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Abstract
Presented is a novel way to combine snapshot compressive imaging and lateral shearing interferometry in order to
capture the spatio-spectral phase of an ultrashort laser pulse in a single shot. A deep unrolling algorithm is utilized
for snapshot compressive imaging reconstruction due to its parameter efficiency and superior speed relative to other
methods, potentially allowing for online reconstruction. The algorithm’s regularization term is represented using a neural
network with 3D convolutional layers to exploit the spatio-spectral correlations that exist in laser wavefronts. Compressed
sensing is not typically applied to modulated signals, but we demonstrate its success here. Furthermore, we train a neural
network to predict the wavefronts from a lateral shearing interferogram in terms of Zernike polynomials, which again
increases the speed of our technique without sacrificing fidelity. This method is supported with simulation-based results.
While applied to the example of lateral shearing interferometry, the methods presented here are generally applicable to
a wide range of signals, including Shack–Hartmann-type sensors. The results may be of interest beyond the context of
laser wavefront characterization, including within quantitative phase imaging.
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1. Introduction

Ultrashort laser pulses possess a necessarily broad spectral
bandwidth[1]. The chromatic properties of the optical
elements that are used for the generation or application of
such pulses can then create relations between the spatial
and temporal profiles, called spatio-temporal couplings
(STCs)[2]. These phenomena can lead to a variety of effects
including, for example, the broadening of a focused laser
pulse either spatially or temporally, thereby reducing its peak
intensity[3]. Deliberately introduced STCs can lead to exotic
light pulses that behave very differently from ‘normal’
pulses. An example of this is the so-called flying focus[4]

with its potential application in laser-driven wakefield
accelerators[5] and orbital angular momentum beams[6].
Universally, the expansion in the applications of ultrafast
laser pulses has exacerbated the need for a robust way to
measure their properties.
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To resolve STCs, one must gain wavefront information
over the 3D hypercube (x,y,t) or equivalently its spatio-
spectral analogue (x,y,ω). Due to the limitation that
array sensors (such as complementary metal–oxide–
semiconductor (CMOS) cameras) capture information in
a maximum of two dimensions, the majority of current
techniques resort to scanning over one or two dimensions,
whether it is a spatial[7,8], spectral[9,10] or temporal[11] scan.
Such techniques are time consuming and are blind to shot-to-
shot variations and drift of the laser. While there exist some
methods that are single shot[12] – that is, those that capture
the hypercube in one shot – these currently lack resolution
and spectral range and are cumbersome to implement.

Inspired by recent progress in machine-learning-based
laser science[13], here we present the concept for a single-
shot method that utilizes compressed sensing (CS) to resolve
the wavefront in both the spectral and spatial domains. The
paper is structured as follows. In Section 2 we will discuss
the wavefront sensor and in Section 3 we introduce snapshot
compressive imaging (SCI) as a way to expand the wavefront
sensor to measuring multiple colours at once. Our imple-
mentation is based on deep unrolling, which yields high
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performance in both reconstruction fidelity and speed, as
required for use as a real-time diagnostic. Section 4 provides
a thorough description of all neural network architectures
used, and Section 5 contains a description of how training
data was generated, before Section 6 displays the results of
the proposed method.

2. Wavefront sensing

The wavefront sensor that was simulated in this example
was a quadriwave lateral shearing interferometer (QWLSI),
which is known for its high resolution and reconstruction
fidelity. Nonetheless, our method can in general be applied
to any kind of wavefront retrieval technique, including the
popular Shack–Hartmann sensor or multi-plane techniques,
such as Gerchberg–Saxton phase retrieval.

A lateral shearing interferometer (LSI) measures the spa-
tially varying phase of a light beam, and was first applied
to the measurement of ultrashort laser pulses in the late
1990s[14]. The LSI works by creating multiple copies of the
laser pulse and shearing them laterally relative to each other
before their interference pattern is captured on a sensor.
Due to the shear, information about the spatial gradient of
the wavefront is encoded in the interferogram. This can
then be extracted using Fourier filtering[15] and stitched
together to form the wavefront via methods such as modal
reconstruction[16] or Fourier integration[17]. The most popular
implementation is the aforementioned QWLSI. By gener-
ating and shearing four (2 × 2) copies of the pulse under
investigation, this setup also enables the extraction of two
separate pairs of orthogonal gradients, meaning two distinct
estimates for the wavefront can be found, providing error
estimation. This property is highly desirable for a sensor
based on CS, because inevitable noise in the measurement
can corrupt the wavefront with reconstruction artifacts. This

would, for instance, be the case in a two-plane Gerchberg–
Saxton algorithm. In contrast, redundancy of phase infor-
mation in the QWLSI provides direct validation and, thus,
makes the wavefront retrieval much more resilient to noise.
A sketch illustrating the concept of the QWLSI is shown in
the red box of Figure 1.

2.1. QWLSI simulation

A physical implementation of the QWLSI usually consists of
a phase grating with ‘pixels’ of alternating phase arranged in
a checkerboard pattern[18], which leads to dominant diffrac-
tion in 2 × 2 copies of the beam. Instead of simulating this
process, we consider an idealized setup where we analyti-
cally generate the four copies. We begin with creating the
pulse of interest by defining a spatial-spectral intensity, I0,
and phase, φ0:

E0 (x,y,z = 0,ω)= √
I0 (x,y,z = 0,ω)eiφ0(x,y,z=0,ω). (1)

The pulse is copied four times, and each copy’s field is
propagated to the detector plane according to the following
rules. Note that for brevity, when the z index is not stated,
z = 0 and the ω index will be suppressed from the electric
field.

2.1.1. Propagation
Considering the jth copy has travelled a distance �z, its
poloidal angle is θj and its azimuthal angle is ζ , then one
finds its displacement in the x and y directions to be as
follows:

�xj (ω)=�zsin
(
θj

)
sin(ζ (ω)),

�yj (ω)=�zcos
(
θj

)
sin(ζ (ω)) .

Figure 1. Schematic of the experimental setup that was simulated. The pulse first travels through a quadriwave lateral shearing interferometer, yielding a
hypercube of interferograms, a slice of which is shown in the green box. The hypercube is then passed through a CASSI setup. This consists of a random
mask and a relay system encompassing a prism, before the coded shot is captured with the camera. This diagram is not to scale.
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In a QWLSI, the poloidal angles are θj ∈ {
0, π2 ,π,

3π
2

}
.

In Figure 1, one identifies the azimuthal angle, ζ , as that
between the white copy lines and the central yellow line.
This is related to both the pitch of the grating � and the
wavelength λ by the following:

ζ (ω)= arcsin
(

2π
λ

�

)
.

The resulting electric field of the copy is as follows:

Ej (x,y,�z)= 1
4

√
I0

(
x−�xj,y−�yj

)
eiφ0(x−�xj,y−�yj).

(2)

2.1.2. Tilt
As diffraction occurs at an angle ζ , the grating imparts a
tilt onto the copy. This translates to an additional phase shift
dependent on both the spectral and spatial domains:

�φj (x,y,ω)= k (ω)
(
xcos

(
θj

)+ ysin
(
θj

))
sin(ζ ),

where k = 2π
λ

is the wavevector of the pulse. This tilt is
crucial in reconstruction as it provides a high-frequency
modulation that separates the gradients in Fourier space.

Combining these two effects and summing over copies, we
obtain the final changes to the field:

E (x,y,�z)= 1
4

4∑
j=1

√
I0

(
x−�xj,y−�yj

)
· ei(φ(x−�xj,y−�yj)+�φj(x,y)).

(3)

At the Talbot self-imaging plane, �z = 2�2/λ, one has a
hypercube of interferograms. An example of a one frequency
channel slice is shown in the green box of Figure 1.

In other applications one would collapse the cube onto
a sensor at this point; however, this would eliminate the
chance of retrieving the spectrally resolved phase. Instead,
as discussed in Section 3, we use SCI to aid in the capturing
of the cube.

2.2. Wavefront reconstruction

Once the interferogram is captured, one must extract the
wavefront. As previously mentioned, current reconstruction
methods usually involve multiple steps, that is, extracting the
gradients, integrating and stitching them together. This can
be a time-consuming process, especially in a hyperspectral
setting where the reconstruction has to be done for every
channel. To address this problem, we present a deep learning
approach to wavefront reconstruction for the LSI. While sim-
ilar work has been done in the context of Shack–Hartmann
sensors[19,20], this is the first application of deep learning
to LSI reconstruction, to the best of our knowledge. The
network that was used will be discussed in Section 4.

3. Snapshot compressive imaging

CS describes the highly efficient acquisition of a sparse
signal from fewer samples than would classically be required
according to the Nyquist theorem by utilizing optimization
methods to solve underdetermined equations. SCI is an
example of CS, capturing 3D data on a 2D sensor in a single
shot.

Fundamentally, there are two requirements to be fulfilled
for CS to work. Firstly, the signal must be sparse on some
basis and, secondly, the signal must be sampled on the basis
that it is incoherent with respect to the sparse basis[21]. The
first condition was hypothesized to be satisfied given the
fact that laser wavefronts are known to be well-expressed
with a few coefficients of the Zernike basis. When one does
not have prior knowledge about which basis the signal is
sparse on, the second condition is often solved by performing
random sampling. Whilst being trivial for 2D data, in the
context of SCI it is challenging, as the 3D hypercube must
be randomly sampled onto a 2D sensor. To do so, nearly all
research in this area uses hardware based on the coded aper-
ture snapshot compressive imaging (CASSI) system[22,23].

3.1. CASSI

The hypercube is first imaged onto a coded aperture. This is
a binary random mask with each pixel transmitting either
100% or 0% of the light. The cube is then also passed
through some dispersive media, for example, a prism or
grating, before being captured by a sensor, resulting in what
is known as the coded shot. The effect of this optical system
is that when the hypercube reaches the detector plane, each
spectral channel is encoded with a different coded aperture,
thereby approximating random sampling across the whole
cube. It is then possible for a reconstruction algorithm to
retrieve the cube. A diagram of a CASSI system is shown
in the yellow box in Figure 1, with an example of a coded
shot for an interferogram hypercube shown on the far left of
Figure 3. The setup can easily be simulated by multiplying
the cube by the mask, then shifting the channels of the cube
according to the amount of (angular) dispersion imparted
onto them, and finally summing over the spectral axis.

Mathematically, the CASSI system discussed above is
summarized into a matrix Φ, which operates on m, a vector-
ized representation of the hypercube, to give n, a vectorized
coded shot:

n = Φm. (4)

In order to reconstruct m, one can solve the following:

m̃ = argminm

⎡
⎢⎣‖n−Φm‖2︸ ︷︷ ︸

data term

+ηR(m,ψ)︸ ︷︷ ︸
regularizer

⎤
⎥⎦ . (5)
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The first term on the right-hand side is labelled the data
term, and enforces that the hypercube must match the coded
shot when captured. This alone would be an underdeter-
mined system, so a regularization term, parameterized by
ψ , is added that restricts the solution space and selects the
correct hypercube.

Most methods that have been developed to solve this non-
convex equation can be sorted into two classes: iterative
algorithms or end-to-end neural networks. The former offers
good generalization but lacks abstraction capability and is
slow, whilst deep nets are fast and have been shown to
learn almost any function, but can be prone to overfitting[24].
A middle ground that offers state-of-the-art performance is
deep unrolling.

3.2. Deep unrolling

While an end-to-end neural net would attempt to solve
Equation (5) directly, if it were possible to split the equation,
the data term can actually be solved analytically. This is
desirable as it alleviates the abstraction needed to be done
by the network, resulting in greater generalization and bet-
ter parameter efficiency[25]. To perform such a separation,
half quadratic splitting is employed. Firstly, an auxiliary
variable p is substituted into the regularization term, with
Equation (6) being equivalent to Equation (5). Then, the
constraint is relaxed and replaced by a quadratic loss term:

m̂, p̂ = argminm,p
[|n−Φm|2 +ηR(p)

]
s.t. m = p, (6)

≈ argminm,p
[|n−Φm|2 +ηR(p)+β|m−p|2] . (7)

Here, β is a variable that controls the strength of the
constraint. High values of β will strongly enforce m = p and
approximate the subject-to statement.

The benefit of this problem formulation is that it is then
possible to split Equation (7) into two minimization sub-
problems in m and p, and effectively separate the data term
from the regularization term. When minimized iteratively,
the following sub-problems can approximate Equation (7):

p̂k+1 = argminp

[
β
∣∣p−mk

∣∣2 +ηR(p)
]

∼ S (
mk), (8)

m̂k+1 = argminm

[
|n−Φm|2 +β∣∣pk+1 −m

∣∣2
]

. (9)

Equation (9) is a convex equation and can be solved
via a conjugate gradient algorithm, which provides better
stability than solving analytically. On the right-hand side of
Equation (8), S represents that a neural network will be used
to solve the equation.

The deep unrolling process is shown in Figure 2(b) panel
(i). Firstly m(0) is initialized: m(0) = ΦTn. Then the two
equations are solved for a fixed number of iterations, with

the same architecture neural net being used to represent
Equation (8) in each iteration. However, the network has its
own set of weights for each iteration, hence the unrolling
of the algorithm. The architecture of the network will be
discussed in Section 4.

4. Network architecture

This section contains the architectures of the neural networks
that were used. They will be discussed in the order they are
used in the reconstruction process, which is displayed in the
flow chart of Figure 2(a). Firstly, the deep unrolling algo-
rithm performs reconstruction of the interferogram hyper-
cube from the coded shot, and secondly another network,
Xception-LSI, reconstructs the spatial-spectral wavefront
from the hypercube.

4.1. Deep unrolling regularizer

As previously discussed, the neural network, S , represents
a regularization term. This means one can exploit prior
knowledge about the data to choose a suitable architecture.
As will be discussed in the following section, STCs can be
described by a correlation between Zernike polynomial coef-
ficients and the wavelength. Accordingly, there will likely be
a strong similarity in spot positions for neighbouring spectral
channels. Due to this, an architecture with 3D convolutions
was developed, which can exploit these relations. Inspired
by recent work in video SCI[26], a simplified ResUNet archi-
tecture was chosen[27], with the standard 2D convolutions
replaced with 3D ones. We used 10 iterations for our model,
as it has been found that adding more than this produces
negligible performance gains[28]. A diagram of the network
is displayed in Figure 2(b) panel (i).

4.2. Xception-LSI

A wavefront retrieval network was developed that takes
a single spectral channel QWLSI interferogram and pre-
dicts the spatial wavefront in terms of Zernike coefficients.
The network is based on the Xception network[29], but as
the original 71-layer network is designed for classification,
some changes were made to adapt Xception to our appli-
cation. Firstly, the final two layers were removed. A max
pool layer and a convolutional layer were added to shrink
the output in the spatial and spectral dimensions, respec-
tively. Dropout was applied before using three dense layers
with 1000, 500 and 100 nodes using the ReLu activation
function[30]. The output layer consists of 15 nodes with
linear activation, corresponding to the number of Zernike
coefficients to predict. We name the network Xception-LSI,
and it can be seen in Figure 2(c) panel (i).
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Figure 2. A diagram showing the full reconstruction process of the wavefront from the coded shot. (a) A flow chart of the reconstruction process. (b) (i) The
deep unrolling process, where sub-problems 1© and 2© are solved recursively for 10 iterations. Also shown is the neural network structure used to represent
S (

mk). (ii) The training curve for the deep unrolling algorithm. Plotted is the training and validation PSNR for the 3D ResUNet prior that was used, as
well as the validation score for a local–nonlocal prior. Here is demonstrated the superior power of 3D convolutions in this setting. (i) The network design
for the Xception-LSI network. The Xception* block represents that the last two layers were stripped from the conventional Xception network. (c) (ii) The
training curve for Xception-LSI for training and validation sets, with the loss shown in log mean squared error. Also plotted is the validation loss when
further training the model on the deep unrolling reconstruction of the data (transfer).

Figure 3. Example results of the reconstruction process. (a) An example of the coded shot, along with a zoomed section. (b) Deep unrolling reconstruction of
the interferogram hypercube in the same zoomed section at different wavelength slices. (c) The Xception-LSI reconstruction of the spatio-spectral wavefront
displayed in terms of Zernike coefficients, where the x-axis of each plot is the Zernike function, the y-axis is the wavelength and the colour represents the
value of the coefficient. (d) The spatial wavefront resulting from a Zernike basis expansion of the coefficients in (c) at the labelled spectral channels.

5. Training data generation

To represent the initial pulse, a total of 300 cubes were gener-
ated with dimensions

(
nx ×ny ×nω

) = (512×512×31). The
data was randomly split at a ratio of 4 : 1 : 1 into train-
ing, validation and test sets, respectively. The wavelength
range considered was 750–850 nm, representing a broadband

Ti:sapphire laser, giving �λ ≈ 3.23 nm. For each cube, the
wavefront for each channel was first initialized to a randomly
weighted sum of 15 Zernike basis functions. Then, to sim-
ulate an STC, one Zernike function was chosen and was
made to vary either linearly or quadratically with frequency.
Indeed, common STCs, such as pulse front tilt and pulse
front curvature, can be represented in this way[1]. The mean
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amplitude of this coefficient was also made to be higher. This
choice of Zernike coefficients is arbitrary, but allows for a
demonstration that the method can identify all Zernike basis
functions. The intensity of slices of the cube was set to an
image taken of a real laser intensity.

Each cube was then processed according to Figure 1.
Firstly, it was passed through the QWLSI simulation (see
Section 2.1), yielding a hypercube of interferograms – these
are the training labels for the deep unrolling algorithm.
This hypercube was then passed through the SCI simulation,
yielding a coded shot – the training data. The wavefront was
reconstructed via the process in Figure 2(a). The interfero-
gram hypercube was reconstructed via deep unrolling, before
being passed into the Xception-LSI network to predict the
spectral Zernike coefficients.

The pitch of the LSI was set to � = 80 µm, and the
dispersion of the prism, measured at the camera plane, was
set to 1 pixel per channel (each channel having a width of
3.23 nm).

Before being passed through the deep unrolling network,
the cubes and coded shots were split spatially into 64×64
oblique parallelepiped patches, allowing for a one-to-one
reconstruction between the input and output[28]. The initial
learning rate was set to 0.01 and decayed by 10% every five
epochs. The total number of epochs was 70, and the batch
size was 8.

The Xception-LSI network was fed individual channels
of the ground truth interferogram hypercubes and predicted
Zernike coefficients. Normal random noise (N (μ = 0,σ =
0.1)) was applied to the input, to make the model robust
to noise produced by the SCI reconstruction. The initial
learning rate was set to 10−5 and decayed by 10% every five
epochs. The total number of epochs was 40, and the batch
size was 16. Once trained on the ground truth hypercubes,
the model was trained on interferogram hypercubes that
had been reconstructed by deep unrolling, for the further
eight epochs. The aim of this transfer learning was to allow
the network to account for any systematic noise in the
SCI reconstruction, resulting in a more accurate wavefront
reconstruction.

6. Results and discussion

6.1. Snapshot compressive imaging

Crucial to this method’s success is the SCI reconstruction of
the hypercube of interferograms. As can be seen from the
green box of Figure 1, the image slices are modulated and
appear as spot patterns. As a result, the images do not exhibit
the same sparsity in, for example, the wavelet domain, as
most natural images used in SCI research do. Because of
this, there was uncertainty in whether it would be possible
to recover the cube.

Here it is demonstrated that it is indeed possible to recon-
struct such modulated signals with SCI. The training curve
can be seen in Figure 2(b) panel (ii). Also plotted is the vali-
dation loss when a local–nonlocal prior[31], which is state-of-
the-art for natural images, was used. One sees that when both
architectures were used with 10 iterations of unrolling, the
3D convolutional model achieved a far superior peak signal-
to-noise ratio (PSNR) of 36 compared to 29. Furthermore, it
contains approximately 45% fewer parameters.

6.2. QWLSI

In order to reconstruct the wavefront for a full hypercube,
each spectral channel is fed through the network sequentially.
After training, the final mean squared error on the ground
truth test set was 6.80×10−4. Figure 2(c) panel (ii) displays
the training curve with the training, validation and transfer
loss curves. The additional transfer learning proves to be
extremely effective in reducing the error of the wavefront
predictions when working with reconstructed interferogram
hypercubes. The final mean squared error on the recon-
structed test set was 9.18×10−4.

6.3. Hyperspectral compressive wavefront sensing

An example of the full reconstruction process, from coded
shot to spatial-spectral wavefront, is displayed in Figure 3.
It is apparent that the deep unrolling network was able to
accurately reconstruct the interferogram hypercube, and the
Xception-LSI network was able to reconstruct the wavefront.

7. Summary and outlook

In this report we have demonstrated the possibility of com-
bining a wavefront sensor with SCI in order to achieve
a single-shot measurement of the spatial-spectral phase.
Crucially, it has been shown that SCI has the ability to
reconstruct modulated signals, such as those produced by a
QWLSI.

A natural progression to this study is to realize the results
in an experimental setting, where challenges arise from the
more complicated dispersion, transfer functions and noise.
Other further work could include extending the deep learn-
ing LSI analysis to the hyperspectral setting. By passing the
network a hypercube of interferograms, rather than individ-
ual slices, it may be possible to exploit spectral correlations
in order to improve accuracy and detect STCs more easily.
Also, work can be done on testing the model with a more
varied set of Zernike polynomials. Finally, there has been
recent interest in the possibility of spreading phase contrast
imaging to a hyperspectral setting. However, current meth-
ods take many seconds to capture a hypercube of phase[32].
The proposed method would be able to collect information
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with higher spectral resolution in a single shot, allowing for
dynamic events to be recorded hyperspectrally.
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