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DETERMINATION OF THE THREE-DIMENSIONAL
VELOCITY FIELD IN A GLACIER*

By C. F. Raymonpt
(California Institute of Technology, Pasadena, California 91109, U.S.A.)

ApsTrRACT. A method for the determination of the three-dimensional velocity field in a glacier is described.
Measurements in three or more bore holes arranged in an appropriate array are needed for its application.
Surface motion measured by triangulation and tape measure, bore-hole profiles given by inclinometry, and
the geometry of the bed are all considered simultaneously in order to determine the velocity field. The
basic assumption is that velocity between the bore holes can be represented by suitable interpolation based
on the measurements in the holes. Ice displacement parallel to bore holes is calculated indirectly from
incompressibility and the constraint that velocity normal to the bed be zero. As an example, the method is
applied to an array of g bore holes in Athabasca Glacier.

Risume. Détermination du champ des vitesses dans les trois dimensions sur un glacier. On décrit une méthode
pour la détermination du champ des vitesses dans les trois dimensions sur un glacier. Dans son application
il faut faire des mesures dans 5 ou plus trous de forage répartis suivant une disposition appropriée. Les
mouvements en surface mesurés par triangulation et chainage, les profils des forages donnés par inclino-
métrie et la géométrie du lit sont pris en compte simultanément afin de déterminer le champ de vitesse.
L’hypothése de base est que la vitesse entre les forages peut étre représentée par une interpolation convenable
basée sur les mesures dans les forages. Le déplacement de la glace parallélement aux forages est calculé
indirectement a partir de I'incompressibilité de la glace et de I'obligation que la vitesse normale au lit soit
pulle. La méthode est appliquée, & titre d’example, pour un reseau de g trous de forage dans le Glacier
de ’Athabasca.

ZUSAMMENFASSUNG. Bestimmung des dreidimensionalen Geschwindigkeitsfeldes in einem Gletscher. Eine Methode
zur Bestimmung des dreidimensionalen Geschwindigkeitsfeldes in einem Gletscher wird beschrieben. Zu
ihrer Anwendung sind Messungen in drei oder mehr geeignet angeordneten Bohrlochern notwendig. Zur
Bestimmung des Geschwindigkeitsfeldes werden gleichzeitig die Oberflichenbewegung, gemessen mittels
Triangulation und Messband, Bohrlochprofile, bestimmt mit Hilfe der Klinometrie, und die Geometrie des
Gletscherbettes herausgezogen. Die grundlegende Annahme dabei ist, dass die Geschwindigkeit zwischen
den Bohrléchern durch geeignete Interpolation, die sich auf die Messungen in den Lichern stiitzt, erfasst
werden kann. Die Eisverschiebung parallel zu den Bohrléchern wird indirekt aus der Inkompressibilitit
und der Zwangsbedingung, dass die Geschwindigkeit senkrecht zum Untergrund gleich Null ist, berechnet.
Als Beispicl wird die Methode auf eine Anordnung von g Bohrléchern auf dem Athabasca Glacier
angewendet.

INTRODUCTION

Measurement of tilting in isolated single bore holes cannot give complete strain-rate
information at depth in a glacier. The analysis of such measurements therefore requires
some assumptions about the pattern of flow at depth (Gerrard and others, 1952; Nye, 1957;
Savage and Paterson, 1963). Although such assumptions can often be supported by indirect
observations and theoretical arguments, tests of the natural rheological behavior of glacier
ice and the applicability of theoretical analyses of glacier flow become more convincing with
a direct measurement of all of the strain-rate components. Tilt measurements in several
bore holes arranged in a suitable array make it possible to determine the components of
velocity and strain-rate within a glacier with a significantly reduced number of assumptions.
The purpose of this paper is to describe a general technique for completely determining internal
velocity and strain-rate from measurements in three or more holes. It is applied to measure-
ments made in a nine-hole array on Athabasca Glacier.

The problem of determining ice velocity and deformation from bore-hole measurements
needs special consideration because of a fundamental deficiency in the techniques presently
used. Tilt measurements within a bore hole and location of the surface intersection of a
bore hole by triangulation can define the coordinates of points on the hole trace, but are not
sufficient to distinguish different ice elements along the hole. Thus the motion of the bore hole
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as determined by such measurements repeated in time can only give the components of
velocity normal to the hole trace, but not the component parallel to the trace. One must
assume a distribution of velocity parallel to the hole in order to compute the three components
of velocity in any coordinate system of interest. Even if a technique were devised for tagging
elements of ice along the length of the hole, measurements in a single hole can at best
determine the hole-parallel gradients of velocity or three independent velocity gradients.
For an unambiguous determination of the components of strain-rate, knowledge of all nine
velocity gradients is required. The purpose of a hore-hole array is to allow the estimation
of some of the remaining velocity gradients by comparison of displacements in adjacent holes
as done by Shreve and Sharp (1970), Savage and Paterson (1963), and Kamb and Shreve
(1966).

After introducing necessary notation, formulae relating measured displacement in a single
bore hole to the components of velocity and strain-rate are derived. Then it is shown how
these formulae can be used in conjunction with a continuity condition (incompressibility)
and a suitable scheme for interpolating between bore holes to calculate self-consistent velocity
and strain-rate fields for the volume of ice included within the bore-hole array.

COORDINATES AND NOTATION

The method is described using an orthogonal right-handed coordinate system (x, », 2)
such that the y = o plane approximates the glacier surface in the area of the bore-hole
array and the y axis points downward. For the purpose of the following description the x
and z axes can assume any fixed azimuthal orientation. The x and z coordinates of a hole
at time ¢ are denoted as xp(, ¢) and zn(y, t). The two functions xu( 7, t), zn(y, t) give a para-
metric representation of the hole trace at time £. x and z components of tilt are defined as

ox; t 0zn( st
Ya(2s 1) = —h%—) ve(3,t) = —t%

For the purpose of the analysis it is assumed that the functions xy(y, ), zn(, ¢) have been
determined by surface triangulation and integration of measured bore-hole tilts at two distinct
times ¢; and /r separated by an interval As. For convenience of notation, hole coordinates
and tilt components at times ¢i and /4 are denoted by superscripted quantities, e.g.
(3, t1) = xni(), ete.

SINGLE BORE-HOLE ANALYSIS

Since a bore hole is approximately vertical on initial implacement, it is sub-parallel to
the » axis when the glacier surface is not very steep as is usually the case. Thus to a first
approximation the components of velocity normal to the bore hole are a direct measure of
the x and z components of velocity u and w. With this in mind formulae are developed
which give v and w and their gradients in the y direction in terms of the measured bore-hole
displacements and additional terms of smaller contribution. These terms involve knowledge
of the third component of velocity » and the x and z gradients of all three components of
velocity along the bore hole and are of increasing importance where the glacier surface is
steep and the pattern of flow deviates significantly from simple shear parallel to the surface.

The basic equations. Consider the bore-hole displacement in the xp plane (Fig. 1). Since
the » component of velocity v is in general non-zero, a specified element of ice initially at
depth y! lies at a different depth »f after the time interval At. The average y velocity of the
ice element is (pt—ypi)/At. The path of the element projected on the xy plane is some curve
joining xp!(y!) and xp!(yf) as indicated by the dashed curve in Figure 1. The average x
component of velocity of the element during the interval At is then [xpf(3!) —ani(p1)]/At.
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Fig. 1. View of hole displacement projected on xy plane.

The average velocity of an ice element is related to the velocity at a specific point in space
as follows. Let Ay = y'—yi, and consider a depth y = (»'4-y!)/2 halfway between the initial
and final depths of the ice element. Define

1 . A
i =i = -_\% (1)
and
E Z A
i) = ; ' O+442) —a' O —34)]. (2)

@(y) and 7(y) represent the average velocity in the xy plane of the bore-hole element for which
! and »f are equal distances above and below depth y. Now define

() = 3" () +x' ()],

(y) = $la'0) + ' ()] (3)
#n(y) and zZn(yp) define a curve which is half~way between the initial and final hole traces.
Intuitively it could be expected that the velocity of an ice element averaged over its path

would be about the same as the velocity at a point half-way between its initial and final
positions. This point is indicated by the circled cross in Figure 1. Thus it is assumed that
2(y) = v(En(2)25 2(2)), (4)
() = u(Zn(), 2, (). (5)
If elements of ice along the bore hole are tagged in order to give direct measurement of Ay,
then #( y) and #( y) can be calculated from Equations (1) and (2). Ifsuch tagging is not done,
then one must assume or estimate by other indirect measurements a distribution of 2. This
enables one to arrive at a value of #( ») from Equation (4) and Ay from Equation (1) in order
to calculate #(y) from Equation (2) and u(#n(), 5, Zn(»)) from Equation (5). The succeeding
analysis is carried out for the latter case in which there is no direct measurement of Ay.
Before discussing in general the nature of the approximations involved in Equations (4)
and (5), it is worthwhile to consider them for simplified cases, which can be compared to
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other treatments of bore-hole data. For notational convenience in these discussions, the
variables in Equations (6) to (12) are written without arguments. It should be held in mind
that these equations involve {low quantities along the curve defined by Equations (3).

Consider the case for which the initial and final hole configurations are determined at
times separated by only an infinitesimal time interval. In the limit A/ — o

xl(y) = Zn(y) = x'(y) = w0 1),
a'(y) = () = '()) = (1),
and Equations (4) and (5) are exact. Equation (5) in combination with (1) (2) and (4) gives

axh
u=—="tyav (6)

This is equivalent to an equation given by Savage and Paterson (1963, p. 4525), when the
finite time interval in their equation is made infinitesimal.

The differential form of Equation (6) can be derived either by direct differentiation of
Equation (6) or by differentiation of Equations (2) and (5) and elimination of di@/dy. The
origin of the various terms is best seen by following the latter route. Differentiation of Equation

(5) gives
da - ou ou ou (
dy Eﬂy’i"}’z ax“i*'}’z s 7)

This is identical with suitable change in notation, to an equation derived by Shreve and Sharp
(1970, p. 78). Differentiation of Equation (2) gives

di Oy, Oys cv ov v
B~ o vtrlgtrgtrg) =

where Equations (1) and (4) have been used to express Ay and its derivative with respect to
3 in terms of » and its gradients. Eliminating da/dy between Equations (7) and (8) gives

ou  Oyz Oyz du ov o o av)
g=§+ e U—Yx(a—@ —ve gy tvalva gt ) (9)

With the simplification under the assumptions that the hole is straight (0y./dy = 0), the
deformation field is of plane strain type (€/0z — o), and the ice is incompressible
(du/ox+-ov/dy = 0), one gets

cu 0 cu

B = %;C_Qyz T (10)
This is identical except for differences in notation, to the formula given by Nye (1957,
p- 130) in his analysis of the Jungfraufirn bore-hole experiment (Gerrard and others, 1952).
The above discussions show that the present treatment is equivalent to past analysis for an
infinitesimal time interval.

Equations (4) and (5) are applicable when the time interval between the initial and final
determination of the hole coordinates is finite. However, in this case they are only approxi-
mate. To investigate the nature of the approximation it is useful to derive an equation
equivalent to Equation (r1o) but without the assumption of an infinitesimal time interval.
As before, Equations (2) and (5) are differentiated with respect to y and combined to eliminate
di/dy. Now, with the same assumptions about the bore hole and deformation field which
lead to Equation (10) and the additional assumption that the velocity gradients are homo-
geneous, one gets

ou 1 cu
a_y =~ Kt (‘}er—y:si)—(‘}’xr—l-‘}’zi) ;3‘; (“)

https://doi.org/10.3189/50022143000012983 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000012983

THREE-DIMENSIONAL VELOCITY FIELD IN A GLACIER 43

This can be compared with Nye’s equation for time-independent velocity (1957, p. 130)

cu
I:‘yzf—'y_;l exp (QAt E)]’ (12a)

which is exact for a finite time interval under the above assumptions. This equation was
derived by integration with respect to time of Equation (10). Expansion of Equation (12a)
valid for 2 At duf/ox << 27 gives

ou 2 oufox
oy exp (2At dufox)—1

cu I

S~ & (yzf—y1i>(:+§(Az§+_’:) )+0[(Az %) ])—(yz‘ﬂfzi) = (ab)

ou\" : g s
where O[(At E) ] represents the lowest order term with non-zero coeflicient not explicitly

written. Comparison of this last result with Equation (11) shows that in this simple case,
Equation (5) gives a good approximation when At ¢u/2x is small compared to one.
More generally, if the velocity field is assumed only to be independent of time, it can be
shown that
0%

Ay = v(#n (1), 2, fn(y))Atlx+O[(At :—i’;) ] +O[(At2w o ch)]}

a(y) = u(@n(3),, zn(y)>{:+0[(m f;:)] +0[(m2w = )]}

ax, Bxk

Sy

di 9
% —7a0) EL: (#n(2), 25 2n(2)) —72(7)

cu doj\? &2

=5 (B0 aonfi+o| (a2 ] +o| (avn is k)]}
where the lowest-order terms in the first and second spatial derivatives of the components
of velocity are indicated. The actual form of the higher-order terms for the general case is
considerably more complicated than for the case represented by Equations (12). However,
error terms with At do;/dx; raised to the first power still do not appear. By assigning the
average velocity of an ice element as given by Equations (1) and (2) to a point closely halfway
between its initial and final positions, an extra order of accuracy has been gained, as could
be intuitively expected.

Maodifications of the basic equations. Equations (1), (2), (4), and (5) permit one to calculate
the distribution of u along the curve defined by Equation (3) when 2 is known on that curve.
However, for purposes of interpretation it is often more desirable to know the velocity along
a straight line normal to the surface, which in the present coordinates would be a line of
constant ¥ and z. In addition, for purposes of calculating x and z gradients of velocity from
velocity computed at adjacent bore holes, it is highly desirable to have the velocities given
along lines of constant x and z, so that the differentiation formulae are independent of depth.
For these reasons the equations are modified so that only the values of flow quantities along
the y coordinate line which passes through the surface intersection of the initial bore-hole
appear. For convenience in later discussion, this y coordinate line is referred to as the bore-
hole site. This is in contrast with the actual bore-hole location which depends on time and
depth. If ys represents the y coordinate of the top of the initial hole trace as shown in Figure 1,
then xpi(y¢) and zni(ys) give the ¥ and z coordinates of the bore-hole site. To first order in

[n(») —i(ys)] and (zn(y) — zn(3s)], Equations (1) to (5) give:

(-fh(_}’):}’: Z-n(}’))

Q)

Ay = At v(y)Jr;—i (» [fn(J')—xni(ys)]Jr% (N [2n(y) =2t ()]} (13)
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I :
u(y) 5 'O+ 34) —al (O —2 )]+

2 _ p _
+;§§ () [En(y) —xn’(ys)]—t—a—: (M [2n(»)+ 201 ()] (14)

For notational convenience velocity and velocity gradients are written simply as functions
of », but represent the values at points (¥ni(2s), 7, znl(9s)). Equations (13) and (14) give
at the bore-hole site in terms of » and the x and z gradients of all three velocity components
evaluated at the bore-hole site. No further approximation is involved if the x and z gradients
of velocity are independent of x and z.

One further useful modification of the analysis is to partition Equation (14) into contribu-
tions from the value of u at the surface and the differential motion between the surface and
a point at depth. Call the plane y — y; the datum plane and let

Dy = xn®(ys) —*n'(3s), D = zn'(ys) —2n'(3s)
represent the hole displacements on the datum plane during the interval At (Fig. 1). Equation
(14) applied at y = y_ gives

I ()’3)

EDx 5 o (J’S) 8 (J’S)DzﬂL

when the surface segment of the hole lacks curvature, which in practice is the case to a very
good approximation. (Note that Equation (15) also is applicable for calculation of surface
velocity from measurements made on stakes frozen into the ice. It gives the velocity at the
initial location of the stake.) Now let the hole coordinates be represented as

xn(p, t) = xn(s, £)+Axn (2, 8),
zn(9;t) = 2n(ps, t)+Azn(y, t).
If u(p) at depth is represented by

Ug = u(_ys) == [Y:ur()’s)+yxi(ys)] (15)

u(y) = u(ys) +ua(y),
then Equations (14) and (15) give

wa(3) & 1 [Anl(r+189) — Ami(y—349)]

gé"_( \[Axnt(y) -+ Arnl(5)] — éa_it( \[Azot(y) — Azni(3)]—
a 0 8
; ;: (»)Dz— - ch: (J’)DZ*U(.;) [yat(¥s) + vt (ps)]- (16a)

With
w(y) = w(ys)+wa(y)
identical considerations applied to the xz plane give
1 .
wa(y) & & [Aa'(r+34y) — Azl (y—249)]—

I ow

T2 ox () [Axa’(») -I—Axni(y)]_‘ =, ()’)[Azh () —Azni(y)]—
0 b s - .
_é _gf P g— L_I’ ;Zd {,y)Dz— ) f(}’s)+Yz‘(yg)]. (Ibb)

The greatest advantage of this scemingly more complex approach is that it provides an
input channel for extra measurements at the surface, thereby improving to some extent the
results at all depths. Surface velocity gradients (e.g. fu(ys)/0x, w(ys)/0z, etc.) can be
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determined by triangulation and taping measurements in a wider network of stakes. Un-
certainty in the x and z gradients resulting from a deficiency in number or spacing of bore
holes can then be restricted to the calculation with respect to uq and wqg (e.g. @ua(y)/ox,
dwa(y) [0z, etc.).

An additional advantage of practical importance is that as long as the velocity field can
be assumed to be time-independent, surface measurements and tilt measurements within the
bore hole need not be made over the same time interval.

Indirect estimation of v. 'T'o complete the analysis for a single bore hole, it is only necessary
to arrive at a distribution of v versus y at the bore-hole site. This decision must be based on
the information at hand in each specific application. One possible way of proceding is as
follows. When the surface layers of a glacier are not composed of firn as in the ablation
zone, the ice can be assumed to be incompressible to a good approximation; thus,

du ov tw

In this case,
¥

s ou . ow, ) dy :
] 1) = 9 VPe) — — ) — <
*(0) = 1) — |7 O +5 0] & (17)
would give a good approximation to o(y). If the geometry of the glacier bed is known,
additional input can be achieved by using the requirement that the velocity normal to the
bed be zero as done by Savage and Paterson (1963). The value »y that » at the bed, depth
h, must have is
vy = v(yn) = Battn+ Bz (18)

where B, and $; are the x and z components of slope of the bed with respect to the xz plane.
Thus in order to take account of possible failure of the assumption of incompressibility and

inaccuracy in éu/dx and cw/éz, v* can be adjusted to get an improved estimate of v:
(2—ps)?
(rp—p8)?
By using the square of the ratio (y—»s)/(Jn—2s), significant adjustment of v* is limited to a
zone close to the bed, where the uncertainty in evaluating ¢u/éx and dw/cz is greatest.

Equation (19) can also be partitioned into the value of v at the surface and the value relative
to the surface, so that

2(9) = v*(»)—(#*(y) —2n) (19)

v(y) = v(ps)Fva(y)-

ANALYSIS OF AN ARRAY OF BORE HOLES

In order to apply the equations of the previous section to calculate the components of
velocity at the site of a bore hole, the x and z gradients of velocity need to be known. Calcula-
tion of the x and z gradients of velocity requires knowledge of the velocity in several bore
holes in a suitable array. This circular dilemma is conveniently overcome by the iterative
procedure schematically illustrated in Figure 2. As preparation for the iterative cycle values
of the components of velocity and their x and z gradients at the surface of the bore-hole
sites are calculated from triangulation and tape measurements on surface markers and the
surface intersection of the bore holes. The surface values of flow quantities are not changed
in the iterative cycle. In the first step of the cycle, Equation (17), (19), or some other equation
is used to estimate 2(). Equations (16) are used for the second step to get ug and wq. In the
third and final step interpolating functions are fitted at each depth to the values of ug4, 2q,
and wq calculated at the bore-hole sites. These functions represent the distribution of g,
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v4, and wgq on the xz plane at a specified depth y; differentiation of the interpolating functions
determines the x and z gradients. The cycle is repeated until no change in the velocity field
occurs by further repetition.

input: assume x and z

x:and z gradients of gradients of uq, 24, wa

4y, Yas q are zero
/ \\ /
3. fit interpolating functions 1. combine with dus/dx, ous/dz, etec.

T @__(au ow
Integrate > = a-i—a

l

i | (o
Sy /

2. use bore-hole displacements

Fig. 2. llerative cyele for calculation of velocity and strain-rate.

In proposing this scheme it is implicity assumed that the number and arrangement of
bore holes is suitable for estimating both the x and z gradients. Clearly the minimum array
is a set of three non-colinear bore-hole sites such as that used by Kamb and Shreve (1966).
In such an array one is constrained to use linear interpolation between the bore holes for
estimation of the x and z gradients. In a more extensive array of bore holes, more complicated
interpolating functions are possible. The choice of form for the interpolating functions and
some assessment of the reliability of the interpolation is a crucial step in the analysis.

AN EXAMPLE

Nine holes were bored into the Athabasca Glacier in 1966. They were arranged in an
approximately square grid. Grid lines extended across and along the length of the glacier
and were spaced 150 m apart or about half the maximum depth of the glacier. The initial
arrangement of the bore holes and associated surface markers is shown in Figure 3. The
absolute and relative locations of surface markers and the surface intersection of bore holes
were determined by triangulation and tape measurements in 1966 and again in 1967 about
one year later. Similarly the initial and final coordinate profiles of bore holes were determined
by inclinometry surveys. The relationship of the surface markers and bore holes to the glacier
geometry, the results of the measurements, and their interpretation are presented in separate
papers. Here the aim is to illustrate how the above method of analysis can be applied and
some of the practical problems which can arise in its application.

For this application the azimuth of the x axis was chosen to be equal to that of the average
ice velocity measured at the surface. In this case the yz and xy coordinate planes are transverse
sections and vertical longitudinal planes respectively. The x, y, and z components of velocity
u, v, and w are then the longitudinal, surface-normal and lateral components of velocity.

Following the procedure outlined in the previous section, velocity components and their
gradients were calculated at the surface for each bore-hole site. This was accomplished by
first using the tape measurements reduced by the method of Nye (1959) in conjunction with
the triangulation measurements to determine the distribution of the x and z gradients of
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velocity. Displacements of stakes and bore-hole surface intersections were then interpreted
in terms of velocity at their initial locations.

The value of vp to be used in Equation (19) was calculated from Equation (18) on the
basis of bed orientation determined seismically by Paterson and Savage (1963) and the initial
depths of holes reaching bedrock. (All holes except hole 4A reached bedrock.)

X (parallel to surface

4. ) in direction of flow)
e initial location of
holes ‘

+ initial location of ‘
surface markers \

a a a lo & a
,100m \l
|
%} @ Q©
g | & ©
g g .8
a 2 a é b 2 s 10
© e} \
v'é) S P & g
F ¥ ¥ F oF |8
2 a _j‘_,r“r—tt( 2 ® a ‘q 5
(horizontal) ,S’ &
<
“y
a & a a L 8 a A i)
a a s a 8 8 a a
L 1 | S— e
4 2 | 3 5
LINES

Fig. 3. Arrangement of bore holes and surface markers. Holes are named according to their location in a grid of longitudinal
lines (denoted by numerals) and lateral sections (denoted by lellers). Depths in melers to which deformation dala were
obtained is indicated for each bore hole.

In the iterative cycle (Fig. 2), it was assumed that dv/éx = &2/¢z = o at all depths.
This eliminated the need for fitting a separate interpolating function to the calculated values
of vq at the bore-hole sites and simplified the analysis. Because of the actual smallness of the
quantities at the surface and the indirect way in which they enter into the calculation of the
components of velocity by Equations (16) and (19), this assumption produced negligible
effect on the results of the calculation. (This would not necessarily be the case in a region of
a glacier where the surface-slope gradients are large.)

Method of interpolation. For interpolation of ug the following polynomial was used at
depth y:
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ua(® 3, 2) = Co(») +Ci(p)x+Ca(p)xz+C5(y) 2+
3G ()22 +3C5 () 22+H-3Cs() & +3C, () 2+
+eaCa(p) 2tk ()23 + 3k )zt (20)
The terms with coefficients €, to (s represent a determinate polynomial particularly suited
to the arrangement of the nine bore holes (Fig. 3). The five holes of section A made it possible
to estimate lateral gradients of ug up to order 4. The hole pairs along the lines 1, 2, and 3
made it possible to estimate the lateral gradients of dug/x up to order 2. From the three
holes in line 1, &2uq/0x* could be estimated. The additional terms with coefficients &, and £,
were added in order to make it possible to constrain the values of fuq/2x at holes 44 and 54,

5A 3A 1A 2A an
Tre—————a—
=400m
E
-] -6 -
= y=200m
_8 - —
N
\
-10 - y=300m . .
/
1 ! | 1 1
=300 -150 (0] 150 300
z(m)

Fig. 4. uqg versus z for selected depths at section A.
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Fig. 5. Ouqa[0x versus z for selected depths at section A.

where no direct information on éug/8x was available and extrapolation based on a determinate
polynomial with nine coefficients gave unacceptable results. For the purposes of the calcula-
tion it was assumed that dug/?x = o at all depths in holes 4a and 5a. (This is equivalent to
assuming that cu/@x is independent of depth and is equal to the value measured at the surface.)
The values of uq at the nine bore holes and the two constraints determined the eleven coeffi-
cients C, to Cg, &, and k,. Examples of the interpolation on the converged values of ugq at
various depths are shown in Figures 4 and 5.

In this case the data put fairly narrow constraints on the possible interpolating functions
which could be reasonably fitted to them. For this reason one can have reasonable confidence
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in the calculated values of ¢u/éx and 2u/?z, especially near the center of the array. The only
direct assumption about the velocity gradients at the bore holes is the constraint placed on
cuq/cx in holes 4a and 54 at the lateral margins of the array.

Interpolation on wq could have been made in similar fashion. However, wq does not have
a consistent trend across the bore-hole array, as exists in the case of ug. Use of a polynomial
equivalent to that of Equation (20) accentuated the complexity of the distribution. For this
reason simple differences gave more acceptable values for the ¥ and z derivatives of wq.

5A 3A 1A 2A 4A
4 T T c
ok 4
'U
E -4+ .
o
=
y=200
..2 — —
y=300
- 1 L 1 i |
=300 -4150 o] 150 300
z(m)

Fig. 6. wq versus z for selecled depths at section A. Computed derivatives Bwg|z are represented by line segments; curves
represent interpolating functions which are compatible with the computed slopes.

TaABLE I. FORMULAE FOR DERIVATIVES OF wq

Hole fwq/ox dwa/0z
TA (B + Ky)[2 (K54 Ke) /2
IB (3K —K,)/2 (K2+K5)/2
1c (3K,—Ky)/2 (5}
2A K (Aot K3) /2
2B K, o0
3a K_? (Kot Kg)/2
3B K. 0
4A 0 (4]
5A 0 0

This corresponds to fitting simple functions (straight lines and parabolas) locally, rather
than attempting to choose an analytically expressible function applicable over the whole
array. Examples of the calculated values of fwq/?z are shown in Figure 6. To express the
specific formulae let wg™ represent wq at bore hole M in meters per year. Then with the
notation (M, N) = [waM—wqN]/150 and the definitions A} = (1B, 1a), K, = (2B, 1B),
Ky = (24, 14), K4 = (28, 24), }{5 = ([Bs 3B, Ko = (14, 3a), K, = (33, 3A), Ky = (34, 54),
A, (1a, 10), and A, = (44, 24), the formulae for the derivatives are as in Table I.

At holes 44 and 5, where no direct information on fwq/@x is available, fwq/0x was set equal
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to zero. At holes 1¢, 2B, 3B, 44A, and 5A, where lateral extrapolation of wq must be com-
pletely hypothetical, ¢wa/0z was set equal to zero. These assumptions are equivalent to
setting the gradients of velocity in question equal to their surface values at all depths.

In contrast with the experience in interpolation of uq, the data are ambiguous in the case
of wq. Tt is clear from Figure 6 that quite different curves could be fitted to the data. Thus
the choice of a particular interpolating scheme is a subjunctive judgement involving a number
of arbitrary assumptions.

Since the bore holes were not all measured to the same depth (Fig. 3), a practical problem
arises in the extension of the calculations to depths greater than that of the shallowest hole
(in this case, hole 4a). Below that depth the above interpolating schemes could not be applied
without modification. This problem was overcome as follows. First the coordinate profile of
hole 44 was extrapolated to a depth of 200 m. Then starting from the surface, interpolation
was done using all nine points down to the depth of the extrapolated profile of hole 4a. At
this point Cy in Equation (20) and K, of Table I were extrapolated to the depth of the deepest
hole. Between the bottom of 4a as extrapolated and the next shallowest bore hole, hole 1c,
the ten coefficients C, to C, k,, and k, were determined from the extrapolated value of Cj,
the values of ug at the eight remaining holes, and the two constraints on fuq/0x. Similarly
K, to K, were calculated from the values of wq at the remaining holes. At the bottom of hole
ic, G, and K, were extrapolated with a resultant reduction in the number of coefficients to
be determined in Equations (20) and (21) at greater depth. This was continued until the
bottom of the deepest hole was reached. The coefficients €, and A, were extrapolated in
order of decreasing subscript. Extrapolation of each coefficient was done by fitting a parabola
to the trend of the coefficient over the 80 m depth interval above the deepest point at which
it could be calculated.

Extrapolation of the bore-hole profiles and the interpolating coefficients may seem to
be an artificial creation of non-existent data. However, it is clear that limits can be placed
on ice velocity immediately below the bottom of a bore hole from observations in the hole.
Thus it makes no sense to ignore completely the existence of the hole in calculations at greater
depth, and some improvement in accuracy of the x and z gradients calculated in adjacent
bore holes can be expected from a reasonable extrapolation of some sort.

Convergence of the iterative cycle. The iterative cycle (Fig. 2) was programmed for applica-
tion on a digital computer. For this purpose the continuous curves of the bore-hole profiles
were represented in the computer by coordinate values spaced at 5 m intervals, with co-
ordinates at intervening depths being computed by interpolation. Calculation of the
components of velocity and their x and z gradients was done for depths spaced 5 m apart.
For convergence it was required that the change in any component of velocity be less than
0.01 m a—! at all points. This condition was met after five traverses of the cycle and a
computation time of 50 s on an IBM 7094 computer. Maximum change in velocity at any
point was 1.29, 0.26, 0.01, and less than 0.005 m a ' between the consecutive traverses of
the cycle. The depth distribution of ug at the site of hole 1a computed under (1) the assump-
tion that deformation is simple shear parallel to the surface (i.e. 2, and x and z gradients of
velocity are zero), under (2) the assumption that the x and z gradients are equal to their
surface values over the whole depth (i.e. after one traverse of the cycle), and from (3) the
convergent iterative cycle are shown in Figure 7. In this case near the bottom the converged
result agrees very well with the simplest treatment (1) above, because the longitudinal
strain-rate turns out to be essentially zero there and v is small since the bed is approximately
parallel to the x axis. Over the whole depth range, the differences between the three treat-
ments is not great. However, where there is greater surface slope and larger longitudinal
strain-rate than exists for the Athabasca Glacier in the region of the bore holes (surface
slope 4°, longitudinal strain-rate —o0.02a"! at the surface), quite significant differences
between the different treatments could exist.
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Accuracy of the calculated quantities. Errors in the values of u and w calculated by Equation
(16) and their y gradients calculated by differentiation of Equation (16) are caused primarily
by errors in the measurement of the bore-hole tilt and coordinate profiles. This direct source
can be estimated from the known accuracy of the surface triangulation and bore-hole tilt
measurements. In the Athabasca Glacier holes, standard errors for the x and 2z components
of tilting rate (0y,/2t and 8y,/ét) are 0.0015 a~* and 0.0019 a~! respectively. Standard errors
for rate of change of the bore-hole coordinates (7xy/dt and @zn/ct) are about o0.20m a~!
for both components at the surface and respectively 0.41 m a—! and o0.45 ma! for the x
and z components at 300 m. Secondary sources of error come from uncertainty in » and the

ug (ma™)
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Fig. 7. Depth distribution ua computed at hole 14 under the assumption (1) that deformation is simple shear parallel to the
surface (short dashes), (2) thal x and z gradients of velocity are independent of depth (long dashes), and from (3) the
converged iterative cyele (solid curve).
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x and z gradients of velocity. These are particularly difficult to evaluate, because of the sub-
jective nature of the interpolation. Even unexpectedly large errors in these quantities produce,
however, only small effect on the values calculated for u and w and their y gradients. Maxi-
mum estimates of error for 2 and the x and z gradients of velocity indicate the standard errors
for du/dy and w/dy are about 0.002 a~! over the whole depth range. Similarly standard
errors for # and  should be less than 0.22 m a—* at the surface and 0.46 m a~" at a depth of
300 m. These values are only slightly greater than those associated with the measurement
of the bore-hole profiles. Error caused by the approximate nature of Equation (16) due to
the finite time interval between measurements, and the x and z dependence of the x and z
gradients of velocity turn out to be entirely negligible in comparison with the measurement
errors.

Standard error in » measured at the surface by triangulation is estimated to be 0.35 m a™
(except at 2B where an error as large as 0.8 m a—' is possible). The value estimated at the
bed from Equation (18) is judged to be accurate to within 0.5 m a ' under the assumption
that bed slopes are known to within 4°. (At 54, where the longitudinal bed slope is not known,
an error as Jarge as 0.8 ma~" is possible.) The error in » over the whole depth range as
calculated from Equations (17) and (19) can not be calculated; however, the standard error
probably does not exceed 0.5 m a~! at any depth (except for holes 28 and 54).

TasLE II. COMPARISON OF ¢ CALCULATED AT THE BED BY
EguaTtion (17) (vn*) AnD BY EQuaTioN (19) (on)

Up vp* (¥o—2s)
Bore hole ma* ma-! a

1A 0.7 —0.5 —0.003
1B 0.8 —0.9 —0.005
2A 1.0 +0.3 —0.002
2B 0.5 + 1.5 +0.003
3A —0.9 e —0.002
9B —0.9 —1.8 —0.003
5A —2:1 S -+ 0.004

Error in the calculated values of the x and z gradients of velocity comes from two sources:
(1) uncertainty in z and w at the bore-hole sites, (2) failure of the assumed interpolating
functions to represent the values of u and w correctly between the bore-hole sites. Values
estimated for the first of these range from o.cora”!' at the surface to between 0.002 and
0.004 a ' at a depth of 300 m depending on whether the bore-hole site has other holes on
both sides or just one side. The additional interpolation error arising from incorrect inter-
polation between the holes can not be quantitatively evaluated. Some information on the
magnitude of this error can be obtained indirectly. Since the bore-hole array lies in the
ablation zone, ice incompressibility is probably a good assumption. Thus, by comparing oy
calculated from Equation (18) with the value at the bed obtained by Equation (17), a
measure of the depth-averaged error in the sum w/?x+- fw/?z is obtained. In Table II this
comparison is made for those bore holes which were measured over the complete depth of
the glacier. It indicates that the total error in the above sum is not any greater than would
be expected from the uncertainty in velocity at the bore-hole sites and suggests that any
additional error associated with the interpolation is not large.

CONCLUSION

Although the above method is subject to uncertainty with respect to interpolation between
bore holes and the indirect calculation of v, it requires significantly fewer assumptions about
the pattern of flow for the analysis of bore-hole data and correspondingly gives more compre-
hensive results. For general estimates of flow velocity at depth, the increase in accuracy of
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velocity determination afforded by the method may often not justify the effort required to
apply it. However, for studies which require accurate and detailed knowledge of the three-
dimensional velocity field in a glacier, as is required for example in order to estimate rheo-
logical parameters and stresses within the glacier, such a method is essential,

The limitations of the method associated with the subjective nature of the interpolation
between holes must exist for any method using bore holes. Indeed, the problem exists for
any measurement of deformation based on tagging a finite number of discrete points or lines.
It must be solved by judicious selection of the location and spacing of markers as dictated by
the resolution required in the particular experiment. Beyond this basic limitation there are
several limitations of the present analytical method and the existing bore-hole measurement
techniques which could be modified and improved. In bore-hole experiments, where the
deformation rates and strain-rate gradients are very large or the time interval very long, it
could be necessary to include higher order terms in Equations (16) or to derive alternative
formulae. A desirable modification of present methods is to tag different ice elements along
the bore hole. This would make it possible to measure » directly.
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