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RICE THEOREMS FOR sre-i SETS 

NANCY JOHNSON 

1. I n t r o d u c t i o n . In [3] H a y proves generalizations of Rice's Theorem and 
the Rice-Shapiro Theorem for differences of recursively enumerable sets (d.r.e. 
sets) . The original Rice Theorem [5, p. 3G4, Corollary B] says t ha t the index 
set of a class C of r.e. sets is recursive if and only if C is empty or C contains 
all r.e. sets. The Rice-Shapiro Theorem conjectured by Rice [5] and proved 
independently by McNaughton , Shapiro, and Myhill [4] says t ha t the index 
set of a class C of r.e. sets is r.e. if and only if C is empty or C consists of all r.e. 
sets which extend some element of a canonically enumerable class of finite sets. 
Since a d.r.e. set is a difference of r.e. sets, a d.r.e. set has an index associated 
with it, namely, the pair of indices of the r.e. sets of which it is the difference. 
Thus we may speak of the index set of a class of d.r.e. sets. When generalized 
to d.r.e. sets, Rice's Theorem [3, p. 354] becomes: The index set of a class of 
d.r.e. sets is r.e. if and only if C is empty or C consists of all d.r.e. sets. The 
Rice-Shapiro Theorem [3, p. 355] becomes: The index set of a class C of d.r.e. 
sets is d.r.e. if and only if C is empty or C consists of all d.r.e. sets which extend 
a single finite set. 

Since both the r.e. and d.r.e. sets occur as levels 1 and 2 of the hierarchy 
generated by Boolean combinat ions of r.e. sets (the finite Ershov hierarchy, 
see Ershov [1]) we prove in Sections 3 and 4 of this paper generalizations of 
the Rice Theorems for the higher levels of this hierarchy. T h e first Rice 
Theorem generalizes in the expected way and hold for all levels n ^ 1. The 
generalized Rice-Shapiro Theorem on the other hand cannot be s ta ted in such 
a uniform fashion, bu t does hold for n ^ 3. In Section 2 we explicitly define 
this hierarchy and the index sets a t each level and s ta te some properties which 
are necessary for the proofs in the later sections. In Section 5 we give an 
example of a single fixed class whose index sets are complete a t each level of 
the hierarchy, and prove tha t if the index sets of a class C are complete a t 
the first n levels of the hierarchy where n > 2, then fail to be complete, the 
index sets for levels greater than n j ump to degree a t least JO". 

2. Pre l iminar i e s . Ershov [1] defines a hierarchy on the finite Boolean 
combinations of r.e. sets. The levels of the hierarchy may be defined in several 
ways. The following definition is the characterization given by Ershov in 
Proposition 1 of [1, p. 29]. 
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RICE THEOREMS 795 

Definition, a) X £ 2„_ 1 , n ^ 1, if and only if there exist r.e. sets R\, R2, . . . , 
i?w such tha t 

[U+D/2] 

X = U (R2i-1-R2i), (Rn+1 = Q)-

b) X e IV-1 , w ^ 1, if and only if X G S,,"1. 

These classes of sets satisfy the usual hierarchy properties, e.g. 

s,-1 u n,-1 c Sn+1-i n nn+1-\ s,-1 - n*-1 ^ 0 
(see Ershov [1]), and we also may make the following definition of a complete 
S ," 1 set. 

Definition. Let n ^ 1. A set 5 G Sw
_ 1 is 2n~

l-complete if for each X G Sre
_1 

there exists a recursive function f such tha t x £ X <->f(x) £ 5. If such a 
function exists we write X ^ m S and if / is one-one we write X ^ 3. S. 

I t has been shown by Ershov [1] tha t for each n ^ 1 there exist S„_1-
complete sets, and if 5 G 2 „ - 1 is 2n

_ 1-complete then X £ S n
- 1 if and only if 

X ^mS. 

Definition. Let K = {x|x £ TV*}, the complete 2i° set. For each n ^ 1, let 

^ n = {(#i> x2, . . . , xn) | card {xi | xt £ K] is odd}. 

F A C T 2.1 (Hay [2]) For each n ^ 1, Kn is Sn
_1-complete. 

F A C T 2.2 (Hay [2]) For each n ^ I, Kn $mKn. 

F A C T 2.3 (Hay [2]) For each n ^ 1, if X £ S*"1 ^ n i£w $ i l 

F A C T 2.4 (Hay [2]) For each n > 1, j£n_i ^ i 2Cn. 

(These facts also follow from the first fact and the Ershov properties of the 
hierarchy.) 

Let {We] e^o, be a fixed acceptable enumeration of the r.e. sets. This may be 
used to define an enumeration of the 2 n

- 1 sets as follows: 

Definition. Let n ^ 1 and let X £ 2W
- 1 . Suppose 

[(n+D/2] 

X = U (WX2i_x - WX2l), (WXn+1 = 0) . 

If x = (xi, x2, . . . , xn), then x is a 2n~1 index of X , and if we write Vx (or Vx<n) 
to indicate the xth element of Sw

_1, then {Fx}^o is an enumeration of 2 n
- 1 . 

Now we may define the 2 n
- 1 index set of a class C. 

Definition. Let C be a class of sets. For n ^ 1, 9n(C) = {x\Vx £ C H 2n"~1( 
is the 2 n

_ 1 index se£ 0/ C. 
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796 NANCY JOHNSON 

We say a class C of Sw
 1 sets is trivial if C is empty or C consists of all 2W

_1 

sets. 6n(C) is trivial if 0n(C) is empty or is equal to the set of natural numbers. 

We denote by Du the finite set with canonical index u. K' denotes the 
complete S2° set and Fin denotes { x | ^ is finite} ; as is well known, Fin is 
recursively isomorphic to Kf. 

Finally, if S Sm Bn(C) y i a / , then since/(x) = (Ji(x), . . . ,fn(x)) where fi(x) 
is an index of an r.e. set, each ft may be made one-one using the standard 
technique [6, p. 133], thus 5 ^mBn{C) implies S S\Bn(C). 

3. The first Rice theorem. In this section we prove the generalization of 
Rice's Theorem. It is obtained as a corollary (Corollary 3.5) of the following 
theorem. 

THEOREM 3.1. Let n }£. 2. If C is a non-trivial class of Sw
_1 sets then 

Kn Si6n(C)orKnSien(C). 

For the proof we will require the following two lemmas. 

LEMMA 3.2. Suppose there is some Du £ C and some r.e. set B d C such that 
Du C B. Then Kn ^idJC). {This holds for n ^ 1.) 

Proof. We will show that there is a recursive function / such that x £ Kn 

if and only if f(x) £ Bn(C). We wish to define/ so that 

x £ Kn-> Vf(x) = B g C 

and 

x £ Kn —> Vf(X) = Du 6 C. 

Since x £ Kn if and only if card \XJ\XJ £ K] is odd we want: 

card [xj\xj £ K] odd —» V f(X) = B (t C 

and 

card {xj\xj G X} even —> F/^) = Du £ C. 

Since 0 ^ card {x^Xy G i^| S n, we want to define / so that we may 
"change our minds" n times, beginning with Vf(X) = T>u if card [XJ\XJ £ K) = 
0, and ending with Vf(X) = Du if n is even and Vf(x) = B if n is odd. 

So, for 1 SiS [in + l ) /2] , we define/2î_i and/2* by: 

W/2 .•-!<*) = 
Dw if card {XJ\XJ Ç Xj < 2i — 1 
B otherwise 

if card {XJ\XJ £ K) < 2i 
— Du if card \XJ\XJ £ K} = 2i 

otherwise. 

(If n is odd, we do not define /w+i.) 
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RICE THEOREMS 797 

Thus: 

(Du if card [X3\XJ G K] < 2i - 1 
_ )B if card {x^Xj £ K] = 2i - 1 
~ )DU if 

(0 ot 
w f ^ M - wfliix) - , n ., card {x _|x̂  e x } = 2t 

otherwise. 

L e t / = < / i , . . . , / n > . 
1. Suppose x £ i£n. Then card \XJ\XJ £ K] = 2i0 — 1 for some i0, 1 ^ 0̂ ^ 

{{n + l ) /2] . From the above we then have: 

!

L>M if ia < i 
B if iQ = i 
0 if H > i-

Since Du C -S we have: 

[(n+l)/2] 

U (PT/2,_1(X) - TF/2lU)) = B. 

Thus x U „ - > Vf(x) = B £ C. 
2. Now suppose x $ i£w. Then card {XJ\XJ £ K) = 2i0 for some iQ, 0 ^ io ^ 

[(n + l ) /2] . From the above we then have: 

^ ' • l W " ^ w " \ 0 i f t o > t . 
So 

[(n+l)/2] 

U (Wf2i_M - Wf2i{x)) = Du. 
i=l 

Thus x $ Kn —> F/(a;) = Du £ C. Hence we have x ^ Kn <->/(x) G 0W(C)-

LEMMA 3.3. Le/ w ̂  2. Suppose there is some Du £ C ŝ c/z //m/ eyery r.e. 
extension of Du is in C but there is some Vn D Du such that Va G S^T1 — C. 
ThenK' ^ i0„(C). 

Proof. It suffices to show that Fin ^1 0n(C). Let 

[(«+D/2] 

Va = U 0 ^ - x - Wni), (Wan+1 = 0). 
i=l 

For each i, 1 ^ i ^ [{n + l ) /2] , we define /2i—1 to be the constant function 
fu-ifr) = ct2i-i and/2î- by: 

_ (Wa2i if Wx is infinite 
^/.«*) - ^ ^ if ^ i s f i n i t e 

where W^2i is a finite subset of Waii. (If w is odd we do not define/n+i.) 
L e t / = < / i , . . . , / „> . 
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1) Suppose Wx is infinite. Then: 

[(n+D/2] 

y Hz) = u (W/2,--i<*) - wf2i(x)) 

[(»+D/2] 

= u (wa2i_x - wa2i) = va$ c. 
2 = 1 

Thus Wx infinite -» / (*) ? 0W(C). 
2) Suppose W^ is finite. Then: 

[(n+l)/2] [(n+D/2] 

F/(,) = U (Wf2l_l(x) - Wf2ï(x)) = U (T^fl2i..1 - T^fl2i). 
i=l *=1 

Since 1/Ffl2î- is finite, Wa2i-1 — Wau is r.e. so F/(:r) is r.e. But Va C ^/u) and 
Du C Vfl, so F/cr) G C since it is an r.e. extension of Du. Thus Wx finite —>/(#) 

We thus have Fin ^ 0n(C), and hence K' èidn(C). 

Proof of Theorem 3.1. Either 0 Ç Cor 0 f C. Since 0W(C) is non-trivial we 
apply Lemma 3.2 or 3.3 to whichever of C or C contains 0. If Lemma 3.3 is 
applied, note that the result follows from the fact that Kn ^\K' since Kn G 22°. 

COROLLARY 3.4. Let n > 2. If C is a class of Sn
_1 sets such that 6n(C) Ç Sn

_1, 
then either 9n(C) is trivial or 9n(C) = Kn. 

Proof. Suppose 6n(C) G ^n~\ By Fact 2.1, 6n(C) èiKn and by Fact 2.3, 
Kn $ i 0n(C)' If Qn(C) is non-trivial, then by Theorem 3.1 either Kn ^ i 6n(C) 
or Kn ^idJC). But Kn $i0w(C), so we have Kn ^i6n{C) ^iKnj hence 
0„(C) s Xn. 

COROLLARY 3.5. Le/ n > 2. If C is a class of 2n~
l sets then 0n(C) £ S„_i_1 i/ 

awd 0^/3/ if C is trivial. 

Proof. If C is trivial then 0W(C) £ S ^ r 1 . Conversely, if 0W(C) 6 S ^ r 1 , then 
0n(C) G Sw

-1, so by Corollary 3.4 either 6n(C) is trivial or 0W(C) = Kn. Now 
if 0n(C) = Kn, then 0ra(C) € ^n-i~

l else we would have Kn t=LiKn-i- Since 
^"w-i =iKn by Fact 2.4 we would then have Kn SiKn, a contradiction to 
Fact 2.2. 

Notice in Theorem 3.1 and Corollary 3.4 we may replace n > 2 by n ^ 1 
and in Corollary 3.5 if we understand So -1 to mean recursive sets, we may also 
replace n > 2 by n ^ 1. Thus the "first Rice Theorem" may be stated for 
all n è 1. 

4. The Rice-Shapiro theorem. The following theorem is the generalization 
of the Rice-Shapiro Theorem and it holds for all n > 2. 

THEOREM 4.1. For each n > 2, if C is a class of Hn~
l sets, then 6n(C) G ^n~

l 
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if and only if C is trivial or there exists a natural number a such that 

c = {vx,n\a e vxj. 
Proof. If C is trivial then 6n{C) G S*"1. If C = { VxJa G VXJ then: 

[(n+D/2] 

en{c) = {x\a e vx,n] = {x\a e u (wX2i_, - wX2i)\ 
[(n+l)/2] 

= U {x\a £ W^., - WX2l\ 
i=l 

[U+D/2] 

= U ({x\a£ WX2i_x) - {x\a£ WXJ). 

Thusdn(C) e 2,-1 . 
Conversely, suppose 6n(C) E 2ra

-1. If 6n(C) is not trivial then we must show 
there exists a such that C = { VXtn\a £ Vx<n). For this we will need the following 
sequence of lemmas. 

LEMMA 4.2. Let n ^ 1. If Vb £ Sw
_1 is infinite then there exists a recursive 

function f such that 

Wx infinite —» Vf(X) = F6 

Wx finite —> F/(X) is a finite subset of Vb. 

Proof. For n = 1 this is well known. For n = 2 this appears in the proof of 
Lemma 5.3 [3, p. 356]. 

Let n be the least n such that Vb £ 2W
-1. Let 

[(w+l)/2] 

Vb= U (^ 2 î _ 1 - W62,), (W,n+1 = 0). 

Since n is the least, we may assume each of the sets Wb2i_l — Wb2i is infinite, 
hence Wb2i_x is infinite for each i. 

Thus we may use the well known construction to obtain for each i, 1 ^ i ^ 
[(n + l ) /2] , a recursive function/2z-i such that 

Wx infinité -> TF/2 ,-_!(*) = W&2.--i 

and 

^ finite->T^/2l._lU) = I Î W I 

where T^&2i-i is a finite subset of W^- i -
We also define /2* for 1 ^ i ^ [(w + l)/2] to be the constant function 

Thus, for 1 ^ i g [(n + l ) /2] 

^ infinite-> TF/2t-_l(x) - TF/2t-(a) = W&2t-_i - Wbu 
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and 

Wx finite -> Wf2i_l(x) - Wf2i(x) = Wb2i_, - Wb2i 

which is a finite subset of Wb2i_x — Wb2i. 
L e t / = (flt . . . ,fn). Then 

[(w+l)/2] 

Wx infinite -> Vf(x) = U (Wf2i_l{x) - Wf2i(x)) 
Î=I 

Kn+l)/2] 

= U (Wb2i_, - Wb2i) = Vb 

and 
[(n+l)/2] 

^ finite -> 7 /Cr) = U (T^/a,_lC») - Wf2i(x)) 

t(n+l)/2] 

= U (W^--! - W»,) 

which is a finite subset of Vb. 

LEMMA 4.3. Let n ^ 1.1/ Jftere is an infinite VbtTl Ç C such that no finite subset 
of Vb,n is in C then K' ^ ! ÔJC). 

Proof. This follows from Lemma 4.2. 

LEMMA 4.4. Let n ^ 2. Suppose there exist distinct finite sets Du, Dv G C swcA 
/Âa£ card DM = card Dv = 1 and 0 $ C. TTtett i£„ ^ i 0n(C). 

Proof. Define/i by: 

W7 
A< if 0 ^ card \XJ\XJ £ K} ^ 1 

Mx) ~ \DU\J DV otherwise. 

For 1 < iS [in + l ) /2 ] , define/2*-i by: 

Î
0 if card \XJ\XJ f Z ) < 4i - 4 

D M if 4i - 4 ^ card {x,|*, £ X} g 4i - 3 
DU\J Dv otherwise 

and define/2/ by: 
(0 if card \XJ\XJ G K} < 4i - 3 

W /̂2iU) = < )̂« if 4i - 3 ^ card {*,!*, G i£} ^ 4i - 2 
{Du VJ Z}0 otherwise. 

(If n is odd/ n + i is not defined). So: 

if card 
TT/ TT/ _ / ^ if C a r Q l f X ; ' l X i ^ | = 1 

" W > - M//2W - ^^ .f c a r d } j ^ ç K} = 2 

\0 otherwise 

(Z)M if card {x7|x;- G K} = 0 
_ J0 if 
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(0 if 
)DU if 

and for i > 1, 

if card \XJ\XJ (z K} < M — 4 
if card [X2\XJ G K) = M — 4 

W/2;-i(z) - W/2,-(*) = \ 0 if card {x,-|x; G if} = 4i - 3 
|J9, if card {x;-|x;- £ K} = 4i — 2 

otherwise. 

L e t / = < / i , . . . , / „ ) . 
1) If x G i£w then card {x;|xf G K} is odd. From the above, we see that 

WfU-.i(x) — Wf2i(X) = 0 except when card {x;-|x;- (z K\ = 0 or 2 (mod 4), hence 

t(n+l)/2] 

F/(.) = U (Wf2i_l(x) - Wf2i{x)) = 0 G C. 
i=l 

T h u s * G Kn-*f(x) G dn(C). 
2) If x ? i£n then card {x^x./ G X} is even. Thus 

y fix) -
Du if card {XJ\XJ G K} = 0 (mod 4) 
£>„ if card {x;|x^ G K} = 2 (mod 4) 

Since DU,DV G C, x ? Kn-+f(x) G 0n(C). By 1) and 2), Xn ^ i# n (C) . 

LEMMA 4.5. Le£ n > 2. Suppose Du G C, card DM ^ 1 and there exist DUI, 
DU2 G C such that Du = DU1 KJ DU2 and DU1 Pi DU2 = 0 d C. Then Kn ^\6n(C). 

Proof. Define fi by: 

Wfl(X) = Du 

and for 1 < i ^ [(n + l ) /2] , define}U-i by: 

(0 if card {x,|x;- G K] < M - 6 
W/2.--iCr) = \ A,! if 4i - 6 ^ card {x;|xy ^ K\ <> \i - h 

\DU otherwise. 

For 1 g i ^ [(w + l ) /2] , define fu by: 

!

0 if card {x;|x;- G i£} < U - 3 
^ if 4i — 3 ^ card {x;|x,- G # } ^ 4i - 2 
Z}w otherwise. 

(If n is odd/ n + i is not defined). 
For i = 1, we have: 

toM if card \XJ\XJ É X) = 0 
W/i<*> - WMx) = <DU2 if 1 ^ card {x,|x, G i£} ^ 2 

(0 otherwise 
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/0 if card \XJ\XJ G K] < M - 6 
WU1 if M - 6 ̂  card {x;-|x, G i£} 

= / Jl i f r^at-rl ! v J r . C 7<M — J-V — J. 

and for 1 < i ^ [(» + l ) /2 ] , 

6 
^ 4t - 5 

W/2l_l(x) - WfU(X) = (Du if card {XJ\XJ G X'} = 4i — 4 
|£>W2 if 4i - 3 g card {x;-|xy G K} ^ M - 2 

otherwise. 
L e t / = </i, . . . ,/n>. 

1) If x G i£re then card {x^Xy G i£} is even. If card {x;|x;- Ç i[) = 4i0 — 4, 
then : 

W/2.-0-i(s) - wf2iQ(X) = DU G c, 

hence Vf{x) = Du G C (since 0, DM1, £>W2 C Du). 
If card {x^x^ ̂  K\ = 4i0 — 2 then: 

^/2.-0-iW ~ W/UQ(X) = DU2 

and 

^/2(i0+l)-lU) " ^/2(î0+l)U) = = A<1> 

hence 

Thusx g Kn-*f(x) G en(C). 
2) If x G Kn, then card {x^x^ G K} is odd. 
If card {Xj\xj £ K} = 4io — 3, then: 

Wf2i_l(x) - Wf2i(X) = -w 

Thus 

_ I £>W2 if i = i0 

7 / u ) = DU2 G C. 

If card \XJ\XJ £ K) = 4z0 — 1 then: 

\DUI if i = i0 + 1 
^ - l W " ^ l W ~ (0 i f i ^ o + 1 

hence 

T̂ /Cx) = DUI G C. 

Thusx G Kn->f(x) G 0„(C). By l ) a n d 2 ) , X n ^ i ^ ( C ) . 

Now we may proceed to prove Theorem 4.1. 

Proof of Theorem 4.1. If 6n{C) G ^n~
l then 6n(C) ^iKn. If 6n{C) is non-

trivial then there exists some Ve,n G C. Suppose no finite subset of Ve,n is in C. 
Then by Lemma 4.3, K' ^idn(C), but since 0n(C) ^iKn we have that 
K' ^ i Kn. But i£w = r Z s o we obtain Kf ^ r K, a contradiction. Thus some 
finite subset of Fg)W is in C. 
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Let DVQ be a set of minimal cardinality in \DU £ C\DU C VetU}. If card 
Dvo > 1 then by Lemma 4.5, Kn Si 6n(C). But then since 6n(C) ^ i Kn we 
would have i£n ^ i Kn, a contradiction. Thus we may assume that the cardi
nality of DVQ is either 1 or 0. 

Next we show that every 2re
_1 extension of Dvo is in C. If some r.e. extension 

of Dvo is not in C, then by Lemma 3.2, Kn ^ i 0n(C), a contradiction. If every 
r.e. extension of Dvo is in C but some 2n~

l extension of J9P0 is not in C then by 
Lemma 3.3, K' ^ i 6n(C), a contradiction. Thus all Sn

- 1 extensions of Z ^ are 
in C. 

Now if Z)P0 = 0, then C = S^-1, so 0n(C) is trivial. Since we are assuming 
6n(C) is non-trivial, we know that card Dn = 1. 

We wish to show that C = { FeJ.D,0 C Fe,n}. We know { Ve>n\DV0 C Ve>n} 
C C Suppose there is some Ve' ,n £ C such that Dvo (J_ Ve> iU. By an argument 
similar to the above, we know there exists a DVI £ C such that card DVI = 1 
and Dvl C VViW. Since Dvo (£ Ve> <n, it follows that Dvl 9^ Dvo which implies that 
DVQ C\ DV1 = 0. Hence by Lemma 4.4, Kn ^ i 0n(C), but this is again a contra
diction. Thus every set in C extends Dvo. If DVQ = {a} then we have C = 
{ Vx,n\

a Ç ^i,nl which completes the proof. 

COROLLARY 4.6. Le£ C be any class of sets. Then for each n > 2, 6n(C) is 
2n

_1-complete if and only if there exists an a such that C C\ *Ln~
l — { Ve<n £ Sn

-1|a 
e vt.n\. 

Proof. Since 0n(C) = dn{C C\ 2W
-1)> the result follows from Theorem 4.1 and 

Corollary 3.4. 

5. Conclusions. In view of the last corollary of Section 4, and the r.e. and 
d.r.e. Rice-Shapiro Theorems, we see that if we let Ca = {X\a £ X] then for 
each n ^ 1, 6n(Ca) is S^-complete and dn(Ca) is nn

-1-complete, so we have a 
single class Ca whose index sets are complete at all the levels of the finite 
Ershov hierarchy. The situation is illustrated by the following diagram where 
u—V means " < i " . 

2i~~ S2"- 2 3" . . . 

ei(ca)^e2(ca)—^e,(ca)^-^- . • 

0 1 ( C j / A 0 2 ( C O ^ 0 3 ( C j / V • • 

7T1""1 7 r 2
_ 1 7 T 3 - 1 ' * ' 

We note that because of Corollary 4.6, only a class consisting of all sets 
which contain a single fixed element has this "uniform completeness" property. 

LEMMA 5.1. Let C be any non-empty class of sets. For each n è L 0n(O ^ 1 
0»+i(C). 
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Proof. Let x Ç dn(C) and let 

[(w+D/2] 

VXtn = U (WX2i^ - WX2i), (WXn+1 = 0), 
2 = 1 

where x = (xi, . . . , xn). Let xr = (xi, . . . , xn, xn+i). Then x' is a 2w+i_1 index of 

t(n+2)/2] 

U ( ^ 2 l - 1 " ^ ) , ( ^ „ + ï = 0), 

and F^,n = F^>n+iThus: 

x G 0n(C) <-» 7*,n G C 

^ > X ' Ç 0 n + i ( C ) . 

Now suppose there is a class C and some n > 2 such that 0W(C) is 2W
_1-

complete while 6n+i(C) is not Sw+i-1-complete. By Corollary 4.6, since 6n(C) 
is S^-complete there exists an a such that C C\ Sw

-1 = { Ve,n 6 2n~
l\a £ ^e,nl • 

Moreover, if 1 ^ w ^ n, we have also that C H 2 m
- 1 = { Fe>m 6 2m

_1 |a G Fg>m} 
since 2 m

_ 1 C 2re
_1. Thus for 1 < m ^ n, 9m(C) is 2m

_1-complete. 
Since we are assuming 6n+i(C) is not 2w+i_1-complete, then 

We know already that [a] £ CPi 2w+i-1 (since {a} (E C H 2^_1) so either there 
exists a set Ve>n+i Ç 2w+i~1 — C with a G Ve>n+i, or there exists a set Ve>n+i G 
C with a g V€tn+i. 

In the first case, by Lemma 3.3 we have K' ^ i dn+i (C), hence by Lemma 5.1, 
K' ^ i 6m(C) for all m ^ n + 1. In the second case since 0W(C) G Sn

-1 , every 
finite (hence Sw

_1) set in C must extend {a}. Since a (£ Vet7l+i, no finite subset 
of V, iW+i may be in C So by Lemma 4.3 we have K' :g i 0n+i(C), hence by 
Lemma 5.1, K' S\ 0m(C) for each m ^ n + 1. Thus we have for m ^ n + 1 
either i£' :g i 6m(C) or K' ^ i 0m(C). So for such a class the index sets are 
complete for an initial segment of the finite Ershov hierarchy then "jump" 
to at least degree 0". This proves our final theorem. 

THEOREM 5.2. Let C be any non-empty class of sets. If there is some n > 2 
such that 6n(C) is 2W

_1 -complete, but 6n+\{C) is not Sn+i-1-complete then: 
a) For 1 ^ m ^ n, 9m(C) is Sw

_1-complete, and 
b) for m > n + 1, either K' ^ i0 w (C) or K' ^1dm(C). 
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