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In this paper we introduce and examine the differential subordination of the form
p(2) + 20" (2)p(p(2), 20" (2)) < h(2), z€D:={2€C: 2| <1},

where h is a convex univalent function with 0 € h(D). The proof of the main result is
based on the original lemma for convex univalent functions and offers a new
approach in the theory. In particular, the above differential subordination leads to
generalizations of the well-known Briot-Bouquet differential subordination.
Appropriate applications among others related to the differential subordination of
harmonic mean are demonstrated. Related problems concerning differential
equations are indicated.
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1. Introduction

Given r >0, let D, :={z € C:|z|<r}. Let D:=D; and T:={z € C: |z| = 1}.
For D being a domain in C let H(D) be the family of all analytic functions f :
D — C and H := H(D). Let A be the subclass of H of f normalized by f(0) =0 =
1'(0) — 1, and S be the subclass of A of univalent functions.

For r € (0, 1) and f € H, let f,.(2) := f(rz), z€ D:= {z € C:|z| < 1}. Clearly,
each f, is analytic in D.

A function f € H is said to be subordinate to a function g € H if there exists
w € H such that w(0) =0, w(D) C D and f = gow in D. We write then f < g. If g
is univalent, then (e.g., [3, Vol. I, p. 85])

f=g9< (f(0)=g(0) A f(D) C g(D)). (1.1)

Given 1 : C? — C, let ‘H[t)] be the subset of H of all p such that a function
D>z ¥(p(2), 2p'(2)) is well-defined and analytic.
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Let ¢ : C* — C and h € H be univalent. We say that a function p € H[¢)] satisfies
the first-order differential subordination and is called its solution if

¥ (p(2),2p'(2)) < h(z), zeD. (1.2)

If ¢ € H is a univalent function such that p < ¢ for all p satisfying (1.2), then ¢ is
called a dominant of (1.2). A dominant ¢ is called the best dominant if ¢ < ¢ for
all dominants ¢ of (1.2). Finding those ¢ for which the subordination (1.2) yields
p < ¢, in particular, p < ¢, is the basis in the theory of differential subordinations.
Further details and references can be found in the book of Miller and Mocanu [8].

The classical example of (1.2) is related to the arithmetic mean and has been
studied by many authors (see e.g., [8, pp. 120-145]). Given ¢ € H(D) and « € [0, 1],
consider

p(2) + azp' (2)p(p(z)) < h(z), zeD, (1.3)

written equivalently as

(1= a)p(2) + a(p(z) + 20" (2)e(p(2))) < h(2), 2z €D,

where p € H with p(D) C D. In particular, if a =1, §,y€C, § #0, p(w):=
1/(6w+7), we D :=C\{—/0}, then (1.3) reduces to

PE)pe), zeD, (1.4)

p(=) + op(2) +

which is known as the Briot-Bouquet differential subordination.

Let ¢ : C?2 — C, p € H[yp] and h € H be a convex univalent function which means
that h maps univalently D onto a convex domain ~(D). In this paper, we propose
a study of the differential subordination of the form

p(2) + 20/ (2)¢ (p(2), 20 (2)) < h(2), =z €D. (1.5)

The case when 0 € Oh(D) has been studied in [5]. Let us remark that the case
where 0 is a boundary point of h(D) requires different methods of proofs than
those when the origin is the interior point of hA(D). The differential subordination
(1.5) is a special case of (1.2), but it offers interesting applications. In particular, it
generalizes the Briot-Bouquet differential subordination (1.4). In addition, we prove
in a new way some recent results regarding the differential subordination related
to the harmonic mean. The problem of the best dominant in the case where h is a
linear function is also discussed.

The proof of the main result is based on the original lemma 2.1 on convex
univalent functions. Therefore, the proof of Theorem 2.4 is strictly analytical in
nature, while until now in the proofs of analogous propositions, analytical argu-
ments have been used in conjunction with geometric considerations (cf. [8]). By
applying lemma 2.1, a series of theorems from the monographs [8]) underlying the
theory of the differential subordinations can be proved again by using a purely
analytical argumentation.
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2. Main result

2.1.

A function h € H is said to be convex if it is univalent and h(D) is a convex
domain. Study [12] (e.g., [9, p. 44]) has shown that a function h € H with A/(0) # 0
is convex if, and only if,

zh"(2)
W)
If h is a convex function, then h(ID,.) for every r € (0, 1), is a convex domain (e.g.,
[2, p. 42], [4, p. 14]), so every h,, r € (0, 1), is convex function also. Let S¢ be

the class of all convex functions normalized by h(0) = 0. For h € §¢ the following
inequality due to Sheil-Small [10] and Suffridge [13] (see also [9, p. 44]) holds

Re{l—!— }>O7 z € D.

20(C) (+z
Re{h(()h(z)_fz}>0’ z,¢ € D. (2.1)
The inequality (2.1) with z = 0 reduces to the inequality
¢h(Q) 1
Re h(C) > 5, CE ]D), (22)

due to Marx [6] and Storhhécker [11] (see also [9, p. 45]), which means that h is a
starlike function of order 1/2 (cf. [3, p. 138]).

Let Q be the subclass of S¢ of all convex functions analytic on D with A’(¢) # 0
at every ( € T.

We will now prove the lemma that will be used in the proof of the main theorem.
This results is geometrically obvious.

LEMMA 2.1. If h € Q, then
h(z) — h(S)
Ch'(¢)

Proof. Since h,. for every r € (0, 1), is analytic on D and convex in D, from (2.1) it
follows that for z € D and ( € T,

e o)

Re <0, zeDb, CeT. (2.3)

B 2r¢h/(rQ)  r¢+rz

= Re { h(r¢) — h(rz) r¢-— 7‘2’}

B 2uh’(u) u+wv

~re{ i i ) O
where v :=r¢ € D and v := rz € D. Hence and by the fact that h,({) — h({) and
h.(¢) — W' (¢) as r — 17, we deduce that

2K (¢) (+z _ 1-1¢?

MO —h() ~ s T AR T
which shows (2.3). O

Re

0, zeD, CeT,
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We need also the following lemma which is a special case of lemma 2.2d [8,
p. 22].

LEMMA 2.2. Let h be an analytic univalent function in D, p € H be a nonconstant
function with p(0) = h(0). If p is not subordinate to h, then there exist zo € D\ {0}
and Go € T such that p(D).,) C h(D),

p(20) = (o) (2.4)
and

20’ (20) = mloh/(Co) (2.5)

for some m > 1.

The theorem below follows directly from the Lindeldf Principle (e.g., [3, Vol. I,
p. 86]). However, it will be useful in proving the main theorem.

THEOREM 2.3. Let f, h € H, h be univalent and f(0) = h(0). Then
f=<h (2.6)
if and only if for every r € (0, 1),
fr < by (2.7)

Proof. Suppose that (2.6) holds. Then by the Lindel6f Principle (e.g., [3, Vol. I,
p. 86]) for every r € (0, 1),

Since f-(0) = f(0) = h(0) = h,(0) and every h, is univalent, from (1.1) and (2.8)
it follows (2.7).

Suppose now that (2.7) holds for every r € (0, 1). Then by (1.1) the inclusion
(2.8) holds for every r € (0, 1), and therefore

fm= {J rm)c (J hd)=hD).

re(0,1) re(0,1)

Hence and from (1.1) we obtain (2.6). O

2.2,

We now prove the main theorem of this paper. In the proof we apply lemma 2.1
and Theorem 2.3. Therefore the argumentation is purely analytical without using
a geometrical property based on the behaviour of the normal vector to the bound-
ary curve Oh(D), standardly used in the theory (cf. [8]). In further discussion we
present new type of the differential subordination generalizing the well known Briot-
Bouquet differential subordination. The significance of Theorem 2.4 is emphasized
also in the presented applications.
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THEOREM 2.4. Let h be a convexr function and ¢ : C?2 — C be such that for each
m =1 a function

D 5z @(h(z), mzh (2)) (2.9)
18 well-defined and analytic satisfying the condition
Re(h(z),mzh'(z)) >0, =z¢€D. (2.10)
If p € H[p] with p(0) = h(0), and
p(2) + 29 (2)p(p(2), 20 (2)) < h(2), z€D, (2.11)
then
p < h. (2.12)

Proof. Note first that if Re p(h(z0), mzoh'(20)) = 0 for a certain zg € D, then by
the minimum principle for harmonic function Re p(h(z), mzh'(z)) = 0 for all z € D
and hence p(h(z), mzh'(z)) = ia for some a € R and all z € D.

Let p € H[y] with p(0) = h(0). Define ¢ : D — C as follows

(2) = p(2) + 20 (2)0(p(2), 20/ (2)), =z €D. (2.13)
Since ¥(0) = p(0) = h(0), by Theorem 2.3 the condition (2.11) is equivalent to
Ur < hy, 7€ (0,1). (2.14)

On the contrary, suppose that p is not subordinate to h. By Theorem 2.3, there
exists ro € (0, 1) such that p,, is not subordinate to h,. Since h,, is analytic in D,
by lemma 2.2 there exist zg € D\ {0}, (o € T and m > 1 such that (2.4) and (2.5)
hold with p := p,, and h := h,,, i.e.,

Pro(20) = hiry (Go) (2.15)
and
20Dy, (20) = mCohy, (Go)- (2.16)
Hence
Vro(20) = ¥(ro20)
= p(rozo0) + rozop’ (rozo)@(p(rozo), ro20p’ (1020))

, , (2.17)
= Pro(20) + 20D}, (20)9(Pro (20), 20Dy, (20))
= Dy (Co) + mGohy., (Co) (P (Co), mCohr (Co))-
Moreover by (2.10),
Re ¢ (hry (Co), mCohy, (Co)) = Re w(h(rolo), mroGoh’ (roCo)) (2.18)

= Rep(h(ug), mugh'(ug)) > 0,

where ug :=19(p € D. In view of (2.14), ¥, < hyy, 80 P (D) C by (D). Thus
Yro (20) € hyy (D) and therefore 1, (20) = hyy(21) for some z; € hy, (D). Hence from
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(2.17) and (2.18) we get
hTo (Zl) - hTo (CO) — Re wro (ZO) B hTo (CO)
Cohry (Co) oMy (o)
= mRe @(hy,(Co), mCohy, (Co)) = 0.

Re

Since h,, € Q, it follows that the above inequality contradicts (2.3) with h := h,,,
z =z and ¢ := (p. Thus we conclude that ¢,, is not subordinate to h,,, which
contradicts (2.14) and completes the proof. O

In Theorem 2.4 instead of ¢ we can put a function ¢ : D — C such that a function
D > z +— ¢(h(z)) is well-defined and analytic satisfying the condition Re ¢(h(z)) = 0
for z € D. Then we obtain the result due to Miller and Mocanu [7] (see also [8,
Theorem 3.4a, p. 120]).

COROLLARY 2.5 [7]. Let h be a convex function, ¢ € H(D) be such that h(D) C D
and

Rep(h(z)) >0, ze€D.
If p e H, p(0) = h(0), p(D) C D and
p(2) + 25 (2)6(p(=)) < h(2), 2 €D,
then
p < h.

In the following theorem the assumption (2.19) is based on the idea of [1] (see
also [8, pp. 124-125]), where in the proof of the main result Léwner chains were
used. Our argumentation is analogous to that in the proof of Theorem 2.4.
THEOREM 2.6. Let p : C?> — C and p € H[p] be such that

Reo(p(2),2p'(2)) =20, z€D. (2.19)
If h is a convex function with h(0) = p(0) and
p(2) + 20" (2)p(p(2), 20'(2)) < h(2), z€D, (2.20)
then

p=h. (2.21)
Proof. Let 1 be defined as in (2.11). By Theorem 2.3 the condition (2.20) is equiv-

alent to (2.14). On the contrary, suppose that p is not subordinate to h. As in the
proof of Theorem 2.4, there exist zp € D\ {0}, (o € T and m > 1 such that (2.15)
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and (2.16) hold. Thus

Vro(20) = ¥(ro20)
= p(roz0) + 10200’ (r020)p(p(1020), 70200 (r020))
= Pro(20) + 20py, (20)2(p(r020), T020p (r020)) (2.22)
= hro(CO) +mGohy, (Go)e(p(ro20). Toz0p' (To20))
hro (Co) + mGohy, (Co)(p(uo), uop' (uo)),

where ug :=1r9z9 €D. In view of (2.14), ¥, < hyy, 80 P (D) C by (D). Thus
Yro(20) € hyy(D) and therefore v, (z0) = hyy(21) for some z; € D. Hence from
(2.22) and (2.19) it follows that

hTo (21) - hTU (CO) — Re wTo (ZO) - hTo (CO)
Cohy, (o) Cohy, (o)

= mRe p(p(uo), uop'(uo)) > 0.

Re

Since h,, € Q, it follows that the above inequality contradicts (2.3) with h := hy,
z 1=z and ¢ := (p. Thus we conclude that ,, is not subordinate to h,,, which
contradicts (2.14), so (2.20) and completes the proof. O

3. Special cases

3.1.

We now discuss special cases of Theorem 2.4.
COROLLARY 3.1. Let § >0, h € 8%, ¢ € H(D) be such that h(D) C D and
Re¢(h(z)) 20, ze€D. (3.1)
Ifpe ™, p(0) =0, p(z) #0 for z€ D\ {0}, p(D) C D and

2p'(2)
p(2)

2
p(z)+zp’(2)¢(p(2))+ﬂp(2)( ) <h(z). zeD, (3.2)

then
p =< h. (3.3)

Proof. Let >0, h € 8¢ and ¢ € H(D) be such that h(D) C D. Definep: C x C —
C as

p(u,v) = $(u) + B~ (w,) € (D\{0}) x C.
Since h(0) = 0, h(z) # 0 for z # 0 and h’(0) # 0, it follows that

i zh'(2) _
2 hGe)

(3.4)
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Thus the function

mzh'(z2)

h(z)

D\ {0} 5 2 @(h(2), mzh'(2)) = $(h(2)) + B

has an analytic extension on D by setting ¢(0) + Sm at zero. Moreover by (2.2)
and (3.1) for every m > 1,

Re p(h(z), mzh'(2))

zh!(z) (3.5)

Let p € H,p(0) =0, p(z) # 0for z # 0 and p(D) C D. Because p(0) = 0, there exists
a positive integer k such that p(z) = 2¥q(z), 2 € D, where ¢ € H and ¢(0) # 0.
Hence and by the fact that p(z) # 0 for z # 0, it follows that ¢(z) # 0 for z € D.
Thus the function

=Re¢(h(z)) + BmRe

2%20, z € D.

2/ (2)

D3z @(p(2), 20 (2)) = d(p(2)) + B p(2)

has an analytic extension on D by setting ¢(0) 4+ Sk at zero, i.e., p € H[p]. At the
end note that

p(2) + 2 (2)¢ (p(2), 20/ (2))

/(5 2
—p(e) + 28/ otp(a) + o) (L), se,

Thus, the assumptions of Theorem 2.4 are satisfied, which ends the proof of the
corollary. 0O

For 8 =0 the above theorem reduces to Corollary 2.5, with the additional
assumption that h(0) = 0. In fact, this assumption is not required in Corollary 2.5.
For H(C) 5 ¢ = «, where Rea > 0, Corollary 3.1 takes the following form.

COROLLARY 3.2. Let « € C, Rea >0, >0 and he S°. If peH, p(0) =0,
p(z) #0 for z € D\ {0}, and

, 2
p(2) + azp'(z) + Bp(2) (Zﬁ (Z)) < h(z), zeD, (3.6)

then

p < h.

For o = 0 from Corollary 3.2 we deduce
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COROLLARY 3.3. Let >0 and he §°. If pe H, p(0) =0, p(z) #0 for ze D\
{0}, and

o)+ 0(e) (L) <ne). s e,

then

p < h.

The differential subordination (3.9), which is a special case of (3.2), is an inter-
esting generalization of the Briot-Bouget subordination. Briot-Bouquet differential
subordination plays a fundamental role in the theory of the differential subordina-
tions. We get it from (3.9) for 8 =0 (e.g. [8, pp. 80-105]). The following corollary
follows from Corollary 3.1.

COROLLARY 3.4. Let 3> 0,9,v€ C, 6 #0, and h € §° be such that
h(z) # —v/0, z€D, (3.7)
and
Re (0h(z) +v) >0, zeD. (3.8)

Ifpe ™, p(0) =0, p(z) #0 for € D\ {0}, p(z) # —~/0 for z €D, and

zp'(2) ; zp'(2) ? 2. 2
b+ o o) (L) <), s, (3.9)
then
p < h.
Proof. Take
p(w) == 5w weD:=C\{—v/0}.

Then by (3.7) the function ¢ o h is analytic in D, and by (3.8),

1

Re ¢(h(z)) = Re )+

>0, zeD,

and we apply Corollary 3.1. (|

In the same way as Corollary 3.4 the following result follows.
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COROLLARY 3.5. Let 820,68, 7€ C, d #0, and h € §° be such that

Re (0h(z) +v) >0, zeD.

Ifpe ™, p(0) =0, p(z) # 0 for z € D\ {0}, and

p(2) + 2/ (2)(6p(=) +7) + Bo(2) (Zp

then
p < h.

3.2.

By selecting h € §¢ we can get a number of new results. It is natural to take into
account the following convex functions keeping the origin fixed: for M > 0,

_2Mz
C1—z

hi(z) = Mz, ha(z) , z€eD,

M 1
hg(z):?loglirz, logl:=0, z€D.

Then Corollary 3.1 takes respectively the form
COROLLARY 3.6. Let 3 >0, ¢ € H(D) be such that Dy C D and
Redp(Mz) 20, zeD.

Ifpe ™, p(0) =0, p(z) #0 for z€ D\ {0}, p(D) C D and

§) + 2/ (o) + onle) (25 '<M, zeD,

then
p(z)] < M, =zeD.

COROLLARY 3.7. Let 3> 0, ¢ € H(D) be such that A:={w € C:Rew > -M} C
D and

Regp(w) 20, weA.
Ifpe ™, p(0) =0, p(z) # 0 for z€ D\ {0}, p(D) C D and

, 22\
Re ¢ p(2) + 2p'(2)d(p(2)) + Bp(2) o) >—-M, zeD,

then
Rep(z) > —M, ze€D.
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COROLLARY 3.8. Let 8 >0, ¢ € H(D) be such that A:={w € C:|Imw| < M} C
D and

Reg(w) 20, we A

Ifpe ™, p(0) =0, p(z) #0 for z€ D\ {0}, p(D) C D and

<M, =zeD,

Im {p(Z) +2p'(2)¢(p(2)) + Bp(2) (ﬁ?) }

then

[Imp(z)| < M, zeD.

4. The best dominant

To find the best dominant of (2.12) is an interesting problem to study related to the
theory of the differential equations. By applying Theorem 2.3e of [8] we can expect
that the best dominant ¢ of (1.5) should be a univalent solution of the differential
equation

p(2) + 2p'(2)p (p(2), 20 (2)) = h(z), 2z €D,

if such a solution exists. Here we restrict our interest to the differential subordina-
tion (3.6) with h(z) := Mz, z € D, where M > 0. For this purpose, we will find a
univalent solution of the differential equation

24 (2)

q(z)

2
q(2) + azd'(2) + Bq(2) ( ) =Mz, zeD. (4.1)

The following theorem provides a solution to this problem.

THEOREM 4.1. Letaw € C, Rea >0, S >0and M > 0. Ifp € H, p(0) =0, p(z) #
0 for z € D\ {0}, and

p(2) + azp'(2) + Bp(2) (?&i?) <Mz, zeD, (4.2)
then
p(z) < %z =:q(z), zeD,

and q is the best dominant of (4.2).
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Proof. We apply the technique of power series to find a univalent solution of (4.1)
of the form

q(z) = i anz", ze€D. (4.3)
n=1
Since q is assumed to be univalent, we see that
a1 = ¢(0) £0. (1.4)
From (4.1) we equivalently have
P (2) + azq(2)q (2) + B22(¢'(2))* = Mzq(z), z€D.
Hence using (4.3) we have
atz® + 2a1a02° + (2a1a3 + a%) 24 + (20104 + 2a9a3) 2° + ...
+ « [a122 + 3a1a22% + (4a1a3 + 2a§) 2+ (5ayay + basas) z° + .. ]
+ 3 [a%zQ + 4@1(1223 + (6a1a3 + 4a§) 2+ (8aray + 12a5a3) 22+ .. }
:M(a1z2—|—a2z3+a324+04z5—|—...), z € D.
Comparing coefficients we obtain

ai(l+a+ B) = May,

araz(2 4 3a+48) = Mas, (4.5)

ara3(2 + 4o+ 683) + a3(1 + 2a + 46) = Mas,
and in general, for n =2k — 1, k > 2,

arask—2 [2+ (2k — Do + 2(2k — 2) 5]

+agask—3[2+ (2k — Da+2-2(2k —3)8] + ... (4.6)

+ag—1a; 2+ 2k — D)o+ 2(k — 1)kB]) = Magg—2,
and for n =2k, k> 2,

ajagk—1 2+ 2ka + 2(2k — 1)]
+ asasp—2 [2 + 2ka + 2 - 2(2k — 2)agasg—o] + . ..

4.7
+6Lk71ak+1 [2+2]€OZ+2(/€— ].)(k"‘].)ﬁ] ( )
+ap, [1+ ko + k*B] = Magy_;.

Taking into account (4.4) from the first equation in (4.5) it follows that
M
= —. 4.8
Mg +a+p (48)

This and the second equation in (4.5) yield as = 0. Substituting as = 0 into the
third equation in (4.5) in view of (4.8) we see that ag = 0. In this way, by using
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mathematical induction we can prove that
ag =az=---=ag 3 =70 (4.9)
and that the formula (4.6) reduces to
aragk—2[2+ (2k — D)+ 2(2k — 2)8] = Magy,—2,

which in view of (4.8) yield agr_2 = 0. Hence by using (4.9) the equation (4.7)
reduces to

a1a9k_1 [2 + 2ko + 2(2]€ — l)ﬁ] = Masy_1,

which in view of (4.8) yield asg—1 = 0. Thus we proved that a,, = 0 for all n > 2.
In this way by (4.3) and (4.8) we see that

M

q(z) = mz

= EJV(Z)» zZ € Da

is a unique univalent solution of (4.1). From Theorem 2.3e of [8] it follows that ¢
is the best dominant of (4.2) which completes the proof of the lemma. O

For a =1, =1 and M = 1, the above result reduces to the well known special
case of the first order Euler differential subordination (see [8, pp. 334-340]).

COROLLARY 4.2. Ifp € H, p(0) =0 and
p(z) +2p'(2) <2, zeD,

then

and q is the best dominant.
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