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1. Introduction. In the last few years, there has been considerable interest in the
properties of orthogonal polynomials satisfying differential equations (DE) of order
greater than two, their connection to singular boundary value problems, their
generalizations, and their classification as solutions of second order DE (see for instance
[2-8]). In this last interesting problem, some known facts about the classical orthogonal
polynomials can be incorporated to connect these two sets of families and yield some
nontrivial results in a very simple way. In this paper we only work with the nonclassical
Jacobi type, Laguerre type and Legendre type polynomials, and we show how they can be
connected with the classical Jacobi, Laguerre and Legendre polynomials, respectively; at
the same time we obtain certain bounds for the zeros of the first ones by using a system of
nonlinear equations satisfied by the zeros of any polynomial solution of a second order
differential equation which, for the classical polynomials is known since Stieltjes
and concerns the electrostatic interpretation of the zeros [10, Section 6.7; 9,1]. We also
correct an expression for the second order differential equation of the Legendre type
polynomials that circulates through the literature.

2. Differential equations and zeros of polynomial solutions. In this section we
review some known and basic facts concerning the zeros of polynomial solutions of linear
operators.

For the sake of generality let us take a linear DE of nth order.

n

PROPOSITION 1. Let fn(x) = Yl (x-xk) be a polynomial of degree n with distinct
k = l

(complex) zeros xux2,... ,xn, satisfying the linear differential equation

k=o ax

Then the zeros Xj,j = l,2,...,n, satisfy the following system of nonlinear equations

(1)

nan
£' i i

+ (n - lK-i(*y)
- xh)... (xj - xin_2)

l f l l ( * , ) = 0, (2)

j = 1,2,.. . , n. The symbol X' means the sum over i ¥^j.

REMARK. If the order of the differential equation (1) is 2, we have the important
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case of the classical orthogonal polynomials and their zeros. All of these zeros satisfy an
equation of the form

tj - x,) y(xj)

where y(x) is a function related to the weight function of each family of polynomials; see
for instance [1]. The explicit form of this equation for the Jacobi case was known already
by Stieltjes; all the three cases have an electrostatic interpretation and are involved in a
problem of maximization [10, Section 6.7; 9].

Proof This is a very easy matter and follows Laguerre [10, pp 117-120]. Define the
n

polynomial of degree n-\ g(x) = II (* - **)• Thus, fix) = (x - xj)g{x), and therefore

f(m)(r.'\ = ma<m~1YrA rn = 1 2 (4)

Now, evaluate (1) at Xj and divide by/'(jc;)7^0 to yield

and then use (4) to obtain

!***(*/) ' =0.
*=i S\xj)

Remember that g(x) is a polynomial of degree n - 1. The (k - l)th derivative removes
from g(x) (k - 1) factors of the form (x - xh)(x - xh)... (x - x(-t_,), all of them different,
and produces a sum over these indexes; thus, we have that

g(Xj) i^i^..Mik., (Xj - Xh) . . . (Xj - XikJ

and therefore (2) holds.
Equation (3) plays an important role in obtaining the main results of this paper, so

we should spend a little more time on it.
As remarked above, the zeros of the classical orthogonal polynomials satisfy (3)

where

f ^ix)»(1 - x)(r+m(l +*)(J+1)/2 for Jacobi,

ya
L(x) = x(a+me-xl2 for Laguerre, (5)

yH(x) = e-x2/2 forHermite.

Note that y(x) vanishes at the extremes of the intervals of orthogonality and ln(-y(x)) is
a concave function in each case. A theorem proved by Popoviciu [9] states sufficient
conditions on a function y(x) to give the unique solution of (3):

(i) y(x) should be in Cl{a,b),a,b finite,
(ii) y(fl) = y(6) = 0,
(iii) In y(x) should be a concave function in [a, b\
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Such a solution consists in a set of (distinct) points contained entirely in (a,b). The part
of the proof corresponding to the existence makes use of the continuous and positive
function of n variables a < z}- ^ b, j = 1,2,... , n,

n n

T(Z)=n y(zi) n (zi - Zj)

that vanishes whenever Zj = a,b or zk = zt, attaining a maximum inside that region. (3) is
the condition for extremum.

3. Bounds and relationships. It is known [3-8] that the orthogonal polynomials
satisfying a fourth order DE can also be obtained as solutions of a second order DE of the
form

a2(x, n)f'Xx) + fli(x, n)fc{x) + ao(x, n)fn(x) = 0 (6)

where the coefficients depend not only on x, but also on n. However, as polynomial
solutions of a second order DE, their zeros satisfy (2) with aj(x) = 0 for / > 2 . The
resulting equation plays the main role in the following.

For the sake of simplicity we separate each case and summarize the features we need
of the corresponding polynomial. The notation is that of [4].

Jacobi type polynomials. They are denoted by Sn(x), n = 0 , 1 , . . . and can be
obtained through

n\ £ (-1)""*[?](1 + « W W " + «)(" + !) + (* + l)M]xk

(k +1)1(1+ a)n

where the Pochhammer symbol (a)n is defined by (a)n = a(a + l)(a + 2). .. (a + n - 1).
(The factor n! is missing in [4].) These polynomials are solutions of the Sturm-Liouville
DE

([(1 - x)a+4 - 2(1 - x)a+3 + (1 - x)a+2]S'W

+ ([(2a + 2 + M)(l - x)a+1 - 2(a + 2 + M)(l - x)a+1]S'n)' = \J
n(l - x)aSn

where

A£ = 2(a + 2)(a + 1 + M)n + (a2 + 9a + 14 + 2M)n(n - 1)

+ 2(a + 4)n(n - l)(n - 2) + n(n - l)(n - 2)(n - 3)

and their squared norm is

In this case we have an equation like (6) where

a2(x,n) = x[AjX2 - (Aj + M)x + M]

ax{x, n) = [2M(M2 + a + l + \J
n) + aAj]x2 - (Aj + Ma + 3M)x + 2M

ao(x, n) = [(-22a +2M + 110)Ay
n - V

J
n]x + kJ

n
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and
Aj = M2 + Ma + M + kJ

n = (2/i + a + 1) ||5n||2,

rji = -(42a3 + 342a2 + 732a + 432 + 6M2 + 438M + 309Ma + 3M2a + 45Ma2)n

- (18a3 + 270a2 + 1188a + 1440 + 3Af2 + 219M + A5Ma)n(n - 1)

+ (a3 - 21a2 - 274a - 696)/I(/I - 1)(« - 2) + (3a2 + 15a - 12)n(/i - 1)(« - 2)(/i - 3)

+ (18 + 3a)n(n - l)(/i - 2)(/i - 3)(/i - 4) + n(n - l)(n - 2)(n - 3)(n - 4)(/i - 5).

For this case, (2) can be cast in the form (3) with y(x) given by

rJ(x) = (AJx-Mr"'x(l-xy">

where
H = (8a - 3)M4 + (8a2 - 2a - 3)M3 + (-3a2 + 8aAy

n - 4a - 2\J
n - 2)M2

- XJ
n(4a + 5)M - (Xi)2,

v = 2M5 + (a + 1)M4 + (-2a + 2Â  + 1)M3 + (a3 + a2 + 2a + 2)M2

+ Ay
n(2a2 + 2a + 3)M + (a + l)(Ay

n)
2,

p = 2[M4 + (2a + 1)M3 + (a2 + a+ 2\J
n)M

2 + kJ
n(2a + l)M + (\J

n)
2].

Due to the relation between this function and y(jr's)(2x - 1) (see (5)), it is convenient
to work out these indices a bit more. As polynomials in M, they can be rewritten as

fi = (8a - 3)M4 + [8(2n + l)a2 + 2(8n2 + 6n-l)a- (An2 + An + 3)]M3

+ [8n(n + l)a3 + (16«3 + 22n2 - 2n - 3)a2 + 2(4«4 + 6n3 - 3n2 - lOn - 2)a

- 2(n4 + 2«3 + 6n2 + 5n + 1)]M2 - n(n + a + l)[(n + l)(n + a)(4a + 5) + 2}M

- n(n + l)(n + a)(n + a + 1),

v = [M + n(n + a)][M + (n + l)(n + a + 1)]{2M3 - (a + \)M2

+ [(2/i + l)a2 + 2n(n + 2)a + 2(n2 + n + 1)]M

+ «(« + l)(n + a)(n + a + l)(a + 1)},

p = 2[M + «(« + a)][Af + (n + l)(n + a + 1)][M + n(n + a + 1)][M + (n + l)(/i + a)].

A simple analysis shows that /JL and p are relatively prime for all n and a > - 1 . Some
numerical trials reveal the existence of curves within some regions of the M - a plane (n
fixed) on which p. = 0. For example, if a > 3/8 and n is fixed, four real values of M are
obtained for which \L = 0. For such curves, the functions Tj(x) and -/'/^(Ix - 1) (with a
proper selection of the parameters of the latter) generate the same polynomials through
(3). This result can also be obtained by considering the values for which the factor
(Ajx - M) becomes a constant different from zero (whether positive or negative is
immaterial because of the logarithmic derivative in (3)), i.e., for Aj = [M + n(n + a)]
[M + (n + l)(n + a + l)] = 0; but some caution is necessary because the power of
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such a factor diverges at these points and, on the other hand, Sn(x) collapses to a
polynomial of degree n - 1 if M = -n(n + a).

Let M > 0 and a > - 1 . Thus

M M

a + l)\\SJ

is a positive number less than 1 that approaches zero as one of the parameters M, a or n
is increased. In this region of the M - a plane, p is positive. If we exclude the points at
which fi = 0, we have that the function Tj(x) vanishes or diverges at x = £, as ft is positive
or negative, and the continuity of the zeros on its parameters (referred to /x = 0)
guarantees that they must be contained in (£,1). On the other hand, if £—>0, Tj(x)
approaches (except for a constant)

(( — xYlpxYlp

Thus, we have proved the following result.

PROPOSITION 2. Let Sn(x) and P(
n

r's)(x) be the Jacobi type and classical Jacobi
polynomials, respectively.

(i) IfM>Oanda>-l,

M
* [M + n(n + a)][M + (n + l)(n + a + 1)]

is a lower bound for the zeros of Sn(x).

(n + a + l)n[M + n(n + a)]
/2n+2v/p\
\ n I

(iii) Furthermore, if £-»0,

(n + a + l)n[M + n(n + a)]

- 1).

In these formulas we have taken into account the proper standardization of each
polynomial.

Laguerre type polynomials. These polynomials are denoted by R,,(x), n =
0 , 1 , . . . and have the form

,= V n\
R]xk.

*-0(* + l)! (« -* ) !* !

They satisfy the Sturm-Liouville DE

[x2e-xR"n{x)]H - {[2(R + l)x + 2]e-xK(x)Y = \L
ne-xRn{x),
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where R is a real parameter different from zero and \% = 2(R + l)n + n(n -1). Their
norm is given by

Jo R
These polynomials are also solutions of an equation like (6) where

U2\X, ft) — \I\ "T i\ ~r An)X AX

a,(*, /i) = -(fl2 + fl + A£>2 + (R2 + 2R + K^)x - 2R

ao(x, n) = (2i?A^ + 22A^ - r\^)x - Â
and

TĴ - = (37?2 + 45/? + 42)n + n(n - l)(10 - n).

In this case, (2) can be written in the form (3) with y{x) given by

where AL turns out to be the squared norm of Rn:

TL(x) vanishes at the extremes of the interval [0, °°), but diverges at

R
(R + n)(R+n + l)

whenever (R + n)(R + n + 1) ¥= 0. If R > 0, £ is an interior point on the interval and TL(x)
takes imaginary values for 0 < x < £ Therefore, £ must be a lower bound for the real
solutions of (3), and in particular for the zeros of Rn(x). Besides this, if we let £-»0,
TL(x) approaches

except for a constant, and according to (5) this y(x) generates the zeros of Laguerre
polynomials L°n(x). Similarly, if R = -n - 1, or R = -n, TL(x) is proportional to y]

L(x),
but now (5) generates the zeros of L\{x) for the first choice of R and of Ll-X(x) for the
latter (note that Rn(x) collapses to a polynomial of degree n -1 if R = -n). Thus, we
have proved the following

PROPOSITION 3. Let Rn{x) and L"(x) be the Laguerre type and classical Laguerre
polynomials, respectively.

0,

is a lower bound for the zeros of Rn(x).
(ii) / / f - 0 , then Rn(x)^(R + n)L°n(x).
(iii) / / R = -n-l, or R = -n, then Rn(x) = -L],(x) or Rn(x)=-L],.1(x)

respectively.
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In these formulas we have taken into account the proper standardization of each
polynomial.

Legendre type polynomials. These polynomials denoted by P"(x), n =
0,1,2, . . . , have the form

=
 [ f (-

2"k\{n-k)\{n-2k)\ '

where [v] denotes the greatest integer <v. This family satisfies the Sturm-Liouville DE

[{x2 - l)2Pa
n"{x)Y + 4{{a(x2 - 1) - 2]Pa

n'(x)}' = APPa
n(x),

where
\p = n(n + l)(n2 + n + 4a - 2).

In this case the norm is

1).

For these polynomials we have an equation like (6) where

a2(x, n) = (x2 - l)[(4a2 + 4a + Aj>2 - (4a2 - 4a + A^

ax(x, n) = 2^:[(4a2 + 4a + A £ > 2 - (4a2 - 12a + A

and
r\p

n = n(n + l)[4a2 + 4(«2 + n + l)a + (n - l)n(n + 1)(« + 2)].

(We have found in the literature an incorrect expression for the ao(x,n) term in such a
differential equation.)

We have now that (2) can be written in the form (3) with y(x) given by

TP{x) = {A-Bx2Ym{l-x2),

where A and B come out to be related to the norm square of P%(x):

A = [2a+ n(n + l)][2a + (« - l)(n + 2)] = 4 ( 2* + ^ ||Pn
a||2 - 8a,

B = [2a+ n(n - l)][2a + (n + l)(n + 2)] = — \\P%
a

TP(x) vanishes at the extremes of the interval [-1,1], and diverges at

' B

whenever B #0 . If a >0, £+ and £_ are interior points of the interval and TP(x) takes
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imaginary values for 0 < £+ < \x\. Therefore, £+(£-) must be an upper (lower) bound for
the real solutions of (3), and in particular for the zeros of P%(x). Besides this, if we let
£+ —> 1, TP(x) approaches

except for a constant, and according to (5), this y(x) generates the zeros of Jacobi
(Legendre) polynomials P(°fi)(x). Similarly, if a = - ( n + 1)(« + 2)/2 or a = -n(n - l ) /2,
FP(x) is proportional to y^'^ix), and now (5) generates the zeros of P(

n
hl)(x) for the first

choice of a and of P(
n^(x) for the latter (P%(x) collapses to a polynomial of degree n - 2

if a = —n(n - 1)12). Thus, we have proved the following

PROPOSITION 4. Let P"(x), Pn(x) and P(
n
a'e\x) be the Legendre type, classical

Legendre and classical Jacobi polynomials, respectively. Here, Pn(x) = P{°fi)(x).
(i) If a > 0 , the zeros of P°(x) are contained in ( - £ , £), where

/[2a + n(n + l)][2a + (n - l)(n + 2)]
* ~ V(2a + n{n - l)][2a + (« + l)(n + 2)]'

(ii) 7/£-»l , then P"n{x)^[a+n{n - l)/2]Pn(x).
(iii) lfa = -(n + l)(n + 2)/2 ora = -n(n- l)/2

or /»£(*) = -(n/2)P(™&x), respectively.

Again, in these formulas we have taken into account the proper standardization of each
polynomial.

To conclude this paper, we remark that some of the preceding results can also be
obtained by a simple and direct comparison of both DE. This is true for some cases but
not for all of them. Most of the limit cases are not so obvious, and the obtainment of the
bounds can not be worked out in such a way.
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