficient to show that there are integers m_{1}, m_{2} such that for any $E \in S$, 1) $\operatorname{dim}_{k} H^{0}(E)$ $\leqq m_{1}$ 2) there is a non-singular curve C such that $\mathcal{O}_{X}(C)=H$ and $\operatorname{dim}_{k} H^{0}\left(E \otimes \mathcal{O}_{C}\right) \leqq m_{2}$. We may assume H-degree is negative. Hence 1) follows from the last Remark in $\S 1$. We now show 2). Let n_{1}, n_{2} be the same as in Cor. (2.3). Put $n_{i}=d(E, H)-n_{i-2}, i=3,4$ and $t=$ $\max \left(0,2 g-n_{1}, 2 g-n_{4}\right)$, where $g=\chi\left(H^{-1}\right)-\chi\left(\mathcal{O}_{X}\right)+1$. Let E be any vector bundle contained in S. There are torsion-free sheaves F_{1}, F_{2} of rank 1 such that there is an exact sequence $0 \rightarrow F_{1} \rightarrow E \rightarrow F_{2} \rightarrow 0, n_{1} \leqq$ $d\left(F_{1}, H\right) \leqq n_{2}$. Hence $n_{4} \leqq d\left(F_{2}, H\right) \leqq n_{3}$. Now F_{i} is locally free at any point outside a finite set Z of closed points. Hence there exists a nonsingular curve C in H, disjoint from Z. Here the genus of C is g. So the restriction of F_{i} to C is a line bundle on C. Since $d\left(F_{i} \otimes H^{\otimes t} \otimes \mathcal{O}_{C}\right)=$ $d\left(F_{i}, H\right)+t\left(H^{2}\right) \geqslant \min \left(n_{1}, n_{4}\right)+t \geqslant 2 g, \quad \operatorname{dim}_{k} H^{0}\left(F_{i} \otimes \mathcal{O}_{C}\right) \leqq \operatorname{dim}_{k} H^{0}\left(F_{i} \otimes\right.$ $\left.H^{\otimes t} \otimes \mathcal{O}_{C}\right) \leqq t\left(H^{2}\right)+\max \left(n_{2}, n_{3}\right)-g+1=c$. Hence $\operatorname{dim}_{k} H^{0}\left(E \otimes \mathcal{O}_{C}\right) \leqq 2 c$.

We now give another definition of H-stability of a vector bundle. First, we recall that for any non-zero global section s of a vector bundle E, there exists a surface Y and a morphism $f: Y \rightarrow X$ obtained by successive dilatations, and a sub-line bundle L of $f^{*} E$ on Y and a global section t of L such that the inclusion $L \subset f^{*} E$ maps t to $f^{*} s$ and $f^{*} E / L$ is locally free. (cf. Schwarzenberger [10])

Lemma (2.5). Let φ be a homomorphism from a non-torsion coherent sheaf F to a vector bundle E such that codim $(\operatorname{Supp}(\operatorname{ker} \varphi)) \geqslant 2$. Then there is a surface Y and a morphism $f: Y \rightarrow X$ obtained by successive dila-
tations, and a vector subbundle G of $f^{*} E$ on Y such that $f^{*}(\varphi)\left(f^{*} F\right) \subset G$ and $r(F)=r(G)\left(\right.$ and $f^{*} E / G$ is locally free).

Proof. We proceed by induction on $r=\operatorname{rank} E$. Suppose the lemma is true for all rank $<r=\operatorname{rank} E$. We may assume there is a non-torsion global section u of F. Let s be the global section of E corresponding to u. Let Y, f, L and t be as above. Then we have exact sequences:

Now since u is not torsion, $r\left(f^{*} F /\left(f^{*} \varphi\right)^{-1}(L)\right)=r(F)-1$. By induction, there exists a surface Y^{\prime} and a morphism $f^{\prime}: Y^{\prime} \rightarrow Y$ obtained by successive dilatations and a vector subbundle G^{\prime} of $f^{\prime *}\left(f^{*} E / L\right)$ on Y^{\prime} such that $\left(f^{\prime *} f^{*} \varphi\right)\left(f^{*} F /\left(f^{*} \varphi\right)^{-1}(L)\right) \subset G^{\prime}$ and $r\left(G^{\prime}\right)=r(F)-1$ (and $f^{\prime *}\left(f^{*} E / L\right) / G^{\prime}$ is locally free). Let G be the subbundle of $f^{\prime *} f^{*} E$ with $G^{\prime}=G / f^{\prime *} L$.

Proposition (2.6). A vector bundle E on a surface X is H-stable if and only if for any morphism $f: Y \rightarrow X$ obtained by successive dilatations and any non-trivial quotient bundle F of $f^{*} E, d(E, H) / r(E)<d\left(F, f^{*} H\right) / r(F)$.

Proof. First, suppose E is H-stable. Let f, F be as in Prop. (2.6). We may assume H is a very ample line bundle. Now there exists a finite set Z of closed points such that f is an isomorphism on $X-Z$. Then we find a curve D such that $\mathcal{O}_{X}(D)=H$ and $Z \cap D$ is empty. Let G be the kernel of $f^{*} E \rightarrow F$. Since $\operatorname{Supp}\left(G / f^{*} f_{*} G\right) \cap f^{*}(D)$ is empty, $d\left(G, f^{*} H\right)=d\left(f^{*} f_{*} G, f^{*} H\right)$. On the other hand $d\left(f^{*} f_{*} G, f^{*} H\right) d=$ $d\left(f_{*} G, H\right)$. Conversely let F be a non-zero subsheaf of E of $\operatorname{rank}<\operatorname{rank} E$, and let Y and G be the same as in Lemma (2.5). Since $f^{*} E / G$ is locally free, $d\left(G, f^{*} H\right) / r(G)<d(E, H) / r(E)$ by assumption. On the other hand, $r(G)=r\left(f^{*} F\right)$ by construction and $d(F, H)=d\left(f^{*} F, f^{*} H\right) \leqq d\left(G, f^{*} H\right)$ since the image of $f^{*} F$ in $f^{*} E$ is contained in G. Thus $d(F, H) / r(F)$ $<d(E, H) / r(E)$, and E is H-stable.

From now on, we study vector bundles of rank two on a non-singular projective surface X. It is known (Schwarzenberger [10]) that for a vector bundle E of rank two on X there exists a morphism $f: Y \rightarrow X$ obtained by successive dilatations, line bundles L_{1} and L_{2} on X, and a positive exceptional line bundle M on Y (i.e. line bundle on Y associated
with a non-negative linear combination of exceptional curves on Y) such that $f^{*} E$ is given by an extension of the form

$$
0 \longrightarrow f^{*} L_{1} \otimes M \longrightarrow f^{*} E \longrightarrow f^{*} L_{2} \otimes M^{-1} \longrightarrow 0
$$

Conversely, for any morphism $f: Y \rightarrow X$ obtained by successive dilatations, a quotient line bundle of $f^{*} E$ is always of the form $f^{*} L_{2} \otimes M^{-1}$ where L_{2} is a line bundle on X and M is a positive exceptional line bundle. (Schwarzenberger loc. cit.)

Put $N(E)=c_{1}^{2}(E)-4 c_{2}(E)$, where $c_{i}(E)$ is the i-th Chern class of E. This integer is equal to $-c_{2}(\operatorname{End}(E))$. It has the following geometric meaning. Let L be a quotient line bundle of E, and p the canonical projection $P(E) \rightarrow X$. Then L defines a section s of p. Let Y denote $s(X)$. Then $\left(Y^{3}\right)_{P(E)}=N(E)$. Note that $N(E)=N\left(E \otimes L^{\prime}\right)$ for any line bundle L^{\prime}.

Proposition (2.7). Let E be a vector bundle of rank two. If $N(E)>0$, then E is H-stable if and only if E is H^{\prime}-stable for any ample line bundle H^{\prime} on X.

Proof. By Prop. (2.6), E is H-stable if we have $\left(L_{2} \otimes L_{1}^{-1}, H\right)>0$ for any morphism $f: Y \rightarrow X$ obtained by successive dilatations and an extension

$$
0 \longrightarrow f^{*} L_{1} \otimes M \longrightarrow f^{*} E \longrightarrow f^{*} L_{2} \otimes M^{-1} \longrightarrow 0
$$

where L_{1} and L_{2} are line bundles on X, and M is a positive exceptional line bundle on Y. By our assumption, $N(E)=\left(L_{2} \otimes L_{1}^{-1}, L_{2} \otimes L_{1}^{-1}\right)+$ $4\left(M^{2}\right)>0$. But by the negative definiteness of the intersection pairing on exceptional divisors, $\left(M^{2}\right) \leqq 0$, hence $\left(L_{2} \otimes L_{1}^{-1}, L_{2} \otimes L_{1}^{-1}\right)>0$. We thus have the desired result by the Hodge index theorem ([6] Lecture 18).

Definition (2.8). We say that a vector bundle E of rank two on X is of trivial type if there are line bundles L_{1}, L_{2} on X with $H^{0}\left(L_{2}\right)=$ $H^{0}\left(L_{2}^{-1}\right)=0$, a morphism $f: Y \rightarrow X$ obtained by successive dilatations and a positive exceptional line bundle M on Y such that we have a non-trivial extension of line bundles $0 \rightarrow M \rightarrow f^{*} E_{1} \rightarrow f^{*} L_{2} \otimes M^{-1} \rightarrow 0$, where $E_{1}=$ $E \otimes L_{1}$.

Proposition (2.9). Let E be a vector bundle of rank two on X.

Then E is simple if and only if E is either H-stable for an ample line bundle H or of trivial type.

Proof. If E is of trivial type, then by Oda's lemma [9], E is simple since $\operatorname{Hom}\left(M, f^{*} L_{2} \otimes M^{-1}\right)=H^{0}\left(X, f^{*} L_{2} \otimes M^{-2}\right) G H^{0}\left(L_{2}\right)=0$. If E is H stable, then E is simple by Cor. (1.8). Assume E is simple and not H stable. Therefore there are line bundles L_{1} and L_{2} on X, and a morphism $f: Y \rightarrow X$ obtained by successive dilatations and an extension of line bundles $0 \rightarrow M \rightarrow f^{*} E_{1} \rightarrow f^{*} L_{2} \otimes M^{-1} \rightarrow 0$, where $E_{1}=E \otimes L_{1}, M$ is a positive exceptional line bundle and $d\left(E_{1}, H\right) \leqq 0$. Hence $d\left(L_{2}, H\right) \leqq 0$. Now we show $H^{0}\left(L_{2}\right)=0$. Indeed, if $H^{0}\left(L_{2}\right) \neq 0$, then $L_{2}=\mathcal{O}_{X}$ by $d\left(L_{2}, H\right) \leqq 0$. And since $H^{0}\left(\operatorname{Hom}\left(M^{-1}, M\right)\right) \neq 0, E$ is not simple. This contradicts our assumption. Since $\operatorname{Hom}\left(M, f^{*} L_{2} \otimes M^{-1}\right) G H^{0}\left(L_{2}\right)=0, \quad H^{0}($ End $(E))=$ $H^{0}\left(\right.$ End $\left.\left(E_{1}\right)\right)=k \oplus H^{0}\left(f^{*} L_{2}^{-1} \otimes M^{2}\right)=k \oplus H^{0}\left(L_{2}^{-1}\right)$ by Oda's lemma. Thus $H^{0}\left(L_{2}^{-1}\right)=0$. i.e. E is of trivial type.

We now give a result about the cohomology of an H-semi-stable vector bundle.

Proposition (2.10). Let X be a surface and E an H-semi-stable vector bundle on X with $d(E, H)=0$. Then $\operatorname{dim}_{k} H^{0}(E) \leqq \operatorname{rank} E$. And the equality holds if and only if E is free.

Proof. If $H^{\circ}(E) \neq 0$, there is a morphism $f_{1}: X_{1} \rightarrow X$ obtained by successive dilatations and a line bundle L_{1} and a vector bundle E_{1} on X_{1} such that we have an extension $0 \rightarrow L_{1} \rightarrow f_{1}^{*} E \rightarrow E_{1} \rightarrow 0$ and $H^{0}\left(L_{1}\right) \neq 0$. Since $d\left(L_{1}, H\right) \leqq 0, L_{1}$ is a positive exceptional line bundle and hence $H^{0}\left(L_{1}\right)=k$, which induces $\operatorname{dim}_{k} H^{0}(E) \leqq \operatorname{dim}_{k} H^{0}\left(E_{1}\right)+1$. Moreover if $H^{0}\left(E_{1}\right) \neq 0$, there is a morphism $f_{2}: X_{2} \rightarrow X_{1}$ obtained by successive dilatations and a line bundle L_{2} and a vector bundle E_{2} on X_{2} such that we have an extension $0 \rightarrow L_{2} \rightarrow f_{2}^{*} E_{1} \rightarrow E_{2} \rightarrow 0$ and $H^{0}\left(L_{2}\right) \neq 0$. Let φ denote $f_{1}^{*} E \rightarrow E_{1}$. Since $0 \leqq d\left(L_{2}, H\right)=d\left(\varphi^{-1}\left(L_{2}\right), H\right) \leqq 0, L_{2}$ is a positive exceptional line bundle. Hence $\operatorname{dim}_{k} H^{0}(E) \leqq \operatorname{dim}_{k} H^{0}\left(E_{2}\right)+2$. Continuing in this fashion we get $\operatorname{dim}_{k} H^{0}(E) \leqq \operatorname{rank} E$. If $\operatorname{dim}_{k} H^{0}(E)=\operatorname{rank} E=r$, then we can define $E_{i}, L_{i}(i=1,2, \cdots, r-1)$ inductively and $E_{r-1}=L_{r}$ is also a positive exceptional line bundle, i.e. L_{i} is a positive exceptional line bundle for $i=1,2, \cdots, r$. On the other hand, $L_{1} \otimes L_{2} \otimes \cdots \otimes L_{r}=$ $\operatorname{Inv}(E)$, hence $L_{i}=\mathcal{O}_{X},(i=1,2, \cdots, r)$, i.e. E is obtained by successive
extensions of the structure sheaf \mathcal{O}_{X}, and $\operatorname{dim}_{k} H^{0}(E)=\operatorname{rank} E$, which implies that E is free.

3. \boldsymbol{H}-stable vector bundles of rank two on geometrically ruled surfaces

Let C be a non-singular projective curve of genus g over an algebraically closed field k, V a vector bundle of rank two on C, and $\mathcal{O}_{P_{(V)}}(1)$ the tautological line bundle on $\boldsymbol{P}(V)$ (See EGA II. 4.1.1 for the definition of $\boldsymbol{P}(V)$). Then the Néron-Severi group of $\boldsymbol{P}(V)$ is $\boldsymbol{Z} \oplus \boldsymbol{Z}$, and is generated by the class d of $\mathcal{O}_{\boldsymbol{P}_{(V)}}(1)$ and the class f of a fibre of $\boldsymbol{P}(V)$ over C. And $\left(d^{2}\right)=\operatorname{deg} V=a$. In case V is decomposable, put $V=M_{1} \oplus M_{2}$, where M_{1} and M_{2} are line bundles on C with $\operatorname{deg} M_{i}=a_{i}, a_{2} \geqq a_{1}$ and $a=a_{1}+a_{2}$. Let p denote the canonical projection: $\boldsymbol{P}(V) \rightarrow C$. In this section, these assumptions will remain fixed.

Proposition (3.1). Let L be a line bundle on $\boldsymbol{P}(V)$, and let the class of L be $n d+m f$. Then L is ample, if one of the following conditions is satisfied:
1.1) If V is semi-stable and char. $k=0$, then $n>0$ and $n a+2 m>0$.
1.2) If V is semi-stable, char. $k=p>0$ and $g \geqq 1$, then $n>0$ and $n a+2 m>(2 n / p)(g-1)$.
2) If V is indecomposable, then $n>0$ and $n a+2 m>2 n(g-1)$.
3.1) If V is decomposable and either char. $k=0$ or $g=0$, then $n>0$ and $n a_{1}+m>0$.
3.2) If V is decomposable, char. $k=p>0$ and $g \geqq 1$, then $n>0$ and $n a_{1}+m>(n / p)(g-1)$.

Moreover, when V is semi-stable and either char. $k=0$ or $g=1$, then L is ample if and only if $n>0$ and $n a+2 m>0$. And when V is decomposable and either char. $k=0$ or $g=0,1$, then L is ample if and only if $n>0$ and $n a_{1}+m>0$.

Proof is due essentially to Hartshorne ([2] Prop. (7.5)). He treated the case when the maximal degree of subline bundles of V is non-positive $a>0$ and $n=1, m=0$, i.e. $L=\mathcal{O}_{P_{(V)}}(1)$. (In this case V is stable.)

Corollary (3.2). There is a constant c depending on V such that a line bundle L on $\boldsymbol{P}(V)$, whose class is $n d+m f$, is ample if $n>0$ and $m+n c>0$.

Remark. If L as above is ample, then $n>0$ and $n a+2 m>0$. In-
deed, $(L, f)=n,\left(L^{2}\right)=n(n a+2 m)$.
Remark. If V is indecomposable and there is a non-trivial extension of line bundles $0 \rightarrow L_{1} \rightarrow V \rightarrow L_{2} \rightarrow 0$, then $\operatorname{deg}\left(L_{2} \otimes L_{1}^{-1}\right) \geqslant 2-2 g$. Indeed, since $H^{1}\left(\operatorname{Hom}\left(L_{2}, L_{1}\right)\right) \neq 0, H^{0}\left(L_{2} \otimes L_{1}^{*} \otimes K_{C}\right) \neq 0$, where K_{C} denotes the canonical line bundle on C.

Proof of Proposition (3.1). Let D be any irreducible curve on $\boldsymbol{P}(V)$. Since $\left(L^{2}\right)=n(n a+2 m)>0$ in each case, it is sufficient, by Nakai's criterion, to show that $(D, L)>0$. Let the class of D be $k d+h f$. Since $(D, f) \geqslant 0, k \geqslant 0$. If $k=0$, then $h=1$, since D is irreducible. So (D, L) $=n>0$. If $k=1$, then D is a section of $\boldsymbol{P}(V)$ over C, and we can write $\mathcal{O}_{P_{(V)}}(D)=\mathcal{O}_{P_{(V)}}(1) \otimes p^{*}(M)$ for a line bundle M on C of degree h. Then we have an exact sequence of sheaves on $\boldsymbol{P}(V): 0 \rightarrow \mathcal{O}_{\boldsymbol{P}_{(V)}}(-D) \rightarrow$ $\mathcal{O}_{P_{(V)}} \rightarrow \mathcal{O}_{D} \rightarrow 0$. Tensoring with $\mathcal{O}_{P_{(V)}}(1)$, we have $0 \rightarrow p^{*}\left(M^{-1}\right) \rightarrow \mathcal{O}_{P_{(V)}}(1)$ $\rightarrow \mathcal{O}_{D} \otimes \mathcal{O}_{\boldsymbol{P}_{(V)}}(1) \rightarrow 0$. We apply p_{*}. Note that $p_{*} p^{*}\left(M^{-1}\right)=M^{-1}, p_{*}\left(\mathcal{O}_{\boldsymbol{P}_{(V)}}(1)\right)$ $=V, R^{1} p_{*} p^{*}\left(M^{-1}\right)=0$, and $p_{*}\left(\mathcal{O}_{D} \otimes \mathcal{O}_{P_{(V)}}(1)\right)$ is a line bundle on C, since D is a section of p. Thus we have an exact sequence of vector bundles on C :

$$
0 \longrightarrow M^{-1} \longrightarrow V \longrightarrow p_{*}\left(\mathcal{O}_{D} \otimes \mathcal{O}_{P_{(V)}}(1)\right) \longrightarrow 0
$$

Case 1) $d\left(M^{-1}\right) \leqq(1 / 2) d(V)$ i.e. $a+2 h \geqslant 0$.
Case 2) $d\left(p_{*}\left(\mathcal{O}_{D} \otimes \mathcal{O}_{P_{(V)}}(1)\right)\right)-d\left(M^{-1}\right) \geqq 2-2 g$ i.e. $a+2 h \geqq 2-2 g$
Case 3) $d\left(M^{-1}\right) \leqq a_{2}=\max \left(a_{1}, a_{2}\right)$ i.e. $a_{2}+h \geqq 0$.
On the other hand, $(D, L)=n a+h n+m$. Hence
Case 1) $(D, L)=(1 / 2)(n a+2 m)+(1 / 2) n(a+2 h)>0$.
Case 2) $(D, L)>n(g-1)-n(g-1)=0$.
Case 3) $(D, L)=\left(n a_{1}+m\right)+n\left(a_{2}+h\right)>0$.
Therefore we may assume $k \geqq 2$. Since $K_{\boldsymbol{P}_{(V)}}=\mathcal{O}_{\boldsymbol{P}_{(V)}}(-2) \otimes p^{*}\left(K_{C} \otimes\right.$ $\operatorname{Inv}(V)$), the class of $K_{P_{(V)}}$ is $-2 d+(2 g-2+a) f$ (where $K_{P_{(V)}}$ and K_{C} are the canonical line bundles on $\boldsymbol{P}(V)$ and C respectively).

Suppose either char. $k=0$ or $k<p$. Then we can apply the Hurwitz formula to the projection of D onto C, and find $2 p_{a}(D)-2 \geqq k(2 g-2)$. On the other hand, $2 p_{a}(D)-2=\left(D,\left(D+K_{P_{(V)}}\right)\right)=(k-1)(k a+2 h)+$ $k(2 g-2)$. Combining these, we have $k a+2 h \geqq 0$, since $k \geqq 2$. (D, L) $=k n a+n h+m k=(1 / 2) n(k a+2 h)+(1 / 2) k(n a+2 m)>0$.

Suppose char. $k=p \neq 0$, and $k \geqq p$. Then we have an inequality $2 p_{a}(D)-2 \geqq 2 g-2$. As above, we deduce $k a+2 h \geqq 2-2 g$. Thus $(D, L)=(1 / 2) n(k a+2 h)+(1 / 2) k(n a+2 m) \geqq n(1-g)+(1 / 2) p(n a+2 m)$.

If $g=0$, then $(D, L)>0$. In case (1.2), (2) and (3.2), we have $n a+$ $2 m>(2 n / p)(g-1)$, hence $(D, L)>0$.

The first statement of the converse is trivial. Let V be decomposable and Y the image of the section associated with $V \rightarrow M_{1} \rightarrow 0$. Then the class of Y is $d-a_{2} f$. Hence $(Y, L)=n a_{1}+m>0$. q.e.d.

Lemma (3.3). Let E be a vector bundle of rank two on $\boldsymbol{P}(V)$. Assume $N(E) \geqq 0$. Then E is H-stable if and only if E is H^{\prime}-stable for any ample line bundle H^{\prime} on $\boldsymbol{P}(V)$.

Proof. By Prop. (2.6), E is H-stable if we have $\left(L_{2} \otimes L_{1}^{-1}, H\right)>0$ for any morphism $f: Y \rightarrow \boldsymbol{P}(V)$ obtained by successive dilatations and an extension of line bundles on Y

$$
0 \longrightarrow f^{*}\left(L_{1}\right) \otimes M \longrightarrow f^{*}(E) \longrightarrow f^{*}\left(L_{2}\right) \otimes M^{-1} \longrightarrow 0
$$

where L_{1} and L_{2} are line bundles on $\boldsymbol{P}(V)$, and M is a positive exceptional line bundle on Y. Let H be an ample line bundle on $\boldsymbol{P}(V)$ and let the class of H be $n d+m f$. Let the class of $L_{2} \otimes L_{1}^{-1}$ be $k d+h f$. Then $\left(L_{2} \otimes L_{1}^{-1}, H\right)=k n a+n h+m k=(1 / 2) k(n a+2 m)+(1 / 2) n(k a+2 h)$, and $N(E)=\left(L_{2} \otimes L_{1}^{-1}, L_{2} \otimes L_{1}^{-1}\right)+4\left(M^{2}\right)=k(k a+2 h)+4\left(M^{2}\right) \geqslant 0 . \quad$ So $k(k a+$ $2 h) \geqq-4\left(M^{2}\right) \geqq 0$. Now $n>0$ and $n a+2 m>0$ by the ampleness of H. Hence $\left(L_{2} \otimes L_{1}^{-1}, H\right)>0$ if and only if either $k>0$ and $k a+2 h \geqq 0$, or $k=0$ and $k a+2 h>0$.

Proposition (3.4). Let E be a stable vector bundle of rank two on C. Then $p^{*} E$ is H-stable for any ample line bundle H on $\boldsymbol{P}(V)$. (In this case $N\left(p^{*} E\right)=0$.)

Proof. Let H be an ample line bundle whose class is $d+s f$, where s is large enough. We remark $\mathrm{a}+2 s>0$. By Lemma (3.3), it is enough to show the Proposition for this H. Put $m=\operatorname{deg}(E)$. Then the class $c_{1}\left(p^{*} E\right)$ is $m f$ and $c_{2}\left(p^{*} E\right)$ is zero. By Prop. (2.6), E is H-stable if we have $\left(L_{2} \otimes L_{1}^{-1}, H\right)>0$ for any morphism $f: Y \rightarrow \boldsymbol{P}(V)$ obtained by successive dilatations and an extension of line bundles on Y

$$
\begin{equation*}
0 \longrightarrow f^{*} L_{1} \otimes M \longrightarrow f^{*} p^{*} E \longrightarrow f^{*} L_{2} \otimes M^{-1} \longrightarrow 0 \tag{*}
\end{equation*}
$$

where L_{1} and L_{2} are line bundles on $\boldsymbol{P}(V)$ and M is a positive exceptional line bundle on Y. We wish to show that $d\left(L_{1}, H\right)<(1 / 2) d\left(p^{*} E, H\right)$, i.e.
$2 k a+2 k s+2 h-m<0$, where the class of L_{1} is $k d+h f$. On the other hand, $0=N\left(p^{*} E\right)=\left(L_{2} \otimes L_{1}^{-1}, L_{2} \otimes L_{1}^{-1}\right)+4\left(M^{2}\right)=4 k(k a+2 h-m)+4\left(M^{2}\right)$. So $-4\left(M^{2}\right)=4 k(k a+2 h-m) \geqq 0$. Now if we restrict (*) to a fibre f of $\boldsymbol{P}(V)$ over C, we have an exact sequence $0 \rightarrow \mathcal{O}_{f}(k) \rightarrow \mathcal{O}_{f} \oplus \mathcal{O}_{f} \rightarrow \mathcal{O}_{f}(-k)$ $\rightarrow 0$, where $f \cong \boldsymbol{P}^{1}$, and hence $k \leqq 0$. If $k<0$, then $k a+2 h-m \leqq 0$ and hence $2 k a+2 k s+2 h-m=k(a+2 s)+k a+2 h-m<0$. If $k=$ 0 , then $\left(M^{2}\right)=0$ and hence $M=\mathcal{O}_{Y}$. Therefore the above extension is of the following form: $0 \rightarrow p^{*} L_{1}^{\prime} \rightarrow p^{*} E \rightarrow p^{*} L_{2}^{\prime} \rightarrow 0$, where L_{1}^{\prime} and L_{2}^{\prime} are line bundles on C such that $L_{1}=p^{*} L_{1}^{\prime}$ and $L_{2}=p^{*} L_{2}^{\prime}$. Apply p_{*}. Then we have an exact sequence $0 \rightarrow L_{1}^{\prime} \rightarrow E \rightarrow L_{2}^{\prime} \rightarrow 0$. By our assumption, $h<(1 / 2) m$. Hence $2 k a+2 k s+2 h-m=2 h-m<0$.

Proposition (3.5). There is no vector bundle E of rank two on $\boldsymbol{P}(V)$ with the first Chern class $c_{1}(E)=\mathcal{O}_{P_{(V)}}(-1) \otimes p^{*}(L)$ for some line bundle L on C such that E is H-stable for every ample line bundle H on $\boldsymbol{P}(V)$.

Proof. Suppose there exists such a vector bundle E. Let m be the degree of L. Then the class of $c_{1}(E)$ is $-d+m f$. We may assume m is sufficiently large. Put $b=N(E)$. Let H be an ample line bundle on $\boldsymbol{P}(V)$ whose class is $d+s f$. Then the Euler Poincaré characteristic $\chi(E)$ of E is equal to $(1 / 4)(b-a+2 m)+1-g$ and $d\left(E^{*} \otimes K, H\right)=4 g-4-a-$ $m-3 s$. Hence we may assume $\chi(E)>0$ and $d\left(E^{*} \otimes K, H\right)<0$. So $H^{0}(E) \neq 0$ by Lemma (2.1). Therefore there is a morphism $f: Y \rightarrow \boldsymbol{P}(V)$ obtained by successive dilatations and an extension of line bundles on $Y, \quad 0 \rightarrow f^{*} L_{1} \otimes M \rightarrow f^{*} E \rightarrow f^{*} L_{2} \otimes M^{-1} \rightarrow 0, \quad$ where L_{1} and L_{2} are line bundles on $\boldsymbol{P}(V), H^{0}\left(L_{1}\right) \neq 0$ and M is a positive exceptional line bundle. Let the class of L_{1} be $k d+h f$. For large enough n, any line bundle $H_{1, n}$ whose class is $d+n f$ is ample by Cor. (3.2). By $H^{0}\left(L_{1}\right) \neq 0$, we have $d\left(L_{1}, H_{1, n}\right) \geqq 0$ i.e. $k a+h+k n \geqslant 0$ for large enough n. So $k \geqslant 0$. On the other hand, by our assumption, $d\left(L_{1}, H_{1, n}\right) \leqq(1 / 2) d\left(E, H_{1, n}\right)$ i.e. $(n+\alpha)(-1-2 k)+m-2 h \geqq 0$ for large enough n. So $k \leqq-1 / 2$. This is a contradiction.

Proposition (3.6). Let E be a vector bundle on $\boldsymbol{P}(V)$ of rank two with the first Chern class $c_{1}(E)=p^{*} L$ for some line bundle L on C and $N(E) \geq 0$. If E is H-stable for an ample line bundle H, then there is a stable vector bundle F on C such that $E=p^{*} F$. (It follows that $N(E)=0$.)

Proof. Put $m=d(L)$ and $b=N(E)$. And let $H_{1, n}$ be the same as
in Prop. (3.5). By Lemma (3.3) we may assume $H=H_{1, n}$. Then $\chi(E)$ $=m+(1 / 4) b+2-2 g$ and $d\left(E^{*} \otimes K, H\right)=-2 a+4 g-4-4 n-m$. By the same argument as in Prop. (3.5), we have an exact sequence $0 \rightarrow$ $f^{*} L_{1} \otimes M \rightarrow f^{*} E \rightarrow f^{*} L_{2} \otimes M^{-1} \rightarrow 0$ where f, L_{1}, L_{2}, M are the same as before. By $H^{0}\left(L_{1}\right) \neq 0$, we have $d\left(L_{1}, H_{1, n}\right) \geq 0$ i.e. $k a+h+k n \geq 0$ for large enough n. So $k \geq 0$. On the other hand, by our assumption, $d\left(L_{1}, H_{1, n}\right) \leqq(1 / 2) d\left(E, H_{1, n}\right)$ i.e. $2 \mathrm{~m}-k a-h-k n \geq 0$ for large enough n. So $k \leq 0$. Hence $k=0$ and $0 \leq h<(1 / 2) m$. Now since $N(E)=$ $4\left(M^{2}\right) \geq 0$, we conclude that $M=\mathcal{O}_{Y}, N(E)=0$ and the above extension is of the following form: $0 \rightarrow p^{*} L_{1}^{\prime} \rightarrow E \rightarrow p^{*} L_{2}^{\prime} \rightarrow 0$, where $L_{1}^{\prime}, L_{2}^{\prime}$ are line bundles on C. This extension defines an element of $H^{1}\left(\operatorname{Hom}\left(p^{*} L_{2}^{\prime}, p^{*} L_{1}^{\prime}\right)\right)$. On the other hand, $H^{1}\left(\operatorname{Hom}\left(L_{2}^{\prime}, L_{1}^{\prime}\right)\right) \leftrightharpoons H^{1}\left(\operatorname{Hom}\left(p^{*} L_{2}^{\prime}, p^{*} L_{1}^{\prime}\right)\right)$ (canonically). Hence $E=p^{*} F$ for some vector bundle F on C which is an extension of L_{2}^{\prime} by L_{1}^{\prime}. It is obvious that F is stable.

Theorem (3.7). Let H be an ample line bundle on $\boldsymbol{P}(V)$.

1) There is no H-stable bundle E of rank two on $\boldsymbol{P}(V)$ with $N(E)>0$.
2) A vector bundle E of rank two on $\boldsymbol{P}(V)$ is H-stable with $N(E)$ $=0$ if and only if there is a stable vector bundle F of rank two on C and a line bundle L on $\boldsymbol{P}(V)$ such that $E=p^{*} F \otimes L$.
3) Let E be a vector bundle of rank two on $\boldsymbol{P}(V)$ with $N(E)<0$, and let the first Chern class of E be $k d+h f$ where k is odd. If E is H-stable, then there exists an ample line bundle H^{\prime} on $\boldsymbol{P}(V)$ such that E is not H^{\prime}-stable.

Proof. Tensoring E with a suitable line bundle $\mathcal{O}_{\boldsymbol{P}_{(V)}}(n)$, we may assume $c_{1}(E)=k d+h f$ with $k=0$ or 1 . The statement is obtained from Lemma (3.3), Prop. (3.4), Prop. (3.5) and Prop. (3.6).

We now give an example of Th. (3.7). 3). First
Lemma (3.8). Let X be a non-singular projective surface. Let L be a line bundle on X and let H be an ample line bundle on X. Suppose the extension $0 \rightarrow \mathcal{O}_{X} \rightarrow E \rightarrow L \rightarrow 0$ does not split and $d(L, H)=1$. Then E is H-stable.

Proof. First, remark $(1 / 2) d(E, H)=1 / 2$. Suppose we are given a morphism $f: Y \rightarrow X$ obtained by successive dilatations and a surjective morphism $f^{*} E \rightarrow f^{*} L_{1} \otimes M^{-1}$, where L_{1} is a line bundle on X and M is
a positive exceptional line bundle on Y. If $\mathcal{O}_{Y} \rightarrow f^{*} E \rightarrow f^{*} L_{1} \otimes M^{-1}$ is zero, then $L=L_{1}$ and $M=\mathcal{O}_{Y}$. If not, then $0 \neq H^{0}\left(f^{*} L_{1} \otimes M^{-1}\right) \subset H^{0}\left(L_{1}\right)$. Hence $d\left(L_{1}, H\right) \geq 0$. Then if $d\left(L_{1}, H\right)=0$, then $L_{1}=\mathcal{O}_{X}$ and $H^{0}\left(M^{-1}\right) \neq 0$, and so $M=\mathcal{O}_{Y}$. Therefore the above extension splits. Hence $d\left(L_{1}, H\right) \geqslant 1$.

Proposition (3.9). Assume $a+2 m>2 g$ if V is indecomposable, and $a_{1}+m>g$ if V is decomposable. Denote by $H_{1, m}$ an ample line bundle on $\boldsymbol{P}(V)$ whose class is $d+m f$. Let M be a line bundle on C of degree $a+m+1 . \quad$ Put $L=\mathcal{O}_{P_{(V)}}(-1) \otimes p^{*} M$ and $s=\operatorname{dim}_{k} H^{1}\left(L^{-1}\right)-1$. (In this case $s=a+2 m+2 g-1 \geq 4 g$.) If $0 \rightarrow \mathcal{O}_{P_{(V)}} \rightarrow E \rightarrow L \rightarrow 0$ is a non-trivial extension, then E is $H_{1, m}$-stable and is not $H_{1, n}$-stable for any ample line bundle $H_{1, n}$ with $n \geq m+1$. We also have $N(E)=-a-2$ $-2 m, \quad H^{0}(E)=k, \quad \operatorname{dim}_{k} H^{1}(E)=g, \quad H^{2}(E)=0, \quad H^{2}(\operatorname{End}(E))=0 \quad$ and $\operatorname{dim}_{k} H^{1}(\operatorname{End}(E))=s+2 g$. Let $\xi \neq \xi^{\prime}$ be elements in $P\left(H^{1}\left(L^{-1}\right)\right)$, and let E_{ξ} and E_{ξ}, be vector bundles on $\boldsymbol{P}(V)$ corresponding to the extension classes ξ and ξ^{\prime} respectively as above. Then $E_{\xi} \neq E_{\xi^{\prime}}$.

Proof. First, we calculate $\operatorname{dim}_{k} H^{1}\left(L^{-1}\right) . \quad H^{1}\left(L^{-1}\right)=H^{1}\left(\boldsymbol{P}(V), \mathcal{O}_{\boldsymbol{P}_{(V)}}(1)\right.$ $\left.\otimes p^{*} M^{-1}\right)=H^{1}\left(C, V \otimes M^{-1}\right)$. By duality, $\operatorname{dim}_{k} H^{1}\left(L^{-1}\right)=\operatorname{dim}_{k} H^{0}\left(C, V^{*} \otimes\right.$ $M \otimes K_{C}$), where K_{C} denotes the canonical line bundle on C. In case V is indecomposable, let $\left(L_{1}, L_{2}\right)$ be a maximal splitting of $V^{*} \otimes M \otimes K_{C}$. By the result of Atiyah [1] to the effect that $2 g \geq d\left(L_{2}\right)-d\left(L_{1}\right) \geq-2 g$ +2 , we conclude $d\left(L_{i}\right) \geq(1 / 2)(6 g-3)-g>2 g-2$, since $d\left(V^{*} \otimes M \otimes K_{C}\right)$ $=a+2 m+4 g-2 \geqslant 6 g-3$ by our assumption. Hence $H^{1}\left(L_{i}\right)=0$. In case V is decomposable, we equally have $H^{1}\left(V^{*} \otimes M \otimes K_{C}\right)=0$ since $d\left(M_{i}^{*} \otimes M \otimes K_{c}\right)=a-a_{i}+m+2 g-1>2 g-2$. Therefore $\operatorname{dim}_{k} H^{1}\left(L^{-1}\right)$ $=s+1$. By Lemma (3.8), E is $H_{1, m}$-stable since $d\left(L, H_{1, m}\right)=1$. On the other hand since $d\left(L, H_{1, n}\right) \leq 0$ for $n \geq m+1, E$ is not $H_{1, n}$-stable. Now since $H^{i}(\boldsymbol{P}(V), L)=0$ for $i=0,1$ and $2, H^{i}(E) \leftrightharpoons H^{i}\left(\mathcal{O}_{\boldsymbol{P}_{(V)}}\right)$. We now show $H^{2}(\operatorname{End}(E))=0$. Since $0 \rightarrow \mathcal{O}_{P_{(V)}} \rightarrow E \rightarrow L \rightarrow 0$, we have an exact sequence $0 \rightarrow E^{*} \rightarrow \operatorname{End}(E) \rightarrow L \otimes E^{*} \rightarrow 0$ by tensoring it with E^{*}. On the other hand, since $E^{*} \otimes K_{\boldsymbol{P}_{(V)}}$ and $E^{*} \otimes K_{\boldsymbol{P}_{(V)}} \otimes L$ are $H_{1, m}$-stable bundles with negative $H_{1, m}$-degree, $\quad H^{0}\left(E^{*} \otimes K_{P_{(V)}}\right)=0 \quad$ and $\quad H^{0}\left(E^{*} \otimes K_{P_{(V)}} \otimes L\right)=0$. Hence $\operatorname{dim}_{k} H^{2}($ End $(E))=\operatorname{dim}_{k} H^{0}\left(\right.$ End $\left.(E) \otimes K_{P(V)}\right)=0$. So we can calculate $\operatorname{dim}_{k} H^{1}(E n d(E))$, since E is simple. The last statement follows from $H^{0}(E)=k$.

We remark the following fact: Let M_{1} and M_{2} be line bundles on C of degree 0 , and let N_{1} and N_{2} be line bundles on C of degree $a+m+1$.

If a vector bundle E on $\boldsymbol{P}(V)$ is an extension of $\mathcal{O}_{\boldsymbol{P}_{(V)}}(-1) \otimes p^{*} N_{1}$ by $p^{*} M_{1}$ which is also an extension of $\mathcal{O}_{\boldsymbol{P}(V)}(-1) \otimes p^{*} N_{2}$ by $p^{*} M_{2}$, then $M_{1}=$ M_{2} and $N_{1}=N_{2}$. Indeed we may assume $M_{1}=\mathcal{O}_{\boldsymbol{P}_{(V)}}$. Since $k=H^{0}\left(\mathcal{O}_{\boldsymbol{P}_{(V)}}\right)$ $=H^{0}(E)=H^{\circ}\left(M_{2}\right)$ and $d\left(M_{2}\right)=0$, so $M_{2}=\mathcal{O}_{\boldsymbol{P}_{(V)}}$, and hence $N_{1}=N_{2}$.

Hence we can say that there is an algebraic family S of simple vector bundles on $\boldsymbol{P}(V)$ parametrized by $J \times J \times \boldsymbol{P}^{s}$, in which isomorphic ones appear only once, and for any E contained in $S, \operatorname{dim}_{k} H^{1}(\operatorname{End}(E))$ $=$ the dimension of $J \times J \times \boldsymbol{P}^{s}$. Here J is the Jacobian variety of C and \boldsymbol{P}^{s} is the s-dimensional projective space.

Conversely,
Proposition (3.10). Assume $a_{1}+m>0$. Let C be the projective line and E a vector bundle of rank two on $\boldsymbol{P}(V)$ with $N(E)=-a-2-2 m$ whose first Chern class is $k d+h f$, where k is odd. Then there is a line bundle L^{\prime} on $\boldsymbol{P}(V)$ such that $E^{\prime}=E \otimes L^{\prime}$ is the extension of L by $\mathcal{O}_{\boldsymbol{P}_{(V)}}$ where L is of the same type as in Prop. (3.9) i.e. there is a line bundle M on C of degree $a+m+1$ such that $L=\mathcal{O}_{P_{(V)}}(-1) \otimes p^{*} M$.

Proof. Tensoring E with a suitable line bundle, we may assume the class of $c_{1}(E)$ is $-d+b f$. Moreover we may assume it is $-d+$ $(a+m+1) f$. Indeed if $b \equiv a+m(\bmod 2)$, then $N(E)=c_{1}^{2}(E)-4 c_{2}(E) \equiv$ $-a-2 m(\bmod 4)$. This contradicts our assumption. Then $c_{2}(E)=0$. $\chi(E)=1$ and $d\left(E^{*} \otimes K_{P_{(V)}}, H_{1, m}\right)<0$. Hence $H^{0}(E) \neq 0$ by Lemma (2.1). On the other hand, since $d\left(E, H_{1, m}\right)=1$, we have a morphism $f: Y \rightarrow \boldsymbol{P}(V)$ obtained by successive dilatations and an exact sequence $0 \rightarrow M \rightarrow f^{*} E$ $\left.\rightarrow f^{*}(\operatorname{Inv} E)\right) \otimes M^{-1} \rightarrow 0$, where M is a positive exceptional line bundle on Y. Now since $0=c_{2}(E)=-\left(M^{2}\right)$, we get $M=\mathcal{O}_{Y}$.

Putting all these results together we have
THEOREM (3.11). Let V be $\mathcal{O}_{\boldsymbol{P}^{1}} \oplus \mathcal{O}_{\boldsymbol{P}_{1}}(a)$ on the projective line $\boldsymbol{P}^{\mathbf{1}}$ with $a \geq 0$, and let $p: \boldsymbol{P}(V) \rightarrow \boldsymbol{P}^{1}$ be the canonical projection. (Then for positive $m, H_{1, m}=\mathcal{O}_{\boldsymbol{P}_{(V)}}(1) \otimes p^{*}\left(\mathcal{O}_{P_{1}}(m)\right)$ is ample.) Let S be the set of all $H_{1, m}$-stable vector bundles E on $\boldsymbol{P}(V)$ of rank two with the first Chern class $c_{1}(E)=\mathcal{O}_{P_{(V)}}(-1) \otimes p^{*}\left(\mathcal{O}_{P_{1}}(a+m+1)\right)$ and the second Chern class $c_{2}(E)=0$. Then there is a bijective map φ from S to \boldsymbol{P}^{s} and a vector bundle \mathscr{V} on $\boldsymbol{P}^{s} \times{ }_{k} \boldsymbol{P}(V)$ such that for any $E \in S, E=$ the restriction of \mathscr{V} to $\varphi(E) \times \boldsymbol{P}(V)$, and $\operatorname{dim}_{k} H^{1}($ End $(E))=s$. Here $s=a+2 m-1$ and \boldsymbol{P}^{s} is the s-dimensional projective space.

4. Simple vector bundles of rank two on the projective plane $\boldsymbol{P}^{\mathbf{2}}$

Let E be a vector bundle on \boldsymbol{P}^{2} of rank two. If E is simple, by the Riemann-Roch theorem, $N(E)=c_{1}^{2}(E)-4 c_{2}(E)=\operatorname{dim}_{k} H^{0}($ End $(E))$ $-\operatorname{dim}_{k} H^{1}(\operatorname{End}(E))+\operatorname{dim}_{k} H^{0}\left(\operatorname{End}(E) \otimes K_{P^{2}}\right)-4 \chi\left(\mathcal{O}_{P^{2}}\right) \leqq-2$, since End (E) is self-dual and the canonical bundle $K_{P^{2}}$ of \boldsymbol{P}^{2} is a sheaf of ideals. ([10] Th. 10) On the other hand, $N(E) \equiv 0$ or $1(\bmod 4)$ according as c_{1} is even or odd. We know that for any negative $n \equiv 0$ or $1(\bmod 4)$ except for $n=-4$, there is a simple vector bundle E of rank two on \boldsymbol{P}^{2} with $N(E)=n$. (See [11]. The result in p. 637 is false for $n=-4$ as we see below.)

Proposition (4.1) (Schwarzenberger [11]). Let E be a vector bundle on \boldsymbol{P}^{2} of rank two with the first Chern class $c_{1}(E)=\mathcal{O}_{P_{2}}(n)$. Put $m=$ $\min \left\{k \mid H^{0}\left(E \otimes \mathcal{O}_{P_{2}}(k)\right) \neq 0\right\}$. Then the following conditions are equivalent; (i) E is simple (ii) E is $\mathcal{O}_{p_{2}}$ (1)-stable (iii) $2 m+n>0$.

Proof. It is obvious that (ii) is equivalent to (iii) by definition. Since there is no line bundle L on \boldsymbol{P}^{2} with $H^{0}(L)=H^{0}\left(L^{-1}\right)=0$, (i) is equivalent to (ii) by Prop. (2.9).

Corollary (4.2). The set of all simple vector bundles on \boldsymbol{P}^{2} of rank two with the fixed Chern classes is bounded.

Proof. It is obvious by Th. 2.4 and Prop. 4.1.
Let E_{0} be the kernel of the canonical surjection $\mathcal{O}_{P^{2}}^{\otimes 3} \rightarrow \mathcal{O}_{P}(1)$. i.e. $E_{0}=\Omega_{P^{2}}^{1}(1)$. Then E_{0} is simple of rank two and with $N\left(E_{0}\right)=-3$. Indeed, since $c_{1}\left(E_{0}\right)=-1$ and $c_{2}\left(E_{0}\right)=1, E_{0}$ is not an extension of line bundles. We now show E_{0}^{*} is $\mathcal{O}_{P_{2}}(1)$-stable. Suppose we are given a morphism $f: X \rightarrow \boldsymbol{P}^{2}$ obtained by successive dilatations and a surjection $E_{0}^{*} \rightarrow f^{*} \mathscr{O}_{P^{2}}(k) \otimes M^{-1}$, where M is a positive exceptional line bundle. By the definition of E_{0}, we have $\mathcal{O}_{P^{2}}^{3} \rightarrow E_{0}^{*} \rightarrow 0$. Hence there is a non-zero homomorphism $\mathcal{O}_{\boldsymbol{P}_{2}} \rightarrow f^{*} \mathcal{O}_{\boldsymbol{P}_{2}}(k) \otimes M^{-1}$, and so $k \geq 0$. If $k=0$, then $M=$ \mathcal{O}_{X}. This contradicts the fact that E_{0} is not an extension of line bundles on \boldsymbol{P}^{2}. Therefore $k \geq 1$. On the other hand, $c_{1}\left(E_{0}^{*}\right)=1$. Thus E_{0}^{*} is $\mathcal{O}_{P_{P}}(1)$-stable.

Proposition (4.3). 1) There is no simple vector bundle E of rank two on \boldsymbol{P}^{2} with $N(E)=-4$. 2) Let E be a simple vector bundle E of rank two on \boldsymbol{P}^{2} with $N(E)=-3$. Then $E=\Omega_{P^{2}}^{1}(n)$ for some n.

Proof. 1) Let E be a vector bundle of rank two on \boldsymbol{P}^{2} with $N(E)$ $=-4$. We may assume $c_{1}(E)=0$, and so $c_{2}(E)=1$. Then since $\chi(E)$ $=1$ and $c_{1}\left(E^{*} \otimes K_{p_{2}}\right)<0, E$ is not $\mathcal{O}_{p_{2}}(1)$-stable by Lemma (2.1) and hence not simple. 2) Put $V=\mathcal{O}_{P_{1}} \oplus \mathcal{O}_{P_{1}}(1)$. The surface $X=\boldsymbol{P}(V)$ has a unique exceptional curve D of the first kind. The contraction of D is \boldsymbol{P}^{2}. Now we consider the problem on X. Let E be a simple vector bundle on X of rank two with $N(E)=-3$. Put $c_{1}(E)=k d+h f$. By $N(E)=$ $-3, k$ is odd and h is even. So we may assume $k=-1$ and $h=2$, and then $c_{2}(E)=0$. Therefore since $\chi(E)=1, d\left(E^{*} \otimes K_{X}, H_{1,1}\right)<0$ and $d\left(E, H_{1,1}\right)$ $=0$, so E is not $H_{1,1}$-stable. Hence we have a morphism $f: Y \rightarrow X$ obtained by successive dilatations and an extension of line bundle on $Y: 0 \rightarrow f^{*} L_{1} \otimes M \rightarrow f^{*} E \rightarrow f^{*} L_{2} \otimes M^{-1} \rightarrow 0$, where L_{1} and L_{2} are line bundles on X and M is a positive exceptional line bundle on Y with $d\left(L_{1}, H_{1,1}\right)$ ≥ 0. Let the class of L_{1} be $n d+m f$. Since E is simple, $H^{0}\left(L_{1} \otimes L_{2}^{-1}\right)$ $=0$ and $H^{0}\left(L_{1}^{-1} \otimes L_{2}\right)=0$ by the same argument as in Prop. (2.9). And $0=c_{2}(E)=-4\left(M^{2}\right)+\left(L_{2} \otimes L_{1}^{-1}, L_{2} \otimes L_{1}^{-1}\right)$. These relations are equivalent to the following: (1) $2 n+m \geq 0$. (2) either $n \geq 0$ and $n+m \leqq 0$ or $n \geq-1$ and $n+m \leqq 2$. (3) $-\left(M^{2}\right)=n^{2}+2 n m+m-n \geq 0$. Only n $=0$ and $m=0$ satisfies these relations, and so $M=\mathcal{O}_{Y}$. Hence the above extension is of the form: $0 \rightarrow \mathcal{O}_{X} \rightarrow E \rightarrow \mathcal{O}_{X}(-d+2 f) \rightarrow 0$. Since $\operatorname{dim}_{k} H^{1}\left(\mathcal{O}_{X}(d-2 f)\right)=1$, the above non-trivial extension is unique. (It is obvious that the extension bundle is simple by Oda's lemma.)

We now give an example of a family of simple vector bundles of rank two on \boldsymbol{P}^{2}. Let x_{1}, x_{2}, x_{3} be closed points of \boldsymbol{P}^{2} in general position, and let f be the blowing up: $X \rightarrow \boldsymbol{P}^{2}$ whose center consists of x_{1}, x_{2} and x_{3}. Put $L=f^{*}\left(\mathcal{O}_{P_{2}}(-1)\right) \otimes \mathcal{O}_{X}\left(C_{1}+C_{2}+C_{3}\right)$, where $C_{i}=f^{-1}\left(x_{i}\right)$. It is easy to see that $\operatorname{dim}_{k} H^{1}\left(L^{\otimes_{2}}\right)=3, H^{2}\left(L^{\otimes^{2}} \otimes \mathcal{O}_{X}\left(-C_{i}\right)\right)=0, H^{0}(L)=0, H^{0}\left(L^{-1}\right)=0$ and $H^{0}\left(L^{\otimes-2}\right)=0$. We have an exact sequence $0 \rightarrow \mathcal{O}_{X}\left(-C_{i}\right) \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{C_{i}} \rightarrow 0$, which induces $k^{\oplus 3}=H^{1}\left(L^{\otimes_{2}}\right) \rightarrow H^{1}\left(C_{i}, \mathcal{O}_{C_{i}}(-2)\right)=k \rightarrow H^{2}\left(L^{\otimes 2} \otimes \mathcal{O}_{X}\left(-C_{i}\right)\right)=$ 0 . Consider an extension $0 \rightarrow L \rightarrow E^{\prime} \rightarrow L^{-1} \rightarrow 0$. By Schwarzenberger [10], E^{\prime} is of the form $f^{*} E$ for some vector bundle E on \boldsymbol{P}^{2} if and only if $E^{\prime} \otimes \mathcal{O}_{C_{i}}=\mathcal{O}_{C_{i}} \oplus \mathcal{O}_{C_{i}}, i=1,2,3$. Hence there is a non-empty Zariski open subset U of \boldsymbol{P}^{2} and a vector bundle \mathscr{V} of rank two on $U \times \boldsymbol{P}^{2}$ such that for any $u \in U$, the restriction of \mathscr{V} to $u \times \boldsymbol{P}^{2}$ is a simple vector bundle of rank two on \boldsymbol{P}^{2} with the first Chern class $=\mathcal{O}_{\boldsymbol{P}^{2}}$ and the second Chern class $=2$, and isomorphic vector bundles appear only once. Indeed, let E^{\prime} be $f^{*} E$ for some vector bundle E on \boldsymbol{P}^{2}. It is easy to see that
$H^{0}\left(E \otimes \mathcal{O}_{P^{2}}(1)\right) \neq 0$. On the other hand, $H^{0}(E)=0$ by the above fact. Hence E is simple by Cor. (2.10), iii). From $H^{0}\left(L^{\otimes-2}\right)=0$, we can see that isomorphic vector bundles appear only once.

Remark. Conversely, let E be a simple vector bundle of rank two on \boldsymbol{P}^{2} with the first Chern class $=\mathcal{O}_{\boldsymbol{P}^{2}}$ and the second Chern class $=2$. Then there is a morphism $f: X \rightarrow \boldsymbol{P}^{2}$ obtained by successive dilatations and a positive exceptional line bundle M on X such that $0 \rightarrow f^{*}\left(\mathcal{O}_{P^{2}}(-1)\right)$ $\otimes M \rightarrow f^{*} E \rightarrow f^{*}\left(\mathcal{O}_{P_{2}}(1)\right) \otimes M^{-1} \rightarrow 0$, where $-\left(M^{2}\right)=3$. Indeed, by Lemma (2.1), $H^{0}\left(E \otimes \mathcal{O}_{P_{2}}(1)\right) \neq 0$ since $\chi\left(E \otimes \mathcal{O}_{P_{2}}(1)\right)>0$ and $d\left(\left(E \otimes \mathcal{O}_{P_{2}}(1)\right)^{*} \otimes\right.$ $\left.K, \mathcal{O}_{P^{2}}(1)\right)<0$. On the other hand, $H^{0}(E)=0$. Hence we have the desired result.

When X is $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$, we have the almost same results as when X is the projective plane \boldsymbol{P}^{2}. For example, 1) there is no simple vector bundle E of rank two on X with $N(E)=-2$. 2) Let E be a vector bundle of rank two on X with $N(E)=-4 . \quad E$ is simple if and only if E is $H_{1,1}$-stable, or $H_{2,1}$-stable, or $H_{1,2}$-stable. Hence a set of such simple bundles is bounded etc.

On the other hand, it was shown by Schwarzenberger [11] that for any even negative integer $n \neq-2$, there is a simple vector bundle E on X of rank two with $N(E)=n$. (His statement is false for $n=-2$. We can prove there is no simple vector bundle E of rank two on X with $N(E)=-2$ as Prop. (4.3) (i).) Note that if E is a simple vector bundle of rank two on X, then $N(E)$ is an even negative integer.

5. Stable vector bundles of rank two on abelian surfaces

In this section, X will be an abelian surface over k. When E is a simple bundle of rank two on X, by the Riemann-Roch theorem, $N(E)=c_{1}^{2}(E)-4 c_{2}(E)=2 \operatorname{dim}_{k} H^{0}($ End $(E))-\operatorname{dim}_{k} H^{1}($ End $(E))=2-$ $\operatorname{dim}_{k} H^{1}($ End $(E)) \leqq 2$, since End (E) is self-dual and the canonical bundle of X is trivial. When char. $k \neq 2, \operatorname{dim}_{k} H^{1}(\operatorname{End}(E)) \geqslant \operatorname{dim}_{k} H^{1}\left(\mathcal{O}_{X}\right)=2$, since $\mathcal{O}_{X} \rightarrow \operatorname{End}(E)$ splits. Hence $N(E) \leqq 0$ when char. $k \neq 2$ and E is simple.

Proposition (5.1). Let X be an abelian surface and E a vector bundle of rank two with $N(E)=0$ on X. Then E is simple if and only if E is H-stable for an ample line bundle H on X.

Proof. We use freely results about the cohomology of a line bundle on an abelian variety. (See [7] and [8]). Assume E is of trivial type. As above there is a non-trivial extension $0 \rightarrow M \rightarrow f^{*} E \rightarrow f^{*} L_{2} \otimes M^{-1} \rightarrow 0$ with $H^{0}\left(L_{2}\right)=H^{0}\left(L_{2}^{-1}\right)=0$. Therefore we have the following three possibilities:
(Case 1) L_{2} is non-degenerate of index 1, i.e. $\left(L_{2}^{2}\right)<0$.
(Case 2) L_{2} is not isomorphic to \mathcal{O}_{X}, but algebraically equivalent to \mathcal{O}_{X}.
(Case 3) L_{2} is degenerate, but not algebraically equivalent to \mathcal{O}_{X}, with $L_{2} \otimes \mathcal{O}_{K} \neq \mathcal{O}_{K}$ where K is the component of the zero of the kernel of $\wedge\left(L_{2}\right)$. In cases 2 and 3 we have $M=\mathcal{O}_{X}$, since by assumption (L_{2}^{2}) $=0$ and $0=N(E)=4\left(M^{2}\right)+\left(L_{2}^{2}\right)$. The extension is thus of the form, $0 \rightarrow \mathcal{O}_{X} \rightarrow E_{1} \rightarrow L_{2} \rightarrow 0$. But since $H^{1}\left(L_{2}^{-1}\right)=0, E_{1}=\mathcal{O}_{X} \oplus L_{2}$, contradicting the assumption that E_{1} is simple. In case 1, $N(E)=4\left(M^{2}\right)+\left(L_{2}^{2}\right)<$ $4\left(M^{2}\right) \leqq 0$. This contradicts $N(E)=0$.

Proposition (5.2). Let X be an abelian surface and let E be a vector bundle of rank two on X with $N(E)=0$. Then E is H-semi-stable if and only if E is either simple or is of the form $E^{\prime} \otimes L$, where we have an extension $0 \rightarrow \mathcal{O}_{X} \rightarrow E^{\prime} \rightarrow \mathcal{O}_{X} \rightarrow 0$ and L is a line bundle.

Proof. The condition is clearly sufficient. To show that it is necessary, let E be H-semi-stable and not simple. By Prop. (5.1), E is not H-stable. Hence we have a morphism $f: Y \rightarrow X$ obtained by successive dilatations, line bundles L_{1} and L_{2} on X and a positive exceptional line bundle M on Y such that there is an exact sequence $0 \rightarrow f^{*} L_{1} \otimes M \rightarrow f^{*} E$ $\rightarrow f^{*} L_{2} \otimes M^{-1} \rightarrow 0 \quad$ with $d\left(L_{1}, H\right)=d\left(L_{2}, H\right)$. If $H^{0}\left(L_{2} \otimes L_{1}^{-1}\right)=0$, then $H^{0}($ End $(E))=k \oplus H^{0}\left(L_{1} \otimes L_{2}^{-1}\right)$ by Oda's lemma and hence $L_{1} \simeq L_{2}$. This is a contradiction. Therefore $H^{0}\left(L_{1} \otimes L_{2}^{-1}\right) \neq 0$, and so $L_{1}=L_{2}$. Since $N(E)=4\left(M^{2}\right)=0, M=\mathcal{O}_{X}$.

Remark. Let X be an abelian surface over the field of complex numbers and E a vector bundle of rank two with $N(E)=0$ on X. Then Oda [9] has proved that E is simple if and only if E is obtained as the direct image of a line bundle under an isogeny of a special type. And also he has shown that there is a vector bundle E of rank two on an abelian surface with $N(E)=0$, which is not H-semi-stable but indecomposable. On the other hand, it is well known [1] that any indecomposable
vector bundle on an elliptic curve is semi-stable and the fact corresponding to Prop. (2.12) holds.

References

[1] Atiyah, M. F., Vector bundles over an elliptic curve, Proc. London Math. Soc., (3), 7 (1957), p. 414-452.
[2] Hartshorne, R., Ample vector bundles, Publ. Math. IHES, 29 (1966), p. 63-94.
[3] Kleiman, S., Les theoremes de finitude pour le foncteur de Picard, SGA 6, exposé 13.
[4] Mumford, D., Projective invariants of projective structures and applications, Proc. Inter. Congress Math. Stockholm 1962, p. 526-530.
[5] Mumford, D., Geometric invariant theory, Springer-Verlag, 1965.
[6] Mumford, D., Lectures on curves on an algebraic surface, Ann. of Math. Studies Number 59, Princeton, 1966.
[7] Mumford, D., Abelian varieties, Oxford Univ. Press, 1970.
[8] Mumford, D. and G. Kempf, Varieties defined by quadratic equations, Centro Inter. Math. Estivo, Varenna, 1969, p. 31-100.
[9] Oda, T., Vector bundles on abelian surfaces, Invent. Math., vol. 13 (1971), p. 247260.
[10] Schwarzenberger, R. L. E., Vector bundles on algebraic surfaces, Proc. London Math. Soc., (3), 1961, p. 601-622.
[11] Schwarzenberger, R. L. E., Vector bundles on the projective plane, Proc. London Math. Soc. (3) 1961, p. 623-640.

Department of Mathematics
Nagoya Institute for Technology

