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Abstract

Let ρ ∈ (0,∞] be a real number. In this short note, we extend a recent result of Marques and Ramirez
[‘On exceptional sets: the solution of a problem posed by K. Mahler’, Bull. Aust. Math. Soc. 94 (2016),
15–19] by proving that any subset ofQ ∩ B(0, ρ), which is closed under complex conjugation and contains
0, is the exceptional set of uncountably many analytic transcendental functions with rational coefficients
and radius of convergence ρ. This solves the question posed by K. Mahler completely.
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1. Introduction

Denote by Q the field of algebraic numbers. For a function f : Ω→ C, we define the
exceptional set S f of f as

S f = {α ∈ Q ∩Ω : f (α) ∈ Q}.

In his book [2], Mahler introduced the basic problem of the theory of transcendental
numbers as the study of the set S f for various classes of functions. After discussing a
number of examples, Mahler posed several problems about the admissible exceptional
sets for analytic functions, one of which is the following question.

Question 1.1. Let ρ ∈ (0,∞] be a real number. Does there exist for any choice of
S ⊆ Q ∩ B(0, ρ) (closed under complex conjugation and such that 0 ∈ S ) an analytic
transcendental function f ∈ Q[[z]], with radius of convergence ρ, for which S f = S ?

In fact, Mahler [1] had already proved that if S is a subset of the algebraic numbers
in the open unit disc B(0, ρ), with the property that S contains 0 and is invariant under
the full absolute Galois group of Q, then S = S f for some transcendental holomorphic
function on B(0, ρ). We refer the reader to [2, 4] (and references therein) for more
results about the arithmetic behaviour of transcendental functions.
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In 2016, Marques and Ramirez [3] showed that the answer to Question 1.1 is
positive when ρ = ∞. In this short note, we give an affirmative answer to Mahler’s
question for any ρ. More precisely, we prove the following theorem.

Theorem 1.2. Let ρ ∈ (0,∞] be a real number. Then any subset of Q ∩ B(0, ρ), closed
under complex conjugation and containing 0, is the exceptional set of uncountably
many analytic transcendental functions f ∈ Q[[z]], with radius of convergence ρ.

In order to prove Theorem 1.2, we shall prove the following stronger version of [3,
Theorem 1.3].

Theorem 1.3. Let ρ ∈ (0,∞] be a real number and let K be a dense subset of C. Let A
be a countable subset of B(0, ρ). For each α ∈ A, fix a dense subset Eα ⊆ C (such that
if 0 ∈ A, then 1 ∈ E0 ∩ K). Then there exist uncountably many analytic transcendental
functions f ∈ K[[z]], with radius of convergence ρ, such that f (α) ∈ Eα for all α ∈ A.

2. The proof that Theorem 1.3 implies Theorem 1.2

The proof that Theorem 1.3 implies Theorem 1.2 is similar to that in [3, page 17].
However, we shall repeat it here for the convenience of the reader.

In the statement of Theorem 1.3, choose A = Q ∩ B(0, ρ) and K = Q∗ + iQ. Write
S = {α1, α2, . . .} andQ ∩ B(0, ρ)\S = {β1, β2, . . .} (one of these sets may be finite). Now
define

Eα =

Q if α ∈ S ,
K · πn if α = βn.

Then, by Theorem 1.3, there exist uncountably many transcendental functions
f (z) =

∑
k≥0 akzk ∈ K[[z]] with radius of convergence ρ and such that f (α) ∈ Eα for

all α ∈ Q ∩ B(0, ρ). For any such f , we define the function ψ = ψ f by

ψ(z) =
f (z) + f (z)

2
.

Note that ψ(z) =
∑

k≥0 <(ak)zk has rational coefficients and moreover there are
uncountably many of these functions. Since the set of algebraic functions with rational
coefficients and positive radius of convergence is countable, then uncountably many
of the ψ f must be transcendental. Clearly, their radius of convergence is ρ. To finish,
it suffices to prove that Sψ = S . In fact, if α ∈ S , then α ∈ S and thus f (α) and f (α) are
algebraic numbers and so is ψ(α). In the case of α = βn, we must distinguish two cases:
when βn ∈ R, then ψ(α) = <( f (βn)) is transcendental, since f (βn) ∈ K · πn. When
βn < R, then βn = βm for some m , n. Thus, there exist nonzero algebraic numbers
γ1, γ2 such that

ψ(βn) =
γ1π

n + γ2π
m

2
,

which is transcendental, since Q is algebraically closed and π is transcendental. This
concludes the proof. �
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3. The proof of Theorem 1.3

Consider g(z) = 1/(1 − z/ρ) = 1 + z/ρ + z2/ρ2 + · · · (throughout the paper, when
ρ =∞, we consider 1/ρ as 0). Write A = {α1, α2, . . .}. We shall proceed by induction
to construct functions f̃n(z) such that the first n + 1 coefficients of f̃n belong to K and
f̃n(αi) ∈ Eαi for i = 1, . . . , n + 1.

Suppose, without loss of generality, that 0 ∈ A, say α1 = 0. In this case, by
hypothesis, g(0) ∈ Eα1 . Set f1(z) = g(z) + δ1z, where δ1 ∈ B(0,1) \ {0} and 1/ρ + δ1 ∈ K
(this means that the second coefficient of f1(z) belongs to K). Now set f̃1(z) =

f1(z) + ε1z2, where we choose ε1 ∈ B(0, 1) \ {0} such that f̃1(α2) = f1(α2) + ε1α
2
2 ∈ Eα2

(by the density of Eα2 ).
We proceed by induction. Suppose that

f̃n−1(z) = g(z) + P̃n−1(z) =
∑
k≥0

cn−1,kzk

has been constructed such that P̃n−1(z) ∈ C[z], cn−1,k ∈ K for k = 0, . . . , n − 1 and
f̃n−1(α j) ∈ Eα j for j = 1, . . . , n. Set

fn(z) = f̃n−1(z) + δnzn
n∏

k=2

(z − αk),

where we choose δn ∈ B(0, 1/nn) \ {0} such that cn−1,n + (−1)nδnα2 · · ·αn ∈ K. Now we
define

f̃n(z) = fn(z) + εnzn+1
n∏

k=2

(z − αk)

and we choose εn ∈ B(0, 1/nn) \ {0} such that f̃n(αn+1) ∈ Eαn+1 .
In conclusion, we have constructed f (z) = g(z) + h(z) ∈ K[[z]], where h(z) =

limn→∞ P̃n(z). By the choice of the ε and the δ as nonzero real numbers in very small
balls, h is a nonpolynomial entire function. Hence, h is a transcendental function and
so is f . Also, f (α) ∈ Eαi for all α ∈ A. Clearly, f is an analytic function with radius
of convergence ρ. Also, there is an ∞-ary tree of different possibilities for f because
in each step we have infinitely many possible choices for ε and δ. Thus, we have
constructed uncountably many possible functions. The proof is complete. �
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