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In this paper we introduce and examine the differential subordination of the form

p(z) + zp′(z)ϕ(p(z), zp′(z)) ≺ h(z), z ∈ D := {z ∈ C : |z| < 1},

where h is a convex univalent function with 0 ∈ h(D). The proof of the main result is
based on the original lemma for convex univalent functions and offers a new
approach in the theory. In particular, the above differential subordination leads to
generalizations of the well-known Briot-Bouquet differential subordination.
Appropriate applications among others related to the differential subordination of
harmonic mean are demonstrated. Related problems concerning differential
equations are indicated.
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1. Introduction

Given r > 0, let Dr := {z ∈ C : |z| < r}. Let D := D1 and T := {z ∈ C : |z| = 1}.
For D being a domain in C let H(D) be the family of all analytic functions f :
D → C and H := H(D). Let A be the subclass of H of f normalized by f(0) = 0 =
f ′(0) − 1, and S be the subclass of A of univalent functions.

For r ∈ (0, 1) and f ∈ H, let fr(z) := f(rz), z ∈ D := {z ∈ C : |z| � 1}. Clearly,
each fr is analytic in D.

A function f ∈ H is said to be subordinate to a function g ∈ H if there exists
ω ∈ H such that ω(0) = 0, ω(D) ⊂ D and f = g ◦ ω in D. We write then f ≺ g. If g
is univalent, then (e.g., [3, Vol. I, p. 85])

f ≺ g ⇔ (f(0) = g(0) ∧ f(D) ⊂ g(D)) . (1.1)

Given ψ : C
2 → C, let H[ψ] be the subset of H of all p such that a function

D 	 z 
→ ψ(p(z), zp′(z)) is well-defined and analytic.
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260 A. Lecko

Let ψ : C
2 → C and h ∈ H be univalent. We say that a function p ∈ H[ψ] satisfies

the first-order differential subordination and is called its solution if

ψ (p(z), zp′(z)) ≺ h(z), z ∈ D. (1.2)

If q ∈ H is a univalent function such that p ≺ q for all p satisfying (1.2), then q is
called a dominant of (1.2). A dominant q̃ is called the best dominant if q̃ ≺ q for
all dominants q of (1.2). Finding those q for which the subordination (1.2) yields
p ≺ q, in particular, p ≺ q̃, is the basis in the theory of differential subordinations.
Further details and references can be found in the book of Miller and Mocanu [8].

The classical example of (1.2) is related to the arithmetic mean and has been
studied by many authors (see e.g., [8, pp. 120–145]). Given ϕ ∈ H(D) and α ∈ [0, 1],
consider

p(z) + αzp′(z)ϕ(p(z)) ≺ h(z), z ∈ D, (1.3)

written equivalently as

(1 − α)p(z) + α(p(z) + zp′(z)ϕ(p(z))) ≺ h(z), z ∈ D,

where p ∈ H with p(D) ⊂ D. In particular, if α = 1, δ, γ ∈ C, δ �= 0, ϕ(w) :=
1/(δw + γ), w ∈ D := C \ {−γ/δ}, then (1.3) reduces to

p(z) +
zp′(z)

δp(z) + γ
≺ h(z), z ∈ D, (1.4)

which is known as the Briot-Bouquet differential subordination.
Let ϕ : C

2 → C, p ∈ H[ϕ] and h ∈ H be a convex univalent function which means
that h maps univalently D onto a convex domain h(D). In this paper, we propose
a study of the differential subordination of the form

p(z) + zp′(z)ϕ (p(z), zp′(z)) ≺ h(z), z ∈ D. (1.5)

The case when 0 ∈ ∂h(D) has been studied in [5]. Let us remark that the case
where 0 is a boundary point of h(D) requires different methods of proofs than
those when the origin is the interior point of h(D). The differential subordination
(1.5) is a special case of (1.2), but it offers interesting applications. In particular, it
generalizes the Briot-Bouquet differential subordination (1.4). In addition, we prove
in a new way some recent results regarding the differential subordination related
to the harmonic mean. The problem of the best dominant in the case where h is a
linear function is also discussed.

The proof of the main result is based on the original lemma 2.1 on convex
univalent functions. Therefore, the proof of Theorem 2.4 is strictly analytical in
nature, while until now in the proofs of analogous propositions, analytical argu-
ments have been used in conjunction with geometric considerations (cf. [8]). By
applying lemma 2.1, a series of theorems from the monographs [8]) underlying the
theory of the differential subordinations can be proved again by using a purely
analytical argumentation.
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2. Main result

2.1.

A function h ∈ H is said to be convex if it is univalent and h(D) is a convex
domain. Study [12] (e.g., [9, p. 44]) has shown that a function h ∈ H with h′(0) �= 0
is convex if, and only if,

Re
{

1 +
zh′′(z)
h′(z)

}
> 0, z ∈ D.

If h is a convex function, then h(Dr) for every r ∈ (0, 1), is a convex domain (e.g.,
[2, p. 42], [4, p. 14]), so every hr, r ∈ (0, 1), is convex function also. Let Sc be
the class of all convex functions normalized by h(0) = 0. For h ∈ Sc the following
inequality due to Sheil-Small [10] and Suffridge [13] (see also [9, p. 44]) holds

Re
{

2ζh′(ζ)
h(ζ) − h(z)

− ζ + z

ζ − z

}
� 0, z, ζ ∈ D. (2.1)

The inequality (2.1) with z = 0 reduces to the inequality

Re
ζh′(ζ)
h(ζ)

>
1
2
, ζ ∈ D, (2.2)

due to Marx [6] and Storhhäcker [11] (see also [9, p. 45]), which means that h is a
starlike function of order 1/2 (cf. [3, p. 138]).

Let Q be the subclass of Sc of all convex functions analytic on D with h′(ζ) �= 0
at every ζ ∈ T.

We will now prove the lemma that will be used in the proof of the main theorem.
This results is geometrically obvious.

Lemma 2.1. If h ∈ Q, then

Re
h(z) − h(ζ)
ζh′(ζ)

< 0, z ∈ D, ζ ∈ T. (2.3)

Proof. Since hr for every r ∈ (0, 1), is analytic on D and convex in D, from (2.1) it
follows that for z ∈ D and ζ ∈ T,

Re
{

2ζh′r(ζ)
hr(ζ) − hr(z)

− ζ + z

ζ − z

}
= Re

{
2rζh′(rζ)

h(rζ) − h(rz)
− rζ + rz

rζ − rz

}
= Re

{
2uh′(u)

h(u) − h(v)
− u+ v

u− v

}
� 0,

where u := rζ ∈ D and v := rz ∈ D. Hence and by the fact that hr(ζ) → h(ζ) and
h′r(ζ) → h′(ζ) as r → 1−, we deduce that

Re
2ζh′(ζ)

h(ζ) − h(z)
� Re

ζ + z

ζ − z
=

1 − |z|2
|ζ − z|2 > 0, z ∈ D, ζ ∈ T,

which shows (2.3). �
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262 A. Lecko

We need also the following lemma which is a special case of lemma 2.2d [8,
p. 22].

Lemma 2.2. Let h be an analytic univalent function in D, p ∈ H be a nonconstant
function with p(0) = h(0). If p is not subordinate to h, then there exist z0 ∈ D \ {0}
and ζ0 ∈ T such that p(D|z0|) ⊂ h(D),

p(z0) = h(ζ0) (2.4)

and

z0p
′(z0) = mζ0h

′(ζ0) (2.5)

for some m � 1.

The theorem below follows directly from the Lindelöf Principle (e.g., [3, Vol. I,
p. 86]). However, it will be useful in proving the main theorem.

Theorem 2.3. Let f, h ∈ H, h be univalent and f(0) = h(0). Then

f ≺ h (2.6)

if and only if for every r ∈ (0, 1),

fr ≺ hr. (2.7)

Proof. Suppose that (2.6) holds. Then by the Lindelöf Principle (e.g., [3, Vol. I,
p. 86]) for every r ∈ (0, 1),

fr(D) = f(Dr) ⊂ h(Dr) = hr(D). (2.8)

Since fr(0) = f(0) = h(0) = hr(0) and every hr is univalent, from (1.1) and (2.8)
it follows (2.7).

Suppose now that (2.7) holds for every r ∈ (0, 1). Then by (1.1) the inclusion
(2.8) holds for every r ∈ (0, 1), and therefore

f(D) =
⋃

r∈(0,1)

f(Dr) ⊂
⋃

r∈(0,1)

h(Dr) = h(D).

Hence and from (1.1) we obtain (2.6). �

2.2.

We now prove the main theorem of this paper. In the proof we apply lemma 2.1
and Theorem 2.3. Therefore the argumentation is purely analytical without using
a geometrical property based on the behaviour of the normal vector to the bound-
ary curve ∂h(D), standardly used in the theory (cf. [8]). In further discussion we
present new type of the differential subordination generalizing the well known Briot-
Bouquet differential subordination. The significance of Theorem 2.4 is emphasized
also in the presented applications.
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Theorem 2.4. Let h be a convex function and ϕ : C
2 → C be such that for each

m � 1 a function

D 	 z 
→ ϕ(h(z),mzh′(z)) (2.9)

is well-defined and analytic satisfying the condition

Reϕ(h(z),mzh′(z)) � 0, z ∈ D. (2.10)

If p ∈ H[ϕ] with p(0) = h(0), and

p(z) + zp′(z)ϕ(p(z), zp′(z)) ≺ h(z), z ∈ D, (2.11)

then

p ≺ h. (2.12)

Proof. Note first that if Reϕ(h(z0), mz0h′(z0)) = 0 for a certain z0 ∈ D, then by
the minimum principle for harmonic function Reϕ(h(z), mzh′(z)) = 0 for all z ∈ D

and hence ϕ(h(z), mzh′(z)) = ia for some a ∈ R and all z ∈ D.
Let p ∈ H[ϕ] with p(0) = h(0). Define ψ : D → C as follows

ψ(z) := p(z) + zp′(z)ϕ(p(z), zp′(z)), z ∈ D. (2.13)

Since ψ(0) = p(0) = h(0), by Theorem 2.3 the condition (2.11) is equivalent to

ψr ≺ hr, r ∈ (0, 1). (2.14)

On the contrary, suppose that p is not subordinate to h. By Theorem 2.3, there
exists r0 ∈ (0, 1) such that pr0 is not subordinate to hr0 . Since hr0 is analytic in D,
by lemma 2.2 there exist z0 ∈ D \ {0}, ζ0 ∈ T and m � 1 such that (2.4) and (2.5)
hold with p := pr0 and h := hr0 , i.e.,

pr0(z0) = hr0(ζ0) (2.15)

and

z0p
′
r0

(z0) = mζ0h
′
r0

(ζ0). (2.16)

Hence
ψr0(z0) = ψ(r0z0)

= p(r0z0) + r0z0p
′(r0z0)ϕ(p(r0z0), r0z0p′(r0z0))

= pr0(z0) + z0p
′
r0

(z0)ϕ(pr0(z0), z0p′r0
(z0))

= hr0(ζ0) +mζ0h
′
r0

(ζ0)ϕ(hr0(ζ0),mζ0h′r0
(ζ0)).

(2.17)

Moreover by (2.10),

Reϕ(hr0(ζ0),mζ0h′r0
(ζ0)) = Reϕ(h(r0ζ0),mr0ζ0h′(r0ζ0))

= Reϕ(h(u0),mu0h
′(u0)) � 0,

(2.18)

where u0 := r0ζ0 ∈ D. In view of (2.14), ψr0 ≺ hr0 , so ψr0(D) ⊂ hr0(D). Thus
ψr0(z0) ∈ hr0(D) and therefore ψr0(z0) = hr0(z1) for some z1 ∈ hr0(D). Hence from
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(2.17) and (2.18) we get

Re
hr0(z1) − hr0(ζ0)

ζ0h′r0
(ζ0)

= Re
ψr0(z0) − hr0(ζ0)

ζ0h′r0
(ζ0)

= mReϕ(hr0(ζ0),mζ0h′r0
(ζ0)) � 0.

Since hr0 ∈ Q, it follows that the above inequality contradicts (2.3) with h := hr0 ,
z := z1 and ζ := ζ0. Thus we conclude that ψr0 is not subordinate to hr0 , which
contradicts (2.14) and completes the proof. �

In Theorem 2.4 instead of ϕ we can put a function φ : D → C such that a function
D 	 z 
→ φ(h(z)) is well-defined and analytic satisfying the condition Reφ(h(z)) � 0
for z ∈ D. Then we obtain the result due to Miller and Mocanu [7] (see also [8,
Theorem 3.4a, p. 120]).

Corollary 2.5 [7]. Let h be a convex function, φ ∈ H(D) be such that h(D) ⊂ D
and

Reφ(h(z)) � 0, z ∈ D.

If p ∈ H, p(0) = h(0), p(D) ⊂ D and

p(z) + zp′(z)φ(p(z)) ≺ h(z), z ∈ D,

then

p ≺ h.

In the following theorem the assumption (2.19) is based on the idea of [1] (see
also [8, pp. 124–125]), where in the proof of the main result Löwner chains were
used. Our argumentation is analogous to that in the proof of Theorem 2.4.

Theorem 2.6. Let ϕ : C
2 → C and p ∈ H[ϕ] be such that

Reϕ(p(z), zp′(z)) � 0, z ∈ D. (2.19)

If h is a convex function with h(0) = p(0) and

p(z) + zp′(z)ϕ(p(z), zp′(z)) ≺ h(z), z ∈ D, (2.20)

then

p ≺ h. (2.21)

Proof. Let ψ be defined as in (2.11). By Theorem 2.3 the condition (2.20) is equiv-
alent to (2.14). On the contrary, suppose that p is not subordinate to h. As in the
proof of Theorem 2.4, there exist z0 ∈ D \ {0}, ζ0 ∈ T and m � 1 such that (2.15)
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and (2.16) hold. Thus

ψr0(z0) = ψ(r0z0)

= p(r0z0) + r0z0p
′(r0z0)ϕ(p(r0z0), r0z0p′(r0z0))

= pr0(z0) + z0p
′
r0

(z0)ϕ(p(r0z0), r0z0p′(r0z0))

= hr0(ζ0) +mζ0h
′
r0

(ζ0)ϕ(p(r0z0), r0z0p′(r0z0))

= hr0(ζ0) +mζ0h
′
r0

(ζ0)ϕ(p(u0), u0p
′(u0)),

(2.22)

where u0 := r0z0 ∈ D. In view of (2.14), ψr0 ≺ hr0 , so ψr0(D) ⊂ hr0(D). Thus
ψr0(z0) ∈ hr0(D) and therefore ψr0(z0) = hr0(z1) for some z1 ∈ D. Hence from
(2.22) and (2.19) it follows that

Re
hr0(z1) − hr0(ζ0)

ζ0h′r0
(ζ0)

= Re
ψr0(z0) − hr0(ζ0)

ζ0h′r0
(ζ0)

= mReϕ(p(u0), u0p
′(u0)) � 0.

Since hr0 ∈ Q, it follows that the above inequality contradicts (2.3) with h := hr0 ,
z := z1 and ζ := ζ0. Thus we conclude that ψr0 is not subordinate to hr0 , which
contradicts (2.14), so (2.20) and completes the proof. �

3. Special cases

3.1.

We now discuss special cases of Theorem 2.4.

Corollary 3.1. Let β � 0, h ∈ Sc, φ ∈ H(D) be such that h(D) ⊂ D and

Reφ(h(z)) � 0, z ∈ D. (3.1)

If p ∈ H, p(0) = 0, p(z) �= 0 for z ∈ D \ {0}, p(D) ⊂ D and

p(z) + zp′(z)φ(p(z)) + βp(z)
(
zp′(z)
p(z)

)2

≺ h(z), z ∈ D, (3.2)

then

p ≺ h. (3.3)

Proof. Let β � 0, h ∈ Sc and φ ∈ H(D) be such that h(D) ⊂ D. Define ϕ : C × C →
C as

ϕ(u, v) := φ(u) + β
v

u
, (u, v) ∈ (D \ {0}) × C.

Since h(0) = 0, h(z) �= 0 for z �= 0 and h′(0) �= 0, it follows that

lim
z→0

zh′(z)
h(z)

= 1. (3.4)
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Thus the function

D \ {0} 	 z 
→ ϕ(h(z),mzh′(z)) = φ(h(z)) + β
mzh′(z)
h(z)

has an analytic extension on D by setting φ(0) + βm at zero. Moreover by (2.2)
and (3.1) for every m � 1,

Reϕ(h(z),mzh′(z))

= Reφ(h(z)) + βmRe
zh′(z)
h(z)

� β

2
� 0, z ∈ D.

(3.5)

Let p ∈ H, p(0) = 0, p(z) �= 0 for z �= 0 and p(D) ⊂ D. Because p(0) = 0, there exists
a positive integer k such that p(z) = zkq(z), z ∈ D, where q ∈ H and q(0) �= 0.
Hence and by the fact that p(z) �= 0 for z �= 0, it follows that q(z) �= 0 for z ∈ D.
Thus the function

D 	 z 
→ ϕ(p(z), zp′(z)) = φ(p(z)) + β
zp′(z)
p(z)

has an analytic extension on D by setting φ(0) + βk at zero, i.e., p ∈ H[ϕ]. At the
end note that

p(z) + zp′(z)ϕ (p(z), zp′(z))

= p(z) + zp′(z)φ(p(z)) + βp(z)
(
zp′(z)
p(z)

)2

, z ∈ D.

Thus, the assumptions of Theorem 2.4 are satisfied, which ends the proof of the
corollary. �

For β = 0 the above theorem reduces to Corollary 2.5, with the additional
assumption that h(0) = 0. In fact, this assumption is not required in Corollary 2.5.

For H(C) 	 φ ≡ α, where Reα � 0, Corollary 3.1 takes the following form.

Corollary 3.2. Let α ∈ C, Reα � 0, β � 0 and h ∈ Sc. If p ∈ H, p(0) = 0,
p(z) �= 0 for z ∈ D \ {0}, and

p(z) + αzp′(z) + βp(z)
(
zp′(z)
p(z)

)2

≺ h(z), z ∈ D, (3.6)

then

p ≺ h.

For α = 0 from Corollary 3.2 we deduce
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Corollary 3.3. Let β � 0 and h ∈ Sc. If p ∈ H, p(0) = 0, p(z) �= 0 for z ∈ D \
{0}, and

p(z) + βp(z)
(
zp′(z)
p(z)

)2

≺ h(z), z ∈ D,

then

p ≺ h.

The differential subordination (3.9), which is a special case of (3.2), is an inter-
esting generalization of the Briot-Bouqet subordination. Briot-Bouquet differential
subordination plays a fundamental role in the theory of the differential subordina-
tions. We get it from (3.9) for β = 0 (e.g. [8, pp. 80–105]). The following corollary
follows from Corollary 3.1.

Corollary 3.4. Let β � 0, δ, γ ∈ C, δ �= 0, and h ∈ Sc be such that

h(z) �= −γ/δ, z ∈ D, (3.7)

and

Re (δh(z) + γ) > 0, z ∈ D. (3.8)

If p ∈ H, p(0) = 0, p(z) �= 0 for z ∈ D \ {0}, p(z) �= −γ/δ for z ∈ D, and

p(z) +
zp′(z)

δp(z) + γ
+ βp(z)

(
zp′(z)
p(z)

)2

≺ h(z), z ∈ D, (3.9)

then

p ≺ h.

Proof. Take

φ(w) :=
1

δw + γ
, w ∈ D := C \ {−γ/δ}.

Then by (3.7) the function φ ◦ h is analytic in D, and by (3.8),

Reφ(h(z)) = Re
1

δh(z) + γ
> 0, z ∈ D,

and we apply Corollary 3.1. �

In the same way as Corollary 3.4 the following result follows.
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Corollary 3.5. Let β � 0, δ, γ ∈ C, δ �= 0, and h ∈ Sc be such that

Re (δh(z) + γ) > 0, z ∈ D.

If p ∈ H, p(0) = 0, p(z) �= 0 for z ∈ D \ {0}, and

p(z) + zp′(z)(δp(z) + γ) + βp(z)
(
zp′(z)
p(z)

)2

≺ h(z), z ∈ D,

then

p ≺ h.

3.2.

By selecting h ∈ Sc we can get a number of new results. It is natural to take into
account the following convex functions keeping the origin fixed: for M > 0,

h1(z) = Mz, h2(z) =
2Mz

1 − z
, z ∈ D,

h3(z) =
M

π
log

1 + z

1 − z
, log 1 := 0, z ∈ D.

Then Corollary 3.1 takes respectively the form

Corollary 3.6. Let β � 0, φ ∈ H(D) be such that DM ⊂ D and

Reφ(Mz) � 0, z ∈ D.

If p ∈ H, p(0) = 0, p(z) �= 0 for z ∈ D \ {0}, p(D) ⊂ D and∣∣∣∣∣p(z) + zp′(z)φ(p(z)) + βp(z)
(
zp′(z)
p(z)

)2
∣∣∣∣∣ < M, z ∈ D,

then

|p(z)| < M, z ∈ D.

Corollary 3.7. Let β � 0, φ ∈ H(D) be such that A := {w ∈ C : Rew > −M} ⊂
D and

Reφ(w) � 0, w ∈ A.

If p ∈ H, p(0) = 0, p(z) �= 0 for z ∈ D \ {0}, p(D) ⊂ D and

Re

{
p(z) + zp′(z)φ(p(z)) + βp(z)

(
zp′(z)
p(z)

)2
}
> −M, z ∈ D,

then

Re p(z) > −M, z ∈ D.
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Corollary 3.8. Let β � 0, φ ∈ H(D) be such that A := {w ∈ C : | Imw| < M} ⊂
D and

Reφ(w) � 0, w ∈ A.

If p ∈ H, p(0) = 0, p(z) �= 0 for z ∈ D \ {0}, p(D) ⊂ D and∣∣∣∣∣Im
{
p(z) + zp′(z)φ(p(z)) + βp(z)

(
zp′(z)
p(z)

)2
}∣∣∣∣∣ < M, z ∈ D,

then

| Im p(z)| < M, z ∈ D.

4. The best dominant

To find the best dominant of (2.12) is an interesting problem to study related to the
theory of the differential equations. By applying Theorem 2.3e of [8] we can expect
that the best dominant q̃ of (1.5) should be a univalent solution of the differential
equation

p(z) + zp′(z)ϕ (p(z), zp′(z)) = h(z), z ∈ D,

if such a solution exists. Here we restrict our interest to the differential subordina-
tion (3.6) with h(z) := Mz, z ∈ D, where M > 0. For this purpose, we will find a
univalent solution of the differential equation

q(z) + αzq′(z) + βq(z)
(
zq′(z)
q(z)

)2

= Mz, z ∈ D. (4.1)

The following theorem provides a solution to this problem.

Theorem 4.1. Let α ∈ C, Reα � 0, β � 0 and M > 0. If p ∈ H, p(0) = 0, p(z) �=
0 for z ∈ D \ {0}, and

p(z) + αzp′(z) + βp(z)
(
zp′(z)
p(z)

)2

≺Mz, z ∈ D, (4.2)

then

p(z) ≺ M

1 + α+ β
z =: q̃(z), z ∈ D,

and q̃ is the best dominant of (4.2).
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Proof. We apply the technique of power series to find a univalent solution of (4.1)
of the form

q(z) =
∞∑

n=1

anz
n, z ∈ D. (4.3)

Since q is assumed to be univalent, we see that

a1 = q′(0) �= 0. (4.4)

From (4.1) we equivalently have

q2(z) + αzq(z)q′(z) + βz2(q′(z))2 = Mzq(z), z ∈ D.

Hence using (4.3) we have

a2
1z

2 + 2a1a2z
3 +

(
2a1a3 + a2

2

)
z4 + (2a1a4 + 2a2a3) z5 + . . .

+ α
[
a1z

2 + 3a1a2z
3 +

(
4a1a3 + 2a2

2

)
z4 + (5a1a4 + 5a2a3) z5 + . . .

]
+ β

[
a2
1z

2 + 4a1a2z
3 +

(
6a1a3 + 4a2

2

)
z4 + (8a1a4 + 12a2a3) z5 + . . .

]
= M

(
a1z

2 + a2z
3 + a3z

4 + c4z
5 + . . .

)
, z ∈ D.

Comparing coefficients we obtain

a2
1(1 + α+ β) = Ma1,

a1a2(2 + 3α+ 4β) = Ma2,

a1a3(2 + 4α+ 6β) + a2
2(1 + 2α+ 4β) = Ma3,

(4.5)

and in general, for n = 2k − 1, k � 2,

a1a2k−2 [2 + (2k − 1)α+ 2(2k − 2)β]

+ a2a2k−3 [2 + (2k − 1)α+ 2 · 2(2k − 3)β] + . . .

+ ak−1ak [2 + (2k − 1)α+ 2(k − 1)kβ] = Ma2k−2,

(4.6)

and for n = 2k, k � 2,

a1a2k−1 [2 + 2kα+ 2(2k − 1)β]

+ a2a2k−2 [2 + 2kα+ 2 · 2(2k − 2)a2a2k−2] + . . .

+ ak−1ak+1 [2 + 2kα+ 2(k − 1)(k + 1)β]

+ a2
k

[
1 + kα+ k2β

]
= Ma2k−1.

(4.7)

Taking into account (4.4) from the first equation in (4.5) it follows that

a1 =
M

1 + α+ β
. (4.8)

This and the second equation in (4.5) yield a2 = 0. Substituting a2 = 0 into the
third equation in (4.5) in view of (4.8) we see that a3 = 0. In this way, by using
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mathematical induction we can prove that

a2 = a3 = · · · = a2k−3 = 0 (4.9)

and that the formula (4.6) reduces to

a1a2k−2 [2 + (2k − 1)α+ 2(2k − 2)β] = Ma2k−2,

which in view of (4.8) yield a2k−2 = 0. Hence by using (4.9) the equation (4.7)
reduces to

a1a2k−1 [2 + 2kα+ 2(2k − 1)β] = Ma2k−1,

which in view of (4.8) yield a2k−1 = 0. Thus we proved that an = 0 for all n � 2.
In this way by (4.3) and (4.8) we see that

q(z) =
M

1 + α+ β
z =: q̃(z), z ∈ D,

is a unique univalent solution of (4.1). From Theorem 2.3e of [8] it follows that q̃
is the best dominant of (4.2) which completes the proof of the lemma. �

For α = 1, β = 1 and M = 1, the above result reduces to the well known special
case of the first order Euler differential subordination (see [8, pp. 334–340]).

Corollary 4.2. If p ∈ H, p(0) = 0 and

p(z) + zp′(z) ≺ z, z ∈ D,

then

p(z) ≺ 1
2
z =: q̃(z), z ∈ D,

and q̃ is the best dominant.
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