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CLASSIFICATION OF ALGEBRAIC SURFACES WITH 
SECTIONAL GENUS LESS THAN OR EQUAL TO SIX. 

II: RULED SURFACES WITH dim <i>Kx®L(x) = l 

ELVIRA LAURA LIVORNI 

Introduction. Let L be a very ample line bundle on a smooth, connected, 
projective, ruled not rational surface X. We have considered the problem 
of classifying biholomorphically smooth, connected, projected, ruled, non 
rational surfaces X with smooth hyperplane section C such that the genus 
g = g(C) is less than or equal to six and dim 4>Ï(X) = 1 where <$>Ï is the 
map associated to L = Kx ® L. L. Roth in [10] had given a birational 
classification of such surfaces. If g = 0 or 1 then X has been classified, 
see [8]. 

If g - 2 ¥= hl\X) by [12, Lemma (2.2.2) ] it follows that X is a rational 
surface. Thus we can assume g = 3. 

Since X is ruled, h2fi(X) = 0 and 

LLL + Ai.o(JO â L±l9 
8 2 

see [4] and [12, p. 390]. Moreover by the classification of surfaces in P and 
P3, it follows that h°(L) ^ 5. Our study is essentially based on the 
adjunction process which has been introduced by the Italian school and 
which has been particularly studied by A. J. Sommese [12]. In the case 
in which dim <j^(X) = 1, Sommese, in [12, p. 390], has proved that if 
<j>ï = r o s is the Remmert-Stein factorization of <#>/;, then s is an em­
bedding with the possible exception of the case when g = 3, h^°(X) = 1 
and L • L = 7 or 8. Our goal is to classify the pair (X, L) where X denotes a 
reduction of X to a minimal model. 

In the case in which hl0(X) = 1, we have described some examples of 
A A A 

(X, L) with L very ample. Those examples can be found in the following 
table. In the case in which h ' (X) = 2, there is only a pair (X, L) for 
which we cannot decide if L is very ample while for all the other pairs we 
know that L is not very ample. We would like to note that the class of 
surfaces with dimension one image under the adjunction mapping are 
known as conic bundles by algebraic geometers. 

We shall mention that our study has a slight overlap with the 
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classification that P. Ionescu [6] has given for projective surfaces of 
sectional genus less than or equal to four. We wish to thank Andrew J. 
Sommese for suggesting the problem and Alan Howard for helpful 
discussions about ruled surfaces. 

0. Background material. Since most of our notations and background 
material are found in [12] we will establish here only the notations which 
are different and the results which cannot be found there. First of all we 
would like to fix the following notations. We let 

d = L- L,g = g(C) = g(L), d = L-L, 

c\ = Kx- Kx, c] = Kx- Kx. 

We would like to remind the reader that X is gotten from a geometrically 
A 

ruled surface X by blowing up a finite number of points with at most one 
in each fiber of the natural ruling and L is the relative line bundle. 

(0.1) Definition. Let D be an effective divisor on a smooth, connected, 
projective surface X. D is /c-connected if for every decomposition 
D = Dx + D2 into effective divisors Dx • D2 = k. 

(0.2) PROPOSITION. Let X be a smooth, connected, projective surface 
embedded by a very ample line bundle ^in P . Then 

£?'&(£?'£?- 5) - 10(g(^) - 1) + 12x(0;r) = 2c?. 

See [5, p. 434]. 

(0.3) CASTELNUOVO'S INEQUALITY [2, p. 234 ff; G + H]. If C is an 

irreducible curve embedded in P c and C belongs to no linear hyperplane 
Pc~ , then with d the degree of C and g the genus: 

«M îK'-'+'-GfiK^)) 
where [ ] is the least integer function. 

(0.4) PROPOSITION. Let X be any projective, smooth surface and let 

0-» E^ F^ G-+0 

be the short exact sequence obtained by tensoring the sequence 

0 ^ [ C ] _ 1 -»0;r->0c->O 

with a line bundle F, where C is a curve in X. Suppose that: 
(a) G is a very ample line bundle on C, 
(b) E is very ample 
(c) ker(// (G) —> H (E)) gives an embedding of C. 

Then F is very ample. 
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Since the proof is standard we will omit it. 

(0.5) Ruled Surfaces. Let X be a smooth, connected, projective, 
geometrically ruled surface, i.e., a fibration m\X -» C, over a curve C 
whose fibres are P1. Then there exists a rank two vector bundle E (not 
unique) over C and an isomorphism X = 0(E) where @(E) denotes the 
associated projective bundle of E. Let g be the genus of C. Let a be a 
minimal section of IT, there is a line bundle C on C and an extension of E 
of 2 by 0C 

(0.5.1) 0 - » % - > £ - > £ - > ( ) 

such that 

X = £>(£) and S = a*^(£)(l) = O^ih) 

where f £ is the tautological line bundle. 

e = SE'$E= - d e g S 

is an invariant of the surface X. If E is decomposable, then ^ 0 and all 
the values of e are possible. If E is indecomposable, then 

(0.5.2) - g ^ e ^ l g - 2 . 

See [5, p. 376 and p. 384] and [9,_p. 191]. 
Let / b e a fiber of TT'.X —-> C. Then every line bundle L on I is 

numerically equivalent to Ça
E ® ^b, i.e., L = Ça

E ® J£b for some integers 
a, b a n d ^ = #*(/)> s o 

d e g ^ | a ( ë } = 1, 

(0.5.3) L- L = -a2e + lab and 

2g(L) - 2 = - a 2 e + ^ + 2Û6 - 2b - 2a + 2<3g. 

The canonical line bundle ^ x of X is 

Given a line bundle A on C we will denote its lift n*A on X again by ^4. 
We have the following propositions: 

(0.5.4) PROPOSITION. Let X be a geometrically ruled surface over a curve 
C, with invariant e = 0. 

(i) If Y = aÇE + b& is an irreducible curve, Y =£ ÇE, J% then a > 0, 
& = a • e. 

(ii) ^ divisor D = alE + èJ^w amp/e if and only if a > 0, Z? > a • e. 

See [5, p. 382]. 

(0.5.5) PROPOSITION. L^^ X be a geometrically ruled surface over a curve 
C, of genus g and invariant e < 0. 

(i) If Y = aÇE + &£? w an irreducible curve, Y =̂ f £ , Jè̂  f/zen ez'zTzer 
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a = \, b = 0 or a = 2, b = -ae. 
2 

(ii) A divisor D = aÇE + b££ is ample if and only if a > 0, b > -ae. 

See [5, p. 382]. 
The determination of the very ample divisors on a ruled surface 

with g ^ 1, is more difficult than in the case of a rational ruled surface i.e., 
a Hirzebruch surface. There is moreover the following result which is 
stated as an exercise in [5, p. 385] and it is not too difficult to prove. 

(0.5.6) PROPOSITION. Let X be a geometrically ruled surface with invariant 
e over an elliptic curve e. Let 

L = lE®<£\ 

Then\ 
(i) There is a section of L and \L\ has no base points if and only if 

b S e + 2. 
(ii) The linear system \ÇE + b££\ is very ample if and only ifb = e + 3. 

(0.5.7) PROPOSITION. Let X be a geometrically ruled surface over a curve C 
with g = g(C) and invariant e. Let L = Ç°E ®J? be a line bundle on X with a 
> — 2. Then: 

(i) h\L) = 0 for b > 

ae + 2g - 2 + e ife^O 

-ae + 2g - 2 ife<0 

(ii) h°(L) - h\L) = (a + \)[b + 1 - g - y ) 

We will only sketch the proof of this proposition. In fact (i) follows 
showing that L ® K^x is ample and applying the Kodaira Vanishing 
Theorem, (ii) follows by the Riemann-Roch's theorem. 

By a ruled surface we mean a surface birational to a geometrically ruled 
surface. 

(0.6) PROPOSITION. Let L be an ample and spanned line bundle on a 
smooth, connected, projective surface X. Assume h (L) = 4, L • L ^ 5. Then 
Kx ® L is spanned. 

See [13, Theorem (0.8) ]. 

(0.7) PROPOSITION. Let L be an ample and spanned line bundle. Suppose 
that L is 3-connectedy h°(L) ë 7 and L • L ^ 10. Then Kx 0 L is very 
ample. 

The proof is the same as in [14, p. 406]. 
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1. The case of dim <j>ï(X) = 1. As we have seen in the introduction 

g = 3 , . . . , 6, h°(L) â h°(L) â 5 and 

(1.0.1) f( + A > ) Si ! ± I . 
o 2 

By Castelnuovo's inequality (0.3) if g = 3, 4, 

/,>'0(X) = 1, < / è 6 

if g = 5, 6, 

AKO(J!0 = 1, 2, </ â 7. 

By the long cohomology sequence of 

0 -»• Kx -» AT̂  ® L -» # c -» 0 

it follows that 

A ° ( ^ 0 L) = g - 1 if h*'°(X) = 1 and 

/!°(^x ® L) = g - 2 if A'-°(Jf) = 2. 

By [12, p. 390] we have: 

d = 4g - 8A1,0(Jf) + 4. 

Thus we have to study the following cases: 

g = 3, <? = 8, hx\X) = 1, A°(L) = 6, 7 
g = 4, J = 12, A 1 , 0 ^) = 1, /r°(L) = 9, 10 
g = 5, d = 16, / J 1 ' 0 ^ ) = 1, / J° (L) = 12, 13 

g = 5, J = 8, /î'*°(Ar) = 2, A°(L) = 5, 6 

g = 6, J = 20, A1,0(Jf) = 1, /i°(L) = 15, 16 
g = 6, <? = 12, A,,0(Jf) = 2, A°(L) = 6, 7, 8. 

A i 

(1.1) THEOREM. There exists a surface X which is a P bundle over an 
elliptic curve e with e = — 1 and on which there is a very ample line bundle L 

1 A A Q A 

with g(L) = 3, d = 8 and h (L) — 6. Such a line bundle is got­
ten by L = f | ® JS? 

To prove this theorem we need the following lemma. 
A A 2 

(1.2) LEMMA. Le/ Xèe as /« //*e tfZ>ove theorem. Then L = ÇE®J£satisfies 
the hypothesis in the above theorem. 

Proof. By Proposition (0.7) if we write 

then we need to show that: 
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(1) ÇE is ample 

(2) ÇE is spanned 

(3) h\$E) S 7 

(4) tfr-ti^ 10 
(5) J^ is 3-connected. 
First of all 

& • & = 4f • 4? = 16. 

Hence (4) is satisfied. To see that h (ÇE) = 7, we use Proposition (0.5.7). 
Therefore (3) is also satisfied. To show that (2) is true, consider the long 
cohomology sequence of 

A 4 

where/is a generic fibre of X. f E is spanned since it is a degree four line 
bundle on P . 

by the Kodaira Vanishing Theorem since 

^E®[/YX = ( f £ 2 ® - S 0 ® ( f | ® [ / ] _ 1 ® - ^ _ 1 ) = ^ ® ^ 

where 

yl EE f | ® [ / ] _ 1 ® o ^ _ 1 

is ample by Proposition (0.5.5). S ince / i s a generic fiber and 

H\&) -> H 0 ^ ) -> 0 

it follows that ÇE is spanned. So (2) is also true. Since (1) follows 
immediately by Proposition (0.5.5), it remains only to show (5) i.e., that 
ÇE is 3-connected. To prove that ÇE is 3-connected we have to show 
that if D e |f£|, then for every splitting D = Dx + D2 with Dx 

and D2 effective, the inequality Dx • D2 = 3 holds. Since D is ample 
D , - D 2 ^ l and 

D • Di = Dx • £>, -f D2 • D,. > 0 for / = 1, 2. 

Since D « 4f£ it follows that 4 divides Z> • D} and also D • D2. 
Assume Dx • D2 = 1. Then by the above 

£>, • D,. ^ 3 for / = 1, 2. 

By the Hodge Indew Theorem we have the contradiction 

9 ë (Z), • />,) • (D2 • D2) g (Z>, • Z>2)
2 = 1. 

Similar reasoning and the fact that D • D = 16 take care of the case 
Z), • D2 = 2. 
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At this point, in order to prove Theorem (1.1), it remains to prove that 
«3 = 8, g(L) = 3 and h°(L) = 6. 

d = (itE + se) • {iiE + se) = 4 + 4$E • se+ se- se= 8 

2g(L) - 2 = 2g{?E®Sn ~ 2 

= (2t;E + se) • (Kfi + 2iE + se) 

= QXE + se) • (-2££ + se+ 2f£ + se) = 4 

hence 

g ( ? | ® ^ ) = 3. 

By Proposition (0.5.7) we have 

A°(?|0JS?) = 6, 

thus the proof of Theorem (1.1) is now complete. 
A 

Remark. The example in the above theorem is the only one with L very 
ample and with the given numerical invariants. In fact let 

L = Ça
E®£>b. 

By [12, Proposition (2.1)] and (0.5.3), a = 2, b = 2 + e. By (0.5.2), 
e ^ — 1. Using Proposition (0.5.4) and (0.5.5), we have that 

is ample only for e = — 1, 0, 1. Moreover, since 

d e g ( f | ® ^ + 2 | £ ) ^ 2 fore = 0, 1, 

it follows that for e = 0, 1, f| ® ^ e + 2 cannot be very ample. 

(1.3) THEOREM. T/zere ex/sf surfaces X which are P bundles over 
an elliptic curve e and such that there are very ample line bundles L on 

A A r\ A 

them with g(L) = 4, d = 12 and h (L) = 9. Examples are: 
( l ) I w P 1 X eandL = 0pi(2) ® ^c(3X 
(2) 1 = &>(E) with e = -\andL = fE®£>2, 
(3) X = £*(£) wirt e = 0andL = fE ® ^ . 
Proof. Since d = 12 by the long cohomology sequence associated to the 

short exact sequence 

(1.3.1) O - > 0 £ - * L - > L | £ - » 0 
o A 

we obtain h (L) = 9, 10. It is known, see [5], that the very ample line 
bundles on P1 X e are of the type 0p\(q) ® 0e(p) w l t n Q = 1 and/? ^ 3 
and that 
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Moreover, using the adjunction formula, 

g(0Pi(?) ® 0<(p) ) = pq ~ P + i-

Therefore if q = 2 and p = 3, then 

g(<V(2) ® W) ) = 4. 

Furthermore 

A°(0p'(2) ® 0€(3) ) = 9 

since by Kunneth theorem 

A°(0P'(2) ®'^(3) ) = Z«VP"(2) ) • A°(0€(3) ). 

Now we will give another example such that h (L) is again nine. To do 
this consider X given by 0(E) with e = -1 and L = Ç°E ® J ^ . If 
g = 4, then, by the adjunction formula, it follows that 

(1.3.2) (a - 1) • (a + 26) - 6. 
A 

Moreover, since J = 12, 

(1.3.3) a • (a + 2ft) = 12. 

Dividing (1.3.3) by (1.3.2), we obtain 

a - 1 

i.e., a = 2. Hence 6 - 2 and L = f| ® ^ 2 . To show that f| ® J^2 is very 
ample, consider the short exact sequence 

o - > 0 * - > £ * - * ?inf - > o 

and tensor it with ÇE ® J?2. We get 

o ->iE®se2 - > f | ® ^ 2 -> i \®se \ ->o . 
Applying Proposition (0.5.6) it follows that f£ ® <£2 is very ample. 
Furthermore lE ® i^2 |c is a very ample line bundle on the elliptic 
curve €. Then, by Proposition (0.4), it follows that f| ® J£?2 is very ample. 
By Proposition (0.5.7) it follows that 

A°(£|®J2?2) = 9. 

To complete the proof of the theorem we have to show that if X = 
0(E) with e = 0, then 

L = ?E®&\ 
By (0.5.2) 

12 = -a2e + 2aZ> 
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and 

6 = — a e + ae + lab — 2b. 

So a = 2 and b = e + 3. If e = - 1 , 

L = f | ® ^ 2 

which gives the example which we have already studied. If e = 0, then 

L = $1®^ 

which is very ample by Proposition (0.4). Again by Proposition (0.5.7) we 
have 

A°(?|®-S?3) = 9. 

If e > 0 then 

L = fE®^+e 

but 

d e g ( ? | 0 ^ 3 + c | c ) = 3 - e < 3 . 

Then by the sequence 

0 -* f£ ® ^ 3 + e -» f| ® ^ 3 + e -> f | ® ^ 3 + e | e -> 0 

we have that f | ®o£?3+é' is not very ample. 
A i A 

(1.4) THEOREM. Let Xbe aP -bundle over an elliptic curve e and La very 
ample line bundle on it. Then 

(£, L) = (P1 X c, 0pi(2) ® 0€(4) ) flwrf 

( 1 , L) = (P1 X c, 0pi(2) ® 0e(5) ) 

give examples respectively for g = 5, d — 16, /z (L) = 12 a/?d g = 6, 
d = 20, A°(L) = 15. 

Proof. Proceed as in the previous theorem. 

(1.5) THEOREM. Let X be a P -bundle over an elliptic curve e and 
A A ^ Q A 

La very ample line bundle on it. Then jor g = 5, d = 16, /z (L) = 12, 
examples are given by 

(i) ( 1 , L) = (^ (£ ) , ^ ® o^3) w/Y/z e = - 1 
£i) (£, L) = (&{E\ t \ 0 ^ 4 ) with e = ° wW/é? for g = 6, d = 20, 

/z (L) = 15, examples are given by 
(iii) (X, L) - ( ^ (£ ) , f! ® JS?4) w//7z e = - 1 

(iv) (X, L) = (^>(£), ? | ® JSf5) w//7z e = 0. 

Proof. H g = 5, by (0.5.3), we get that a = 2 and b = 4 + e. Thus if 
e = - 1 , 
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L = ?E®£>\ 

if e = 0, 

L = f | ® ^ 4 

and if e > 0, 

L = l\®S£^e. 

As in the proof of Theorem (1.3) we see that f | ® J^3, f | ® if4 are very 
ample and that 

/z°(f|®j^3) = 12, A°(?i®^4) = 12-

If g = 6, by (0.5.3), we get a = 2 and b = 5 + e. Thus if e = — 1, 

L ^?E®£>\ 

if e = 0, 

L = f | ® i ? 5 

and if e > 0, 

L = f |®JS? 5 +*. 

As before we see that 

h\i\®SeA) = 15 and /z°G*|®J^5) - 15. 

Now we would like to prove the following theorem. 

(1.6) THEOREM. Let X = 0(E) be a ruled surface over an elliptic curve c. 
Then L = Ça

E ® Seh is very ample if 

a ^ 1 and b ^ max {3 + ke). 

Proof By Proposition (0.5.6) we have that ÇE ® & is very ample for 
b ^ e + 3 and is only spanned for b = e + 2. Suppose b ^ e + 3 and 
consider the long cohomology sequence of 

(1.6.1) 0 ^ f £ ® J ^ ^ ^ ® J ^ ^ ^ ® ^ \ - > 0 . 

$E ® ££ is very ample by Proposition (0.5.6). Moreover 

deg(£| ®<?%) = (2$E + b<?) • lE = -le + b 

and since the degree of a very ample line bundle on an elliptic curve has 
to be at least three, we have that, for b ^ 3 + 2e, the line bundle 
fE ® ££ |c is very ample. Now using the long cohomology sequence of 

o -> JS?* -> iE®seb -> tE®&\ -> o 

and the fact that by the Leray spectral sequence 
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ti(?b) = h'(<?X), 

we have that 

H\$E®&b) = 0. 

Hence by Proposition (0.4), f| ® ££b is very ample for 

b ^ max{e -f 3, 3 + 2e}. 

By inductive argument, using sequences obtained by tensoring the short 
exact sequence (1.6.1) by powers of f£, we obtain that Ça

E ® ££h is very 
ample for a â 1, and 

b ^ max {3 + ke}. 

Thus if e = -1, b â 2; if e = 0, b â 3 and if e > 0 then 
b ^ 3 + ae. 

Now we study the cases in which h]fi(X) = 2. Consider the case in 
which g = 5, d = 8, /*U0(Z) = 2. Let A°(L) = A 5 . Since ^ 7 w e have 
to consider the two cases in which either X = X or X is gotten by blow-

A . A? 2 

ing up one point. If X = X, by Proposition (0.2) cx = cx = — 14 which 
contradicts 

c] = 8 ~ SA1 '0^) = - 8 . 

In the other case d = 7 and by Proposition (0.2Ï q = — 1 which contra­
dicts again the fact that c] = - 8 . Thus h°(L) = 6 and * = X by 
Castelnuovo's Inequality and by a degree consideration. Let, as usual 

By [12, Proposition (2.1)], it follows that a = 2 while, using (0.5.3), 
we obtain & = e + 3. Since L is an ample line bundle, applying Proposi­
tion (0.5.4) and Proposition (0.5.5), we get e = — 2, . . . , 1. Moreover 

deg(£y = 2 - e 

which, in our case, is always less than or equal to 4. Therefore, since f E is 
a genus two curve, L\t is not very ample and consequently L is not 

* E A 

very ample. But this contradicts L = L. 
It remains to study the case: 

g = 6, hU0(X) = 2, d = 12, c\ = - 8 , A°(L) = 6, 7, 8. 

Let L = ^ ® JSP*. By [12, Proposition (2.1) ] it follows a = 2, while 
using (0.5.3), we obtain Z> = e + 3. Since L is an ample line bundle, 
applying Proposition (0.5.4) and Proposition (0.5.5), we get — 2 ^ e ^ 2. 
Moreover 
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deg( iy = 3 - e= 1,...,5. 

Therefore for e = — 1,. . . , 2, 

L = f | ® ^ + 3 

is ample but not very ample, while for e = — 2, i.e., 

L = f |®JS? 

is ample but we don't know if it is very ample. 

d i m ^ * ) g h^(X) h2\X) d $\ h\L) h\Kx®L) ^ ^ s of ( i ^ L V ft v f v 1 v / v * W l t h L v e r y a m ] 

1 3 1 0 8 0 6 2 (<? = - 1 , f | ® JSf) 1 3 1 0 8 0 6 2 (e = - 1 , £ ! ® J S ? ) 

1 4 1 0 12 0 9 3 
(P1 X €, 0pi(2) ® 0e(3) ) 
(e = -\A2

E®^2) 
(e = 0, fE®^) 

1 5 1 0 16 0 12 4 
(P1 X €, 0pi(2) O 0f(4) ) 
(e - - l , f | ® J 2 ? 3 ) 

1 6 1 0 20 0 15 5 
(P1 X c, 0pi(2) ® 0€(5) ) 
(e = - l , f | ® J S f 4 ) 
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