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Abstract Let X ⊂ R
2 be the graph of a Pfaffian function f in the sense of Khovanskii. Suppose that X

is non-algebraic. This note gives an estimate for the number of rational points on X of height less than
or equal to H; the estimate is uniform in the order and degree of f .
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1. Introduction

In [8] and [10] I have studied the distribution of rational points on the graph X of a
transcendental real analytic function f on a compact interval. I have shown that the
number of rational points of X of height (see Definition 1.2 below) less than or equal
to H is Of,ε(Hε) for all positive ε.

Suppose that X is the graph of a function that is analytic on a non-compact domain,
such as R or R+. To bound the number of rational points of height less than or equal to H

on X requires controlling the implied constant in the above estimate over the enlarging
intervals [−H, H].

In the estimate in [10], the implied constant depends on a bound for the number of
solutions of an algebraic equation in P (x, f), where P ∈ R[x, y] is a polynomial (of degree
depending on ε), as well as a bound for the number of zeros of derivatives of f (of order
depending on ε). In general, these quantities may not behave at all well over different
intervals.

However, these numbers are globally bounded for the so-called Pfaffian functions (see
[3, 6] and also Definition 1.1 below), indeed they are bounded uniformly in terms of
the order and degree of the function (see Definition 1.1). For this class of functions, a
uniform estimate on the number of rational points of bounded height may be obtained
by adapting the methods of [2,8,10].
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Definition 1.1 (see Definition 2.1 in [3]). Let U ⊂ Rn be an open domain. A
Pfaffian chain of order r � 0 and degree α � 1 in U is a sequence of real analytic
functions f1, . . . , fr in U satisfying differential equations

dfj =
n∑

i=1

gij(x, f1(x), f2(x), . . . , fj(x)) dxi

for j = 1, . . . , r, where x = (x1, . . . , xn) and gij ∈ R[x1, . . . , xn, y1, . . . , yr] of degree less
than or equal to α. A function f on U is called a Pfaffian function of order r and degree
(α, β) if f(x) = P (x, f1(x), . . . , fr(x)), where P is a polynomial of degree at most β � 1.

The usual elementary functions ex, log x (but not sinx on all R), algebraic functions,
combinations and compositions of these are Pfaffian functions (see [3,6]). In this paper
n is always equal to 1, so x = x. A Pfaff curve X is the graph of a Pfaffian function f

on some connected subset of its domain. The order and degree of X will be taken to be
the order and degree of f .

Definition 1.2. For a point P = (a1/b1, a2/b2, . . . , an/bn) ∈ Qn, where aj , bj ∈ Z,
bj � 1 and (aj , bj) = 1 for all j = 1, 2, . . . , n, define the height H(P ) = max{|aj |, bj}.
Note that this is not the projective height. If X ⊂ Rn let X(Q) = X ∩ Qn and let
X(Q, H) be the subset of points P with H(P ) � H. Finally, put

N(X, H) = #X(Q, H) = #{P ∈ X(Q), H(P ) � H}.

Theorem 1.3. There is an explicit function c(r, α, β) with the following property.
Suppose X is a non-algebraic Pfaff curve of order r and degree (α, β). Let H � c(r, α, β).
Then

N(X, H) � exp(5
√

log H).

Now, in certain cases where the polynomials defining the chain have rational (or alge-
braic) coefficients, results in transcendence theory show that the number of algebraic
points of X is finite, indeed explicitly bounded (see, for example, [7,11]). On the other
hand, the example X = {(x, y) : y = 2x, x ∈ R} shows that the set X(Q) is not finite in
general. For many X, e.g. the graph of y = eex

, finiteness is unknown.
For the example X = {(x, y) : y = 2x, x ∈ R}, N(X, H) = O(log H) of course.

I know of no examples in which the growth of N(X, H) is faster than this, so the
above bound might be very far from the truth. Note, however, that elementary con-
siderations do not suffice to establish better bounds on N(X, H) for, for example,
X = {(x, y), y = log log(eex

+ ex)}, for which finiteness of X(Q) is presumably expected.
The methods herein are also applicable to algebraic curves: indeed the fact that Pfaffian

functions have finiteness properties analogous to algebraic functions was the impetus
for applying those methods to them. Since algebraic functions are Pfaffian [6], it is
appropriate to record here the following improvement to the result obtained in [10].

Theorem 1.4. Let b, c � 2 be integers and let H � 3. Let F (x, y) ∈ R[x, y] be
irreducible of bidegree (b, c). Let d = max(b, c) and let X = {(x, y) ∈ R2, F (x, y) = 0}.
Then

N(X, H) � (6d)104dH2/d(log H)5.
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The improvement over the result of [10] is that the exponent of log H is here indepen-
dent of d; the exponent 2/d of H is best possible. I refer to [10] for discussion of related
results [1,5].

2. The main lemma

Let M = {xhyk : (h, k) ∈ J} be a finite set of monomials in the indeterminates x, y. Put

D = #M, R =
∑

(h,k)∈J

(h + k), s = max
(h,k)∈J

(h), t = max
(h,k)∈J

(k),

S = D(s + t), ρ =
2R

D(D − 1)
, σ =

2S

D(D − 1)
, C = (D!DR)2/D(D−1) + 1.

Note that S � R for any M . If Y is a plane algebraic curve defined by G(x, y) = 0, say
Y is defined in M if all the monomials appearing in G belong to M .

Lemma 2.1. Let M be a set of monomials with D � 2 and S � 2R. Let H � 1,
L � 1/H2 and let I be a closed interval of length less than or equal to L. Let f ∈ CD(I)
with |f ′| � 1 and f (j) either non-vanishing in the interior of I or identically zero for
j = 1, 2, . . . , D. Let X be the graph of y = f(x) on I. Then X(Q, H) is contained in the
union of at most

(4CD41/ρ + 2)LρHσ

real algebraic curves defined in M .

Proof. Fix M , H. If f is a function satisfying the hypotheses on some interval I, and
X is the graph of f on I, then the set X(Q, H) is contained in some minimal number
G(f, I) of algebraic curves of degree less than or equal to d; let G(L) be the maximum
of G(f, I) over all intervals and functions satisfying the hypotheses.

Now suppose that f is such a function on an interval I = [a, b], and A � 1. An
equation f (2)(x) = ±2AL−1 has at most one solution in the interior I, unless it is satisfied
identically. Suppose c is a solution. Since f (2), f (3) are one-signed throughout I, it follows
that |f (2)(x)| � 2A2/(D−1)L−1 in either [a, c] or [c, b], and |f (2)(x)| � 2A2/(D−1)L−1 in
(respectively) either [b, c] or [a, c]. Now an interval with the latter condition has length
less than or equal to 2A1/(D−1) by [10, 2.6] (or [2, Lemma 7]) applied with A = A2/(D−1).

Continuing to split the interval at points where

f (κ) = κ!Aκ/(D−1)L1−κ, κ = 2, 3, . . . , D,

yields a (possibly empty) subinterval [s, t] in which |f (κ)| � κ!Aκ/(D−1)L1−κ for all
κ = 1, 2, 3, . . . , D, while the intervals [a, s], [t, b] comprise fewer than or equal to D

subintervals of length less than or equal to 2A−1/(D−1)L (by [10, 2.6] (or [2, Lemma 7])
applied with A = Aκ/(D−1)), and so have length at most 2DA−1/(D−1)L. (If [s, t] is
empty, take s = t = b.)

On [s, t], the points of height less than or equal to H lie on at most CA1/(D−1)HσLρ

curves in M by [10, 2.4]. Therefore, the function G(L) satisfies the recurrence

G(L) � CA1/(D−1)HσLρ + 2G(λL)
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when L � 1/H2, where λ = 2DA−1/(D−1). Thus, provided λn−1L � 1/H2,

G(L) � CA1/(D−1)HσLρ(1 + 2λρ + · · · + (2λρ)n−1) + 2nG(λnL).

Choose A such that 2λρ = 1
2 , that is, A1/(D−1) = 2D41/ρ (so A � 1), and choose n such

that
λ

LH2 � λn <
1

LH2 .

Then G(λnL) � 1, while

2n = λ−nρ/2 �
(

LH2

λ

)ρ/2

= 2(LH2)ρ/2 � 2LρHσ.

Therefore, G(L) � (4CD41/ρ + 2)HρLσ as required. �

3. Pfaff curves

Since a Pfaffian function of order r = 0 is a polynomial, to which Theorem 1.3 is inap-
plicable, it is convenient now to assume that r � 1.

Proposition 3.1. Let f1, . . . , fr be a Pfaffian chain of order r � 1 and degree α on an
open domain U ⊂ R, and let f be a Pfaffian function on U having this chain and degree
(α, β).

(a) Let k ∈ N. Then f (k) is a Pfaffian function with the same chain as f (so of order r)
and degree (α, β + k(α − 1)).

(b) Let P (x, y) be a polynomial of degree d. Suppose that f is not algebraic. Then the
equation P (x, f(x)) = 0 has at most

21+r(r−1)/2dβ(rα + dβ)r

solutions.

(c) Let V ⊂ U be an open set on which f ′ �= 0 and k � 1. Then on V there is an
inverse function g of f , and the number of zeros of g(k) on V is at most

21+r(r−1)/2((k − 1)(β + k(α − 1)))(rα + ((k − 1)(β + k(α − 1))))r.

Proof. Part (a) follows from [3, 2.5].
For part (b), observe that P (x, f(x)) is a Pfaffian function of order r � 1 and degree

(α, dβ). Since f is not algebraic, all the solutions are isolated and the result is in [3, 3.3].
Part (c). By differentiating the relation g(f(x)) = x and simple induction, for k � 1,

g(k)(y) =
Qk(f (1), f (2), . . . , f (k))

(f ′(x))2k−1 ,

where Qk(z1, z2, . . . , zk) is a polynomial of degree γk = k − 1. Since f (j) are Pfaffian
functions with the same chain, the function Qk(f (1), f (2), . . . , f (k)) is a Pfaffian function
of order r and degree (α, γk(β + k(α − 1))). The statement now follows from (b). �
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Proof of Theorem 1.3. Let d � 2 and let M = M(d) be the set of monomials of
degree d in x, y. Then, elementarily (see [10]),

D =
d(d − 1)

2
, ρ =

8
3(d + 3)

, σ = 3ρ, C � 6.

Subdivide the connected domain U into at most

22+r(r−1)/2(β + α − 1)(rα + β + α − 1) + 1 � 21+r(r−1)/2((r + 1)(α + β))r+1

intervals on which f ′ � −1, −1 � f ′ � 1 or f ′ � 1, and then divide further into
subintervals on which the inverse g has non-vanishing derivatives up to order D in the
first and third cases, or f has non-vanishing derivatives up to order D in the second case.
The total number of intervals is at most

22+r(r−1)/2((r + 1)(α + β))r+1D22r(r−1)(β + D(α − 1))(r + D(β + D(α − 1)))r.

Intersecting with the interval [−H, H] of the appropriate axis, these intervals are of
length less than or equal to 2H. By Lemma 2.1, in each interval the points of X(Q, H)
lie on at most

(24D41/ρ + 2)(2H)ρH3ρ � 6d241/ρ2ρ

real algebraic curves of degree d; the number of points of X on a curve of degree d is at
most

21+r(r−1)/2dβ(rα + dβ)r.

Combining these estimates yields

N(X, H) � c′(r, α, β, d, D)43(d+3)/8H32/(3(d+3)).

Let t = 3
8 (d + 3). Choose d so that t is as near as possible to (and so within 1

2 of)√
4 log H/ log 4. Then 4

√
log 4 < 5, and noting that d, D appear polynomially in c′ com-

pletes the proof. �

Remark 3.2. Note that the constant 5 in Theorem 1.3 can be improved by further
optimizing the proof. However, a bound of the shape exp(c

√
log H) seems to be the best

obtainable by the present method.

Remark 3.3. A result can be formulated for any real analytic (or even smooth)
function f with suitable finiteness properties (zeros of derivatives, derivatives of the
inverse, and algebraic relations). An example of such a function that is not Pfaffian is
exhibited in [4]. (Indeed, the given example ex + sinx does not belong to any o-minimal
structure (see [4]).)

Remark 3.4. I expect that a similar result would hold in higher dimensions for Pfaff
manifolds: that is, a uniform (in ‘complexity’) Hε bound for rational points that do not lie
on some semi-algebraic subset of positive dimension (cf. the conjectures for subanalytic
sets made in [9, 10]). A similar result should hold for sets definable in an o-minimal
structure.
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4. Algebraic curves

For integers β, γ � 2 let

M(β, γ) = {xhyk : 0 � h � β − 1, 0 � k � γ − 1}.

Then [10], for M = M(β, γ),

D = βγ, R = 1
2D(γ + β − 2), S = D(β − 1 + γ − 1) = 2R, C � 2D,

and (elementarily)

max
(

1
β

,
1
γ

)
� ρ � 1

β
+

1
γ

.

Proof of Theorem 1.4. The proof adapts the proof of [10, 1.4] using Lemma 2.1
instead of [10, 4.2].

Consider first a C∞ function f on a subinterval of [−1, 1] with |f ′| � 1, with f (j)

either non-vanishing or identically vanishing for j = 0, . . . , D. Suppose that f satisfies
an irreducible algebraic relation of degree (b, c), d = max(b, c). If d = b, take M = (d, δ)
with δ � d; if d = c, take M = M(δ, d) with δ � d. Then, by Lemma 2.1, X(Q, H) is
contained in the union of at most

10d2δ24d2ρH2ρ � 20d2δ24dH2/d+2/δ

curves defined in M . The intersections are proper, X is of degree less than or equal
to b + c � 2d, the curves in M are of degree less than or equal to 2δ, so

N(X, H) � 80d3δ34dH2/d+2/δ.

Next consider an algebraic curve X defined by F (x, y) = 0 in the box B = [−1, 1]2,
where F is irreducible of bidegree (b, c) and d = max(b, c). Then X has at most 2d(2d−1)
singular points, and at most 4d(d−1) points with slope ±1. So X ∩B consists of at most
20d3 graphs of C∞ functions f with slope |f ′| � 1 relative to one of the coordinate axes.

For each such function, the domain can be divided into at most 8d2D2 subintervals (see
[2, Lemmas 5 and 6]) in which f (j) is non-vanishing or identically zero, j = 1, 2, . . . , D.
So

N(X, H) � 25 · 210d10δ54dH2/d+2/δ.

Finally, let F (x, y) be of bidegree (b, c), d = max(b, c), X = {(x, y) ∈ R2 : F (x, y) = 0}.
Let P = (x, y) ∈ X(Q) with H(P ) � H. Then one of the following holds:

(i) |x|, |y| � 1,

(ii) |x| � 1, |y| > 1,

(iii) |x| > 1, |y| � 1,

(iv) |x| > 1, |y| > 1.
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In case (i), P lies in the box [−1, 1]2 ⊂ R2. In case (ii), the point Q = (x, 1/y) is on the
curve Y : ycF (x, 1/y) = 0. This curve is also irreducible and of bidegree (b, c) (because
F must have a term independent of y). The point Q is then in the box [−1, 1]2 and
has H(Q) � H. Likewise, in cases (iii) and (iv) the corresponding points R = (1/x, y),
S = (1/x, 1/y) lie on irreducible curves xbF (1/x, y) = 0, xbycF (1/x, 1/y) = 0 of bidegree
(b, c) in the box [−1, 1]2 and have height less than or equal to H.

Therefore, up to a factor 4, it suffices to consider the points of F inside the box [−1, 1]2,
so

N(X, H) � 100(2d)104dδ5H2/d+2/δ.

Take δ to be the least integer exceeding log H. Then, provided H � ed (so that δ � d),

N(X, H) � 100e2215d10(log H)54dH2/d.

However, for log H � d the bound is easily seen to hold. �
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