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Abstract

This paper discusses robust stochastic stability and stabilization of time-delay discrete
Markovian jump singular systems with parameter uncertainties. Based on the restricted
system equivalent (RES) transformation, a delay-dependent linear matrix inequalities con-
dition for time-delay discrete-time Markovian jump singular systems to be regular, causal
and stochastically stable is established. With this condition, problems of robust stochastic
stability and stabilization are solved, and delay-dependent linear matrix inequalities are
obtained. A numerical example is also given to illustrate the effectiveness of this method.
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1. Introduction

In practice, many dynamical systems cannot be represented by linear time-invariant
models since the dynamics of some features of these systems, such as for example,
abrupt changes, breakdowns of components, changes in the interconnections of sub-
systems, etc., are random. Such classes of dynamical systems fall into the category of
stochastic hybrid systems. A special class of hybrid systems referred to as Markovian
jump systems, which exhibit random structures, has attracted much interest among
researchers and many important problems involving these systems have been investi-
gated, such as stability, stabilization and //«, control problems, see [4-6,8,18] and the
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references therein. On the other hand, time delay is commonly encountered in various
engineering systems and is frequently a source of instability and poor performance.
In general, the approaches to studing time-delay systems can be classified into two
types: delay-dependent conditions, which include information on the length of delays
[3,4,7,8,10-13,19,20], and delay-independent conditions, which are applicable to
delays of arbitrary length [5,6,18]. Since the stability of systems depends explicitly
on their time delays, a delay-independent condition is often conservative, especially
for small delays, while a delay-dependent condition is usually less conservative.

Singular systems, which are also referred to as implicit systems, or descriptor sys-
tems, have extensive applications in many practical systems, such as circuit boundary
control systems, chemical processes, economy systems, and other areas, see [1,9].
So a great number of fundamental notions and results in control and system theory
based on standard state-space systems have been extended successfully to singular
systems [1,2,9,14,15,17,21-24]. In recent years, much attention has been focused
on robust stability, robust stabilization and H^ control problems for singular systems
[2,14,15,17,21-24]. Xu and Lam [22] and Ma and Cheng [14] gave some results
on robust stability and robust stabilization for discrete singular systems. The //«,
control problem for time-delay continuous-time singular systems was investigated in
[17], [21] and [24],. For time-delay discrete singular systems, Xu, Lam and Yang [23]
solved robust stabilization and #«, control problems based on a delay-independent
non-strict linear matrix inequality condition, Ma and Cheng [15] solved a robust
stabilization problem based on a transformation of state-control pairs and a delay-
dependent LMI (linear matrix inequality). For Markovian jump singular systems,
Boukas [2] discussed output feedback control for continuous-time Markovian jump
singular systems. To the best of our knowledge, delay-dependent conditions for robust
stochastic stability and robust stochastic stabilization problems for time-delay discrete
Markovian jump singular systems have not been investigated in the literature.

The objective of this paper is to study robust stochastic stability and stabilization for
time-delay discrete Markovian jump singular systems with parameter uncertainties.
Based on the restricted system equivalent (RES) transformation and by introducing
new state vectors, we shall transform the singular system into a time-delay discrete
Markovian jump standard linear system, and then obtain some delay-dependent LMIs
for the time-delay discrete Markovian jump singular systems to be regular, causal and
stochastically stable. With this condition, we shall establish some criteria on robust
stochastic stability and stabilization in terms of some delay-dependent LMIs. The rest
of the paper is organized as follows. In Section 2, we shall formulate the problem and
introduce some preliminaries. We then state and prove our main results in Section 3.
Finally, we give, in Section 4, a numerical example to illustrate the effectiveness of
the method, and some conclusive remarks in Section 5.
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2. Description of problem and preliminaries

Throughout this paper, for real symmetric matrices X and Y, the notation X > Y
(respectively, X > Y) means that the matrix X - Y is semipositive definite (respec-
tively, positive definite). Here / is the identity matrix with appropriate dimensions,
the superscript "T" represents the transpose, and diag{- • •} denotes a block-diagonal
matrix. Also \\x\\ refers to the Euclidean norm of the vector x, that is, ||x||2 = xTx.
Finally, 2f denotes the set integers, E{} denotes the expectation and * denotes the
matrix entries implied by the symmetry of a matrix.

The system considered in this paper is assumed to be a state-space model as follows:

[ Exk+i = A(k, rk)xk + Ad(k, rk)xk_d + B(k, rk)uk,
\ k = -d,...,-1,0, (2.1)

where k e 3f, xk € R" is the system state, uk e Rp is the control input, d is an
unknown constant integer time delay, and 0 < d < d, where d > 0 is a known integer
and 4>{k) is the initial value at k. Here [rk,k e 2?} is a Markov chain taking values in
finite space <p = {1, 2, • • • , N], with transition probability from mode i at time k to
mode j at time k + 1 given by

Pii =Pr{/*+i =j\rk = i)

with ptj > 0 for /, j e cp, and £ " = 1 p u = 1. The matrix E 6 Rnxn is singular, and
rank£ = r < n. For each i e <p, we have

A(k, i) = A(i) + SA(k, 0 , Ad(k, i) = Ad(i) + SAd(k, i),

SB(k,i)

where A(i), Ad(i) and B(i) are known constant matrices with appropriate dimensions.
Here S A (k, /) and S Ad (k, /), S B (k, /) are unknown matrices, denoting the uncertainties
in System (2.1). In this paper, the uncertainties are assumed to be of the following
form:

[8A(k,i) 8Ad(k,i) SB(k,i)] = Ei(i)A(k,i)[F,(i) F2(i) F3(i)] (2.2)

where £i(Q. Fi(Q, F2(i) and F3(i) are known constant matrices with appropriate
dimensions and A(/t, i) e Rqxs are unknown time-varying matrix functions satisfying

AT(k, i)A(k, i) < I. (2.3)

REMARK 1. The uncertainties 8A(k, i), 8Ad(k, i) and 8B(k, i) are the so-called
"norm-bounded uncertainties" and are considered frequently in robust control, see for
example [5,8,18] and the references therein.
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DEFINITION 2.1. Consider system (2.1) with SA(k, rk) = 0, 8Ad(k, rk) = 0 and
m = 0.

(i) [9] For a given rk = /, i e <p, the pair (£, A(i)) is said to be regular if
det(z£ - A(i)) # 0.

(ii) [9] For a given rk = i, i e <p, the pair (£, A(i)) is said to be causal if it is
regular and degree (det(z£ - A(/») = rank(£).

(iii) System (2.1) with 8A(k, rk) = 0, 8Ad(k, rk) = 0 and uk = 0 is said to be
regular and causal if every pair (E, A(i)) is regular and causal, for all i € <p.

DEFINITION 2.2. (i) System (2.1) with 8A(k,rk) = 0, 8Ad{k,rk) = 0 and
uk = 0 is said to be stochastically stable, if for every initial state (</>, r0), the condition

.... .P. 'of < o o
U=o J

is satisfied.
(ii) System (2.1) with uk = 0 is said to be robust stochastically stable if it is

stochastically stable for all uncertainties satisfying (2.2) and (2.3).
(iii) System (2.1) is said to be robust stochastically stabilizable if there exists a

state feedback controller

uk = K(rk)xk (2.4)

with K(i), when rk = /, a constant matrix such that the resulting closed-loop system
is robust stochastically stable.

REMARK 2. (i) If System (2.1) with 8A(k, rk) = 0, 8Ad(k, rk) = 0 and uk = 0
is regular and causal, then for any initial value <f>(k), there exists a unique solution of
System (2.1) for each rk = i, i e cp.
In fact, since rank£ = r < n, there exist two nonsingular matrices M,N e Rnxn such
that MEN = [ \ I ] and we write

Then System (2.1) with 8A(k,rk) = 0, 8Ad(k, rk) = 0 and uk = 0 is RSE to the
following system:

A1(i)xlk + Adl(i)xHk_d) + Ad2(i)x2(k-d),

) + Atn(i)x2(k-d), , _ , n

K — a, . ..,u
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Definition 2.1 and System (2.1) being regular and causal mean that the matrix A4(0
is nonsingular [9] for each mode / € (p. Then it follows that

i) - A2(i)A;\i)Ad4(i))x2(k-d),

A3(/)JCU + Ad3(i)xnk-d) + Adi(i)x2(k_d)),

which indicates that a unique solution of System (2.1) exists for each / € (p.
(ii) By Definitions 2.1 and 2.2, one can see that regularity, causality and stochastic

stability are preserved under an RES transformation.
(iii) When E is nonsingular, System (2.1) can be transformed to a class of time-

delay discrete Markovian jump standard linear systems. The problems of stochastic
stability and stochastic stabilization for such systems have been solved in the literature
[4,6,18].

The purpose of this paper is to develop delay-dependent LMI conditions such that
System (2.1) with uk = 0 is regular, causal and robust stochastically stable, and to
design a state feedback controller of the form (2.4) such that the resulting closed-
loop system is regular, causal and robust stochastically stable for all uncertainties
satisfying (2.2) and (2.3).

The following lemma will be used in the proof of the main results.

LEMMA 2.3 ([16]). Given a symmetric matrix ft and matrices V and 3 with appro-
priate dimensions, then

+ S r A r r r < 0

for all A satisfying Ar A < /, if and only if there exists a scalar € > 0 such that

3. Main results

In this section, first of all, we consider the regularity, causality and robust stochastic
stability of System (2.1) with uk = 0. Since rank£ = r < n, there exist two
nonsingular matrices M and N & Rn*n such that

M . n u \Adl(i) Ad2(i)] [£,,(01 f*«] (3.1)
MAd(i)N = \ , MEx(i) = \ , xk = N\

[Ad3(i) Ad4(i)] L£i2(')J
F,(i)AT = [Fu(i) Fn(i)], F2(i)N = [F2l(i) F22(i)],
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where xxk e Rr,X2t e R"~r,

A,(i), Adl(i) € Rrxr, A2(i), Ad2(i) € Rr*c-r\ A3(i), Ad3(i) e *<"-'»",
A4(0, A,4(/) € ^««-r)x(-r)i En(i) g ^ x ^ £ ] 2 ( / ) g flC-Dx^

^n(i), F21(i) e /?**' and F,2(i), F22(0 € /?JX(n-".

So System (2.1) with M* = 0 is RES to the following system for each mode / e <p:

0 =

By introducing new state vectors as

** = L*U'*2

then System (3.2) can be rewritten as

(fifa) + 8E(k, rt))jct+i = (A(rt) +

where for rk = i,i e (p

(i) + En(i)A(k, i)F22(i))x2{k_d).
(3.2)

SAd(k,

(3.4)

Add) =

h
0
0
0

0
0
0
0

-A 2 (0
-A4(/)

0
0

Ad2d)

A<nd)
0
0

0
0

Ir
0

0
0
0

/„- ,_

Ad,(Z) 0"

A<ud
0
0

) o
0
0

d) -

-
d) -

Aid)
Aid)

Ir

0

'End)'
End)

0
0

0
0
0

h-r

J

0
0
0
0

0
0
0
0

SAd(k, i) = Ed)A(k, i)Fdd),

Fid) = [Fud) 0 0 0] and

(i) = [0 -F12(/) 0 0 ] ,

(0 = [0 F22(/) F21(j) 0 ] .

(3.5)

When A(*. i) = 0 in (3.4), System (2.1) with SA(k, rk) = 0, SAd(k, rk) = 0 and
uk = 0 can be written as

Ad(rk)xk-d+l. (3.6)
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For the relation between System (2.1) with 8 A(k, rk) = 0, 8Ad(k, rk) = 0 and uk = 0
and System (3.6), we have the following result.

LEMMA 3.1. System (2.1) with 8A(k, rk) = 0, 8Ad(k, rk) = 0anduk = Ois regular,
causal and stochastically stable, if System (3.6) is a Markovian jump standard linear
system (that is, the matrix E(i) is nonsingularfor each mode i € cp) and stochastically
stable.

PROOF. First, consider the regularity and causality of System (2.1) which has
8A(k, rk) = 0, 8Ad(k, rk) = 0 and uk = 0. If System (3.6) is a Markovian jump
standard linear system, from (3.5) it follows that A4(i) is nonsingular [9]. Then, from
Definition 2.1, System (2.1) with 8A(k,rk) = 0, 8Ad(k, rk) = 0 and uk = 0 is regular
and causal.

Next, consider the stochastic stability of System (2.1) with 8A{k,rk) = 0,
8Ad(k, rk) = 0 and uk = 0. Since System (3.6) is stochastically stable, Definition 2.2
yields

0, r0 \ < oo

for every initial state (0, r0), where $(k) = [(f>J(k) <pl(k - 1) <t>](k - 1) ${k - 2)]T

and <p(k) = N [£[*>]. It follows that

(\\xlk(4>u d>2, ro)\\
2 + ||x2*(0,, 02, ro) | |2) | <t>u 4>i, ro\ < oo.

k=0

Therefore, from Remark 2, System (2.1) with 8A(k,rk) = 0, 8Ad(k,rk) = 0 and
uk = 0 is stochastically stable. The proof is completed. •

REMARK 3. Based on the transformations (3.1) and (3.3), System (2.1) with uk = 0
is transformed into System (3.4) with delay d-\, and System (2.1) with 8 A(k, rk) = 0,
8 Ad(k, rk) = 0 and uk = 0 is transformed into System (3.6) with delay d - 1. Based
on Lemma 3.1, the regularity, causality and stochastic stability of System (2.1) with
SA(k, rk) = 0, 8Ad(k, rk) = 0 and uk = 0 and the robust stochastic stability of
System (2.1) with uk = 0 can be solved by solving the stochastic stability of the
standard linear system (3.6) and the robust stochastic stability of the uncertain standard
linear system (3.4).

THEOREM 3.2. System (2.1) with 8A(k, rk) = 0, 8Ad(k, rk) = 0 and uk = 0 is
regular, causal and stochastically stable, if for each mode i e <p, there exist matrices
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Xi > 0, Z > 0, U > 0, Nn, Ni2, Ni3, Sn, Si2 and Si3, satisfying the following LMl:

< D , = * 0,22 $,23 (d - \)Ni2

* 0 m (d- l)Ni3

* * -(<i-l)Z_

NIX

*
*

< 0, where (3.7)

N* + Sn{A(0 -

*M2 = {MO ~ E(0)TS?2 - Nn + N[2 + SnAd(0,
N

* - SiXE(i) + (A(i) - E(i))TSfv

+ AT
d(i)Sf2 - Ni2 - N[2 - U,

*/23 = AT
d(i)Sf3 - Si2E(i) - N* and

N

0,33 = J2 PuxJ + 0~ ! ) z ~ S,M0 - ET(i)Sjr

PROOF. Based on Lemma 3.1, to prove that System (2.1) with SA(k,rk) = 0,
8Ad(k, rk) = 0 and uk = 0 is regular, causal and stochastically stable, it suffices to
prove that the matrix E(i) is nonsingular for each mode / e <p and System (3.6) is
stochastically stable. First, we prove that the matrix E{i) is nonsingular for each
mode / e (p. From (3.7) it follows that O,33 < 0. Since X,• > 0, Z > 0 and d > 1, we
obtain that — SuE(i) — £ r(QS^ < 0. Then E(i) is nonsingular for each mode / 6 <p.

Next, we prove that System (3.6) is stochastically stable. Rewrite System (3.6) as

Xk+\ — *k + 9k,

0 = -E(rk)yk - E(rk)j xk + Ad(rk)xk.d+l.
(3.8)

Let Xk = (xk,xk-i,--- , xk-d+\) and Yk = (yk_u • • • , yk-d+i)- We may then construct
a stochastic Lyapunov functional as

V (Xk, Yk, k, r t ) = V, (xk, Yk, k, r*) + V2 (xk, Yk, k, r t ) + V, (xk, Yk, k, r t ) ,

k-\

l=k-d+\

V,(kk,Yk,k,rk)=
k-\

e=~d+i i=k-\+e
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where the matrices Xn > 0, U > 0 and Z > 0. Let the mode at time k be i, that is,
rk = i. Recall that at time k + 1, the system may jump to any mode rk+x = j . One
can then obtain that

E (xk+u Yk+U k+l, r t + , ) | Xk, Yk, rk = i ] - V, (xk, Yk, k, i

= E

= E xk+^Xrk+lxk+\ I ̂ t , 1^, r^ = i I — Jtt Xj

) | £ t , yt, rt = i ] - Jct
r

(3.9)

E

/=*-</+2

Ux,

E '3(xk+uYk+uk+l,
0 k

= E

= {d-\)yT
kZyk

t, n, *, i
k-\

- E A'I
l=k-d+\

and

t, yt, rt = i ] - V3

t , Yk, rk = i
o t-i

- E E :
e=-d+2i=k-\+e

k-\

l=k-d+i

From (3.9H3.11), it follows that

E [ V Xk, Yk, rk = i ] - V (xk, Yk, k, i

(3.10)

(3.11)

y, Zyi. (3.12)
/=t-</+i

From the first equation in (3.8), for any appropriate dimensions Nn, Ni2 and Ni3, the
following equation holds:

/=*-</+!
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And from the second formula of (3.8), for any appropriate dimensions Sn, 5,2 and 5,3,
the following equation is also true for rk = i:

fk Sn) (-E(i xk
= 0.

(3.14)

For a semi-positive definite matrix Qt, the following holds:

(d-1)
xk

Xk-d+\

Xk
xk-d+\

k-\

- E
l=k-d+]

Xk

xk-d+\

xk

Xk-d+\ >0. (3.15)

Then, adding the terms on the left of (3.13)—(3.15) to (3.12), it is obtained that

E [ V (xk+i, Yk+U k+l, rk+l}\xk, Yk, rk = i ] - V (xk, Yk, k, i )

k-\

\xT xTvx x

l=k-d+l

where

A , = * * c

,•12

22 and Fl, =
Qi

Mi
Ni2

If we let Qt = N,I Z"1 [ ̂  NJ2 NT} ], then Qt > 0 and n , > 0. In this case,

the inequality (3.7) is equivalent to A,- + (d - \)Qt < 0, according to the Schur
complement. Let a0 = ^ { - ( A , - + (d - \)Qt), i e <p], then a0 > 0. From (3.16),
we obtain that for any k > 0

E [v(xk+u Yk+U k + l, rk+^\jtk, Yk} rk = j] < v(xk, Yk, k, r t ) - aojct
rjct. (3.17)

Setting k = 0 and A: = 1 in (3.17) yields

E [v(* , , 7,, 1, r,.)| XOt Yo, r0] < v(x0, YQ, 0, r0) - «oJco
rJco (3.18)

2, Y2, 2, r2)\xu Yu r,] < v(xu Yu 1, r ,) - ato*,7*,. (3.19)

and
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Taking the expectation E[-\X0, Yo, r0] on both sides of (3.18) with the aid of (3.19),
leads to

E V (x2, Y2, 2, r2) | Xo, Yo, r0] < V (x0, Yo, 0, r0) -
/=o

Xo, Yo, r0 ] .

Then, one can continue the iterative procedure (3.17) to obtain

E [ V (xT+u YT+UT + 1, r r + I ) | Xo, Yo, r0]
T

< V (ko, Yo, 0, r0) - a0 ^ E [i,Ti, | Xo, Yo, r0] ,
/=o

implying that
00 .

i/'jc,! Xo, %, r0] < - V (x0 , fb, 0, r0) < oo.
(=0

This indicates that System (3.6) is stochastically stable. The proof is completed. •

Considering the regularity, causality and robust stochastic stability of System (2.1)
with uk = 0 for all uncertainties satisfying (2.2) and (2.3), the following theorem is
given.

THEOREM 3.3. System (2.1) with uk = 0 is regular, causal and stochastically stable
for all uncertainties satisfying (2.2) and (2.3), if for each mode i e <p, there exist
matrices X, > 0, Z > 0, U > 0, NiU Nn, Ni3, Sn, Si2 and So, and scalars A, > 0
satisfying the following LMI:

* -hi o
* * —hi

(3.20)

where

and

-F,(i) 0] .

PROOF. From Theorem 3.2, replacing E(i), A(i) and Ad{i) in (3.7) with

E(i) + 8E(k, i), A(i) + SA(k, i) and Ad(i) + 8Ad(k, i), respectively, then Sys-
tem (2.1) with Mt = 0 is regular, causal and stochastically stable for all uncertainties

satisfying (2.2) and (2.3). According to (3.5), the inequality (3.7) can be written as

*, + n/aA(*. on, , + (n/flA(*, on,*)7" < o. (3.21)
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By Lemma 2.3, a sufficient condition for (3.21) is that there exists a scalar A,- > 0
such that

*,. + x;1 n,0 nja + x, njb nib < o. (3.22)

Applying the Schur complement shows that (3.22) is equivalent to (3.20). The proof
is completed. •

In the following, we design a robust state feedback controller in the form of (2.4) for
System (2.1) such that the resulting closed-loop system is regular, causal and robust
stochastically stable for all uncertainties satisfying (2.2) and (2.3). The closed-loop
system formed by System (2.1) and the state feedback control law uk = K{rk)xk is

Exk+i = (A(k, rk) + B(k, rk)K(rk))xk + Ad(k, rk)xk_d. (3.23)

By the transformation (3.1), for rk = i, i e <p, the closed-loop system (3.23) is RES
to the following system:

+ Eu(i)A(k, i)FlK(i))xlk + (A2K(i) + E,,(i)A(*, i)F2K(i))x2k

+ (Ad](0 + Eu(i)A(k, i)F21(i))xHk.d)

+ (Ad2(i) + En(i)A(k, i)F22(0)*2(*-d),

0 = {A3K(i) + £12(/)A(*, i)FlK(i))Xlk + {A4K(i) + Ei2(i)A(k, i)F2K{i))Xlk

+ (Ad3(i) + En(i)A(k, i)F2i(i))xHk-d)

+ (Ad4(0 + Ei2(i)A(k, i)F22{i))x2{k.d),
(3.24)

where

A,*(i) = A,(i) + Bx(i)Kx(i), A2K(i) = A2(i) + Bi(i)K2(i),

A3K(i) = A3(i) + B2(i)Kx{i), AiK(i) = At(i) + B2(i)K2(i),

FiK(i) = Fn(i) + Fi^Kiii), F2K{i) = Fn(i) + F3(i)K2(i),

MB(i) =

and Bi(i) e Rrx", B2{i) e &"-')*>>, Kx(i) e R"*r and K2(i) e RP^"~r\ From (3.3),
System (3.24) is rewritten as

, rk))xk+l = (AK(rk)+SAK(k, rk))xk + (Ad(rk)+8Ad(k, rk))xk-d+u
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where, for any rk = i, i € <p,

EK(i) = E(i) — B{i)k2(j), AKii) = A(i) + B(i)Ki(i),

8AK(k,i) = E(i)Aik,i)F2K(i),

B(i) = [B{(i) BHi) 0 0 ] r , K\{i) = [Kx{i) 0 0 0] ,

K2H) = [0 K2H) 0 0] ,

and £(/), A(«), Fx[i), F2(i), E{i), Ad(i) and 8Adik, i) are shown as in (3.5).

THEOREM 3.4. If for each i e <p, and given scalars tn, ti2, ti3, there exist matrices
X,• > 0, Z > 0, U > 0, Nn, Ni2, Na, ki(i), K2ii) and R = diag{Ru, R22, R2},
Ru e Rrxr, R22 e /?(n-r)x("-r) isnonsingular, R2 e /?"*", andscalar^ > ^satisfying
the following LMI:

' i l l

*

*

*

*

*

*<12

*

*

*

*

* / 1 3

* / 2 3

* / 3 3

*

*

*

id —

id-
id-
-id

\)Nn

\)Ni2

l)Ni3

-\)Z
*
*

CitnE(i) 0
e,tnE(i)
€,t,3E(i)

0

*

(Fdii)R)

-* / r i (0
0
0

- e , /

\T~\

< 0, (3.25)

where

tnAd{i)R,

;'='
U2Ad(i)R + ti2R

TAT
d(i) - Ni2 - Nj2 - U,

ti3R
TAT

d(i) - ti2%(i) - N*,

N

ijXj + (d- \)Z - r,3*e(i) - r,3*;(i),

;='
- B(i) [0 ^2(j) 0 0],

+ fl(i)[*i(0 0 0 0],

-F3(i)[0 ^2(0 0 0] and

i) 0 0 0],
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then there exists a robust state feedback controller for System (2.1) such that the
resulting closed-loop system is regular, causal and robust stochastically stable for all
uncertainties satisfying (2.2) and (2.3), and K(i) = [Kt(Q/?,",' K2(i)R22

l]N-\

PROOF. By Theorem 3.3, replacing E(i), A(i), F{(i) and F2(i) in (3.20) with
£*(')> AK(i), FIA:(/) and F2K(i), respectively, then the closed-loop system (3.23) is
regular, causal and robust stochastically stable for all uncertainties satisfying (2.2) and
(2.3). Setting Sfx = tnS, Sj2 = tnS and S£ = ti3S, then from LMI (3.20) it follows
that

- ta (ET
K(i)S + STEK(i)) < 0.

Since X, • > 0, Z > 0 and d > 1, the same is true for —ti3(E^(i)S + STEK(i)). So
the matrix S is nonsingular. We set

T = diag {S"r, 5 - r , S~T, S~\ X;lI, A"1/}.

Pre- and post-multipling the inequality (3.20) by T and TT, respectively, and setting

S-TUS~l = U, S-TZS~X = Z, S-TXjS-1 = Xh S-TNnS-1 = Nn,

S-TNi2S-1 = Na, S-TNnS~l = Ni3, S"1 = R and A.71 = e,,
(3.26)

and taking R = diag{/?n, R22, R2], Rn 6 /?rxr, /?22 6 *<"-'>*<"-'•>, /?2 e /?nxn, and
setting Kx(i) = Ki(i)Ru and K2(i) = K2(i)R22, then LMI (3.25) is obtained.

Obviously, from (3.26), the matrix R in (3.25) should be nonsingular. The non-
singularity of R can be obtained by the following discussion. Since ,̂33 < 0 in
(3.25), the same is true for —ti3(^e(i) + *J(/)). So flu and tf2 are nonsingular,
and Ki(i) = KiiOR^1. Since R22 is nonsingular, K2(i) = K2(i)R22. Thus R is
nonsingular, and from (3.1), it follows that K(i) = [Kx(i)R^ K2(i)R22]N-1. The
proof is completed. •

REMARK 4. The conditions (3.7), (3.20) and (3.25) given in Theorems 3.2, 3.3
and 3.4, respectively are LMIs and delay dependent. From the proof of Theorem 3.2,
it is known that if the LMIs (3.7), (3.20) and (3.25) hold for d, then they hold for any
d e (0, d]. Generally, in delay-dependent LMI conditions, d is not very large, and the
size of d can be obtained by using a numerical optimization algorithm. If the delay d
is known, then d in LMIs (3.7), (3.20) and (3.25) can be changed to d, directly.

REMARK 5. The optimal values of the tuning parameters tn, ti2 and r,-3, that were
introduced in Theorem 3.4, can be found by the approach stated in [11, Remark 5]. A
numerical solution to this problem can be obtained by using a numerical optimization
algorithm, such as fminsearch in the Optimization Toolbox version 2.2 of Matlab 6.5.
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4. Example

Consider the following uncertain time-delay discrete-time singular system:

FiW = [0.01 0.01], F2(l) = [0.01 0.02], F3(l) = 0.01,

F,(2) = [0.005 0.01], F2(2) = [0 -0.01] and

F3(2)=0.01.

Let pu = 0.6, pi2 = 0.4, p2, = 0.1 and p22 = 0.9. Also let d = 2, tu = 0.2,
r,2 = -0.005, f13 = 4, f21 = 0.08, f22 = -0.002 and t23 = 4. Solving the LMI (3.25),
we find that the LMI is feasible with the following results:

X{\) = 103 x

' 0.3106 0.7862
0.7862 2.5743

-0.3578 -0.1292
-0.0665 0.1660

-0.3578 -0.0665"
-0.1292 0.1660
2.6592 0.5720
0.5720 2.9200

X(2) = 103 x

Z = 103 x

' 0.3168 0.8177 -0.2841 -0.0292'
0.8177 2.7065 0.0255 0.2522

-0.2841 0.0255 2.3174 0.3934
-0.0292 0.2522 0.3934 2.9071

0.1417 0.1335 0.2628 0.0131 "
0.1335 1.0908 -0.0967 -0.1284
0.2628 -0.0967 2.0468 0.3167
0.0131 -0.1284 0.3167 1.2122

U =

30.8316 79.8609 1.9475 -2.1030'
79.8609 256.1200 -13.4121 -1.6061
1.9475 -13.4121 51.5632 -4.6103

-2.1030 -1.6061 -4.6103 167.8996.
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Nn = 103 x

-0.0855 0.0974 -0.5162 -0.0899'
-0.1381 -0.7574 -0.3033 -0.0464
0.2079 0.7889 -1.2318 -0.2018
0.0643 0.1667 -0.1063 -0.2469

Nn = 103 x

0.0796 -0.1110
0.1314 0.7398

-0.1788 -0.8147
-0.0510 -0.1611

0.6021 0.1035'
0.5585 0.0870
1.3272 0.2512
0.1448 0.2321

'63.1533 96.7806 233.2663 31.0404 '
82.3140 234.4307 335.9226 -38.4231

-0.2822 40.9476 11.0330 -25.2583
1.3931 139.5422 45.4164 70.2487

-82.8138 -42.1154
-33.5148 -300.7799
-24.7109 12.8396
3.3901 9.9484

-24.5453
14.5256

-254.0699
-2.9763

4.8740 '
11.7652
-4.1169

-271.5547

N22 =

73.3869 -6.4080
7.7969 145.9444
23.8032 3.1923
-0.6818 0.2924

23.9660 -0.1047"
1.3366 1.3191

236.1654 7.1016
4.3697 185.9904

"31.6346 39.6644 227.6621 35.7815 "
1.3799 23.9879 -9.0751 -95.7348
2.2760 -6.3680 46.0983 7.4269
17.0508 74.9889 55.9022 43.6824

R =

'79.5754
0
0
0

0
-110.9884

0
0

0 0 '
0 0

602.1076 103.4690
131.4476 739.8340

ei=918.5972,

K2{\) = 70.3455,

e2 = 1.1066 x 103, £,(1) = 76.1471,

O) = -36.2810 and K2{2) = -885.4138.
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Then K,(l) = 0.9569, K2{\) = -0.6338, if,(2) = -0.4559 and K2(2) = 7.9775.
Thus

K(l) = [0.9569 -0.6338] and K(2) = [-0.4559 7.9775].

Figure 1 gives the simulation result of the closed-loop system. The initial function
is cf> (/:) = [ 2 -2 ] r , with k = —2, —1,0. From Figure 1 we can see that the closed-loop
system is stable.

2O 4O 6O

time (seconds)
1OO

FIGURE 1. The state trajectories of the closed-loop system.

5. Conclusions

In this paper, we have investigated robust stochastic stability and stabilization via
state feedback for time-delay discrete-time Markovian jump singular systems with
parameter uncertainties. Based on the RES transformation and by introducing new
state vectors, we have transformed the singular system into a time-delay discrete
Markovian jump standard linear system, and then established some delay-dependent
LMI conditions for time-delay discrete-time Markovian jump singular systems to be
regular, causal and stochastically stable. This condition has solved the problems of
robust stochastic stability and stabilization in terms of delay-dependent LMIs. We
have also illustrated the effectiveness of our results by a numerical example. The
results obtained in this paper may be extended and generalized to a large class of
quasilinear and nonlinear problems.
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In this paper, we have only discussed the case of the singular matrix E having no
jump mode. If E also has a jump mode, then E is changed to Et. In this case, the
transformation matrices in (3.1) become M, and Nt, and we have

and * - " ,

and the state of the transformed system becomes [*x™ ], which is rather complicated
to discuss. Hence, some assumptions for the matrix Et should be given so that the
matrix Nt remains the same, and the method given in this paper is invalid. Nonetheless,
the case with E having a jump mode is an interesting problem for future investigation
via other methods.

Acknowledgements

The authors wish to thank the anonymous reviewers whose valuable comments and
suggestions have improved the quality of this paper.

This work was supported by the National Science Foundation of China (10671112),
the Postdoctoral Science Foundation of China (20060400980) and Shandong Province
(200603015).

This research was carried out while XL was visiting Shandong University.

References

[ 1 ] J. D. Aplevich, Implicit Linear Systems (Springer-Verlag, Berlin, 1991).
[2] E. K. Boukas, "Static output feedback control for stochastic hybrid systems: LMI approach",

Automatical IPAC42(2006) 183-188.
[3] E. K. Boukas and N. F. Al-Muthairi, "Delay-dependent stabilization of singular linear systems

with delays", Int. J. Innovative Comput. Information Contr. 2 (2006) 283-291.
[4] E. K. Boukas and Z. K. Liu, "Robust stability and Hx control of discrete-time jump linear systems

with time-delays: an LMI approach", in Proceedings of the 39th IEEE Conference on Decision
and Control, Sydney, Australia, 1999), 1527-1532.

[5] E. K. Boukas and Z. K. Liu, "Robust //«, control of discrete-time Markovian jump linear systems
with mode-dependent time-delays", IEEE Trans. Automat. Contr. 46 (2001) 1918-1924.

[6] Y. Y. Cao and J. Lams, "Stochastic stabilizability and Hx control for discrete-time jump linear
systems with time delay", J. Franklin Inst. 336 (1999) 1263-1281.

[7] B. Chen, J. Lam and S. Xu, "Memory state feedback guaranteed cost control for neutral delay
systems", Int. J. Innovative Comput. Information Contr. 2 (2006) 293-303.

[8] W. H. Chen, Z. H. Guan and P. Yu, "Delay-dependent stability and #«, control of uncertain
discrete-time Markovian jump systems with mode-dependent time delays", Systems Control Lett.
52 (2004) 361-376.

https://doi.org/10.1017/S1446181100012712 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012712


[19] Stability & stabilization of uncertain time-delay discrete Markovianjump singular systems 129

[9] L. Dai, Singular Control Systems. Lecture Notes in Control and Information Sciences (Springer-
Verlag, New York, 1989).

[10] E. Fridman and U. Shaked, "A descriptor system approach to Hx control of linear time-delay
systems", IEEE Trans. Automat. Contr. 47 (2002) 253-270.

[11] E. Fridman and U. Shaked, "An improved stabilization method for linear time-delay systems",
IEEE Trans. Automat. Contr. 47 (2002) 1931-1937.

[12] Y. He, M. Wu, J. H. She and G. P. Liu, "Delay-dependent robust stability criteria for uncertain
neutral systems with mixed delays", Systems Control Lett. 51 (2004) 57-65.

[13] Y. He, M. Wu, J. H. She and G. P. Liu, "Parameter-dependent Lyapunov functional for stability
of time-delay systems with polytopic type uncertainties", IEEE Trans. Automat. Contr. 49 (2004)
828-832.

[14] S. P. Ma and Z. L. Cheng, "An LMI approach to robust stabilization for uncertain discrete-time
singular systems", in Proceedings of the 41st IEEE CDC, Las Vegas, Nevada, USA, 2002), 1090-
1095.

[15] S. P. Ma and Z. L. Cheng, "Delay-dependent robust stabilization for uncertain discrete-time singular
systems with time-delay", in Proceedings of the Sixth World Congress on Intelligent Control and
Automation, Dalian, China, 2006), 2081-2085.

[16] I. R. Petersen, "A stabilization algorithm for a class of uncertain linear systems", Systems Control
Z-e//. 8(1987)351-357.

[17] P. Shi and E. K. Boukas, "On Hx control design for singular continuous-time delay systems with
parametric uncertainties", Nonlinear Dyn. Syst. Theory A (2004) 59-71.

[18] P. Shi, E. K. Boukas and K. Agarwal, "Control of Markovianjump discrete-time systems with norm
bounded uncertainty and unknown delay", IEEE Trans. Automat. Contr. 44 (1999) 2139-2144.

[19] M. Wu, Y. He and J. H. She, "New delay-dependent stability criteria and stabilizing method for
neutral systems", IEEE Trans. Automat. Contr. 49 (2004) 2266-2271.

[20] M. Wu, Y. He, J. H. She and G. P. Liu, "Delay-dependent criteria for robust stability of time-varying
delay systems", Automatica J. IPAC 40 (2004) 1435-1439.

[21] S. Xu, P. V. Dooren, R. Stefan and J. Lam, "Robust stability and stabilization for singular systems
with state delay and parameter uncertainty", IEEE Trans. Automat. Contr. 47 (2002) 1122-1128.

[22] S. Xu and J. Lam, "Robust stability and stabilization of discrete singular systems: An equivalent
characterization", IEEE Trans. Automat. Contr. 49 (2004) 568-574.

[23] S. Xu, J. Lam and C. Yang, "Robust H^ control for discrete singular systems with state delay
and parameter uncertainty", Dyn. Contin. Discrete Impuls. Syst Ser. B Appl. Algorithms 9 (2002)
539-554.

[24] D. Yue, J. Lam and D. W. C. Ho, "Reliable //«, control of uncertain descriptor systems with
multiple delays", IEE Proceedings - Control Theory and Applications 150 (2003) 557-564.

https://doi.org/10.1017/S1446181100012712 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012712

