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DETERMINATION OF THE THREE-DIMENSIONAL 
VELOCITY FIELD IN A GLACIER * 

By C. F. RAYMONDt 

(California Institute of Technology, Pasadena, California g IIOg, U .S.A. ) 

ABSTRACT. A method for the determination of the three-dimensional velocity field in a glacier is described. 
M easurements in three or more bore holes arranged in an appropriate array a re needed for its applica tion. 
Surface motion measured by triangulation and tape measure, bore-hol e p rofiles given by inclinometry, a nd 
the geometry of the bed are all considered simultaneously in order to determine the velocity field. The 
basic assumption is that velocity between the bore holes can be represented by suitable interpola tion based 
on the measurements in the holes. I ce displacement parallel to bore holes is ca lculated indirectly from 
incompressibility and the cons tra int that velocity normal to the bed be zero. As an example, the method is 
applied to an array of 9 bore holes in Athabasca G lacier. 

R ESUME. D etermination du champ des vitesses dans les trois dimensions sur un glacier. On decrit une methode 
pour la determina tion du champ des vitesses dans les trois dimensions sur un glacier. Dans son application 
il faut faire des mesures dans 3 ou plus trous de forage repanis suivant une di position appropriee. Les 
mouvements en surface mesures par triangulation et chainage, les profils des forages donnes par inclino­
metrie et la geometrie du lit sont pris en compte simul tanement afin de determiner le champ de vitesse. 
L'hypothese de base est que la vitesse entre les forages peut etre representee par une interpolation convenable 
basee sur les mesures dans les forages. Le deplacement de la glace parallelement aux forages est calcule 
indirectement it pa rtir de I' incompressibili te de la glace et de l'obligation que la vitesse normale au lit soit 
pulle. La methode est appliquee, it titre d 'example, pour un res eau de 9 trous de forage dans le Glacier 
de l'Athabasca. 

ZUSAMMENFASSUNG. B estimnwng des dreidimensionalen Geschwindigkeitifeldes ill einem Gletscher. Eine Methode 
zur Bes timmung des dreidimensionalen Geschwindigkeitsfeldes in einem Gletscher wird beschrieben. Zu 
ihrer Anwendung sind M essungen in drei od er mehr geeignet angeordneten Bohr1ochern notwendig. Zur 
Bestimmung des Geschwindigkeitsfeldes werden gleichzeitig die OberAachenbewegung, gemessen mittels 
Triangulation und M essband, Bohrlochprofile, bes timmt mit Hilfe der Klinometrie, und die Geometrie des 
Gletscherbettes hera usgezogen. Die grundlegende Annahme dabei ist, dass die Geschwindigkeit zwischen 
den Bohrlochern durch geeignete Interpola tion, die sich auf die M essungen in den Lochern stiltzt, erfasst 
werden kann. Die Eisverschiebung parallel zu den Bohrlochern wi rd indirekt a us der Inkompressibi litat 
und der Zwangsbedingung, dass die Geschwindigkeit senkrecht zum Untergrund gleich N ull ist, berechnet. 
Als Beispiel wi rd die M ethode auf eine Anordnung von 9 Bohrlochern auf dem Athabasca Glacier 
angewendet. 

INTRODUCTION 

~1easurement of tilting in isolated single bore holes cannot give complete strain-rate 
information at depth in a glacier. The analysis of such measurements therefore requires 
some assumptions about the pattern of fl ow at dep th (Gerrard and others, 1952; Nye, 1957; 
Savage and Paterson, 1963). Although such assumptions can often be supported by indirect 
observations a nd theoretical arguments, tests of the natural rheological behavior of glacier 
ice and the applicability of theoretical analyses of glacier flow become more convincing with 
a direct measurement of all of the strain-rate components . Tilt measurements in several 
bore holes arranged in a suitable array make it possible to determine the components of 
velocity and strain-rate within a glacier with a significantly reduced number of assumptions. 
The purpose of this paper is to describe a general technique for completely determining internal 
velocity and strain-rate from measurements in three or more holes . It is applied to m easure­
ments made in a nine-hole array on Athabasca Glacier . 

The problem of determining ice velocity and deformation from bore-hole mea urements 
needs special consideration because of a fundamental deficiency in the techniques presently 
used . Tilt measurements within a bore hole and location of the surface intersection of a 
bore hole by triangulation can define the coordinates of points on the hole trace, but are not 
sufficient to distinguish different ice elements along the hole. Thus the motion of the bore hole 
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as determined by such measurements repeated in time can only give the components of 
velocity normal to the hole trace, but not the component parallel to the trace. One must 
assume a distribution of velocity parallel to the hole in order to compute the three components 
of velocity in any coordinate system of interest. Even if a technique were devised for tagging 
elements of ice along the length of the hole, measurements in a single hole can at best 
determine the hole-parallel gradients of velocity or three independent velocity gradients. 
For an unambiguous determination of the components of strain-rate, knowledge of all nine 
velocity gradients is required. The purpose of a bore-hole array is to allow the estimation 
of some of the remaining velocity gradients by comparison of displacements in adjacent holes 
as done by Shreve and Sharp (1970), Savage and Paterson (1963), and Kamb and Shreve 
(1966) . 

Mter introducing necessary notation, formulae relating measured displacement in a single 
bore hole to the components of velocity and strain-rate are derived. Then it is shown how 
these formulae can be used in conjunction with a continuity condition (incompressibility) 
and a suitable scheme for interpolating between bore holes to calculate self-consistent velocity 
and strain-rate fields for the volume of ice included within the bore-hole array. 

COORDINATES AND NOTATION 

The method is described using an orthogonal right-handed coordinate system (x, y, z) 
such that the y = 0 plane approximates the glacier surface in the area of the bore-hole 
array and the y axis points downward. For the purpose of the following description the x 
and Z axes can assume any fixed azimuthal orientation. The x and z coordinates of a hole 
at time t are denoted as Xh(y, t ) and Zh(y, t ). The two functions Xh(y, t ), Zh(y, t ) give a para­
metric representation of the hole trace at time t. x and Z components of tilt are defined as 

aXh(y, I ) 
Yx (Y, t ) = ay , 

For the purpose of the analysis it is assumed that the functions Xh (Y, t ), Zh(Y, t ) have been 
determined by surface triangulation and integration of measured bore-hole tilts at two distinct 
times ti and If separated by an interval !:ll. For convenience of notation, hole coordinates 
and tilt components at times ti and If are denoted by superscripted quantities, e.g. 
Xh(y, ti ) = Xhi (y ), etc. 

SINGLE BORE-HOLE ANALYSIS 

Since a bore hole is approximately vertical on initial implacement, it is sub-parallel to 
the y axis when the glacier surface is not very steep as is usually the case. Thus to a first 
approximation the components of velocity normal to the bore hole are a direct measure of 
the x and Z components of velocity u and w. With this in mind formulae are developed 
which give u and w and their gradients in the Y direction in terms of the measured bore-hole 
displacements and additional terms of smaller contribution. These terms involve knowledge 
of the third component of velocity v and the x and z gradients of all three components of 
velocity along the bore hole and are of increasing importance where the glacier surface is 
steep and the pattern of flow deviates significantly from simple shear parallel to the surface. 

The basic equations. Consider the bore-hole displacement in the xy plane (Fig. I ) . Since 
the Y component of velocity v is in general non-zero, a specified element of ice initially at 
depth yi lies at a different depth yr after the time interval !:It. The average y velocity of the 
ice element is (yf_yi)/ !:lt. The path of the element projected on the xy plane is some curve 
joining Xhi(Vi ) and Xhf(yf) as indicated by the dashed curve in Figure I. The average x 
component of velocity of the element during the interval !:It is then [Xhf (yf ) -Xni (y l )] / !:lt. 
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Fig. [ . View of hole displacement projected on xy plane. 

The average velocity of an ice element is related to the velocity at a specific point in space 
as follows. Let t.y = yf-yi, and consider a depth y = (yf + yi )/2 halfway between the initial 
and final depths of the ice element. Define 

1 . t.y 
v(y) = t. t (yf-y' ) - t. t ( 1 ) 

a nd 

uCy) and v(y) represent the average velocity in the xy plane of the bore-hole element for which 
y i and yf are equal distances above and below depth y . ow defin e 

Xh(y) = t[Xbf(y) + Xbi(y )], 

(3) 
Xb(y) and Zb(Y) define a curve which is half-way between the initial and final hole traces. 
Intuitively it could be expected that the velocity of an ice element averaged over its path 
would be about the same as the velocity at a point half-way between its initial and final 
positions. This point is indica ted by the circled cross in Figure r. Thus it is assumed that 

v(y ) ~ V(Xh(y ),y, Zh(y )) , (4) 

u(y ) ~ U(Xh(y), y, Zh (Y)) · (5) 
If elements of ice along the bore hole are tagged in order to give direct measurement of t.y, 

then v(y) and u(y ) can be calculated from Equations (I) and (2). I fsuch tagging is not done, 
then one must a sume or estimate by other indirect measurements a distribution of v. This 
enables one to arrive at a value of v(y) from Equation (4) and t.y from Equation (I) in order 
to calcula te u(y) from Equation (2) and U(Xh(y ),y, Zh (y )) from Equation (5). The succeeding 
analysis is carried out for the latter case in which there is no direct measurement of 4J. 

Before discussing in general the nature of the approximations involved in Equations (4) 
and (5), it is worthwhile to consider them for simplified cases, which can be compared to 
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other treatments of bore-hole data. For notational convenience in these discussions, the 
variables in Equations (6) to (12) are written without arguments. It should be held in mind 
that these equations involve flow quantities along the curve defined by Equations (3). 

Consider the case for which the initial and final hole configurations are determined at 
times separated by only an infinitesimal time interval. In the limit t1t --» 0 

Xhr(y ) = Xh (y ) = Xhi (y ) = Xb (y, ti ) , 

Zb!(Y) = Zb(Y) = Zbi (y ) = Zb(y, ti ), 

and Equations (4) and (5) are exact. Equation (5) in combination with ( I) (2) and (4) gives 

(6) 

This is equivalent to an equation given by Savage and Paterson (1963, p. 4525), when the 
finite time interval in their equation is made infinitesimal. 

The differential form of Equation (6) can be derived either by direct differentiation of 
Equation (6) or by differentiation of Equations (2) and (5) and elimination of du/dy. The 
origin of the various terms is best seen by following the latter route. Differentiation of Equation 
(5) gives 

du OU OU OU 
dy = oy +Yx ox +Yz o£ 

This is identical with suitable change in notation, to an equation derived by Shreve and Sharp 
( 1970, p. 78) . Differentiation of Equation (2) gives 

du oYx oYx ( ov ov ov) 
dy = Tt+~ v+ Yx O),+ Yx ox +Yz oz ' (8) 

where Equations (1) and (4) have been used to express t1y and its derivative with respect to 
y in terms of v and its gradients. Eliminating du/dy between Equations (7) and (8) gives 

OU oYx oYx (OU ov) ov ( OV OV) 
ay = Tt+lY V-Yx ox - oy - Yz OZ +Yx Yx ox +Yz OZ . (9) 

With the simplification under the assumptions that the hole is straight (oYx joy = 0), the 
deformation field is of plane strain type (ojoz = 0), and the ice is incompressible 
(oujox+ ovjoy = 0), one gets 

(10) 

This is identical except for differences in notation, to the formula given by Nye (1957, 
p . 130) in his analysis of the Jungfraufirn bore-hole experiment (Gerrard and others, 1952). 
The above discussions show that the present treatment is equivalent to past analysis for an 
infinitesimal time interval. 

Equations (4) and (5) are applicable when the time interval between the initial and final 
determination of the hole coordinates is finite. However, in this case they are only approxi­
mate. To investigate the nature of the approximation it is useful to derive an equation 
equivalent to Equation ( IQ) but without the assumption of an infinitesimal time interval. 
As before, Equations (2) and (5) are differentiated with respect toy and combined to eliminate 
dujdy. ow, with the same assumptions about the bore hole and deformation field which 
lead to Equation (10) and the additional assumption that the velocity gradients are homo­
geneous, one gets 

( I I ) 
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This can be compared with Nye's equation for time-independent velocity (1957, p . 

- - f _ i ex 26.t -OU 2 OU/OX [ ( Ou)] 
oy -exp (26.t ou/ox)- r Yx yx· p ox' ( 12a) 

which is exact for a finite time interval under the above assumption. This equation wa. 
derived by integration with respect to time of Equation (10). Expansion of Equation ( In ) 
valid for 26.t ou/ox < 27T gives 

OU I (( OU)2) [( OU)4]) OU ay = 6.t (y,,/-yxi) I +t 6.t 2x + 0 6.t ax _( yxf+ yxi) ox ( 12b) 

where 0 [( 6.t ~:) n] represents the lowe t order term with non-zero coefficient not explicitly 

written. Comparison of this last result with Equation ( I I ) shows that in this simple case, 
Equation (5) gives a good approximation when 6.t ou/ox is small compared to one. 

More generall y, if the velocity fi eld i as umed only to be independent of time, it can be 
shown that 

6.y = V(Xh (y ),y, Zh(y )) 6.t{ 1+ 0 [( 6.t !::r] + 0 [( 6.t2Vl ox~2ixJ ]} , 

U(Y) = u(xn(y ),y, Zb(Y)) { 1+ 0 [( 6.t ::~r] + 0 [( 6. t2VI a~2ixJ ]}, 

du (y) _ ou _ _ ou _ 
~ -Yx(Y) ox (Xh(y ),y, Zh(Y)) -Yz(Y) oz (Xb(Y),y, Zb(Y )) 

where the lowest-order terms in the first a nd second spatial derivatives of the components 
of velocity are indicated. The actual form of the higher-order terms for the general case is 
considerably more complicated than for the case represen ted by Equations (12). H owever, 
error terms with 6.t OVj/ox," raised to the first power still do not appear. By assigning the 
average velocity of an ice element as given by Equations ( I) and (2) to a point closely halfway 
between its initial and final positions, an extra order of accuracy has been gained, as could 
be intuitively expected. 

lVlodifications of the basic equations. Equations (I), (2), (4), and (5) permit one to calculate 
the distribution of u along the curve defined by Equation (3) when v is known on that curve. 
However, for purposes of interpretation it is often more desirable to know the velocity a long 
a straight line normal to the surface, which in the present coordinates would be a line of 
constant x and z. In addition, for purposes of calculating x and Z gradients of velocity from 
velocity computed at adjacen t bore holes, it is highly desira ble to have the velocities given 
along lines of constant x and Z, so that the differentiation formulae are independent of depth. 
For these reasons the equations are modified so that only the values of flow quantities along 
the y coordinate line which passes through the surface inter ection of the initial bore-hole 
appear. For convenience in later di cussion, this Y coordinate line is referred to as the bore­
hole site. This is in contrast with the actual bore-hole loca tion which depends on time and 
depth. Ifys represents they coordinate of the top of the initial hole trace as shown in Figure I , 

then xni () ,s) and Zni (ys) give the x and Z coordinates of the bore-hol e site. To first order in 
[Xh(Y) -Xhi (yS)) and (Zh(Y) -Zbi(yS)], Equations (I) to (s) give : 

{ 
OV ov } 

6.y ~ 6.t v(Y)+ ox (y )[Xb(y )-Xbi(yS )]+oz (Y )[Zn(Y) -Zhi (ys)] , 
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1 . 
U(y ) ~ 6.t [Xbr (y+t~) - Xb' (y - t6.y )] + 

~ \ . ~ . +-;:;- (y ; [Xb(Y ) - XI,' (y S) ] + -;:;- (y ) [t b(Y ) +~b' (y S) ). ( 14) 
~ ~ 

For notational convenience velocity and velocity gradients are written simply as functions 
ofy, but represent the values at points (Xhi(ys),y, Zbi (ys)) . Equations (13) and (14) give U 

at the bore-hole site in terms of v and the X and Z gradients of all three velocity components 
evaluated at the bore-hole site. No further approximation is involved if the X and Z gradients 
of velocity are independent of X and z. 

One further useful modification of the analysis is to partition Equation (14) into contribu­
tions from the value of U at the surface and the differential motion between the surface and 
a point at depth. Call the plane y = Ys the datum plane and let 

D x = Xbf(yS) -Xbi(ys), Dz = Zbf(ys) -Zhi (yS) 

represent the hole displacements on the datum plane during the interval 6.t (Fig. I). Equation 
(14) applied at y = y . gives 

1 I OU I OU V(Ys ) 
Us = U(Ys ) = 6.tDx- ; OX (Ys) Dx- ; oz (Ys )Dz+ - 2- [Yxf(ys)+ yxi (ys) ] (15) 

when the surface segment of the hole lacks curvature, which in practice is the case to a very 
good approximation. (Note that Equation (15) also is applicable for calculation of surface 
velocity from measurements made on stakes frozen into the ice. It gives the velocity at the 
initial location of the stake.) Now let the hole coordinates be represented as 

Xb(y, t ) = Xb (Ys, t )+ 6.xb(y, t ), 

Zb(y, t ) = Zb(Ys, t )+ 6. zb(y, t ). 

If u(y) at depth is represented by 

then Equations (14) and (15) give 

I . 
Ud (y ) ~ 6.t [6.xh r(y + t 6.y ) - 6.Xh' (y-l6.y)]-

I OU . I CU . 
- ; ox (y)[6.Xbf (y )+ 6.Xh' (Y )]_ ; OZ (y )[6. zbf (y )- 6. zb' (y )]-

l OUd l OUd V(Ys ) . 
- ; Tx (y )D x-; Tz (y )Dz - -

2
- [y } (Ys )+ Yx' (Ys )). (16a) 

With 
W(Y ) = w(ys) + Wd(y ) 

identical considerations applied to the xz plane give 

I . 
Wd(Y ) ~ 6.t [6. zbf (y + t 6.y) - 6.Zb1(y - t 6.y)]-

I ~ . l ~ . 
-; OX (y)[6.xhf (y )+ 6.xb' (Y )]-; oz (y)[6. zbf (y )- 6. z b' (y )] -

I OWd I OWd v(Ys ) . 
- ; ox (y )Dx- ; Tz (y )Dz- - 2- [yi(ys) + Yz' (ys)]. (I6b) 

The greatest advantage of this seemingly more complex approach is that it provides an 
input channel for extra measurements at the surface, thereby improving to some extent the 
results at all depths. Surface velocity gradients (e.g. OUc.ys)/ Ox, OW (Ys )/ OZ, etc. ) can be 
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d etermined by triangulation and taping measurements in a wider network of stakes. Un­
certainty in the x and z gradients resu lting from a defic iency in number or spacing of bore 
holes can then be restricted to the calculation with respect to Ud and Wd (e.g. OUd (Y)/OX, 
OWd(Y)/OZ, etc. ) . 

An additional advantage of practical importance is that a long as the velocity field can 
be assumed to be time-independent, surface measurements and til t m easurement within the 
bore hole need not be made over the sam e time in terval. 

Indirect estimation if v. To complete the a na lysis for a single bore hole, it is only necessary 
to arrive at a distl' ibu tion of v versusy at the bOl'e-hole site. This decision must be based on 
the information at hand in each specific application. One possible way of proceding i as 
follows. When the surface layers of a g lacier are not composed of firn as in the ablation 
zone, the ice can be assumed to be incompre sible to a good approx imat ion; thus, 

I n this case, 

OU ov CW - +- +- = 0 ex 2y CZ . 

y 

J(OU dW ) 
v*(y ) = v()ls) - ox (f) + dz (f) d)!' 

)'0 

wou ld give a good approximation to v(y) . If the geometry of the glacier bed is known, 
additional input can be achieved by using the requirement that the velocity normal to the 
bed be zero as done by Savage and Paterson ( 1963) . The value Vb that V at the bed, depth 

) Ib, must have is 

where f3x and f3z are the x and Z components of slope of the bed with respect to the xz plane. 
Thus in order to take account of possible failure of the assumption of incompressibility and 
inaccuracy in (}u/(}x and ow/oz, v* can be adj usted to get an improved estimate of v : 

()I-)ls) z 
v(y ) = v*(y ) - (V*(Y b) -Vb) ( )z· 

Yb-Ys 
By using the square of the ratio (Y-)IS)/(Yb- Ys), significant adjustment of v* is limi ted to a 
zone close to the bed, where the uncertainty in evaluating ou/ox and ow/oz is greatest. 
Eq uation (19) can a lso be partitioned in to the value ofv at the surface and the value relative 
to the surface, so that 

ANALYSIS OF AN ARRAY OF BORE HOLES 

In order to apply the equations of the previous section to calculate the components of 
velocity at the ite ofa bore hole, the x and z gradients of velocity need to be known. Calcul a­
tion of the x a nd z gradients of velocity require knowledge of the velocity in several bore 
holes in a suitable array. This circular dilemma is conveniently overcome by the itera tive 
procedure schcmatically illu trated in Figure '2. As preparation for the iterative cycle values 
of the components of velocity and their x a nd z gradients at the surface of the bore-hole 
sites are calculated from triangulation and tape measurem ents on surface markers and the 
surface intersection of the bore holes. The urface values of flow quantiti es a re not changed 
in the iterative cycle. In the first step of the cycle, Equation (17), (19), or som e other equation 
is used to estimate v(y ). Equations (16) are used for the second step to get Ud and Wd. In the 
third and final step interpolating functions are fitted at each d epth to the values of Ud , Vd, 
and Wd calculated at the bore-hole sites. These functions rep re ent the distribution of Ud, 
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Vd , and Wd on the xz plane at a specified depth y; differentiation of the interpolating functions 
determines the x and z gradients. The cycle is repeated until no change in the velocity field 
occurs by further repetition. 

/ 

x a nd z gradients of 
lld , Vd, W d 

input: assume x a nd z 
gradien ts of lld, Vd , Wd 

are zero 

/ 
3. fit interpolating functions 1. combine with Oils/OX, OUs/oz, etc. 

1 
integrate OU = _ ( Oil + OW) 

ay ox oz 

1 
~I 

/ 
2 . use bore-hole displacements 

Fig. 2 . Iterative cy cle for calculatioll of velocity alld straill-rate. 

In proposing this scheme it is implicity assumed that the number and arrangement of 
bore holes is suitable for estimating both the x and z gradients. Clearly the minimum array 
is a set of three non-colinear bore-hole sites such as that used by Kamb and Shreve ( I966). 
In such an array one is constrained to use linear interpolation between the bore holes for 
estimation of the x and z gradients. In a more extensive array of bore holes, more complicated 
interpolating functions are possible. The choice of form for the interpolating functions and 
some assessment of the reliability of the interpolation is a crucial step in the analysis. 

AN EXAMPLE 

Nine holes were bored into the Athabasca Glacier in 1966. They were arranged in an 
approximately square grid . Grid lines extended across and along the length of the glacier 
and were spaced 150 m apart or about half the maximum depth of the glacier. The initial 
arrangement of the bore holes and associated surface markers is shown in Figure 3. The 
absolute and relative locations of surface markers and the surface intersection of bore holes 
were determined by triangulation and tape measurements in I966 and again in 1967 about 
one year later. Similarly the initial and final coordinate profiles of bore holes were determined 
by inclinometry surveys. The relationship of the surface markers and bore holes to the glacier 
geometry, the results of the measurements, and their interpretation are presented in separate 
papers. H ere the aim is to illustrate how the above method of analysis can be applied and 
some of the practical problems which can arise in its application. 

For this application the azimuth of the x axis was chosen to be equal to that of the average 
ice velocity measured at the surface. In this case theyz and xy coordinate planes are transverse 
sections and vertical longitudinal planes respectively. The x, y, and z components of velocity 
U, V, and w are then the longitudinal, surface-normal and lateral components of velocity. 

Following the procedure outlined in the previous section, velocity components and their 
gradients were calculated at the surface for each bore-hole site. This was accomplished by 
first using the tape m easurements reduced by the method of Nye ( 1959) in conjunction with 
the triangulation m easurements to determine the distribution of the x and z gradients of 
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velocity. D isplacements of stakes and bore-hole surface intersections were then interpreted 
in terms of velocity at their initial locations. 

The value of Vb to be used in Equation (19) was calculated from Equation (18) on the 
basis of bed orientation determined seismically by Paterson and Savage (1963) and the initial 
depths of holes reaching bedrock. (All holes except hole 4A reached bedrock. ) 

• initia l locat ion of 
holes 

initia l locat ion of 
surface markers 

Z 
(horizonta l) 

0
0 

~ 
/ 

'il-~ , 
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X (para lle l to su rface 
in direction of fl ow ) 

0'0 
:'5 
~ , 

0'1, 
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.... ~ 
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Fig. 3. Arrangemetl/ of bore holes and surface markers. H oles are named according to their location in a grid of longitudinal 
lines (denoted by numerals ) and lateral sections (denoted by letters) . Depths in meters to which deformation data were 
obtained is irldicated for each bore hole. 

In the itera tive cycle (Fig. 2) , it was assumed that ov/ex = ov/oz = 0 at a ll depth. 
This eliminated the need for fit ting a separate interpolating function to the calculated values 
of Vd at the bore-hole sites a nd simplified the analysis. Because of the actual smallness of the 
quantities at the surface and the indirect way in which they enter into the calculation of the 
components of velocity by Equations (16) and (19), this assumption produced negligible 
effect on the results of the calculation. (This would not necessarily be the case in a region of 
a glacier where the surface-slope gradients are large. ) 

Method if interpolation. For interpolation of Ud the following polynomial was used at 
depth y : 
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Ud CX,.Y, Z) = Co Cy) + C1CY )X+ CzCY)XZ + C3(y )Z+ 
+ tC4 (y )XZZ+ tCs (y) zz + iC6 (y ) Z3 + tC7 (Y) X2 + 

+ l4CS (Y )Z4 + tk1 (Y )XZ3+ tkZ (Y )XZ4. ( ~20 ) 

T he terms with coefficients Co to Cs represent a determinate polynomial particularly suited 
to the arrangement of the nine bore holes (Fig. 3) . The five holes of section A made it possible 
to estimate lateral gradients of Ud up to order 4. T he hole pairs a long the lines I , 2, a nd 3 
made it possible to estimate the lateral gradients of OUd /OX up to order 2. From the three 
holes in line I , OZUd /OXz could be estimated . The additional terms with coefficients kl and kz 
were added in order to make it possible to constrain th e values of OUd /OX at holes 4A and 5A, 
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Fig. 4. lid versus z for selected depths at section A. 
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Fig. 5. OUd /OX venus zfor selected depths at sectioll A. 

where no direct information on OUd /OX was available and extrapolation based on a determinate 
polynomial with nine coefficients gave unacceptable results . For the purposes of the calcula­
tion it was assumed that OUd /OX = 0 at all dep ths in holes 4A and 5A. (This is equivalent to 
assuming that ou/ox is independent of depth a nd is equal to the value measured at the surface. ) 
The values of Ud at the nine bore holes and the two constraints determined the eleven coeffi­
cients Co to Cs, kI and kz. Examples of the interpolation on the converged values of Ud at 
various depths are shown in Figures 4 and 5. 

In this case the data put fai rly narrow constraints on the possible interpolating functions 
which could be reasonably fitted to them . For this reason one can have reasonable confidence 
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in the calculated values of oulox and ouloz, especially near the center of the a rray. T he only 
direct assumption a bout the velocity gradients a t the bore holes is the con train t pl aced on 
OUd /OX in holes 4A and SA a t the la teral m argins of the array. 

In terpolation on W d could have been m ade in similar fas hion. H OWeVel", Wd does not have 
a consisten t trend across the bore-hole array, as exists in the case of Ud. Use of a polynomial 
equiva lent to that of Equation (20) accen tuated the compl exity of the distribu tion. For this 
reason simple difference gave more acceptable values for the x a nd z derivatives of Wd. 

5A 3A 1A 2 A 4A 

, 
o 
E 

- 3 00 - 150 o 150 300 

Z (m) 
Fig. 6. Wc! versus Z for selected depths at section A . Computed derivatives OWd/O Z are represented by line segments; curves 

represent interpolating functions which are compatible with the computed slopes. 

TABLE 1. FORMULAE FOR DERIVATIVES OF Wc! 

H ole OWd/OX OWd/OZ 
l A (K, + KQ )/2 (KJ+ K6)/2 
I B (3K , - K9 )/2 (K.+ Ks)/2 
le (3KQ- K, )/2 0 

2A K. (K, o+ K3)/2 
2B K. 0 

3" K7 (K6+ K s)/2 
38 K 7 0 

4A 0 0 

5A 0 0 

This corresponds to fi tting simple functions (stra ight lines a nd para bolas) locall y, rather 
tha n attempting to choo e a n analytically expressible function applicable over the whole 
a rray. Examples of the calculated values of oWd/2z are shown in Figure 6. To expre s the 
specific formulae let Wd M represent Wd at bore hole M in meters per year. Then with the 
notation (M, N) = [WdM-Wd N J / I SO a nd the defi ni tions KI = ( I B, l A) , Kz = (2B, IB) , 

K3 = (2A, lA) , K4 = (2B, 2A) , Ks = ( I B, 3B ) , K6 = ( l A, 3A) , K7 = (3B, 3A) , Kg = (3 A, SA ) , 
K9 = ( I A, I C), a nd KIO = (4A, 2A), the form ul ae for the derivatives are as in Table I. 
At holes 4A and SA, where no direct information on oWoj /ox is available, OWCI/ OX was et equal 
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to zero. At holes I C, 2B, 3B, 4A, and 5A, where lateral extrapolation of Wd must be com­
pletely hypothetical, OWd/ OZ was set equal to zero. These assumptions are equivalent to 
setting the gradients of velocity in question equal to their surface values at all depths. 

In contrast with the experience in interpolation of Ud, the data are ambiguous in the case 
of Wd. It is clear from Figure 6 that quite different curves could be fitted to the data. Thus 
the choice of a particular interpolating scheme is a subjunctive judgement involving a number 
of arbitrary assumptions. 

Since the bore holes were not all measured to the same dep th (Fig. 3), a practical problem 
arises in the extension of the calculations to depths greater than that of the shallowest hole 
(in this case, hole 4A) . Below that depth the above interpolating schemes could not be applied 
without modification. This problem was overcome as follows. First the coordinate profile of 
hole 4A was extrapolated to a depth of 200 m . Then starting from the surface, interpolation 
was done using all nine points down to the depth of the extrapolated profile of hol e 4A. At 
this point Cs in Equation (20) and KIO of Table I were extrapolated to the depth of the deepest 
hole. Between the bottom of 4A as extrapolated and the next shallowest bore hole, hole I C, 

the ten coefficients Co to C7, k" and kz were determined from the extrapolated value of Cs, 
the values of Ud at the eight remaining holes, and the two constraints on OUd /OX. Similarly 
K, to K9 were calculated from the values of Wd at the remaining holes. At the bottom of hole 
I C, C7 and K9 were extrapolated with a resultant reduction in the number of coefficients to 
be determined in Equations (20) and (2 I) at greater depth. This was continued until the 
bottom of the deepest hole was reached. The coefficients Cn a nd Kn were extrapolated in 
order of decreasing subscript. Extrapolation of each coefficient was done by fitting a parabola 
to the trend of the coefficient over the 80 m depth interval above the deepest point at which 
it could be calculated . 

Extrapolation of the bore-hole profiles and the interpolating coefficients may seem to 
be an artificial creation of non-existent data. However, it is clear that limits can be placed 
on ice velocity immediately below the bottom of a bore hole from observations in the hole. 
Thus it makes no sense to ignore completely the existence of the hole in calculations at greater 
depth, a nd some improvement in accuracy of the x a nd Z gradients calculated in adjacent 
bore holes can be expected from a reasonable extrapolation of some sort. 

Convergence of the iterative cycle. The iterative cycle (Fig. 2) was programmed for applica­
tion on a digital computer. For this purpose the continuous curves of the bore-hole profiles 
were represented in the computer by coordinate values spaced at 5 m intervals, with co­
ordinates at intervening depths being computed by interpolation. Calculation of the 
components of velocity and their x and Z gradients was done for depths spaced 5 m apart. 
For convergence it was required that the cha nge in any component of velocity be less than 
0.01 m a- I at all poin ts . This condition was met after five traverses of the cycle and a 
computation time of 50 s on an IBM 7094 computer. Maximum change in velocity at any 
point was 1.29, 0.26, 0.01 , and less than 0.005 m a - I between the consecutive traverses of 
the cycle. The depth distribution ofud at the site of hole lA compu ted under ( I) the assump­
tion that deformation is simple shear parallel to the surface (i.e. v, and x and z gradients of 
velocity are zero), under (2) the assumption that the x and z gradients are equal to their 
surface values over the whole depth (i.e. after one traverse of the cycle), a nd from (3) the 
convergent iterative cycle are shown in Figure 7. In this case near the bottom the converged 
result agrees very well with the simplest treatment (I) above, because the longitudinal 
strain-rate turns out to be essen tiall y zero there and v is small since the bed is approximately 
parallel to the x axis. Over the whole depth range, the differences between the three treat­
ments is not great. H owever, where there is greater surface slope and larger longitudinal 
strain-rate than exists for the Athabasca Glacier in the region of the bore holes (surface 
slope 4°, longitudinal strain-rate -0.02 a-I at the surface), quite significant differences 
between the different treatments could exist. 
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Accuracy of the calculated quantities. Errors in the values of u a nd w calculated by Equation 
( 16) and theiry gradients calculated by differentiation of Equation ( 16) are caused prima t·ily 
by errors in the m easurement of the bore-hole til t and coordinate profi les. This direct source 
can be es timated from the known accuracy of the su rface triangulation and bore-hole tilt 
measurements. In the Athabasca Glacier hole, standard errors [or the x and z components 
o[tilting rate (OYx /ct and oyz/ot ) are 0.0015 a-I and 0.0019 a - I respectively. Standard errors 
for rate of change of the bore-hole coordinates (OXh /Ot and OZh/Ot ) are about 0.20 m a - I 
for both components at the surface and respectively 0 .41 m a - I and 0.45 m a - I for the x 
and Z components at 300 m. Secondary source of er ror com e from uncertainty in v and the 
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Fig. 7. Depth distribution Ud computed at hole l A under the assumption ( l ) that defonnation is simple shear parallel to the 
surface (short dashes ), (2) that x and z gradients of velocity are independent if depth (long dashes), and from (3) the 
converged iterative cycle (solid curve). 
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x and z gradients of velocity. These a re pa r ticula rly diffi cult to evaluate, because of the sub­
j ective nature of the in terpola tion. Even unexpectedly la rge errors in these quan tities produce, 
however, only sm all effect on the values calcula ted for u and wand their y gradien ts. M axi­
mum estimates of error for v and the x and z gradients of velocity indicate the standard errors 
for oujoy and owjoy are abou t 0 .002 a - l over the whol e depth range. Simila rly standard 
errors for u and w should be less than 0 .22 m a - I at the surface a nd 0 .46 m a - I at a d epth of 
300 m . These values a re only slightly greater tha n those associa ted wi th the m easurem ent 
of the bore-hole profil es. Error caused by the approximate nature of Equation ( 16 ) due to 
the finite time interval between m easurem ents, and the x and z dependence of the x a nd z 
gradients of velocity tu rn ou t to be entirely neglig ibl e in compa rison wi th the m easuremen t 
errors. 

Sta ndard error in v measured a t the surface by tria ngulation is es timated to be 0.35 m a- I 
(excep t at 2B where a n error as large as 0.8 m a- I is possible) . The value estimated a t the 
bed from Equation (18) is judged to be accura te to wi thin 0.5 m a- I under the assumption 
that bed slopes are known to within to. (At SA, where the longitudinal bed slope is no t known, 
an error as large as 0.8 m a - I is possible. ) The error in v over the whole depth range as 
calculated from Equa tions (17) a nd (19) can not be calculated ; however, the standard error 
probably does no t exceed 0.5 m a - I at a ny depth (except for holes 2B and SA). 

TABLE II. COMPAR ISON OF V CA LC ULATED AT T HE BED BY 

E QUATI ON ( '7) (V b* ) AND BY EQUAT ION ( I g ) (V b ) 

(V b* - Vb ) 

Vb Vb* (Y b- YS) 
Bore hole In a- I m a - I a - I 

l A 0 · 7 - 0·5 - 0.003 
I B 0.8 - 0·9 - 0 .005 
2A 1.0 + 0 ·3 - 0 .002 
2B 0 ·5 + 1 ·5 + 0 .003 

3 A - o.g - 1 ·4 - 0.002 

3 B - o.g - 1.8 - 0.003 

5 A - 2. 1 - J.I + 0 .004 

E rror in the calcul a ted values of the x and z gradien ts of velocity com es from two sources : 
(T) uncerta inty in u a nd w at the bore-hole si tes, (2) fa ilure of the assumed in terpolating 
fun ctions to represent the values of u a nd w correc tly be tween the bore-hole sites. Values 
estimated for the first of these range from 0.00 1 a - I at thc surface to between 0 .002 and 
0.004 a - I a t a d epth of 3 00 m depending on whether the bore-hole site has o ther holes on 
both sides or just one side. The addi tiona l interpola tion error a rising from incorrect inter­
pola tion between the holes can not be quan titatively eva luated. Som e information on the 
m agni tude of this er ror can be ob tained indirec tly. Since the bore-hole a rray lies in the 
abla tion zone, ice incompressibility is proba bl y a good assumption . Thus, by comparing Vb 

calcul a ted from Equa tion (18) wi th the value at the bed obta ined by Equation (17), a 
measure of the dep th-averaged error in the sum owjox+ owjoz is obtained . In Table II this 
comparison is m ad e for those bore holes which were m easured over the complete d epth of 
the glacier. I t indicates that the total error in the above sum is not any greater tha n would 
be expected from the uncertainty in velocity a t the bore-hole sites and sugges ts tha t a ny 
addi tiona l error associated wi th the in terpolation is not la rge. 

CONCL USION 

Although the a bove m ethod is subject to uncerta inty with respect to interpola tion between 
bore holes and the indirect calculation of v, it requires significantl y fewer assumptions about 
the pa ttern of flow for the ana lysis of bore-hole data and correspondingly gives more compre­
hensive results. For general es timates of flow velocity a t depth, the increase in accuracy of 
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velocity determina tion a fforded by the m ethod may often not justify the effort required to 
apply i t. H owever, for studies which require accurate a nd detail ed knowledge of the three­
dimensiona l velocity field in a glacier, as is requi red for example in order to estimate rheo­
logical parameters a nd stresses wi thin the glacier , such a m ethod is essen tia l. 

The limi tations of the method associated with the subj ec tive nature of the interpolation 
between holes must exist for any m ethod using bore holes. I ndeed , the p rob lem exists for 
any m easurem ent of deforma tion ba ed on tagging a fi ni te n umber of d i crete poin ts or li nes. 
I t must be solved by j udicious election of the location and spacing of markers as dictated by 
the resolution required in the particular experim ent. Beyond thi basic lim itation there are 
several limi ta tions of the present ana lytica l m ethod and the existing bore-hole m easurem en t 
techniques which could be modified and improved . I n bore-hole experiments, where the 
deforma tion ra tes a nd strain-rate gradients are very large or the tim e interval very long, it 
could be necessary to include higher order terms in Equations (16) or to derive a lternative 
formulae. A desira ble modification of pre ent methods is to tag different ice elements a long 
the bore hole. This would make it possible to measure v directly. 
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