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Abstract

We show that for manifolds of dimension m ≥ 5, the flow of a Seiberg–Witten-type functional admits a
global smooth solution.
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1. Introduction

The Seiberg–Witten invariant has proven a very effective tool in four-dimensional
geometry. Its computation involves finding nontrivial solutions to the system of first-
order Seiberg–Witten equations, called monopoles. Monopoles represent the zeros of
the Seiberg–Witten functional (1.1) (see [10]). In [5], the flow for the Seiberg–Witten
functional on a 4-manifold was studied. It was shown that the flow admits a global
solution which converges in C∞ to a critical point of the functional.

The Seiberg–Witten equations and functional do not generalize immediately to
higher dimensions, since they depend on the notion of self-duality on four-dimensional
manifolds. Nonetheless, a number of generalizations of Seiberg–Witten theory have
been suggested for higher-dimensional manifolds (see, for example, [1, 2, 4]). In this
paper, we extend the global existence result obtained for the Seiberg–Witten functional
in [5] for dimension four to a functional of similar form in higher dimensions.

Let M be a compact oriented Riemannian m-manifold which admits a Spinc

structure s. Denote by S = W ⊗ L the corresponding spinor bundle, and by L2 the
corresponding determinant line bundle. Let A be a unitary connection on L2. Note
that we can write A = A0 + a, where A0 is some fixed connection and a ∈ iΛ1M with
i =
√
−1. Denote by FA = dA ∈ iΛ2M the curvature of the line bundle connection A.
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Let {e j} be a local orthonormal basis of the tangent bundle T M. A Spin(4)c-connection
on the spinor bundle S is locally defined by

∇A = d + 1
2 (ω + A),

where ω =
∑

i< j ωi jeie j is induced by the Levi-Civita connection matrix ω jk and e jek

acts by Clifford multiplication (see [7]). We denote the curvature of ∇A by ΩA. We
define the configuration space Γ(S) ×A , where A is the space of unitary connections
on L2, and let (ϕ, A) ∈ Γ(S) ×A . Note that in [5] we took ϕ ∈ Γ(S+). However,
the splitting S = S+

⊕
S− is available only if m is even. The exact nature of the

bundle to which ϕ belongs does not affect our results, and we may assume ϕ ∈ Γ(S)
for simplicity.

We first recall the definition of the Seiberg–Witten functional on 4-manifolds. The
Seiberg–Witten functional SW : Γ(S+) ×A → R is given by

SW(ϕ, A) =

∫
M
|∇Aϕ|

2 + |F+
A |

2 +
S
4
|ϕ|2 +

1
8
|ϕ|4 dV, (1.1)

where S is the scalar curvature of M. The Seiberg–Witten functional (1.1) is invariant
under the action of a gauge group. The group of gauge transformations is

G = {g : M→ U(1)}.

The group G acts on elements of the configuration space via

g∗(ϕ, A) = (g−1ϕ, A + 2g−1dg).

Using the relation
‖FA‖L2 = 2‖F+

A‖L2 − 4π2c1(L2)2,

where c1(L2) is the first Chern class of L2 (see [11]), one can also write the functional
in the form

SW(ϕ, A) =

∫
M
|∇Aϕ|

2 +
1
2
|FA|

2 +
S
4
|ϕ|2 +

1
8
|ϕ|4 dV + π2c1(L2)2. (1.2)

Now, consider again the case of an m-manifold M. The functional (1.1) is not defined
here, since self-duality is a phenomenon that occurs only in dimension four. However,
we may use (1.2) to extend the Seiberg–Witten functional to higher dimensions. As
mentioned, we can allow ϕ ∈ Γ(S) in the case where m is odd. Note that the constant
term π2c1(L2)2 does not affect the Euler–Lagrange equations and so is irrelevant for the
results in this paper. The Euler–Lagrange equations for the Seiberg–Witten functional
are

−∇∗A∇Aϕ −
1
4 [S + |ϕ|2]ϕ = 0,

−d∗FA − i Im〈∇Aϕ, ϕ〉 = 0.
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As in [5], we define the flow of the Seiberg–Witten functional by

∂ϕ

∂t
= −∇∗A∇Aϕ −

1
4

[S + |ϕ|2]ϕ,

∂A
∂t

= −d∗FA − iIm〈∇Aϕ, ϕ〉,

(1.3)

with initial data
(ϕ(0), A(0)) = (ϕ0, A0).

Regarding the existence of solutions to the flow (1.3), we prove the following
theorem.

T 1.1. For any given smooth initial data (ϕ0, A0) and m-dimensional
Riemannian manifold M for m ≥ 5, equations (1.3) admit a unique global smooth
solution on M × [0,∞).

In proving global existence in dimension four, a blow-up or rescaling argument was
used in order to obtain a contradiction with the assumption of singularity formation.
Importantly, the boundedness of

∫
M
|FA|

2 dV under the flow was used to imply the
boundedness of the corresponding energy

∫
R4 |FÃ|

2 dy of the limiting curvature FÃ on
the rescaled space. In higher dimensions, however, this observation is not sufficient
to ensure a bound on the rescaled energy. This necessitates a stronger result through
which to obtain the desired contradiction, along with some modifications to the blow-
up argument.

The main additional estimate needed in establishing global existence in higher
dimensions is a so-called monotonicity formula. This idea was used by Struwe for
the heat flow of harmonic maps in higher dimensions [13], and has also been used to
study the Yang–Mills and Yang–Mills–Higgs flows in higher dimensions [6, 12]. See
also [8, 9] for the harmonic map flow, and [14] for sequences of weakly converging
Yang–Mills connections.

2. Estimates

As in the four-dimensional case [5], we have an energy inequality

d
dt
SW(ϕ(t), A(t)) = −

∫
M

[
2
∣∣∣∣∣∂ϕ∂t

∣∣∣∣∣2 +

∣∣∣∣∣∂A
∂t

∣∣∣∣∣2] ≤ 0,

or ∫ T

0

[
2
∥∥∥∥∥∂ϕ∂t

∥∥∥∥∥2

L2
+

∥∥∥∥∥∂A
∂t

∥∥∥∥∥2

L2

]
= SW(ϕ0, A0) − SW(ϕ(T ), A(T )). (2.1)

The proof of the energy inequality and many other results from [5] do not contain
dimensional considerations, and are also valid in the m-dimensional case. For the
proof of the energy inequality and of the following lemmas, we direct the reader to
that paper.

The first step is to establish the existence of a local solution to the flow.

https://doi.org/10.1017/S1446788712000304 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000304


314 L. Schabrun [4]

L 2.1. For any given smooth initial data (ϕ0, A0), the system (1.3) admits a
unique local smooth solution on M × [0, T ) for some T > 0.

In this paper, (ϕ, A) will typically represent a local solution to (1.3) on M × [0, T )
for some initial value (ϕ0, A0). Next, Lemma 2.2 gives us a uniform bound on ϕ under
the flow.

L 2.2. Write S 0 = min{S (x) : x ∈ M} and k0 = supx∈M |ϕ0|. Then for all t ∈ [0, T ),

sup
x∈M
|ϕ(x, t)| ≤max{k0,

√
|S 0|}.

The following Bochner formula gives us a constraint on the evolution of the first
derivatives of ϕ and A.

L 2.3. There exist positive constants c, c′ such that the following estimate holds:

∂

∂t
(|∇Aϕ|

2 + |FA|
2) + ∆(|∇Aϕ|

2 + |FA|
2)

≤ −c′(|∇2
Aϕ|

2 + |∇FA|
2) + c(|FA| + 1)(|∇Aϕ|

2 + |FA|
2 + 1).

Finally, the following lemma and corollary show that a bound on the first derivatives
of ϕ and A implies a bound on derivatives of all orders.

L 2.4. Suppose that |∇Aϕ| ≤ K1 and |FA| ≤ K1 in M × [0, T ) for some constant
K1 > 0. Then for any positive integer n ≥ 1, there is a constant Kn+1 independent of T
such that

|∇
(n+1)
A ϕ| ≤ Kn+1, |∇

(n)
M FA| ≤ Kn+1 in M × [0, T ),

where (n) denotes n iterations of the derivative.

C 2.5. Suppose that |∇( j)
A ϕ| ≤ Kn and |∇( j−1)

M FA| ≤ Kn in P1(x0, t0) for each
1 ≤ j ≤ n and some constant Kn. Then there is a positive constant Kn+1 such that

|∇
(n+1)
A ϕ| ≤ Kn+1, |∇

(n)
M FA| ≤ Kn+1 in P1/2(x0, t0).

In order to extend the global existence result in four dimensions to higher
dimensions, we begin be deriving a monotonicity inequality for the flow (1.3). We
define

e(ϕ, A)(x, t) = |∇Aϕ|
2 +

1
2
|FA|

2 +
S
4
|ϕ|2 +

1
8
|ϕ|4.

Let z = (x, t) denote a point of M × R, with z0 = (x0, t0) ∈ M × [0, T ]. We define

TR(z0) = M × [t0 − 4R2, t0 − R2]

and
PR(z0) = BR(x0) × [t0 − R2, t0],

where BR(x0) ⊂ M denotes a ball centered at x0 with radius R. Note that in constructing
TR(z0) we require that t0 − 4R2 ≥ 0 or R ≤

√
t0/2. We abbreviate TR(0, 0) = TR
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and PR(0, 0) = PR. The fundamental solution to the backward heat equation with
singularity at z0 is

Gz0 (z) =
1

(4π(t0 − t))m/2
exp

(
−

(x − x0)2

4(t0 − t)

)
,

where t < t0. We also write G = G(0,0). Let i(M) be the injectivity radius of M,
and suppose that (ϕ, A) is a solution to the flow (1.3) on M × [0, T ). Let φx be a
smooth cut-off function with |φx| ≤ 1, φx ≡ 1 on Bi(M)/2(x), φx ≡ 0 outside Bi(M)(x) and
|∇φx| ≤ c/i(M) for some constant c. We also abbreviate φ = φx0 . We define

Φ(R; ϕ, A) = R2
∫

TR(z0)
e(ϕ, A)(z)φ2G dV dt

and

F (R; ϕ, A) =

∫
TR(z0)

Rt
(∣∣∣∣∣∂A
∂t

+
xk

2t
∂

∂xk

⌋
FA

∣∣∣∣∣2 + 2
∣∣∣∣∣∂ϕ∂t

+
xk

2t
∇k

Aϕ

∣∣∣∣∣2)φ2G
√

g dz,

where
∂

∂xk

⌋
FA = FA

(
∂

∂xk
, ·
)

= Fk j dx j

defines a 1-form.

L 2.6. Let (ϕ, A) be a smooth solution of (1.3) on M × [0, T ) with initial data
(ϕ0, A0). Then for z0 ∈ M × [0, T ] and any Ra and Rb satisfying 0 < Ra ≤ Rb ≤ R0 for
some R0 ≤min{i(M),

√
t0/2},

Φ(Ra; ϕ, A) +

∫ Rb

Ra

eaRF (R) dR ≤ ec(Rb−Ra)Φ(Rb; ϕ, A) + c(R2
b − R2

a)SW(ϕ0, A0),

where c depends only on the geometry of M.

P. We show that

d
dR

Φ(R; ϕ, A) + F (R; ϕ, A) ≥ −cΦ(R; ϕ, A) − cRSW(ϕ0, A0). (2.2)

The required result then follows by multiplying (2.2) by eaR for some sufficiently large
a > 0, and integrating from Ra to Rb. To show (2.2), we may assume that z0 = (0, 0),
which implies that t < 0 on TR. We rescale the coordinates to x = Rx̃, t = R2 t̃. In these
coordinates,

Φ(R; ϕ, A) =

∫
T1

R4e(ϕ, A)(Rx̃, R2 t̃)φ2(Rx̃)G(z̃)
√

g(Rx̃) dz̃,
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where dz̃ = dx̃ dt̃. For some R ≤ R0, we compute

d
dR

Φ(R; ϕ, A) =

∫
T1

d
dR

[R4e(ϕ, A)(Rx̃, R2 t̃)φ2(Rx̃)
√

g(Rx̃)]G(z̃) dz̃

=

∫
T1

4R3e(ϕ, A)(Rx̃, R2 t̃)φ2(Rx̃)G(z̃)
√

g(Rx̃) dz̃

+

∫
T1

R4 x̃k
∂

∂xk
e(ϕ, A)(Rx̃, R2 t̃)φ2(Rx̃)G(z̃)

√
g(Rx̃) dz̃

+

∫
T1

2R5 t̃
∂

∂t
e(ϕ, A)(Rx̃, R2 t̃)φ2(Rx̃)G(z̃)

√
g(Rx̃) dz̃

+

∫
T1

R4e(ϕ, A)(Rx̃, R2 t̃)x̃k
∂

∂xk
(φ2√g)(Rx̃)G(z̃) dz̃

:= I1 + I2 + I3 + I4.

Rescaling coordinates back to (x, t),

I1 =

∫
TR

4Re(ϕ, A)φ2G
√

g dz

and

I4 =

∫
TR

Re(ϕ, A)xk
∂

∂xk
(φ2√g)G dz.

For the second term,

I2 =

∫
TR

Rxk
∂

∂xk
e(ϕ, A)φ2G

√
g dz.

This simplifies as follows:

∂

∂xk

[
|∇Aϕ|

2 +
1
2
|FA|

2 +

(S
4
|ϕ|2 +

1
8
|ϕ|4

)]
= 〈∇k

MFA, FA〉 + 2 Re〈∇k
A∇

j
Aϕ, ∇

j
Aϕ〉 +

1
2

(S + |ϕ|2) Re〈∇k
Aϕ, ϕ〉.

Note that

2 Re〈∇k
A∇

j
Aϕ, ∇

j
Aϕ〉 = 2 Re〈∇A∇

k
Aϕ, ∇Aϕ〉 − 2 Re〈Ω jk

A ϕ, ∇
j
Aϕ〉.

Using the fact that
∂G
∂x j

=
x j

2t
G,

we have

−2
∫

TR

Rxk Re〈d(G) ∧ ∇k
Aϕ, ∇Aϕ〉φ

2√g dz = −4
∫

TR

Rt
∣∣∣∣∣ xk

2t
∇k

Aϕ

∣∣∣∣∣2φ2G
√

g dz.
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For the curvature term, we recall the Bianchi identity dFA = 0 which implies that

∂kF i j = ∂iF
k j − ∂ jF

ki,

and we compute in local coordinates

xk∂k

∑
i< j

(F i j)2Gφ2 = 2xk

∑
i< j

F i j∂kF i jGφ2

= 2xk

∑
i< j

F i j(∂iF
k j − ∂ jF

ki)Gφ2

= xkF i j∂iF
k jGφ2

= ∂i(xkF i jFk jGφ2) − xkFk j∂iF
i jGφ2 − Fk jF i j∂i(xkGφ

2).

Observe that the first term will integrate to zero by Stoke’s theorem, and for the second
term we have (d∗FA) j = ∂iF i j. To deal with the third term, we see that

−xkFk jxiF
i j 1

2t
Gφ2 = −2t

∣∣∣∣∣ xk

2t
∂

∂xk

⌋
FA

∣∣∣∣∣2Gφ2.

Note that |dφ|G ≤ c since |dφ| = 0 on Bi(M)/2(x0). Then

I2 =

∫
TR

Rxk

[1
2
∂k|FA|

2 + 2 Re〈∇A∇
k
Aϕ, ∇Aϕ〉 − 2 Re〈Ω jk

A ϕ, ∇
j
Aϕ〉

+
1
2

(S + |ϕ|2) Re〈∇k
Aϕ, ϕ〉

]
φ2G
√

g dz

=

∫
TR

Rxk

[1
2
∂k|FA|

2 + 2 Re〈∇k
Aϕ, ∇

∗
A∇Aϕ〉

− 2 Re〈Ω jk
A ϕ, ∇

j
Aϕ〉 +

1
2

(S + |ϕ|2) Re〈∇k
Aϕ, ϕ〉

]
φ2G
√

g dz

− 2
∫

TR

Rxk Re〈d(φ2Gxk)∇k
Aϕ, ∇Aϕ〉

√
g dz

≥ −

∫
TR

R|x|
(∣∣∣∣∣∂A
∂t

∣∣∣∣∣|FA| + 2
∣∣∣∣∣∂ϕ∂t

∣∣∣∣∣|∇Aϕ|
)
φ2G
√

g dz

− 4
∫

TR

Rt
∣∣∣∣∣ xk

2t
∇k

Aϕ

∣∣∣∣∣2φ2G
√

g dz −
∫

TR

Rt
∣∣∣∣∣ xk

2t
∂

∂xk
FA

∣∣∣∣∣2Gφ2√g dz

− cΦ(R; ϕ, A) − cRSW(ϕ0, A0),

where we note that ΩA = ΩA0 + 1
2 FA, and we also recall from [5] that

Re
〈
∂A
∂t
ϕ, ∇Aϕ

〉
=

〈
∂A
∂t
, i Im〈∇Aϕ, ϕ〉

〉
;
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note that ∂A/∂t can be replaced by any 1-form. For the third term,

I3 =

∫
TR

2Rt
[〈

d
∂A
∂t
, FA

〉
+ 2 Re

〈
∇A

∂ϕ

∂t
, ∇Aϕ

〉
+ Re

〈
∂A
∂t
ϕ, ∇Aϕ

〉
+

(1
2

[S + |ϕ|2] Re
〈
∂ϕ

∂t
, ϕ

〉)]
φ2G
√

g dz

= −

∫
TR

2Rt
[∣∣∣∣∣∂A
∂t

∣∣∣∣∣2 + 2
∣∣∣∣∣∂ϕ∂t

∣∣∣∣∣2]φ2G
√

g dz

−

∫
TR

2Rt
〈
d(φ2G) ∧

∂A
∂t
, FA

〉
√

g dz

−

∫
TR

4Rt Re
〈
d(φ2G) ∧

∂ϕ

∂t
, ∇Aϕ

〉
√

g dz.

Next we obtain〈
dG ∧

∂A
∂t
, FA

〉
=

〈 xk

2t
dxk ∧

∂A
∂t
, FA

〉
G =

〈
∂A
∂t
,

xk

2t
∂

∂xk

⌋
FA

〉
G

and 〈
dG ∧

∂ϕ

∂t
, ∇Aϕ

〉
=

〈 xk

2t
dxk ∧

∂ϕ

∂t
, ∇Aϕ

〉
G =

〈
∂ϕ

∂t
,

xk

2t
∇k

Aϕ
〉
G.

Thus

I3 ≥ −

∫
TR

2Rt
[∣∣∣∣∣∂A
∂t

∣∣∣∣∣2 + 2
∣∣∣∣∣∂ϕ∂t

∣∣∣∣∣2]φ2G
√

g dz

−

∫
TR

2Rt
〈
∂A
∂t
,

xk

2t
∂

∂xk

⌋
FA

〉
φ2G
√

g dz + c
∫

TR

2Rt
∣∣∣∣∣∂A
∂t

∣∣∣∣∣|FA|φ
√

g dz

−

∫
TR

4Rt Re
〈
∂ϕ

∂t
,

xk

2t
∇k

Aϕ
〉
φ2G
√

g dz + c
∫

TR

4Rt
∣∣∣∣∣∂ϕ∂t

∣∣∣∣∣|∇Aϕ|φ
√

g dz

≥ −

∫
TR

Rt
(∣∣∣∣∣∂A
∂t

+
xk

2t
∂

∂xk

⌋
FA

∣∣∣∣∣2 + 2
∣∣∣∣∣∂ϕ∂t

+
xk

2t
∇k

Aϕ

∣∣∣∣∣2)φ2G
√

g dz

+

∫
TR

Rt
(∣∣∣∣∣ xk

2t
∂

∂xk

⌋
FA

∣∣∣∣∣2 + 2
∣∣∣∣∣ xk

2t
∇k

Aϕ

∣∣∣∣∣2)φ2G
√

g dz

−

∫
TR

Rt
[∣∣∣∣∣∂A
∂t

∣∣∣∣∣2 + 2
∣∣∣∣∣∂ϕ∂t

∣∣∣∣∣2]φ2G
√

g dz

− cRSW(ϕ0, A0).

Here we have used Young’s inequality and the energy inequality (2.1). We also recall
that |t| ≤ 4R2 on TR, and that R ≤ R0. Finally, since, as in [12], R−1|x|2G ≤ c(1 + G),
combining the working above (and recalling that t < 0 on TR), one obtains (2.2). �

C 2.7. There exists a constant a > 0 such that

eaRΦ(R; ϕ, A) + cR2SW(ϕ0, A0)

where c here represents the same constant as appears in (2.2).
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P. The result follows from (2.2) by multiplying by eaR for some sufficiently large
a > 0, and integrating from Ra to Rb. �

L 2.8. Suppose that (ϕ, A) ∈C∞(PR(y, s)) satisfies (1.3). Then there exist
constants δ and R1 such that if R ≤ R1 and

sup
0<t<s

R4−m
∫

BR(y)
(|∇Aϕ|

2 + |FA|
2) dV < δ,

then
sup

PR/2(y,s)
(|∇Aϕ|

2 + |FA|
2) ≤ 256R−4.

P. We begin by choosing r0 < R so that

(R − r0)4 sup
Pr0 (y,s)

(|∇Aϕ|
2 + |FA|

2) = max
0≤r≤R

[
(R − r)4 sup

Pr(y,s)
(|∇Aϕ|

2 + |FA|
2)
]
. (2.3)

Let
e0 = sup

Pr0 (y,s)
(|∇Aϕ|

2 + |FA|
2) = (|∇Aϕ|

2 + |FA|
2)(x0, t0)

for some (x0, t0) ∈ P̄r0 (y, s). We claim that

e0 ≤ 16(R − r0)−4. (2.4)

Then

(R − r)4 sup
Pr(y,s)

(|∇Aϕ|
2 + |FA|

2) ≤ (R − r0)4 sup
Pr0 (y,s)

(|∇Aϕ|
2 + |FA|

2)

≤ 16(R − r0)4(R − r0)−4 = 16

for any r < R. Choosing r = 1
2 R in the above, we have the required result. We now

prove (2.4). Define ρ0 = e−1/4
0 and suppose by contradiction that ρ0 ≤

1
2 (R − r0). We

rescale variables x = x0 + ρ0 x̃ and t = t0 + ρ2
0 t̃ and set

ψ(x̃, t̃) = ϕ(x0 + ρ0 x̃, t0 + ρ2
0 t̃),

B(x̃, t̃) = ρ0A(x0 + ρ0 x̃, t0 + ρ2
0 t̃),

giving
|∇Bψ|

2 = ρ2
0|∇Aϕ|

2,

|FB|
2 = ρ4

0|FA|
2.

We define
eρ0 (x̃, t̃) = |FB|

2 + ρ2
0|∇Bψ|

2 = ρ4
0(|∇Aϕ|

2 + |FA|
2),

so that
eρ0 (x̃, t̃) ≤ eρ0 (0, 0) = 1.
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We compute

sup
P̃1(0,0)

eρ0 (x̃, t̃) = ρ4
0 sup

Pρ0 (x0,t0)
(|∇Aϕ|

2 + |FA|
2)

≤ ρ4
0 sup

P(R+r0)/2(y,s)
(|∇Aϕ|

2 + |FA|
2)

= ρ4
0

(R − r0

2

)−4(
R −

R + r0

2

)4

sup
P(R+r0)/2(y,s)

(|∇Aϕ|
2 + |FA|

2)

≤ ρ4
0

(R − r0

2

)−4

(R − r0)4e0 = 16,

where we have used that Pρ0 (x0, t0) ⊂ PR+r0/2(y, s), and to get to the last line we have
used (2.3). This implies that

eρ0 = ρ4
0(|∇Aϕ|

2 + |FA|
2) ≤ 16

on P̄1(0, 0). By Lemma 2.3,(
∂

∂t
+ ∆

)
(|∇Aϕ|

2 + |FA|
2 + 1) ≤ c(|FA| + 1)(|∇Aϕ|

2 + |FA|
2 + 1).

Then (
∂

∂t̃
+ ∆̃

)
(e

ρ0
+ ρ4

0) = ρ6
0

(
∂

∂t
+ ∆

)
(|∇Aϕ|

2 + |FA|
2)

≤ cρ6
0(|FA| + 1)(|∇Aϕ|

2 + |FA|
2 + 1)

on P̄1(0, 0). Note that by assumption ρ0 < R, ρ2
0|FA| is thus bounded by a constant.

Then (
∂

∂t̃
+ ∆̃

)
(eρ0 + ρ4

0) ≤ c(eρ0 + ρ4
0)

for a constant c > 0. We apply Moser’s Harnack inequality to give

1 + ρ4
0 = eρ0 (0, 0) + ρ4

0 ≤ c
∫

P̃1(0,0)
eρ0 dx̃ dt̃ + cρ4

0

= cρ2−m
0

∫
Pρ0 (x0,t0)

(|∇Aϕ|
2 + |FA|

2) dV dt + cρ4
0

≤ c sup
0≤t≤s

R4−m
∫

BR(y)
(|∇Aϕ|

2 + |FA|
2) dV + cR4

< cδ + cR4,

where we have used the fact that ρ0 < R. Now if we choose R1 and δ sufficiently small,
we have the desired contradiction. �
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3. Singularity analysis

Let (ϕ, A) be a smooth solution on [0, T ). Suppose that there exists some R ≤ R1

such that

R4−m
∫

BR(y)
(|∇Aϕ|

2 + |FA|
2) dV < δ,

for all x0 ∈ M and t0 = T . Then by Lemma 2.8, |∇Aϕ|
2 and |FA|

2 are uniformly bounded
on M × [0, T ). As in [5], using Lemma 2.4 we can show that ϕ and A are smooth at
t = T . In conjunction with the local existence result, we can extend (ϕ, A) to a global
smooth solution.

We define the singular set

Σ =
⋂

0<R≤R1

{
x0 ∈ M : lim sup

t→T
R4−m

∫
BR (x0)

(|∇Aϕ|
2 + |FA|

2) dV ≥ δ
}
.

By the above discussion, (ϕ(T ), A(T )) is smooth on M\Σ. Let Σ′ be defined as for Σ,
but with δ replaced by a smaller constant. Clearly Σ ⊆ Σ′. Furthermore, if x ∈ M\Σ
then by smoothness at x, x ∈ M\Σ′. Thus replacing δ with with any smaller constant
defines the same set. If x ∈ M\Σ, then by Lemma 2.8, BR(x) ∈ M\Σ for some R. Thus
Σ is closed. Unlike in the four-dimensional case [5], we cannot conclude at this point
that the singular set is finite. We can instead show that Σ has finite (m − 4)-dimensional
Hausdorff measureHm−4. Explicitly, for x0 ∈ Σ,

δ ≤ lim sup
t→T

R4−m
∫

BR(x0)
e(ϕ, A) dV (3.1)

for any R. The family F = {BR(x0) : x0 ∈ Σ} covers Σ, and by Vitali’s covering lemma,
there exists a finite subfamily F ′ = {BR(x j)} such that any two balls in F ′ are disjoint
and {B5R(x j)} covers Σ. Then using (3.1),∑

j

(5R)m−4 ≤
5m

δ

∑
j

lim sup
t→T

∫
BR(x j)

(|∇Aϕ|
2 + |FA|

2) dV

≤ CSW(ϕ0, A0),

where {B5R(x j)} covers Σ. It follows thatHm−4(Σ) is finite, as claimed.
To establish Theorem 1.1, we show that Σ = ∅. Suppose by contradiction that Σ is

nonempty. Since the flow is smooth on [0, T ), we can find sequences xn ∈ M, tn→ T ,
Rn→ 0 such that

δ > R4−m
n SWBRn (xn)(ϕ(tn), A(tn))

= sup
0≤t≤tn,x∈M

R4−m
n SWBRn (x)(ϕ(t), A(t)) >

δ

2
(3.2)

for each n, where SWBR(x) is defined by

SWBR(x)(ϕ, A) =

∫
BR(x)
|∇Aϕ|

2 +
1
2
|FA|

2 +
S
4
|ϕ|2 +

1
8
|ϕ|4 dV .
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By the compactness of M, passing to a subsequence we have xn→ x0 where x0 ∈ Σ by
Lemma 2.8. We define the region

Dn = {(y, s) : Rny + xn ∈ Bi(M)/2(xn), s ∈ [−R−2
n tn, 0]} =: Un × [−R−2

n tn, 0].

Note that as n→∞, Dn→ R
m × (−∞, 0]. Furthermore, truncating the sequence if

necessary, we can arrange that Bi(M)/2(xn) ⊂ Bi(M)(x0). We rescale to

ϕn(y, s) = ϕ(Rny + xn, R2
ns + tn),

An(y, s) = RnA(Rny + xn, R2
ns + tn),

which are defined on Dn. We have

|∇Anϕn|
2 = R2

n|∇Aϕ|
2,

|FAn |
2 = R4

n|FA|
2.

If we choose our local coordinates on Bi(M)(x0) to be orthonormal coordinates, then
the metric on the rescaled space is simply gi j = δi j. From (3.2),∫

B1(0)
R2

n|∇Anϕn|
2 + |FAn |

2 + R4
n

(S
4
|ϕn|

2 +
1
8
|ϕn|

4
)

dy >
δ

2
(3.3)

for each n and s = 0. Next, from Lemma 2.8 and (3.2),

sup
Dn

(|∇An Rnϕn|
2 + |FAn |

2) ≤ K1, (3.4)

where K1 is independent of n. We consider the rescaled equations

∂Rnϕn

∂s
= R3

n
∂ϕ

∂t
= −∇∗An

∇An Rnϕn −
1
4

[R2
nS + |Rnϕn|

2]Rnϕn,

∂An

∂s
= R3

n
∂A
∂t

= −d∗FAn − iIm〈∇An Rnϕn, Rnϕn〉. (3.5)

Noting the similarity of these equations to (1.3), we use (3.4) and results identical to
Lemma 2.4 and Corollary 2.5 to find that

sup
Dn

(|∇(k+1)
An

Rnϕn|
2 + |∇

(k)
M FAn |

2) ≤ Kk+1

for each k ≥ 0. Thus by a result of Uhlenbeck ([15, Theorem 1.3]; see also [6]), passing
to a subsequence and using an appropriate gauge, we have C∞ convergence Rnϕn→

ϕ̃ = 0 (since ϕn is bounded), An→ Ã where ϕ̃ and Ã are defined on Rm × (−∞, 0]. Then
as n→∞ in (3.3), ∫

B2(0)
|FÃ|

2 dy ≥
δ

2
(3.6)
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for s = 0. Since Rnϕn→ 0, from (3.5), Ã satisfies the equation

∂Ã
∂s

= −d∗FÃ

on Rm × (−∞, 0]. Using the Bianchi identity dFÃ = 0, this implies that

∂FÃ

∂s
= −∆FÃ

on Rm × (−∞, 0], where ∆ = d∗d + dd∗. Since the solution to the heat equation
converges to constant data in infinite time, the only possible solution to this equation
satisfying (3.4) is FÃ = constant. See, for example, [3, Theorem 9 of Ch. 2]. In the
notation of [3], choose k = 1 and t = 0, note that for us ‖u‖L1(C(x,t;r)) ≤ crn+2, and let
r→∞.

4. Proof of Theorem 1.1

As in [9, 14], the term F (R; ϕ, A) in Lemma 2.6 can be used to further analyze
the singularity (see, for example, [14, Lemma 3.3.2]). However, we are already in a
position to show that the existence of a singularity implies a contradiction. Noting that
G(xn,tn) ≥ cR−m

n on BrRn (xn) × [tn − 4(rRn)2, tn − (rRn)2], we consider for any r ∈ (0,∞),

r2−m
∫

Br(0)×[−4r2,−r2]
|FÃ|

2 dy ds

= lim
n→∞

(rRn)2−m
∫

BrRn (xn)×[tn−4(rRn)2,tn−(rRn)2]
|FA|

2 dV dt

≤ c lim
n→∞

(rRn)2
∫

BrRn (xn)×[tn−4(rRn)2,tn−(rRn)2]
|FA|

2G(xn,tn) dV dt

≤ c lim
n→∞

(rRn)2
∫

TrRn (x0,T )
e(ϕ, A)G(x0,T )φ

2 dV dt.

However, the latter expression is bounded by Lemma 2.6. Thus∫
Br(0)×[−4r2,−r2]

|FÃ|
2 dy ds ≤ crm−2.

But since |FÃ| is constant and nonzero by (3.6), this implies that r4 ≤ c. This is
impossible for r sufficiently large. This proves Theorem 1.1. �
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