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Elastohydrodynamic lubrication, or simply soft lubrication, refers to the motion of
deformable objects near a boundary lubricated by a fluid, and is one of the key physical
mechanisms to minimise friction and wear in natural and engineered systems. Hence, it
is of particular interest to relate the thickness of the lubricant layer to the entrainment
(sliding/rolling) velocity, the mechanical loading exerted onto the contacting elements
and the properties of the elastic boundary. In this work, we provide an overview of the
various regimes of soft lubrication for two-dimensional cylinders in lubricated contact
with compliant walls. We discuss the limits of small and large entrainment velocity, which
are equivalent to large and small elastic deformations, as the cylinder moves near thick
or thin elastic layers. The analysis focusses on thin elastic coatings, both compressible
and incompressible, for which analytical scaling laws are not yet available in the regime
of large deformations. By analysing the elastohydrodynamic boundary layers that appear
at the edge of the contact, we establish the missing scaling laws – including prefactors.
As such, we offer a rather complete overview of the physically relevant limits of soft
lubrication.
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1. Introduction

The introduction of a viscous liquid within the narrow gap between two moving bodies
prevents solid–solid contact, reduces friction, minimises wear and allows precise motion
control; a process known as lubrication. Lubrication has played a pivotal role in major
engineering milestones, from revolutionising the transportation of heavy objects on
wooden sledges in ancient Egypt (Dowson 1998) to the efficient and reliable functioning of
bearings in applications on many scales ranging up to the huge rolling bearings in today’s
wind turbines. The underlying hydrodynamic framework of fluid flow in thin gaps is in fact
relevant to a range of phenomena across different length scales: motion of drops/bubbles
in microfluidic devices (Bretherton 1961; Byun 2013), moving blood cells in capillaries
(Fitz-Gerald 1969; Secomb et al. 1986), biomechanics of synovial joints (Hou et al. 1992)
and the low friction of hydrogels (Cuccia et al. 2020; Porte, Cann & Masen 2020) to name
a few. However, in most of the engineering applications as well as natural systems, one or
both of the moving boundaries are deformable. As a result, lubrication flow is coupled to
elasticity through the non-local soft lubrication equations.

Since the realisation of the essential coupling between deformation and flow for film
formation, the study of elasto-hydrodynamic lubrication in engineering (tribology) has
been established as a separate field of research. Its importance has only increased with the
current need for reduced material and lubricant in view of sustainability demands. More
complex time-varying and extreme operating conditions, such as higher loads and higher
temperatures, lead to increased deformation and thinner films, which calls for a better
understanding and improved prediction capability for engineering and design. Only in very
specific asymptotic cases can analytic solutions be derived, and numerical solution is often
needed. Pioneering work was done by Dowson & Higginson (1959, 1966) and Hamrock
& Dowson (1977), where the complexity of the interaction between deformation and flow
led to numerical stability problems at large deformations. Faster computers and improved
numerical algorithms (Venner & Lubrecht 2000; Hamrock, Schmid & Jacobson 2004)
allowed the study of realistic problems related to roller bearings, gears, cam followers
and seals. Many studies aimed at the derivation of empirical formulas for film thickness
prediction under steady conditions from the numerical solutions. Experimental validation
was obtained from the further development of optical interferometry based techniques
(Gohar & Cameron 1963; Cann, Spikes & Hutchinson 1996). At present, complex cases
of contact geometries with time-varying loading conditions, roughness moving through
the contact, contacts with very limited lubrication supply, grease lubricated contacts and
coated surfaces are considered, see Wang & Zhu (2019). In spite of the plethora of
problems studied and results presented, the fundamental understanding of the physical
phenomena and the appropriate scaling laws have developed only relatively slowly. A
recent overview is given by Greenwood (2020).

A key feature of soft lubrication is the emergence of a non-inertial lift force, which
facilitates lubrication by maintaining the gap between the moving surfaces (Sekimoto
& Leibler 1993; Skotheim & Mahadevan 2004). For micron sized particles flowing in
a channel with soft walls, this force causes radial migration of particles (Davies et al.
2018) and promotes particle sorting in microfluidic devices (Geislinger & Franke 2014). A
precise measurement of this elastohydrodynamic force can function as a contact-free tool
to probe the local rheology of soft materials (Leroy et al. 2012; Wang, Dhong & Frechette
2015). For sufficiently soft elastomers, this force is strong enough to sustain the weight
of millimetre sized metal cylinders which slide along a deformable wall (Saintyves et al.
2016), and may result in intricate trajectories (Salez & Mahadevan 2015; Rallabandi et al.
2017).
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Naturally, it is of fundamental interest to explain how the gap thickness evolves from the
coupling between fluid pressure and elastic deformation. The answer depends on details of
the physical limit under consideration: Since deformation of a soft layer crucially depends
on the geometry, and boundary conditions at the free surface, scaling laws relating the
lift force to the lubrication layer are very different in different physical limits. Indeed,
recent microfluidic experiments involving polymer brushes, cross-linked elastomers and
ionic microgels as soft boundaries have probed elastohydrodynamic interactions in a few
different limits, and experimentally found very distinct scaling laws (Davies et al. 2018;
Vialar et al. 2019; Zhang et al. 2020).

Specifically, the elastic layer can either be thick or thin, the material can be compressible
or incompressible, while the elastic deformation can be large or small compared to the
lubricant thickness. A well-studied limit is when the soft layer is thin and compressible,
so that deformation is proportional to the local pressure, while assuming deformations
to be small (Skotheim & Mahadevan 2005; Urzay, Llewellyn Smith & Glover 2007;
Salez & Mahadevan 2015). This allows for a perturbative approach to solve the coupled
elastohydrodynamic equations. However, most of the soft materials like elastomers and
hydrogels are incompressible, and their response is described by non-local integral
equations. Furthermore, if particles are squeezed past a soft layer, a Hertz-like contact
forms, where deformation is large as compared to the gap thickness. In this case, the effect
of lubrication is primarily dominant within a narrow boundary layer at inlet/outlet regions
near the contact edges (Bissett 1989; Snoeijer, Eggers & Venner 2013). This lubricated
Hertzian limit is not only relevant for classical tribological applications, but also plays a
role in soft matter systems such as the slippage of soft microgel pastes (Meeker, Bonnecaze
& Cloitre 2004). Naturally, different scaling laws become relevant in these various limits,
but an overview of how these different cases emerge – and when these are applicable – is
still lacking.

Here, we present a unified overview of different regimes of soft lubrication. Our
asymptotic analysis will focus on several important cases that were not considered
previously, most notably the lubricated Hertz-like limit for cylinders on thin elastic layers
on a rigid substrate. We also explore the transition to the small deformation limit, using
numerical simulations. The paper is organised as follows. In § 2, we develop the theoretical
and numerical framework and discuss the numerous length scales of the problem. Here,
we emphasise how the relative magnitudes of these length scales determine the different
asymptotic regimes of soft lubrication. The main focus of the analysis will be dedicated
to the case of thin, compressible layers, in the regime of large deformation, which is
addressed in § 3. This case is solved analytically through similarity solutions, by which we
obtain the corresponding scaling laws. In the final § 4 this is complemented by the results
for thin incompressible layers. Hence, we provide a complete overview of all regimes,
summarised in a table in the concluding section, and discuss experimental consequences.

2. Framework

2.1. Problem formulation
We consider the two-dimensional problem of a rigid cylinder moving at constant velocity
parallel to a deformable substrate, as sketched in figure 1. Here, we consider the translation
of the cylinder, but we remark that the analysis is identical for the case that the cylinder is
rotating (Pandey et al. 2016).

Importantly, the analysis is organised in terms of the length scales that appear in the
problem (figure 1). The hierarchy of the length scales is a crucial aspect of the lubrication
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Figure 1. Schematic representation of a lubricated contact with a thin, compressible elastic layer, showing the
relevant length scales of the problem: elastic layer thickness d, contact size a, the fluid film thickness h(x) and
the elastic deformation u(x) defined in the downward direction. One of the edges has been magnified to show
the boundary layer width �, over which lubrication forces smooth out the elastic deformation.

problem, as the relative sizes of these lengths determine the asymptotic limit. Hence, the
organisation of length scales will determine the scaling laws that relate load and velocity
to the thickness of the lubrication layer.

A first aspect of the length scales is that we assume the cylinder radius, R, to be much
larger than the width of the contact zone, a, so that the shape can locally be approximated
as a parabola. The lubricant layer thickness, h(x), and the elastic deformation, u(x), are
then related by (figure 1)

h(x) − x2

2R
+ c = u(x). (2.1)

Here, c ≡ u(0) − h(0) is the indentation of the bottom of the cylinder, measured with
respect to the undeformed elastic substrate. Another obvious length scale is the thickness
d of the elastic layer. Finally, we anticipate the emergence of a dynamic length scale �,
sketched in the inset of figure 1, which acts as a narrow boundary layer at the edges of the
contact (Snoeijer et al. 2013). We will find that the relative magnitudes of a, d, �, u and
the compressibility of the elastic layer (quantified by the Poisson ratio ν), will determine
how the lubricant layer h scales with the sliding velocity. We remark that, apart from d and
R, none of these lengths are known a priori, but follow from a consistent analysis of the
problem.

Now that the geometry is in place, we can turn to the mechanical equations. We start
with the flow of liquid within the narrow gap, which is described by the Stokes equation,
∇p = η∇2v, where p is pressure, η is viscosity and v is the velocity field. We consider a
reference system where the cylinder is stationary, and the substrate moves with a velocity
V to the right. Since both the film thickness and its gradient are small compared to the
width of the contact, using no-slip boundary conditions, the velocity profile within the
gap can be written in the lubrication limit,

vx(x, z) = 1
2η

∂p
∂x

[(z − u)2 + (z − u)h] +
[

1 + z − u
h

]
V. (2.2)

Incompressibility of the liquid requires that, at steady state, the flux Q = ∫ u
u−h vx dz

remains constant. As a result, integration of (2.2) gives the Reynolds equation (Reynolds
1886),

∂p
∂x

= 6Vη
h − h∗

h3 , (2.3)

where h∗ = 2Q/V .
Next, we couple the pressure p(x) to the elastic deformation u(x) of the solid.

This is most conveniently done by transforming the problem to the Fourier domain
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Kernel expansion Deformation relation

Half-space (qd � 1) K(q) = 1 − ν

G
1
|q| u(x) = −1 − ν

πG

∫
ln |x − x′|p(x′) dx′

Thin layer (qd � 1), compressible (ν /= 1
2

) K(q) = d(1 − 2ν)

2G(1 − ν)
u(x) = d(1 − 2ν)

2G(1 − ν)
p(x)

Thin layer (qd � 1), incompressible (ν = 1
2

) K(q) = d3

3G
q2 u(x) = d3

3G
d2p

dx2

Table 1. Overview of asymptotes for the Fourier space Green’s function K(q), given in (2.5). The two columns
give the expansions of the Green’s function and the corresponding pressure-deformation relations in real space.

(f̃ (q) = ∫∞
−∞ f (x) e−iqx dx; f (x) = ∫∞

−∞ f̃ (q) eiqx (dq/2π)). Namely, the elastic deformation
of the substrate in Fourier domain is given by

ũ(q) = K(q)p̃(q), (2.4)

where the Green’s function K(q) reads (Hannah 1951; Wang & Zhu 2019),

K(q) = (1 − ν)

Gq

[
(3 − 4ν) sinh(2qd) − 2qd

(3 − 4ν) cosh(2qd) + 2(qd)2 + 5 − 12ν + 8ν2

]
. (2.5)

In this expression ν is the Poisson ratio, G is the shear modulus while d is the layer
thickness. For a given pressure, the backward transform to u(x) is to be performed
numerically. However, the above kernel can be simplified for various limiting cases,
leading to analytical expressions for u(x) in real space. We distinguish between two limits
defined by the quantity qd, the ratio of the substrate thickness to the typical wavelength
1/q of the deformation. In the short-wavelength limit (qd � 1) the substrate’s response
locally reduces to that of an elastic half-space K(q) ∼ |q|−1. In the opposite limit of large
wavelength or a thin elastic layer (qd � 1), K(q) simplifies to different forms, respectively,
for incompressible (ν = 1/2) and compressible (ν /= 1/2) materials. These results, along
with the corresponding deformations, are summarised in table 1. The main focus of the
calculations will be on the thin, compressible layers.

The analysis can be closed by either imposing a vertical load exerted on the cylinder,
or equivalently by fixing its vertical position. In our calculations we will impose the total
vertical force L, expressed in terms of the fluid pressure,

L =
∫ ∞

−∞
p(x) dx. (2.6)

The problem is defined by the system of three equations, ((2.1), (2.3) and (2.4)), which
describe the three unknown fields h(x), p(x) and u(x). Furthermore, the constraint (2.6)
enables us to find the vertical position c of the cylinder. Combined with the boundary
conditions p(±∞) = 0 and u(±∞) = 0, the problem is fully defined.

2.2. Regimes
Since our goal is to identify and describe the various limits of the elastohydrodynamic
lubrication problem, the relevant length scales need to be carefully compared. These length
scales, as defined in figure 1, are given by the contact size a, the elastic layer thickness
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d, the boundary layer width �, the typical surface displacement u0 and the sought-after
lubricant thickness h0. The reader can already consult table 2 for a complete overview of
the various regimes.

Small versus large deformations. Two key limits of the problem come from the
comparison between the deformation u0 and the fluid film thickness h0. When the sliding
velocity of the cylinder is high, the cylinder experiences a strong upward force due to
viscous stresses that separates it from the substrate. This gives the small deformation
limit, where h0 � u0 (Skotheim & Mahadevan 2005; Pandey et al. 2016). By contrast,
for relatively low sliding velocity, the cylinder indents the substrate with only a thin
layer of fluid in between the two, so that h0 � u0. This is what will be referred to as the
large deformation limit (Bissett 1989; Snoeijer et al. 2013); we remark that, since typical
deformations compared to the layer thickness remain small, the typical strains remain
small as well, so that we still work in the context of linear elasticity.

Short versus long wavelengths. In the large deformation limit, a narrow lubrication
boundary layer develops at the edge of the contact which regularises the jump in pressure
gradient caused by elasticity. Comparing the width of this boundary layer � to the substrate
thickness d, we can further distinguish two limits in the regime of large deformations.
When � � d, the elastic problem is in the long-wavelength limit, in which the thin-layer
approximation (qd � 1) is valid over the full width of the contact. In the short-wavelength
limit (� � d), the thin elastic layer approximation does not hold at the edge of the contact,
and the substrate locally responds like a half-space (qd � 1) within the boundary layer.

Compressible versus incompressible elastic layers. For each of the three above
mentioned limits, one can choose a suitable response function given in table 1. For a
comparatively thin layer, d � �, one needs to make an additional distinction between
a compressible and an incompressible material. This distinction is made since the
leading-order term of the Taylor expansion of the kernel scales with (1 − 2ν), which
vanishes in the incompressible case (ν = 1

2 ), making the next-order term dominant.
In the rest of the paper, we develop solutions of the elastohydrodynamic equations and,

in table 2 we summarise these solutions through the scaling laws for the different regimes
discussed above.

2.3. Non-dimensionalisation
While various of the cases reported in table 2 are already available in the literature, we
are not aware of any lubrication analysis of large deformations on thin elastic layers.
Therefore, we will from now on consider lubricated contacts with thin elastic coatings,
and we primarily focus on the case of compressible layers. We introduce dimensionless
variables that are suitable for this specific case (in the long-wave limit of the elastic
deformation), and identify the single dimensionless number that governs the solution.

We consider the geometric relation (2.1) along with the deformation on thin
compressible layers as given in table 1. Combining these two equations we get,

h(x) + c − x2

2R
= d(1 − 2ν)

2G(1 − ν)
p(x). (2.7)

The small deformation limit has been solved before in Skotheim & Mahadevan (2005),
but here we consider the opposite limit. To non-dimensionalise the above equation for this
limit we introduce the following scales,

x = x̄a, h = h̄u0 = h̄
a2

2R
, p = p̄

3L
4a

, (2.8a–c)
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Large deformation (u0 � h0) Small deformation

� � d � � d (u0 � h0)

d � a 0.603
[

η3V3

G2L
R3(1 − ν)2

]1/5

Not physically possible
[

3π

8
η2V2

GL
R2(1 − ν)

]1/3

(Snoeijer et al. 2013) (� � a) (Pandey et al. 2016)
d � a

ν /= 1
2

∼
[

η9V9

G5L4 R8d2 (1 − 2ν)8

(1 − ν)11

]1/15 [
28

37
η3V3

G2L
R2d2 (1 − 2ν)2

(1 − ν)2

]1/6 [
6π

8
√

2

η2V2

GL
R

3
2 d

1 − 2ν

1 − ν

]2/7

(Skotheim & Mahadevan 2005)
d � a

ν = 1
2

∼
[

η15V15

G7L8 R12d6
]1/25

No long-wave asymptotics
[

15π

8
√

2

η2V2

GL
R

1
2 d3

]2/9

(Skotheim & Mahadevan 2004)

Table 2. Scaling laws for the film thickness at the centre of a cylinder, denoted h0, in the various regimes of soft lubrication. The limits are expressed in terms of length
scales, as defined in figure 1. Previously available results have been indicated by the corresponding reference. Results without a reference have been derived in the present
manuscript.
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where variables with an overbar are dimensionless. From this, one infers a natural
characteristic horizontal scale, the contact size a, as

a =
[

3
4

LdR(1 − 2ν)

G(1 − ν)

]1/3

, (2.9)

so that (2.7) reduces to
p̄(x̄) = h̄(x̄) + c̄ − x̄2. (2.10)

Here, we further introduced c̄ = c/u0, based on the natural vertical scale

u0 = a2

2R
=
[

3
27/2

Ld(1 − 2ν)

R1/2G(1 − ν)

]2/3

. (2.11)

Using the relation between pressure and deformation (2.10), we find that Reynolds
equation (2.3) can be written as

∂ h̄
∂ x̄

− 2x̄ = λ h̄ − h̄∗

h̄3
, (2.12)

which contains the single dimensionless parameter of the problem,

λ = 32
Vη

L
R2

a2 . (2.13)

This parameter can be interpreted as the dimensionless velocity. The lubrication problem
for a compressible elastic layer in the long-wave limit, is thus described by a first-order
ordinary differential equation (ODE) for the flowing thickness h̄(x̄), given by (2.12). Note,
however, that there are two boundary conditions to be imposed, namely the pressure must
vanish at x̄ = ±∞, which can be expressed in terms of h̄ using (2.10). The two boundary
conditions for the first-order ODE (2.12) can indeed be satisfied by tuning the value of h̄∗.
In addition, the coefficient c̄ must be tuned such that∫ ∞

−∞
p̄(x̄) dx̄ = 4

3
, (2.14)

in order to impose the desired value of the load.

2.4. Numerical methods
To confirm the analytical results and to assess the cross-over between the asymptotic
regimes, we employ two numerical methods. The first method is numerically solving
(2.12) in Wolfram Mathematica, along with the corresponding boundary conditions and
constraints. We use a shooting method for a range of values for c̄, finding the pair
of h̄∗ and λ that allows us to satisfy the boundary conditions, p̄(x̄ → ±∞) = 0 and∫∞
−∞ p̄(x̄) dx̄ = 4

3 . Typical examples are given in figure 3. These accurately resolve the
problem as long as the solution is self-consistent with the long-wave expansion.

However, we will find that in the limit of very small λ, the obtained solution is no
longer consistent with the long-wave expansion of the elastic solid that underlies (2.12); we
remark that the long-wave approximation for the liquid is satisfied for all cases considered.
In this case, we turn to finite element simulations (FEM), where the two-dimensional
plane strain problem is implemented using the library oomph-lib (Heil & Hazel 2006).
A typical example of the numerical simulation is shown in figure 2. The compressible
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–0.03 0.020

Figure 2. Typical lubricated contact obtained in finite element simulations. The colour map indicates the
normalised trace of the strains in the thin compressible elastic layer. This result is obtained at an intermediate
value of the sliding velocity, where the elastic deformation is comparable to the minimal lubrication thickness.
The parameters in this simulation are λ = 6.4 and R = 103 u0, with all other parameters equal to those listed
in § 2.4.

elastic layer is simulated by a nonlinear solid model using the neo-Hookean constitutive
law with a Poisson ratio of ν = 0.3. Since the strains in this problem always remain small,
the simulations reduce to linear elasticity and the choice of the nonlinear rheology does
not influence the result. The domain has a width W = 105 u0 (|x| ≤ W/2) and height d =
30 u0, and consists of refinable quad elements. The cylinder has a radius of R = 106 u0,
making for a contact size of a  1.4 × 103 u0. The elements in the adaptive mesh are
locally refined down to a minimum size of Δx = 5.2 × 10−6u0, well below the smallest
length scale, the boundary layer (� ∼ λ2/5), at the lowest λ value used. The fluid pressure
is imposed on the top boundary of the elastic layer using surface elements that simulate
the Reynolds equation (2.3). The pressure in the fluid is constrained to zero at both sides of
the domain and the nodes at the bottom of the elastic layer are fixed in both the vertical and
horizontal direction. The nodes on both the left and right sides of the layer are fixed only
in the horizontal direction and are subject to a no-shear condition in the vertical direction.

3. Thin compressible layer

In this section, we present results for the lubricated contact with a thin compressible
elastic substrate. We first illustrate the emergence of three distinct asymptotic regimes
by presenting numerical results, both from the long-wave expansion of (2.12) and based
on the finite element simulations. Then, we turn to a detailed asymptotic analysis of the
two regimes that involve large deformations, respectively corresponding to long and short
wavelengths.

3.1. Numerical results
Figure 3 reports a number of film thickness profiles h̄ = h/u0 for lubricated contacts, for
various values of the dimensionless sliding velocity λ as defined by (2.13). The results
presented in the figure were obtained from numerical integration of (2.12), and also include
the ‘dry’ solution, corresponding to the case λ = 0 where there is no motion. The profiles
in figure 3 clearly reveal a qualitative change in the shape of the contact upon increasing
the velocity. At small λ, the profiles exhibit a large elastic deformation where the cylinder
pushes deep into the soft coating. The liquid profile closely resembles that of the ‘dry’
solution, except near the inlet (x̄ = −1) and the outlet (x̄ = 1) regions where the effect
of lubrication is prominent. At these two edges of the contact region, we encounter a
narrow boundary layer of width �, as sketched in the inset of figure 1. These boundary
layers will be analysed in detail below, as they are essential for computing the entrained

915 A49-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

96
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.96


M.H. Essink and others

−1.0 −0.5 0 0.5 1.0
0

1

2

3

x/a

h/
u 0

λ = 1.8 × 101

λ = 6.9 × 100

λ = 1.0 × 100

λ = 5.9 × 10−2

Dry solution

Figure 3. Numerical film thickness profiles h̄ = h/u0 as a function of x̄ = x/a, for the case of a compressible
thin elastic layer. Lubricated contacts correspond to λ > 0, and are obtained from numerical integration of
(2.12). The case λ = 0 is a ‘dry’ contact, given by the analytical expression of (3.1b).

liquid thickness. At large λ, the liquid thickness becomes very large and the profile is
smooth over the entire horizontal range. Gradually, the gap approaches the shape of the
rigid cylinder, since the elastic deformation of the coating becomes small in comparison
to the lubricant thickness.

We now take a closer look at the deformations over the full range of λ for the long-wave
description and the finite element simulations – both pertaining to thin compressible
coatings. In figure 4 we therefore plot the fluid layer thickness at the centre h̄0 = h0/u0, as a
function of the dimensionless velocity λ. The layer thickness is furthermore compensated
by the scaling λ1/2 that will be derived analytically below. From the figure we can see
that for values of λ � 10−4 the two different numerical methods agree with one another
– confirming the validity of the long-wave expansion at moderate and large values of
λ. The long-wave data (represented as stars), exhibit two asymptotic regimes: h0 ∼ λ1/2

(dashed line) and h0 ∼ λ4/7 (dash-dotted line). However, it is also clear that, at the
smallest λ, the long-wave description breaks down, since the numerical solution of the
true elastohydrodynamic problem (represented by triangles) gives yet another scaling law
h0 ∼ λ3/5 (solid line). We will see below that this limit emerges when the width of
the boundary layer � becomes comparable to the thickness of the coating d, so that the
long-wave description is no longer justified.

In summary, we thus find the emergence of 3 regimes at small, intermediate and
large values of λ. The analysis for large λ has already been performed by Skotheim &
Mahadevan (2004, 2005). Hence, below we derive the intermediate asymptotics (using
the long-wave description at small λ), and the ultimate asymptotics λ� 1 based on the
short-wave description.

3.2. Long-wavelength elasticity: dry solution
Before turning to the dynamical case, we first provide the dry (static) solution of the
long-wave approximation, given by (2.10). Formally, this corresponds to λ = 0, for
which no flow takes place. This dry solution therefore corresponds to the situation
where the pressure vanishes outside the contact region, p̄ = 0 for |x̄| > 1, and the gap
thickness vanishes within the contact, h̄ = 0 for |x̄| < 1. The corresponding dry solution
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10−6 10−5 10−4 10−3 10−2 10−1 100 101 102 103

0.2

0.3

0.4

0.5

0.6

λ

h̄ 0
 λ

−1
/2

Large deformation, short wavelength contact

Large deformation, long wavelength contact

Small deformation contact

ODE numerical solution

FEM numerical solution

Figure 4. Lubrication thickness for thin compressible coatings, combining numerical (§ 2.4) and analytical
(table 2, middle row) results. The graph reports the thickness of the fluid film at the centre of the lubricated
contact, h0, as a function of the dimensionless sliding velocity λ. The dimensionless thickness h̄ = h0/u0 is
compensated by the intermediate asymptote h̄0 ∼ λ1/2 (dashed line). Distinct asymptotic limits are observed at
small λ (solid line, h̄0 ∼ λ3/5) and large λ (dash-dotted line, h̄0 ∼ λ4/7). We remark that each of the indicated
asymptotes are derived analytically (including the prefactors).

to (2.10) reads,

p̄ = (1 − x̄2)Θ(1 − x̄2), (3.1a)

h̄ = (x̄2 − 1)Θ(x̄2 − 1), (3.1b)

where Θ is the Heaviside step function.
Expanding these near the edges of the contact, located at x̄ = ∓1, we find

p̄  ±2(x̄ ± 1) h̄  ∓2(x̄ ± 1). (3.2a,b)

This linear behaviour of the gap can be observed in figure 3, at the edge of the dry
solution. This asymptote is of particular importance to the dynamical case at small speed,
where λ is small but non-zero. In that limit, lubrication effects quickly decay outside
the narrow boundary layers near the edge of the contact, so that the static solution is
approached. Specifically, the boundary layer solutions must therefore be matched to the
linear asymptote given by (3.2a,b).

3.3. Long-wavelength elasticity: lubricated solution
Once the cylinder starts to move, a thin film of liquid is entrained within the contact region
and in particular, the left–right symmetry of the deformation is broken (figure 3). Liquid is
squeezed into the contact at the inlet, at x̄ = −1, and is pushed out at the outlet, at x̄ = 1. To
analyse the behaviour of (2.12) at the two lubricated edges, we look for similarity solutions
of the form

h̄ = λαH(ξ) ξ = (x̄ ± 1)λ−β. (3.3a,b)

Here, the + sign refers to the inlet and − to the outlet. In terms of the similarity variables,
the matching condition (3.2a,b) becomes H(ξ)  ∓2ξ for ξ → ∓∞. This λ-independent
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far-field condition requires that α = β. The Reynolds lubrication (2.12), written in terms
of the above similarity variables, gives

λα−β ∂H
∂ξ

± 2 − 2λβξ = λ1−2α H − H∗

H3 . (3.4)

Anticipating that β > 0, i.e. thin boundary layers for λ� 1, the term ∼ λβ is subdominant
with respect to the constant. For the remaining equation to be independent of λ, we
need α − β = 1 − 2α. Combined with the matching condition of α = β, we thus find
the exponents

α = β = 1
2 , (3.5)

while (3.4) reduces to
∂H
∂ξ

± 2 = H − H∗

H3 . (3.6)

The solution to this equation must match to H(ξ → ∓∞) = ∓2ξ , as discussed before.
Furthermore, the gap should converge to a film of constant thickness inside the contact,
leading to (∂H/∂ξ)(ξ → ±∞) = 0.

3.3.1. Inlet region
At the inlet (3.6) becomes

∂H
∂ξ

= H − H∗ − 2H3

H3 . (3.7)

We first wish to find the constant thickness H0 that is approached when entering the central
zone of the contact (corresponding to ξ → ∞). Interestingly, H0 is not simply equal to H∗,
but is to be determined from the equation H0 − H∗ − 2H3

0 = 0. For this film thickness to
take on a positive real value, it is required that H∗ ≥ 1

9

√
6. However, under this condition

there are still two possible solution branches of H0 for a given H∗.
For the selection of the relevant H0, we now investigate whether the solution indeed

approaches H0 for ξ → ∞. We therefore linearise (3.7) using H = H0 + H1(ξ), which
gives

∂H1

∂ξ
= 1 − 6H2

0

H3
0

H1. (3.8)

This shows that the solution exponentially approaches a constant film thickness when
H0 > 1

6

√
6. This condition selects the branch of acceptable H0, which for a given value

of H∗ indeed decays to a flat film below the contact. We need to separately consider the
special case where H0 = 1

6

√
6 and H∗ = 1

9

√
6. In this case the similarity solution can even

be found in closed form,

ξ = −1
2

H + 4
9

H0 ln

(
1
2 H + H0

H + H0

)
+ 1

36(H − H0)
. (3.9)

This solution exhibits an algebraic decay to the flat film of thickness H0 as ξ → ∞, and
therefore should also be considered.
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It will turn out that, indeed, the special case of H0 = 1
6

√
6 and H∗ = 1

9

√
6 provides the

relevant solution for the lubrication problem. This will be shown by analysing the ‘central
region’, as done below in § 3.3.3. Hence, the correct inlet thickness reads

Hin = 1
6

√
6 ≈ 0.408, (3.10)

while the corresponding value for H∗ is given by

H∗ = 1
9

√
6 ≈ 0.272. (3.11)

3.3.2. Outlet region
The similarity equation for the outlet differs from (3.7) only in the sign of the last term on
the right-hand side,

∂H
∂ξ

= H − H∗ + 2H3

H3 . (3.12)

Anticipating that H∗ = 1
9

√
6, we could find a lengthy closed form solution to (3.12) using

Mathematica (not given here). Remarkably, the solution approaches a constant thickness
Hout as ξ → −∞ that turns out to be different from the inlet thickness Hin. Indeed, solving
∂H/∂ξ = 0 for H∗ = 1

9

√
6, one finds

Hout = 1
6

√
6[(

√
2 + 1)1/3 − (

√
2 − 1)1/3] ≈ 0.243, (3.13)

which is significantly below Hin. This means the liquid film cannot possibly be flat
within the central region connecting the inlet and outlet, and we need to treat this region
separately.

3.3.3. Central region
As just demonstrated, the constant film thicknesses at the inlet and outlet cannot be equal,
these satisfy two different equations for the same value of H∗. To find the variation in film
thickness across the central zone, another similarity solution has to be introduced, namely,

h̄ = λ1/2H(x̄). (3.14)

Since this similarity solution does not scale the solution in horizontal direction, this
equation is valid when |x̄| � 1 − λ1/2, i.e. over the full width of the contact excluding the
boundary layers. Substituting this into the lubrication (2.12) gives an algebraic equation
for the film thickness,

H − H∗ + 2x̄H3 = 0, =⇒ x̄ = H∗ − H
2H3 . (3.15)

Since H describes the central zone up to the boundary layers, (3.15) needs to cover the
entire domain −1 < x̄ < 1. One verifies that this is only the case when H∗ ≤ 1

9

√
6. This

condition is exactly opposite to the requirement derived from the inlet solution, which only
gives physical solutions for H∗ ≥ 1

9

√
6. Hence, the only possibility for the central zone to

connect inlet and outlet is when H∗ = 1
9

√
6, as anticipated above.
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Figure 5. Fluid film thickness profiles at the (a) inlet, (b) central region and (c) outlet of a lubricated contact
on a compressible thin layer in the long-wave limit. The solid lines represent rescaled FEM solutions for 4.99 ×
10−4 ≤ λ ≤ 2.26 × 10−2, while the symbols denote the similarity solution derived in § 3.3. The solution in (b)
is plotted over the full range |x̄| < 1, but is not valid in the region near the edge of the contact.

3.3.4. Summary and numerical validation
Figure 5 summarises the key results of this section. The panels (a-c) respectively report
the similarity solutions for the narrow boundary layers at (a) the inlet, (c) the outlet and
(b) the central region that connects the two. The symbols represent the analytical solutions
derived above, and these are plotted along with scaled FEM numerical solutions (solid
lines, for various λ). An excellent agreement is observed in all three regions.

The similarity solution also provides the exact expression for the fluid film thickness
h0. For this we evaluate (3.15) at x = 0, which gives immediately that the (scaled) film
thickness at the centre of the contact is equal to H∗ = 1

9

√
6. In dimensional form it gives

h0 = a2

2R
H∗λ1/2 =

⎡
⎣ 24

37/2

√
η3V3

G2L
Rd(1 − 2ν)

1 − ν

⎤
⎦

1/3

. (3.16)

This result, including the theoretical prefactor, is used in figure 4 (dashed line), which
shows that the numerical solutions of the long-wavelength approximation indeed converge
towards the derived similarity solution. With respect to the full resolution of the
elastohydrodynamic problem using finite elements, the solution (3.16) appears as an
intermediate (long-wave) asymptote.

3.4. Short-wave elasticity: the ultimate asymptotics for λ� 1
The numerical results obtained by finite element simulations, shown in figure 4, revealed
that, at very small λ, another limit develops. The reason for this is that the boundary
layer width in the long-wave theory was found to scale as � ∼ λ1/2, so that at sufficiently
small λ it becomes comparable to the thickness of the elastic layer – at which point the
long-wavelength description becomes inconsistent. Hence, the ultimate small λ asymptote
involves the hierarchy of scales � � d � a, and requires the full kernel of (2.5). Below,
we first consider the corresponding static problem, to identify the appropriate horizontal,
vertical and pressure scales. Subsequently, in the next subsection, we use the dry solution
to match the boundary layers.
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3.4.1. Dry solution
In fact, even the static indentation problem with d � a, already involves the full kernel
(2.5). This problem goes back to Meijers (1968), who considered the Hertz contact on
layers of arbitrary thickness. On the scale of the contact width a, the static solution of
the long-wavelength description, ((3.1a), (3.1b)), is perfectly valid when d � a. Near the
edges, however, the linear behaviour of the pressure gives way to a square-root dependence,
as is illustrated in figure 6(a). The reason for this is that near the edges, the elasticity is
governed by the short-wavelength limit of the elastic kernel (2.5). Introducing ζ = x ± a,
indicating the unscaled distance to the contact edge, this gives the elastic relation

h(ζ ) + c − (ζ ∓ a)2

2R
= −1 − ν

πG

∫ ∞

−∞
ln |ζ − ζ ′|p(ζ ′) dζ ′, (3.17)

which combines (2.1) and the deformation from table 1 in the limit qd � 1. It is well
known that this equation gives

p  A
√

±ζ , (3.18)

at the contact edge (Snoeijer et al. 2013), where the scaling properties of A remain to
be determined. This behaviour is indeed manifestly different from the linear behaviour
obtained from the long-wave expansion (3.2a,b), which in terms of a dimensional scaling
law can be written as

p ∼ ± L
a2 ζ, (3.19)

with a given by (2.9). To estimate the value of the constant A, we now use a matching of
the two descriptions, as is depicted schematically in figure 6(a). This is done by equating
(3.18) to (3.19) at a distance |ζ | ∼ d. This matching gives an expression for the parameter
A,

A = Ap

[
G2L√
dR2

(1 − ν)2

(1 − 2ν)2

]1/3

, (3.20)

where Ap is a (dimensionless) constant. The value of the constant is obtained from a
numerical solution of the static dry contact problem, using the finite element method.
We calculate the pressure profile of this contact – in the absence of lubrication effects –
in accordance with the parameters in § 2.4. The result is given in figure 6(b), from which
we deduce that Ap ≈ 1.33 ± 0.09 by fitting (3.18) in the region where the pressure has
converged to the short-wave approximation, i.e. A2

pζ̂ < 2.0 × 10−5.
Now that we know the behaviour of the static solution near the contact edge, we can

identify the proper scalings for p, h and ζ . This is important, since these will subsequently
be used to describe the dynamic boundary layers. To establish the scalings, we first take
two derivatives of (3.17), which gives

∂2h(ζ )

∂ζ 2 = 1
R

− 1 − ν

πG

∫ ∞

−∞
∂p(ζ ′)
∂ζ ′

1
ζ − ζ ′ dζ ′, (3.21)

where we also performed an integration by parts. Demanding that the three terms in this
equation are of the same order, while also respecting the scaling of A in ((3.18), (3.20)),
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√2
p̂ 

(a) (b)

Figure 6. (a) Schematic representation of the pressure profile of a static contact, on a thin compressible layer.
The long-wave approximation (red dashed) breaks down near the edge of the contact, at a distance comparable
to the thickness of the elastic layer (in this case d ∼ 0.1a, where d is the layer thickness and a the contact
width). (b) Pressure profile at the edge of a dry, static contact on a thin compressible layer, resolved using finite
element simulations (symbols). The data are fitted with (3.18), shown as the solid line, from which we obtain
the numerical constant Ap ≈ 1.33 defined in (3.20).

we find the appropriate scalings to be

p = A2
p

2

[
GL2

Rd
(1 − ν)7

(1 − 2ν)4

]1/3

p̂, (3.22a)

ζ = A2
p

2

[
L2R2

G2d
(1 − ν)10

(1 − 2ν)4

]1/3

ζ̂, (3.22b)

h = A4
p

4

[
L4R

G4d2
(1 − ν)20

(1 − 2ν)8

]1/3

ĥ. (3.22c)

With this, the dimensionless equation describing the elasticity of the layer reads

∂2ĥ

∂ζ̂ 2
= 1 − 1

π

∫ ∞

−∞
∂ p̂(ζ̂ ′)

∂ζ̂

1

|ζ̂ − ζ̂ ′| dζ̂ ′, (3.23)

while the asymptote of the static solution reduces to

p̂ 
√

±2ζ̂ . (3.24)

3.4.2. Lubricated solution
We now turn to the dynamical case, by expressing the Reynolds equation (2.3) in the new
variables of (3.22). This gives

∂ p̂

∂ζ̂
= λs

ĥ − ĥ∗

ĥ3
, (3.25)

which is of the same form as before. However, owing to the new scaling, the parameter
that gives the dimensionless velocity is different, and reads

λs = 96
A8

p

[
η3V3d4RG5

L8
(1 − 2ν)16

(1 − ν)37

]1/3

. (3.26)

The analysis of the boundary layer is now given by the system ((3.23), (3.25)), with
matching condition (3.24). This reduced problem is strictly identical to that of the
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Figure 7. Fluid film thickness profiles at the (a) inlet and (b) outlet of a lubricated contact on a compressible
thin layer in the short wave limit (i.e. the ultimate regime for λ� 1). The solid line represents a rescaled FEM
solution for 4.75 × 10−7 ≤ λ ≤ 7.42 × 10−5, while the symbols show the similarity solutions by Snoeijer et al.
(2013). These similarity solutions are shifted horizontally to align with the numerical solutions.

boundary layers on a half-space, as previously described by Snoeijer et al. (2013). Hence
the solution is exactly the same, and gives a thickness ĥ ∼ λ3/5

s , a boundary layer width
ζ̂ ∼ λ2/5

s , while the pressure p̂ ∼ λ1/5
s . For detailed derivations we refer to Snoeijer et al.

(2013). Note, however, that in dimensional variables the result is different. In particular,
we find for the dimensional flowing thickness

h0 = 0.4467
A4

p

4

[
L4R

G4d2
(1 − ν)20

(1 − 2ν)8

]1/3

λ3/5
s

= 1.7271

A4/5
p

[
d2R8η9V9

G5L4
(1 − 2ν)8

(1 − ν)11

]1/15

, (3.27)

where the numerical constant 0.4467 was determined in Snoeijer et al. (2013) by solving
ĥ∗ from the boundary layer problem, while we recall that Ap ≈ 1.33. This result is given as
the solid line in figure 4, and indeed accurately describes the ultimate λ� 1 asymptotics.

The structure of the boundary layers is further illustrated in figure 7. There, the similarity
solutions from Snoeijer et al. (2013) are reproduced (symbols), and compared to the scaled
FEM simulations at very small λ. All curves indeed collapse, confirming the validity of
the similarity analysis. Interestingly, for this case the thickness of the lubrication layers
leaving the inlet and entering the outlet directly align. The central zone is therefore
perfectly flat – this is to be contrasted with the result for the long-wave similarity
solutions of figure 5, for which the inlet and outlet were connected by a non-trivial central
region.

4. Discussion

The aim of this work is to present all scaling laws governing the movement of a cylinder
over an elastic substrate in the presence of a fluid. Some of these scaling laws were
derived previously in the literature, but focussing on separate regimes – importantly,
the limiting cases of thin elastic layers with large deformations had not previously been
considered. This important gap is filled in the present paper, thereby offering a complete
and comprehensive overview.
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Table 2 summarises both previous and our newly obtained results. All the different
regimes of soft lubrication are organised in terms of the length scales d (thickness
of the elastic coating), a (size of the contact), u0 (scale of elastic deformation) and �

(boundary layer width near the contact edges). In terms of experimental parameters, the
table should be read as follows. For fixed material properties, magnitude of the applied
load L determines the typical size of the contact a. Hence, upon specifying the load one
selects one of the rows of table 2, comparing the contact size to the elastic layer thickness.
Then, at very small velocity V one starts in the left column, where the flowing thickness
h0 � u0, referring to the case of relatively large elastic deformation. Subsequently, upon
increasing the velocity, the boundary layer � and the lubrication film h0 increase, and
one progressively moves to the second and third columns, ultimately reaching the small
deformation limit (h0 � u0).

There are a few important features in this table. At very small velocities (left column),
the scaling h0 ∼ V3/5 is the same for all cases. In this case, the width of the boundary
layers is the smallest scale in the system and thereby these exhibit a universal structure.
Differences arise only from matching these boundary layers to different (static) outer
solutions. On the contrary, at very large velocity (right column) the scaling laws always
involve the combination (ηV)2/L. So, when working at a fixed separation distance instead
of at fixed load, one finds the well-known scaling law for the lift force L ∼ (ηV)2

(Sekimoto & Leibler 1993; Skotheim & Mahadevan 2004; Greenwood 2020). A key result
of our analysis is the emergence of an intermediate asymptote, h0 ∼ V1/2 for the thin,
compressible layer – closed form analytical solutions for this case are provided.

From an experimental perspective, it is of particular interest to consider the extension
of the scaling laws in table 2 to three-dimensional spherical contacts. While the exact
solutions are not valid for spherical contacts, the specific features listed in this paragraph
do remain valid. For large deformation contacts on an elastic half-space Snoeijer et al.
(2013) demonstrated the validity of h0 ∼ V3/5 in the three-dimensional situation. The
reason for this is that the boundary layer remains small compared to the contact size,
and the local problem is effectively two-dimensional. Note, however, that the scaling with
elastic constants and the load changes in the three-dimensional case. For example, for the
semi-infinitely thick layer, the relation between lift force (load) and velocity was predicted
as F ∼ (ηV)3/4G1/4 (Snoeijer et al. 2013). Indeed, this scaling law was recently recovered
experimentally in Zhang et al. (2020). We remark that the scaling h0 ∼ V3/5 will be valid
for the three-dimensional case for the entire left column of the table, and the same holds for
h0 ∼ V1/2 in the middle column – the reason being that the boundary layers in these cases
are always small compared to the contact size. Finally, for the small deformation contacts
in the right column, Skotheim & Mahadevan (2005) showed how the universality in the lift
force L ∼ (ηV)2, also for spherical contacts. This scaling in the small deformation limit
was indeed observed experimentally for spherical contacts (Davies et al. 2018; Vialar et al.
2019; Zhang et al. 2020). Note that when verifying the dependence on elastic modulus and
thickness, care must be taken to select the correct limit (thin versus thick, compressible
versus incompressible).

Another new result of our study is the scaling law for a thin incompressible layer
subjected to large indentation. Leaving the details to appendix A, here, we discuss
the key features of this limit. In the limit where the boundary layer represents the
smallest scale, � � d, the only change compared to the compressible case is in the
static ‘dry’ solution, leading to different exponents of geometric and material parameters.
However, the scaling h0 ∼ V3/5 is robust. Next, we consider the intermediate range,
d � � � a, where the small boundary layers are in between the coating thickness and
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10−5 10−4 10−3 10−2 10−1 100

10−2

10−1

100

Vη R2 L−1 ai
−2

h̄0

Large deformation, short wavelength contact

Small deformation contact

FEM numerical solution

Figure 8. Lubrication thickness for thin incompressible coatings, combining numerical (§ 2.4) and analytical
(table 2, middle row) results. The graph reports the thickness of the fluid film at the centre of the lubricated
contact, h0, rescaled according to (A4) as a function of a dimensionless sliding velocity. The dimensionless
sliding velocity uses ai as defined in (A3). Distinct asymptotic limits are observed at low velocity (solid line,
h̄0 ∼ λ3/5) and high velocity (dashed line, h̄0 ∼ λ4/9). The prefactor of the high velocity asymptote is derived
analytically, while for the low velocity asymptote the data were fitted by (A11), with Ai,p  1.85.

the contact size. Interestingly, this case does not admit a consistent long-wave description,
and therefore a proper intermediate asymptotic regime appears to be missing. The resulting
long-wavelength ODE can be derived – unlike the compressible case, however, it does not
admit solutions at small λ that connect the inlet and the outlet region. For completeness,
we show in figure 8 the numerical relation between the central thickness h0 and the
velocity V obtained by finite element simulations. It very nicely confirms the scalings
of the bottom row in table 2, corresponding to the small and large speed asymptotics for
thin incompressible layers.

In conclusion, our study identifies key geometric parameters in the soft lubrication
problem of compressible and incompressible elastic solids. From an experimental
perspective, our results point out the importance of: (i) the ratio of elastic coating thickness
to contact size, (ii) the Poisson ratio of the layer (compressible versus incompressible)
and (iii) the ratio of elastic deformation over the lubricant thickness. When interpreting
experiments, one must verify the relevant regime, with table 2 serving as a guide.
Our unified framework also connects the two most studied limits of the problem: the
lubricated Hertzian contact regime, relevant for many industrial applications, and the large
separation (small deformation) regime, important in microfluidic and biological contexts.
We anticipate the results presented here to have important implications beyond the realm of
soft lubrication, e.g. in understanding the rheology of suspension flow in channels (Rosti,
Ardekani & Brandt 2019), size dependent migration of particles (Rallabandi et al. 2018),
and direct measurement of interfacial rheology in soft matter systems (Garcia et al. 2016).
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Appendix A. Thin incompressible layer, small velocity

The derivation of the dry contact between a cylinder on and an incompressible thin layer
is similar to that of a compressible layer. The main difference lies in the elastic Green’s
function of table 1, which differs in the long-wave limit. Combined with (2.1), the elastic
response gives

h(x) − x2

2R
+ c = d3

3G
∂2p
∂x2 . (A1)

In principle, this relation can be combined with the Reynolds (2.3) to yield an ODE
for h(x). It turns out, however, that this long-wave expansion does not admit solutions
at small λ that connect the inlet and the outlet region. Therefore, we only focus on the
ultimate asymptotics at λ� 1, where the boundary layers width � � d and are described
by the short-wave kernel. The subsequent analysis now runs parallel to that of § 3.4. The
boundary layers exhibit a universal structure, but the corresponding scales need to be
identified from matching to the static solution (now, on thin incompressible layers). In
particular, we know the asymptote to be of the form

p  Ai
√

±ζ , (A2)
where ζ = x ± χai is the distance from the edge, and we need to identify Ai of the static
solution.

For this, we proceed as in § 3.4. We first consider the static long-wave solution, from
(A1), which gives the relevant horizontal length scale ai,

ai =
[

5

6
√

3

Ld3R
G

]1/5

. (A3)

We introduce the scalings,

p = 5
√

3L
16ai

p̄, x = aix̄, h = a2
i

2R
h̄. (A4a–c)

As before, the dry problem can be split into two distinct regions, which gives the conditions
h̄ = 0 where |x̄| < χ and p̄ = 0 where |x̄| > χ . Note that the size of the contact is not
given by ai, but by χai. This is because incompressibility causes the contact to be larger
than the length over which the cylinder is below the surface of the undeformed layer.
Incompressibility dictates that the volume of the layer is conserved, thus

∫∞
−∞[h̄ − (x̄2 −

1)] dx̄ = 0, which gives that the size of the contact χ = √
3. Using this result the dry

solution is found to be,
h̄ = (x̄2 − 1) Θ(x̄2 − χ2), (A5a)

p̄ = 1
9(9 − 6x̄2 + x̄4) Θ(χ2 − x̄2). (A5b)

Interestingly, while the pressure is a continuous function, the film thickness is a
discontinuous function. Equation (A1) predicts that the surface of the layer follows the
cylinder when |x̄| < χ , and then suddenly becomes flat.
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We now need to compare the ‘true’ asymptotics of the static solution, given by (A2), to
that of the long-wave approximation, which near the edge of the contact (x̄ = ∓χ ) is given
by

p̄  ±4
3(x̄ ± χ)2, (A6)

which in dimensional form gives the scaling,

p ∼ ± L

a3
i
ζ 2. (A7)

Equating this expression to (A2) at a distance |ζ | ∼ d, we find

Ai = Ai,p

[
G3L2

d3/2R3

]1/5

, (A8)

where Ai,p is a numerical constant that remains to be determined. To recover the ‘universal’
boundary layer equations, we scale the problem as,

p =
A2

i,p

2

[
GL4

d3R

]1/5

p̂, (A9a)

ζ =
A2

i,p

2

[
L4R4

G4d3

]1/5

ζ̂, (A9b)

h =
A4

i,p

4

[
L8R3

G8d6

]1/5

ĥ. (A9c)

With this, the elastic deformation and the Reynolds equations reduce to (3.25) and (3.23),
but with a different dimensionless velocity,

λs,i = 96
A8

i,p

[
η5V5G11d12

L16R

]1/5

(A10)

Therefore, the resulting central thickness of the fluid film is therefore given by,

h0 = 0.4467λ3/5
s,i

A4
i,p

4

[
L8R3

G8d6

]1/5

= 1.7271

A4/5
i,p

[
η15V15d6R12

G7L8

]1/25

. (A11)
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