SEIBERG-WITTEN FLOW IN HIGHER DIMENSIONS

LORENZ SCHABRUN

(Received 8 February 2011; accepted 19 September 2011; first published online 1 March 2013)

Communicated by M. K. Murray

Abstract

We show that for manifolds of dimension $m \geq 5$, the flow of a Seiberg-Witten-type functional admits a global smooth solution.

2010 Mathematics subject classification: primary 35A01; secondary 53C07.
Keywords and phrases: Seiberg-Witten flow, global existence, higher dimensions.

1. Introduction

The Seiberg-Witten invariant has proven a very effective tool in four-dimensional geometry. Its computation involves finding nontrivial solutions to the system of firstorder Seiberg-Witten equations, called monopoles. Monopoles represent the zeros of the Seiberg-Witten functional (1.1) (see [10]). In [5], the flow for the Seiberg-Witten functional on a 4-manifold was studied. It was shown that the flow admits a global solution which converges in C^{∞} to a critical point of the functional.

The Seiberg-Witten equations and functional do not generalize immediately to higher dimensions, since they depend on the notion of self-duality on four-dimensional manifolds. Nonetheless, a number of generalizations of Seiberg-Witten theory have been suggested for higher-dimensional manifolds (see, for example, [1, 2, 4]). In this paper, we extend the global existence result obtained for the Seiberg-Witten functional in [5] for dimension four to a functional of similar form in higher dimensions.

Let M be a compact oriented Riemannian m-manifold which admits a $S_{p i n}{ }^{\text {c }}$ structure \mathfrak{s}. Denote by $\mathcal{S}=W \otimes \mathcal{L}$ the corresponding spinor bundle, and by \mathcal{L}^{2} the corresponding determinant line bundle. Let A be a unitary connection on \mathcal{L}^{2}. Note that we can write $A=A_{0}+a$, where A_{0} is some fixed connection and $a \in i \Lambda^{1} M$ with $i=\sqrt{-1}$. Denote by $F_{A}=d A \in i \Lambda^{2} M$ the curvature of the line bundle connection A.

[^0]Let $\left\{e_{j}\right\}$ be a local orthonormal basis of the tangent bundle $T M$. A $\operatorname{Spin}(4)^{\text {c }}$-connection on the spinor bundle \mathcal{S} is locally defined by

$$
\nabla_{A}=d+\frac{1}{2}(\omega+A),
$$

where $\omega=\sum_{i<j} \omega_{i j} e_{i} e_{j}$ is induced by the Levi-Civita connection matrix $\omega_{j k}$ and $e_{j} e_{k}$ acts by Clifford multiplication (see [7]). We denote the curvature of ∇_{A} by Ω_{A}. We define the configuration space $\Gamma(\mathcal{S}) \times \mathscr{A}$, where \mathscr{A} is the space of unitary connections on \mathcal{L}^{2}, and let $(\varphi, A) \in \Gamma(\mathcal{S}) \times \mathscr{A}$. Note that in [5] we took $\varphi \in \Gamma\left(\mathcal{S}^{+}\right)$. However, the splitting $\mathcal{S}=\mathcal{S}^{+} \bigoplus \mathcal{S}^{-}$is available only if m is even. The exact nature of the bundle to which φ belongs does not affect our results, and we may assume $\varphi \in \Gamma(\mathcal{S})$ for simplicity.

We first recall the definition of the Seiberg-Witten functional on 4-manifolds. The Seiberg-Witten functional $\mathcal{S W}: \Gamma\left(\mathcal{S}^{+}\right) \times \mathscr{A} \rightarrow \mathbb{R}$ is given by

$$
\begin{equation*}
\mathcal{S W}(\varphi, A)=\int_{M}\left|\nabla_{A} \varphi\right|^{2}+\left|F_{A}^{+}\right|^{2}+\frac{S}{4}|\varphi|^{2}+\frac{1}{8}|\varphi|^{4} d V \tag{1.1}
\end{equation*}
$$

where S is the scalar curvature of M. The Seiberg-Witten functional (1.1) is invariant under the action of a gauge group. The group of gauge transformations is

$$
\mathscr{G}=\{g: M \rightarrow U(1)\} .
$$

The group \mathscr{G} acts on elements of the configuration space via

$$
g^{*}(\varphi, A)=\left(g^{-1} \varphi, A+2 g^{-1} d g\right)
$$

Using the relation

$$
\left\|F_{A}\right\|_{L^{2}}=2\left\|F_{A}^{+}\right\|_{L^{2}}-4 \pi^{2} c_{1}\left(\mathcal{L}^{2}\right)^{2}
$$

where $c_{1}\left(\mathcal{L}^{2}\right)$ is the first Chern class of \mathcal{L}^{2} (see [11]), one can also write the functional in the form

$$
\begin{equation*}
\mathcal{S W}(\varphi, A)=\int_{M}\left|\nabla_{A} \varphi\right|^{2}+\frac{1}{2}\left|F_{A}\right|^{2}+\frac{S}{4}|\varphi|^{2}+\frac{1}{8}|\varphi|^{4} d V+\pi^{2} c_{1}\left(\mathcal{L}^{2}\right)^{2} \tag{1.2}
\end{equation*}
$$

Now, consider again the case of an m-manifold M. The functional (1.1) is not defined here, since self-duality is a phenomenon that occurs only in dimension four. However, we may use (1.2) to extend the Seiberg-Witten functional to higher dimensions. As mentioned, we can allow $\varphi \in \Gamma(\mathcal{S})$ in the case where m is odd. Note that the constant term $\pi^{2} c_{1}\left(\mathcal{L}^{2}\right)^{2}$ does not affect the Euler-Lagrange equations and so is irrelevant for the results in this paper. The Euler-Lagrange equations for the Seiberg-Witten functional are

$$
\begin{gathered}
-\nabla_{A}^{*} \nabla_{A} \varphi-\frac{1}{4}\left[S+|\varphi|^{2}\right] \varphi=0 \\
-d^{*} F_{A}-i \operatorname{Im}\left\langle\nabla_{A} \varphi, \varphi\right\rangle=0 .
\end{gathered}
$$

As in [5], we define the flow of the Seiberg-Witten functional by

$$
\begin{align*}
& \frac{\partial \varphi}{\partial t}=-\nabla_{A}^{*} \nabla_{A} \varphi-\frac{1}{4}\left[S+|\varphi|^{2}\right] \varphi, \tag{1.3}\\
& \frac{\partial A}{\partial t}=-d^{*} F_{A}-i \operatorname{Im}\left\langle\nabla_{A} \varphi, \varphi\right\rangle,
\end{align*}
$$

with initial data

$$
(\varphi(0), A(0))=\left(\varphi_{0}, A_{0}\right)
$$

Regarding the existence of solutions to the flow (1.3), we prove the following theorem.

Theorem 1.1. For any given smooth initial data $\left(\varphi_{0}, A_{0}\right)$ and m-dimensional Riemannian manifold M for $m \geq 5$, equations (1.3) admit a unique global smooth solution on $M \times[0, \infty)$.

In proving global existence in dimension four, a blow-up or rescaling argument was used in order to obtain a contradiction with the assumption of singularity formation. Importantly, the boundedness of $\int_{M}\left|F_{A}\right|^{2} d V$ under the flow was used to imply the boundedness of the corresponding energy $\int_{\mathbb{R}^{4}}\left|F_{\tilde{A}}\right|^{2} d y$ of the limiting curvature $F_{\tilde{A}}$ on the rescaled space. In higher dimensions, however, this observation is not sufficient to ensure a bound on the rescaled energy. This necessitates a stronger result through which to obtain the desired contradiction, along with some modifications to the blowup argument.

The main additional estimate needed in establishing global existence in higher dimensions is a so-called monotonicity formula. This idea was used by Struwe for the heat flow of harmonic maps in higher dimensions [13], and has also been used to study the Yang-Mills and Yang-Mills-Higgs flows in higher dimensions [6, 12]. See also [8, 9] for the harmonic map flow, and [14] for sequences of weakly converging Yang-Mills connections.

2. Estimates

As in the four-dimensional case [5], we have an energy inequality

$$
\frac{d}{d t} \mathcal{S W}(\varphi(t), A(t))=-\int_{M}\left[2\left|\frac{\partial \varphi}{\partial t}\right|^{2}+\left|\frac{\partial A}{\partial t}\right|^{2}\right] \leq 0
$$

or

$$
\begin{equation*}
\int_{0}^{T}\left[2\left\|\frac{\partial \varphi}{\partial t}\right\|_{L^{2}}^{2}+\left\|\frac{\partial A}{\partial t}\right\|_{L^{2}}^{2}\right]=\mathcal{S} \mathcal{W}\left(\varphi_{0}, A_{0}\right)-\mathcal{S} \mathcal{W}(\varphi(T), A(T)) \tag{2.1}
\end{equation*}
$$

The proof of the energy inequality and many other results from [5] do not contain dimensional considerations, and are also valid in the m-dimensional case. For the proof of the energy inequality and of the following lemmas, we direct the reader to that paper.

The first step is to establish the existence of a local solution to the flow.

Lemma 2.1. For any given smooth initial data $\left(\varphi_{0}, A_{0}\right)$, the system (1.3) admits a unique local smooth solution on $M \times[0, T)$ for some $T>0$.

In this paper, (φ, A) will typically represent a local solution to (1.3) on $M \times[0, T)$ for some initial value (φ_{0}, A_{0}). Next, Lemma 2.2 gives us a uniform bound on φ under the flow.

Lemma 2.2. Write $S_{0}=\min \{S(x): x \in M\}$ and $k_{0}=\sup _{x \in M}\left|\varphi_{0}\right|$. Then for all $t \in[0, T)$,

$$
\sup _{x \in M}|\varphi(x, t)| \leq \max \left\{k_{0}, \sqrt{\left|S_{0}\right|}\right\} .
$$

The following Bochner formula gives us a constraint on the evolution of the first derivatives of φ and A.

Lemma 2.3. There exist positive constants c, c^{\prime} such that the following estimate holds:

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\left|\nabla_{A} \varphi\right|^{2}+\left|F_{A}\right|^{2}\right)+\Delta\left(\left|\nabla_{A} \varphi\right|^{2}+\left|F_{A}\right|^{2}\right) \\
& \quad \leq-c^{\prime}\left(\left|\nabla_{A}^{2} \varphi\right|^{2}+\left|\nabla F_{A}\right|^{2}\right)+c\left(\left|F_{A}\right|+1\right)\left(\left|\nabla_{A} \varphi\right|^{2}+\left|F_{A}\right|^{2}+1\right)
\end{aligned}
$$

Finally, the following lemma and corollary show that a bound on the first derivatives of φ and A implies a bound on derivatives of all orders.

Lemma 2.4. Suppose that $\left|\nabla_{A} \varphi\right| \leq K_{1}$ and $\left|F_{A}\right| \leq K_{1}$ in $M \times[0, T)$ for some constant $K_{1}>0$. Then for any positive integer $n \geq 1$, there is a constant K_{n+1} independent of T such that

$$
\left|\nabla_{A}^{(n+1)} \varphi\right| \leq K_{n+1}, \quad\left|\nabla_{M}^{(n)} F_{A}\right| \leq K_{n+1} \quad \text { in } M \times[0, T)
$$

where (n) denotes n iterations of the derivative.
Corollary 2.5. Suppose that $\left|\nabla_{A}^{(j)} \varphi\right| \leq K_{n}$ and $\left|\nabla_{M}^{(j-1)} F_{A}\right| \leq K_{n}$ in $P_{1}\left(x_{0}, t_{0}\right)$ for each $1 \leq j \leq n$ and some constant K_{n}. Then there is a positive constant K_{n+1} such that

$$
\left|\nabla_{A}^{(n+1)} \varphi\right| \leq K_{n+1}, \quad\left|\nabla_{M}^{(n)} F_{A}\right| \leq K_{n+1} \quad \text { in } P_{1 / 2}\left(x_{0}, t_{0}\right) .
$$

In order to extend the global existence result in four dimensions to higher dimensions, we begin be deriving a monotonicity inequality for the flow (1.3). We define

$$
e(\varphi, A)(x, t)=\left|\nabla_{A} \varphi\right|^{2}+\frac{1}{2}\left|F_{A}\right|^{2}+\frac{S}{4}|\varphi|^{2}+\frac{1}{8}|\varphi|^{4} .
$$

Let $z=(x, t)$ denote a point of $M \times \mathbb{R}$, with $z_{0}=\left(x_{0}, t_{0}\right) \in M \times[0, T]$. We define

$$
T_{R}\left(z_{0}\right)=M \times\left[t_{0}-4 R^{2}, t_{0}-R^{2}\right]
$$

and

$$
P_{R}\left(z_{0}\right)=B_{R}\left(x_{0}\right) \times\left[t_{0}-R^{2}, t_{0}\right],
$$

where $B_{R}\left(x_{0}\right) \subset M$ denotes a ball centered at x_{0} with radius R. Note that in constructing $T_{R}\left(z_{0}\right)$ we require that $t_{0}-4 R^{2} \geq 0$ or $R \leq \sqrt{t_{0}} / 2$. We abbreviate $T_{R}(0,0)=T_{R}$
and $P_{R}(0,0)=P_{R}$. The fundamental solution to the backward heat equation with singularity at z_{0} is

$$
G_{z_{0}}(z)=\frac{1}{\left(4 \pi\left(t_{0}-t\right)\right)^{m / 2}} \exp \left(-\frac{\left(x-x_{0}\right)^{2}}{4\left(t_{0}-t\right)}\right)
$$

where $t<t_{0}$. We also write $G=G_{(0,0)}$. Let $i(M)$ be the injectivity radius of M, and suppose that (φ, A) is a solution to the flow (1.3) on $M \times[0, T)$. Let ϕ_{x} be a smooth cut-off function with $\left|\phi_{x}\right| \leq 1, \phi_{x} \equiv 1$ on $B_{i(M) / 2}(x), \phi_{x} \equiv 0$ outside $B_{i(M)}(x)$ and $\left|\nabla \phi_{x}\right| \leq c / i(M)$ for some constant c. We also abbreviate $\phi=\phi_{x_{0}}$. We define

$$
\Phi(R ; \varphi, A)=R^{2} \int_{T_{R}\left(z_{0}\right)} e(\varphi, A)(z) \phi^{2} G d V d t
$$

and

$$
\mathscr{F}(R ; \varphi, A)=\int_{T_{R}\left(z_{0}\right)} R t\left(\left.\left|\frac{\partial A}{\partial t}+\frac{x_{k}}{2 t} \frac{\partial}{\partial x_{k}}\right| F_{A}\right|^{2}+2\left|\frac{\partial \varphi}{\partial t}+\frac{x_{k}}{2 t} \nabla_{A}^{k} \varphi\right|^{2}\right) \phi^{2} G \sqrt{g} d z
$$

where

$$
\frac{\partial}{\partial x_{k}} \left\lvert\, F_{A}=F_{A}\left(\frac{\partial}{\partial x_{k}}, \cdot\right)=F^{k j} d x^{j}\right.
$$

defines a 1-form.
Lemma 2.6. Let (φ, A) be a smooth solution of (1.3) on $M \times[0, T)$ with initial data $\left(\varphi_{0}, A_{0}\right)$. Then for $z_{0} \in M \times[0, T]$ and any R_{a} and R_{b} satisfying $0<R_{a} \leq R_{b} \leq R_{0}$ for some $R_{0} \leq \min \left\{i(M), \sqrt{t_{0}} / 2\right\}$,

$$
\Phi\left(R_{a} ; \varphi, A\right)+\int_{R_{a}}^{R_{b}} e^{a R} \mathscr{F}(R) d R \leq e^{c\left(R_{b}-R_{a}\right)} \Phi\left(R_{b} ; \varphi, A\right)+c\left(R_{b}^{2}-R_{a}^{2}\right) \mathcal{S W}\left(\varphi_{0}, A_{0}\right)
$$

where c depends only on the geometry of M.
Proof. We show that

$$
\begin{equation*}
\frac{d}{d R} \Phi(R ; \varphi, A)+\mathscr{F}(R ; \varphi, A) \geq-c \Phi(R ; \varphi, A)-c R \mathcal{W} \mathcal{W}\left(\varphi_{0}, A_{0}\right) \tag{2.2}
\end{equation*}
$$

The required result then follows by multiplying (2.2) by $e^{a R}$ for some sufficiently large $a>0$, and integrating from R_{a} to R_{b}. To show (2.2), we may assume that $z_{0}=(0,0)$, which implies that $t<0$ on T_{R}. We rescale the coordinates to $x=R \tilde{x}, t=R^{2} \tilde{t}$. In these coordinates,

$$
\Phi(R ; \varphi, A)=\int_{T_{1}} R^{4} e(\varphi, A)\left(R \tilde{x}, R^{2} \tilde{t}\right) \phi^{2}(R \tilde{x}) G(\tilde{z}) \sqrt{g(R \tilde{x})} d \tilde{z}
$$

where $d \tilde{z}=d \tilde{x} d \tilde{t}$. For some $R \leq R_{0}$, we compute

$$
\begin{aligned}
\frac{d}{d R} \Phi(R ; \varphi, A)= & \int_{T_{1}} \frac{d}{d R}\left[R^{4} e(\varphi, A)\left(R \tilde{x}, R^{2} \tilde{t}\right) \phi^{2}(R \tilde{x}) \sqrt{g(R \tilde{x})}\right] G(\tilde{z}) d \tilde{z} \\
= & \int_{T_{1}} 4 R^{3} e(\varphi, A)\left(R \tilde{x}, R^{2} \tilde{t}\right) \phi^{2}(R \tilde{x}) G(\tilde{z}) \sqrt{g(R \tilde{x})} d \tilde{z} \\
& +\int_{T_{1}} R^{4} \tilde{x}_{k} \frac{\partial}{\partial x_{k}} e(\varphi, A)\left(R \tilde{x}, R^{2} \tilde{t}\right) \phi^{2}(R \tilde{x}) G(\tilde{z}) \sqrt{g(R \tilde{x})} d \tilde{z} \\
& +\int_{T_{1}} 2 R^{5} \tilde{t} \frac{\partial}{\partial t} e(\varphi, A)\left(R \tilde{x}, R^{2} \tilde{t}\right) \phi^{2}(R \tilde{x}) G(\tilde{z}) \sqrt{g(R \tilde{x})} d \tilde{z} \\
& +\int_{T_{1}} R^{4} e(\varphi, A)\left(R \tilde{x}, R^{2} \tilde{t}\right) \tilde{x}_{k} \frac{\partial}{\partial x_{k}}\left(\phi^{2} \sqrt{g}\right)(R \tilde{x}) G(\tilde{z}) d \tilde{z} \\
:= & I_{1}+I_{2}+I_{3}+I_{4} .
\end{aligned}
$$

Rescaling coordinates back to (x, t),

$$
I_{1}=\int_{T_{R}} 4 \operatorname{Re}(\varphi, A) \phi^{2} G \sqrt{g} d z
$$

and

$$
I_{4}=\int_{T_{R}} \operatorname{Re}(\varphi, A) x_{k} \frac{\partial}{\partial x_{k}}\left(\phi^{2} \sqrt{g}\right) G d z .
$$

For the second term,

$$
I_{2}=\int_{T_{R}} R x_{k} \frac{\partial}{\partial x_{k}} e(\varphi, A) \phi^{2} G \sqrt{g} d z
$$

This simplifies as follows:

$$
\begin{aligned}
\frac{\partial}{\partial x_{k}} & {\left[\left|\nabla_{A} \varphi\right|^{2}+\frac{1}{2}\left|F_{A}\right|^{2}+\left(\frac{S}{4}|\varphi|^{2}+\frac{1}{8}|\varphi|^{4}\right)\right] } \\
& =\left\langle\nabla_{M}^{k} F_{A}, F_{A}\right\rangle+2 \operatorname{Re}\left\langle\nabla_{A}^{k} \nabla_{A}^{j} \varphi, \nabla_{A}^{j} \varphi\right\rangle+\frac{1}{2}\left(S+|\varphi|^{2}\right) \operatorname{Re}\left\langle\nabla_{A}^{k} \varphi, \varphi\right\rangle .
\end{aligned}
$$

Note that

$$
2 \operatorname{Re}\left\langle\nabla_{A}^{k} \nabla_{A}^{j} \varphi, \nabla_{A}^{j} \varphi\right\rangle=2 \operatorname{Re}\left\langle\nabla_{A} \nabla_{A}^{k} \varphi, \nabla_{A} \varphi\right\rangle-2 \operatorname{Re}\left\langle\Omega_{A}^{j k} \varphi, \nabla_{A}^{j} \varphi\right\rangle .
$$

Using the fact that

$$
\frac{\partial G}{\partial x_{j}}=\frac{x_{j}}{2 t} G
$$

we have

$$
-2 \int_{T_{R}} R x_{k} \operatorname{Re}\left\langle d(G) \wedge \nabla_{A}^{k} \varphi, \nabla_{A} \varphi\right\rangle \phi^{2} \sqrt{g} d z=-4 \int_{T_{R}} R t\left|\frac{x_{k}}{2 t} \nabla_{A}^{k} \varphi\right|^{2} \phi^{2} G \sqrt{g} d z
$$

For the curvature term, we recall the Bianchi identity $d F_{A}=0$ which implies that

$$
\partial_{k} F^{i j}=\partial_{i} F^{k j}-\partial_{j} F^{k i},
$$

and we compute in local coordinates

$$
\begin{aligned}
x_{k} \partial_{k} \sum_{i<j}\left(F^{i j}\right)^{2} G \phi^{2} & =2 x_{k} \sum_{i<j} F^{i j} \partial_{k} F^{i j} G \phi^{2} \\
& =2 x_{k} \sum_{i<j} F^{i j}\left(\partial_{i} F^{k j}-\partial_{j} F^{k i}\right) G \phi^{2} \\
& =x_{k} F^{i j} \partial_{i} F^{k j} G \phi^{2} \\
& =\partial_{i}\left(x_{k} F^{i j} F^{k j} G \phi^{2}\right)-x_{k} F^{k j} \partial_{i} F^{i j} G \phi^{2}-F^{k j} F^{i j} \partial_{i}\left(x_{k} G \phi^{2}\right) .
\end{aligned}
$$

Observe that the first term will integrate to zero by Stoke's theorem, and for the second term we have $\left(d^{*} F_{A}\right)_{j}=\partial_{i} F^{i j}$. To deal with the third term, we see that

$$
-x_{k} F^{k j} x_{i} F^{i j} \frac{1}{2 t} G \phi^{2}=-\left.2 t\left|\frac{x_{k}}{2 t} \frac{\partial}{\partial x_{k}}\right| F_{A}\right|^{2} G \phi^{2} .
$$

Note that $|d \phi| G \leq c$ since $|d \phi|=0$ on $B_{i(M) / 2}\left(x_{0}\right)$. Then

$$
\begin{aligned}
I_{2}= & \int_{T_{R}} R x_{k}\left[\frac{1}{2} \partial_{k}\left|F_{A}\right|^{2}+2 \operatorname{Re}\left\langle\nabla_{A} \nabla_{A}^{k} \varphi, \nabla_{A} \varphi\right\rangle-2 \operatorname{Re}\left\langle\Omega_{A}^{j k} \varphi, \nabla_{A}^{j} \varphi\right\rangle\right. \\
& \left.+\frac{1}{2}\left(S+|\varphi|^{2}\right) \operatorname{Re}\left\langle\nabla_{A}^{k} \varphi, \varphi\right\rangle\right] \phi^{2} G \sqrt{g} d z \\
= & \int_{T_{R}} R x_{k}\left[\frac{1}{2} \partial_{k}\left|F_{A}\right|^{2}+2 \operatorname{Re}\left\langle\nabla_{A}^{k} \varphi, \nabla_{A}^{*} \nabla_{A} \varphi\right\rangle\right. \\
& \left.-2 \operatorname{Re}\left\langle\Omega_{A}^{j k} \varphi, \nabla_{A}^{j} \varphi\right\rangle+\frac{1}{2}\left(S+|\varphi|^{2}\right) \operatorname{Re}\left\langle\nabla_{A}^{k} \varphi, \varphi\right\rangle\right] \phi^{2} G \sqrt{g} d z \\
& -2 \int_{T_{R}} R x_{k} \operatorname{Re}\left\langle d\left(\phi^{2} G x_{k}\right) \nabla_{A}^{k} \varphi, \nabla_{A} \varphi\right\rangle \sqrt{g} d z \\
\geq- & \int_{T_{R}} R|x|\left(\left|\frac{\partial A}{\partial t}\right|\left|F_{A}\right|+2\left|\frac{\partial \varphi}{\partial t}\right|\left|\nabla_{A} \varphi\right|\right) \phi^{2} G \sqrt{g} d z \\
& -4 \int_{T_{R}} R t\left|\frac{x_{k}}{2 t} \nabla_{A}^{k} \varphi\right|^{2} \phi^{2} G \sqrt{g} d z-\int_{T_{R}} R t\left|\frac{x_{k}}{2 t} \frac{\partial}{\partial x_{k}} F_{A}\right|^{2} G \phi^{2} \sqrt{g} d z \\
& -c \Phi(R ; \varphi, A)-c R \mathcal{S W}\left(\varphi_{0}, A_{0}\right),
\end{aligned}
$$

where we note that $\Omega_{A}=\Omega_{A_{0}}+\frac{1}{2} F_{A}$, and we also recall from [5] that

$$
\operatorname{Re}\left\langle\frac{\partial A}{\partial t} \varphi, \nabla_{A} \varphi\right\rangle=\left\langle\frac{\partial A}{\partial t}, i \operatorname{Im}\left\langle\nabla_{A} \varphi, \varphi\right\rangle\right\rangle
$$

note that $\partial A / \partial t$ can be replaced by any 1 -form. For the third term,

$$
\begin{aligned}
I_{3}= & \int_{T_{R}} 2 R t\left[\left\langle d \frac{\partial A}{\partial t}, F_{A}\right\rangle+2 \operatorname{Re}\left\langle\nabla_{A} \frac{\partial \varphi}{\partial t}, \nabla_{A} \varphi\right\rangle+\operatorname{Re}\left\langle\frac{\partial A}{\partial t} \varphi, \nabla_{A} \varphi\right\rangle\right. \\
& \left.+\left(\frac{1}{2}\left[S+|\varphi|^{2}\right] \operatorname{Re}\left\langle\frac{\partial \varphi}{\partial t}, \varphi\right\rangle\right)\right] \phi^{2} G \sqrt{g} d z \\
= & -\int_{T_{R}} 2 R t\left[\left|\frac{\partial A}{\partial t}\right|^{2}+2\left|\frac{\partial \varphi}{\partial t}\right|^{2}\right] \phi^{2} G \sqrt{g} d z \\
& -\int_{T_{R}} 2 R t\left\langle d\left(\phi^{2} G\right) \wedge \frac{\partial A}{\partial t}, F_{A}\right\rangle \sqrt{g} d z \\
& -\int_{T_{R}} 4 \operatorname{Rt} \operatorname{Re}\left\langle d\left(\phi^{2} G\right) \wedge \frac{\partial \varphi}{\partial t}, \nabla_{A} \varphi\right\rangle \sqrt{g} d z
\end{aligned}
$$

Next we obtain

$$
\left\langle d G \wedge \frac{\partial A}{\partial t}, F_{A}\right\rangle=\left\langle\frac{x_{k}}{2 t} d x^{k} \wedge \frac{\partial A}{\partial t}, F_{A}\right\rangle G=\left\langle\frac{\partial A}{\partial t}, \left.\frac{x_{k}}{2 t} \frac{\partial}{\partial x_{k}} \right\rvert\, F_{A}\right\rangle G
$$

and

$$
\left\langle d G \wedge \frac{\partial \varphi}{\partial t}, \nabla_{A} \varphi\right\rangle=\left\langle\frac{x_{k}}{2 t} d x^{k} \wedge \frac{\partial \varphi}{\partial t}, \nabla_{A} \varphi\right\rangle G=\left\langle\frac{\partial \varphi}{\partial t}, \frac{x_{k}}{2 t} \nabla_{A}^{k} \varphi\right\rangle G .
$$

Thus

$$
\begin{aligned}
I_{3} \geq & -\int_{T_{R}} 2 R t\left[\left|\frac{\partial A}{\partial t}\right|^{2}+2\left|\frac{\partial \varphi}{\partial t}\right|^{2}\right] \phi^{2} G \sqrt{g} d z \\
& -\int_{T_{R}} 2 R t\left(\frac{\partial A}{\partial t}, \frac{x_{k}}{2 t} \frac{\partial}{\partial x_{k}}\left|F_{A}\right\rangle \phi^{2} G \sqrt{g} d z+c \int_{T_{R}} 2 R t\left|\frac{\partial A}{\partial t}\right|\left|F_{A}\right| \phi \sqrt{g} d z\right. \\
& -\int_{T_{R}} 4 R t \operatorname{Re}\left(\frac{\partial \varphi}{\partial t}, \frac{x_{k}}{2 t} \nabla_{A}^{k} \varphi\right\rangle \phi^{2} G \sqrt{g} d z+c \int_{T_{R}} 4 R t\left|\frac{\partial \varphi}{\partial t}\right|\left|\nabla_{A} \varphi\right| \phi \sqrt{g} d z \\
\geq & -\int_{T_{R}} R t\left(\left.\left|\frac{\partial A}{\partial t}+\frac{x_{k}}{2 t} \frac{\partial}{\partial x_{k}}\right| F_{A}\right|^{2}+2\left|\frac{\partial \varphi}{\partial t}+\frac{x_{k}}{2 t} \nabla_{A}^{k} \varphi\right|^{2}\right) \phi^{2} G \sqrt{g} d z \\
& +\int_{T_{R}} R t\left(\left.\left|\frac{x_{k}}{2 t} \frac{\partial}{\partial x_{k}}\right| F_{A}\right|^{2}+2\left|\frac{x_{k}}{2 t} \nabla_{A}^{k} \varphi\right|^{2}\right) \phi^{2} G \sqrt{g} d z \\
& -\int_{T_{R}} R t\left[\left|\frac{\partial A}{\partial t}\right|^{2}+2\left|\frac{\partial \varphi}{\partial t}\right|^{2}\right] \phi^{2} G \sqrt{g} d z \\
& -c R \mathcal{S W}\left(\varphi_{0}, A_{0}\right) .
\end{aligned}
$$

Here we have used Young's inequality and the energy inequality (2.1). We also recall that $|t| \leq 4 R^{2}$ on T_{R}, and that $R \leq R_{0}$. Finally, since, as in [12], $R^{-1}|x|^{2} G \leq c(1+G)$, combining the working above (and recalling that $t<0$ on T_{R}), one obtains (2.2).
Corollary 2.7. There exists a constant $a>0$ such that

$$
e^{a R} \Phi(R ; \varphi, A)+c R^{2} \mathcal{S} \mathcal{W}\left(\varphi_{0}, A_{0}\right)
$$

where c here represents the same constant as appears in (2.2).

Proof. The result follows from (2.2) by multiplying by $e^{a R}$ for some sufficiently large $a>0$, and integrating from R_{a} to R_{b}.
Lemma 2.8. Suppose that $(\varphi, A) \in C^{\infty}\left(P_{R}(y, s)\right)$ satisfies (1.3). Then there exist constants δ and R_{1} such that if $R \leq R_{1}$ and

$$
\sup _{0<t<s} R^{4-m} \int_{B_{R}(y)}\left(\left|\nabla_{A} \varphi\right|^{2}+\left|F_{A}\right|^{2}\right) d V<\delta,
$$

then

$$
\sup _{P_{R / 2}(y, s)}\left(\left|\nabla_{A} \varphi\right|^{2}+\left|F_{A}\right|^{2}\right) \leq 256 R^{-4} .
$$

Proof. We begin by choosing $r_{0}<R$ so that

$$
\begin{equation*}
\left(R-r_{0}\right)^{4} \sup _{P_{r_{0}}(y, s)}\left(\left|\nabla_{A} \varphi\right|^{2}+\left|F_{A}\right|^{2}\right)=\max _{0 \leq r \leq R}\left[(R-r)^{4} \sup _{P_{r}(y, s)}\left(\left|\nabla_{A} \varphi\right|^{2}+\left|F_{A}\right|^{2}\right)\right] \tag{2.3}
\end{equation*}
$$

Let

$$
e_{0}=\sup _{P_{r_{0}}(y, s)}\left(\left|\nabla_{A} \varphi\right|^{2}+\left|F_{A}\right|^{2}\right)=\left(\left|\nabla_{A} \varphi\right|^{2}+\left|F_{A}\right|^{2}\right)\left(x_{0}, t_{0}\right)
$$

for some $\left(x_{0}, t_{0}\right) \in \bar{P}_{r_{0}}(y, s)$. We claim that

$$
\begin{equation*}
e_{0} \leq 16\left(R-r_{0}\right)^{-4} \tag{2.4}
\end{equation*}
$$

Then

$$
\begin{aligned}
(R-r)^{4} \sup _{P_{r}(y, s)}\left(\left|\nabla_{A} \varphi\right|^{2}+\left|F_{A}\right|^{2}\right) & \leq\left(R-r_{0}\right)^{4} \sup _{P_{r_{0}}(y, s)}\left(\left|\nabla_{A} \varphi\right|^{2}+\left|F_{A}\right|^{2}\right) \\
& \leq 16\left(R-r_{0}\right)^{4}\left(R-r_{0}\right)^{-4}=16
\end{aligned}
$$

for any $r<R$. Choosing $r=\frac{1}{2} R$ in the above, we have the required result. We now prove (2.4). Define $\rho_{0}=e_{0}^{-1 / 4}$ and suppose by contradiction that $\rho_{0} \leq \frac{1}{2}\left(R-r_{0}\right)$. We rescale variables $x=x_{0}+\rho_{0} \tilde{x}$ and $t=t_{0}+\rho_{0}^{2} \tilde{t}$ and set

$$
\begin{gathered}
\psi(\tilde{x}, \tilde{t})=\varphi\left(x_{0}+\rho_{0} \tilde{x}, t_{0}+\rho_{0}^{2} \tilde{t}\right) \\
B(\tilde{x}, \tilde{t})=\rho_{0} A\left(x_{0}+\rho_{0} \tilde{x}, t_{0}+\rho_{0}^{2} \tilde{t}\right)
\end{gathered}
$$

giving

$$
\begin{aligned}
\left|\nabla_{B} \psi\right|^{2} & =\rho_{0}^{2}\left|\nabla_{A} \varphi\right|^{2} \\
\left|F_{B}\right|^{2} & =\rho_{0}^{4}\left|F_{A}\right|^{2}
\end{aligned}
$$

We define

$$
e_{\rho_{0}}(\tilde{x}, \tilde{t})=\left|F_{B}\right|^{2}+\rho_{0}^{2}\left|\nabla_{B} \psi\right|^{2}=\rho_{0}^{4}\left(\left|\nabla_{A} \varphi\right|^{2}+\left|F_{A}\right|^{2}\right)
$$

so that

$$
e_{\rho_{0}}(\tilde{x}, \tilde{t}) \leq e_{\rho_{0}}(0,0)=1
$$

We compute

$$
\begin{aligned}
\sup _{\tilde{P}_{1}(0,0)} e_{\rho_{0}}(\tilde{x}, \tilde{t}) & =\rho_{0}^{4} \sup _{P_{\rho_{0}}\left(x_{0}, t_{0}\right)}\left(\left|\nabla_{A} \varphi\right|^{2}+\left|F_{A}\right|^{2}\right) \\
& \leq \rho_{0}^{4} \sup _{P_{\left(R+r_{0}\right) / 2}(y, s)}\left(\left|\nabla_{A} \varphi\right|^{2}+\left|F_{A}\right|^{2}\right) \\
& =\rho_{0}^{4}\left(\frac{R-r_{0}}{2}\right)^{-4}\left(R-\frac{R+r_{0}}{2}\right)^{4} \sup _{P_{\left(R+r_{0}\right) / 2}(y, s)}\left(\left|\nabla_{A} \varphi\right|^{2}+\left|F_{A}\right|^{2}\right) \\
& \leq \rho_{0}^{4}\left(\frac{R-r_{0}}{2}\right)^{-4}\left(R-r_{0}\right)^{4} e_{0}=16,
\end{aligned}
$$

where we have used that $P_{\rho_{0}}\left(x_{0}, t_{0}\right) \subset P_{R+r_{0} / 2}(y, s)$, and to get to the last line we have used (2.3). This implies that

$$
e_{\rho_{0}}=\rho_{0}^{4}\left(\left|\nabla_{A} \varphi\right|^{2}+\left|F_{A}\right|^{2}\right) \leq 16
$$

on $\bar{P}_{1}(0,0)$. By Lemma 2.3,

$$
\left(\frac{\partial}{\partial t}+\Delta\right)\left(\left|\nabla_{A} \varphi\right|^{2}+\left|F_{A}\right|^{2}+1\right) \leq c\left(\left|F_{A}\right|+1\right)\left(\left|\nabla_{A} \varphi\right|^{2}+\left|F_{A}\right|^{2}+1\right)
$$

Then

$$
\begin{aligned}
\left(\frac{\partial}{\partial \tilde{t}}+\tilde{\Delta}\right)\left(e_{\rho_{0}}+\rho_{0}^{4}\right) & =\rho_{0}^{6}\left(\frac{\partial}{\partial t}+\Delta\right)\left(\left|\nabla_{A} \varphi\right|^{2}+\left|F_{A}\right|^{2}\right) \\
& \leq c \rho_{0}^{6}\left(\left|F_{A}\right|+1\right)\left(\left|\nabla_{A} \varphi\right|^{2}+\left|F_{A}\right|^{2}+1\right)
\end{aligned}
$$

on $\bar{P}_{1}(0,0)$. Note that by assumption $\rho_{0}<R, \rho_{0}^{2}\left|F_{A}\right|$ is thus bounded by a constant. Then

$$
\left(\frac{\partial}{\partial \tilde{t}}+\tilde{\Delta}\right)\left(e_{\rho_{0}}+\rho_{0}^{4}\right) \leq c\left(e_{\rho_{0}}+\rho_{0}^{4}\right)
$$

for a constant $c>0$. We apply Moser's Harnack inequality to give

$$
\begin{aligned}
1+\rho_{0}^{4}=e_{\rho_{0}}(0,0)+\rho_{0}^{4} & \leq c \int_{\tilde{P}_{1}(0,0)} e_{\rho_{0}} d \tilde{x} d \tilde{t}+c \rho_{0}^{4} \\
& =c \rho_{0}^{2-m} \int_{P_{\rho_{0}\left(x_{0}, t_{0}\right)}}\left(\left|\nabla_{A} \varphi\right|^{2}+\left|F_{A}\right|^{2}\right) d V d t+c \rho_{0}^{4} \\
& \leq c \sup _{0 \leq t \leq s} R^{4-m} \int_{B_{R}(y)}\left(\left|\nabla_{A} \varphi\right|^{2}+\left|F_{A}\right|^{2}\right) d V+c R^{4} \\
& <c \delta+c R^{4},
\end{aligned}
$$

where we have used the fact that $\rho_{0}<R$. Now if we choose R_{1} and δ sufficiently small, we have the desired contradiction.

3. Singularity analysis

Let (φ, A) be a smooth solution on $[0, T)$. Suppose that there exists some $R \leq R_{1}$ such that

$$
R^{4-m} \int_{B_{R}(y)}\left(\left|\nabla_{A} \varphi\right|^{2}+\left|F_{A}\right|^{2}\right) d V<\delta,
$$

for all $x_{0} \in M$ and $t_{0}=T$. Then by Lemma 2.8, $\left|\nabla_{A} \varphi\right|^{2}$ and $\left|F_{A}\right|^{2}$ are uniformly bounded on $M \times[0, T)$. As in [5], using Lemma 2.4 we can show that φ and A are smooth at $t=T$. In conjunction with the local existence result, we can extend (φ, A) to a global smooth solution.

We define the singular set

$$
\Sigma=\bigcap_{0<R \leq R_{1}}\left\{x_{0} \in M: \limsup _{t \rightarrow T} R^{4-m} \int_{B_{R}\left(x_{0}\right)}\left(\left|\nabla_{A} \varphi\right|^{2}+\left|F_{A}\right|^{2}\right) d V \geq \delta\right\} .
$$

By the above discussion, $(\varphi(T), A(T))$ is smooth on $M \backslash \Sigma$. Let Σ^{\prime} be defined as for Σ, but with δ replaced by a smaller constant. Clearly $\Sigma \subseteq \Sigma^{\prime}$. Furthermore, if $x \in M \backslash \Sigma$ then by smoothness at $x, x \in M \backslash \Sigma^{\prime}$. Thus replacing δ with with any smaller constant defines the same set. If $x \in M \backslash \Sigma$, then by Lemma 2.8, $B_{R}(x) \in M \backslash \Sigma$ for some R. Thus Σ is closed. Unlike in the four-dimensional case [5], we cannot conclude at this point that the singular set is finite. We can instead show that Σ has finite ($m-4$)-dimensional Hausdorff measure \mathcal{H}^{m-4}. Explicitly, for $x_{0} \in \Sigma$,

$$
\begin{equation*}
\delta \leq \limsup _{t \rightarrow T} R^{4-m} \int_{B_{R}\left(x_{0}\right)} e(\varphi, A) d V \tag{3.1}
\end{equation*}
$$

for any R. The family $\mathcal{F}=\left\{B_{R}\left(x_{0}\right): x_{0} \in \Sigma\right\}$ covers Σ, and by Vitali's covering lemma, there exists a finite subfamily $\mathcal{F}^{\prime}=\left\{B_{R}\left(x_{j}\right)\right\}$ such that any two balls in \mathcal{F}^{\prime} are disjoint and $\left\{B_{5 R}\left(x_{j}\right)\right\}$ covers Σ. Then using (3.1),

$$
\begin{aligned}
\sum_{j}(5 R)^{m-4} & \leq \frac{5^{m}}{\delta} \sum_{j} \limsup _{t \rightarrow T} \int_{B_{R}\left(x_{j}\right)}\left(\left|\nabla_{A} \varphi\right|^{2}+\left|F_{A}\right|^{2}\right) d V \\
& \leq C \mathcal{W}\left(\varphi_{0}, A_{0}\right)
\end{aligned}
$$

where $\left\{B_{5 R}\left(x_{j}\right)\right\}$ covers Σ. It follows that $\mathcal{H}^{m-4}(\Sigma)$ is finite, as claimed.
To establish Theorem 1.1, we show that $\Sigma=\emptyset$. Suppose by contradiction that Σ is nonempty. Since the flow is smooth on $[0, T)$, we can find sequences $x_{n} \in M, t_{n} \rightarrow T$, $R_{n} \rightarrow 0$ such that

$$
\begin{align*}
\delta & >R_{n}^{4-m} \mathcal{S} \mathcal{W}_{B_{R_{n}}\left(x_{n}\right)}\left(\varphi\left(t_{n}\right), A\left(t_{n}\right)\right) \\
& =\sup _{0 \leq t \leq t_{n}, x \in M} R_{n}^{4-m} \mathcal{S} \mathcal{W}_{B_{R_{n}}(x)}(\varphi(t), A(t))>\frac{\delta}{2} \tag{3.2}
\end{align*}
$$

for each n, where $\mathcal{S W}_{B_{R}(x)}$ is defined by

$$
\mathcal{S} \mathcal{W}_{B_{R}(x)}(\varphi, A)=\int_{B_{R}(x)}\left|\nabla_{A} \varphi\right|^{2}+\frac{1}{2}\left|F_{A}\right|^{2}+\frac{S}{4}|\varphi|^{2}+\frac{1}{8}|\varphi|^{4} d V .
$$

By the compactness of M, passing to a subsequence we have $x_{n} \rightarrow x_{0}$ where $x_{0} \in \Sigma$ by Lemma 2.8. We define the region

$$
D_{n}=\left\{(y, s): R_{n} y+x_{n} \in B_{i(M) / 2}\left(x_{n}\right), s \in\left[-R_{n}^{-2} t_{n}, 0\right]\right\}=: U_{n} \times\left[-R_{n}^{-2} t_{n}, 0\right]
$$

Note that as $n \rightarrow \infty, D_{n} \rightarrow \mathbb{R}^{m} \times(-\infty, 0]$. Furthermore, truncating the sequence if necessary, we can arrange that $B_{i(M) / 2}\left(x_{n}\right) \subset B_{i(M)}\left(x_{0}\right)$. We rescale to

$$
\begin{gathered}
\varphi_{n}(y, s)=\varphi\left(R_{n} y+x_{n}, R_{n}^{2} s+t_{n}\right) \\
A_{n}(y, s)=R_{n} A\left(R_{n} y+x_{n}, R_{n}^{2} s+t_{n}\right)
\end{gathered}
$$

which are defined on D_{n}. We have

$$
\begin{aligned}
\left|\nabla_{A_{n}} \varphi_{n}\right|^{2} & =R_{n}^{2}\left|\nabla_{A} \varphi\right|^{2}, \\
\left|F_{A_{n}}\right|^{2} & =R_{n}^{4}\left|F_{A}\right|^{2} .
\end{aligned}
$$

If we choose our local coordinates on $B_{i(M)}\left(x_{0}\right)$ to be orthonormal coordinates, then the metric on the rescaled space is simply $g_{i j}=\delta_{i j}$. From (3.2),

$$
\begin{equation*}
\int_{B_{1}(0)} R_{n}^{2}\left|\nabla_{A_{n}} \varphi_{n}\right|^{2}+\left|F_{A_{n}}\right|^{2}+R_{n}^{4}\left(\frac{S}{4}\left|\varphi_{n}\right|^{2}+\frac{1}{8}\left|\varphi_{n}\right|^{4}\right) d y>\frac{\delta}{2} \tag{3.3}
\end{equation*}
$$

for each n and $s=0$. Next, from Lemma 2.8 and (3.2),

$$
\begin{equation*}
\sup _{D_{n}}\left(\left|\nabla_{A_{n}} R_{n} \varphi_{n}\right|^{2}+\left|F_{A_{n}}\right|^{2}\right) \leq K_{1}, \tag{3.4}
\end{equation*}
$$

where K_{1} is independent of n. We consider the rescaled equations

$$
\begin{gather*}
\frac{\partial R_{n} \varphi_{n}}{\partial s}=R_{n}^{3} \frac{\partial \varphi}{\partial t}=-\nabla_{A_{n}}^{*} \nabla_{A_{n}} R_{n} \varphi_{n}-\frac{1}{4}\left[R_{n}^{2} S+\left|R_{n} \varphi_{n}\right|^{2}\right] R_{n} \varphi_{n} \\
\frac{\partial A_{n}}{\partial s}=R_{n}^{3} \frac{\partial A}{\partial t}=-d^{*} F_{A_{n}}-i \operatorname{Im}\left\langle\nabla_{A_{n}} R_{n} \varphi_{n}, R_{n} \varphi_{n}\right\rangle \tag{3.5}
\end{gather*}
$$

Noting the similarity of these equations to (1.3), we use (3.4) and results identical to Lemma 2.4 and Corollary 2.5 to find that

$$
\sup _{D_{n}}\left(\left|\nabla_{A_{n}}^{(k+1)} R_{n} \varphi_{n}\right|^{2}+\left|\nabla_{M}^{(k)} F_{A_{n}}\right|^{2}\right) \leq K_{k+1}
$$

for each $k \geq 0$. Thus by a result of Uhlenbeck ([15, Theorem 1.3]; see also [6]), passing to a subsequence and using an appropriate gauge, we have C^{∞} convergence $R_{n} \varphi_{n} \rightarrow$ $\tilde{\varphi}=0$ (since φ_{n} is bounded), $A_{n} \rightarrow \tilde{A}$ where $\tilde{\varphi}$ and \tilde{A} are defined on $\mathbb{R}^{m} \times(-\infty, 0]$. Then as $n \rightarrow \infty$ in (3.3),

$$
\begin{equation*}
\int_{B_{2}(0)}\left|F_{\tilde{A}}\right|^{2} d y \geq \frac{\delta}{2} \tag{3.6}
\end{equation*}
$$

for $s=0$. Since $R_{n} \varphi_{n} \rightarrow 0$, from (3.5), \tilde{A} satisfies the equation

$$
\frac{\partial \tilde{A}}{\partial s}=-d^{*} F_{\tilde{A}}
$$

on $\mathbb{R}^{m} \times(-\infty, 0]$. Using the Bianchi identity $d F_{\tilde{A}}=0$, this implies that

$$
\frac{\partial F_{\tilde{A}}}{\partial s}=-\Delta F_{\tilde{A}}
$$

on $\mathbb{R}^{m} \times(-\infty, 0]$, where $\Delta=d^{*} d+d d^{*}$. Since the solution to the heat equation converges to constant data in infinite time, the only possible solution to this equation satisfying (3.4) is $F_{\tilde{A}}=$ constant. See, for example, [3, Theorem 9 of Ch. 2]. In the notation of [3], choose $k=1$ and $t=0$, note that for us $\|u\|_{L^{1}(C(x, t r r))} \leq c r^{n+2}$, and let $r \rightarrow \infty$.

4. Proof of Theorem 1.1

As in $[9,14]$, the term $\mathscr{F}(R ; \varphi, A)$ in Lemma 2.6 can be used to further analyze the singularity (see, for example, [14, Lemma 3.3.2]). However, we are already in a position to show that the existence of a singularity implies a contradiction. Noting that $G_{\left(x_{n}, t_{n}\right)} \geq c R_{n}^{-m}$ on $B_{r R_{n}}\left(x_{n}\right) \times\left[t_{n}-4\left(r R_{n}\right)^{2}, t_{n}-\left(r R_{n}\right)^{2}\right]$, we consider for any $r \in(0, \infty)$,

$$
\begin{aligned}
& r^{2-m} \int_{B_{r}(0) \times\left[-4 r^{2},-r^{2}\right]}\left|F_{\tilde{A}}\right|^{2} d y d s \\
& \quad=\lim _{n \rightarrow \infty}\left(r R_{n}\right)^{2-m} \int_{B_{r R_{n}}\left(x_{n}\right) \times\left[t_{n}-4\left(r R_{n}\right)^{2}, t_{n}-\left(r R_{n}\right)^{2}\right]}\left|F_{A}\right|^{2} d V d t \\
& \quad \leq c \lim _{n \rightarrow \infty}\left(r R_{n}\right)^{2} \int_{B_{r R_{n}}\left(x_{n}\right) \times\left[t_{n}-4\left(r R_{n}\right)^{2}, t_{n}-\left(r R_{n}\right)^{2}\right]}\left|F_{A}\right|^{2} G_{\left(x_{n}, t_{n}\right)} d V d t \\
& \quad \leq c \lim _{n \rightarrow \infty}\left(r R_{n}\right)^{2} \int_{T_{r R_{n}}\left(x_{0}, T\right)} e(\varphi, A) G_{\left(x_{0}, T\right)} \phi^{2} d V d t
\end{aligned}
$$

However, the latter expression is bounded by Lemma 2.6. Thus

$$
\int_{B_{r}(0) \times\left[-4 r^{2},-r^{2}\right]}\left|F_{\tilde{A}}\right|^{2} d y d s \leq c r^{m-2}
$$

But since $\left|F_{\tilde{A}}\right|$ is constant and nonzero by (3.6), this implies that $r^{4} \leq c$. This is impossible for r sufficiently large. This proves Theorem 1.1.

References

[1] A. H. Bilge, T. Dereli and S. Kocak, 'Seiberg-Witten type monopole equations on 8-manifolds with spin(7) holonomy, as minimizers of a quadratic action', J. High Energy Phys. 4(003).
[2] N. Değirmenci and N. Özdemir, 'Seiberg-Witten-like equations on 7-manifolds with g_{2}-structure', J. Nonlinear Math. Phys. 12(4) (2005), 457-461.
[3] L. C. Evans, Partial Differential Equations (American Mathematical Society, Providence, RI, 1998).
[4] Y.-H. Gao and G. Tian, 'Instantons and the monopole-like equations in eight dimensions', J. High Energy Phys. 5(36).
[5] M.-C. Hong and L. Schabrun, 'Global existence for the Seiberg-Witten flow', Comm. Anal. Geom. 18(3) (2010), 433-474.
[6] M.-C. Hong and G. Tian, 'Asymptotical behaviour of the Yang-Mills flow and singular YangMills connections', Math. Ann. 330 (2004), 441-472.
[7] J. Jost, Riemannian Geometry and Geometric Analysis (Springer, Berlin, 1995).
[8] F. H. Lin, 'Gradient estimates and blow-up analysis for stationary harmonic maps', Ann. of Math. 149 (1999), 785-829.
[9] F. H. Lin and C. Y. Wang, 'Harmonic and quasi-harmonic spheres', Comm. Anal. Geom. 10(2) (1999), 397-429.
[10] X. Peng, J. Jost and G. Wang, 'Variational aspects of the Seiberg-Witten functional', Calc. Var. Partial Differential Equations 3 (1996), 205-218.
[11] A. Scorpan, The Wild World of 4-Manifolds (American Mathematical Society, Providence, RI, 2005).
[12] C.-L. Shen and Y. Chen, 'Monotonicity formula and small action regularity for Yang-Mills flows in higher dimensions', Calc. Var. Partial Differential Equations 2(4) (1994), 389-403.
[13] M. Struwe, 'On the evolution of harmonic maps in higher dimensions', J. Diff. Geom. 28 (1999), 485-502.
[14] G. Tian, 'Gauge theory and calibrated geometry, I', Ann. of Math. 151 (2000), 193-268.
[15] K. Uhlenbeck, 'Connections with l^{p}-bounds on curvature', Commun. Math. Phys. 83 (1982), 31-42.

LORENZ SCHABRUN, Department of Mathematics, The University of Queensland, Brisbane, Qld 4072, Australia e-mail: lorenz@maths.uq.edu.au

[^0]: (C) 2013 Australian Mathematical Publishing Association Inc. 1446-7887/2013 \$16.00

