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Abstract Let (A, m) be a Noetherian local ring such that the residue field A/m is infinite. Let I be
arbitrary ideal in A, and M a finitely generated A-module. We denote by €(I, M) the Krull dimension of
the graded module @, 3oI™M/mI™M over the associated graded ring of I. Notice that £(I, A) is just
the analytic spread of I. In this paper, we define, for 0 < ¢ € € = £(I, M), certain elements e;(I, M)
in the Grothendieck group Ko(A/I) that suitably generalize the notion of the coefficients of Hilbert
polynomial for m-primary ideals. In particular, we show that the top term eg(I, M), which is denoted
by e; (M), enjoys the same properties as the ordinary multiplicity of M with respect to an m-primary
ideal.
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1. Introduction

The purpose of this paper is to establish the theory of Hilbert—-Samuel functions taking
values in a Grothendieck group and to introduce a generalized notion of multiplicity for
arbitrary ideals in local rings. This attempt was originated by Fraser [4] (see also [15])
following the treatment of Auslander and Buchsbaum [1] by the methods of homological
algebra, which is an approach first suggested by Serre. However, the modern theory of
multiplicity was produced originally by Samuel and Nagata applying the theory of Hilbert
functions to local rings, and so one should look at the subject from their point of view.
In this paper we try to follow Nagata’s trail [11, ch. III] making the theory applicable
to arbitrary ideals in local rings.

Let A be a Noetherian local ring with the maximal ideal m such that A/m is infinite
and let I be a proper ideal. We denote by A-mod the category of finitely generated
A-modules. Let Ky(A/I) be the Grothendieck group of A/I-mod. For L € A-mod with
I C /anny L, we can consider the class [L] € Ko(A/I) by setting [L] = 3,5 [I*L/T*+' L],
where [I*'L/I**1L] denotes the class of A/I-module I*'L/I**'L in Ky(A/I). Thus we
derive, for M € A-mod, the Hilbert-Samuel function x¥ : Z — Ko(A/I) with x}(n) =
[M/I™*'M] for n € Z. The main result, Theorem 4.1 of this paper, insists that there

73

https://doi.org/10.1017/50013091500020708 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500020708

74 K. Nishida

exist uniquely determined elements eog(I, M), e1(I,M),...,e.(I,M) in Ko(A/I), where
¢ is the analytic spread of I (cf. [12]), such that

J4

i =3 (") et ), o

1=0

for n > 0. Let us verify that the equality above corresponds to the well-known result on
the coefficients of the Hilbert polynomial in the case where I is m-primary. In fact, if
I is m-primary, there exists an isomorphism o : Ko(A/I) = Z of groups sending [L)
to length 4 L for any L € A-mod with I C v/anna L. Let ¢/,_, = (-=1)4%a(e;(I, M)) for
0 € i £ d, where d = dim A (notice that £ = d as I is m-primary). Then, mapping both
sides of (§) by o, we get

d d—1
lengthAM/ITH-lM:(n: )66_(n;_1 )eii_l_*_..._i_(_l)de:i,

for n > 0. Thus we may say that the elements e;(I, M) for 0 < i < £ given above
suitably generalize the notion of the coeflicients of the Hilbert polynomial for mm-primary
ideals. In particular, we notice that the element e,(I, M) in the ‘top term’, which is
denoted by e;(M), is mapped to the ordinary multiplicity. Furthermore, we shall show
that, in general, ey(I, M) enjoys the same properties as the ordinary multiplicity of
M with respect to an m-primary ideal. For example, if J is a reduction of I, then
the group homomorphism Ky(A/I) — Kg(A/J) induced from the canonical surjection
A/J — A/I is isomorphic, and, through this isomorphism, we have e;(M) = e;(M).
Moreover, if J = (a;,as, ..., a¢)A is a minimal reduction of I, then e; (M) is equal to the
Euler-Poincaré characteristic xa(a1, - . . , ag; M) of the Koszul complex K-(ay,...,as; M),
which is essentially due to Fraser [4, Theorem 2.6]. This fact immediately implies that if
a short exact sequence 0 - L — M — N — 0 in A-mod is given, then e;(M) =e;(L) +
e;(N). Consequently, we see that there exists a group homomorphism Ky(A) — Ko(A/I)
sending [M] to e;(M) for M € A-mod.

Let us recall here Fraser’s notion of general multiplicity map Ko(A) — Ko(A/I), which
is defined as the homomorphism sending [M] to xa(ay,...,as; M) for M € A-mod, where
ay,...,as is a system of generators for I. Of course, it is equal to the homomorphism
we saw above when s = £. However, if s > £, we see by the equality (f) that Fraser’s
multiplicity map is a zero map since xa(ai,...,as; M) = AsxM(n) for n > 0, as is
proved in [4, Theorem 2.6], where A® denotes the difference of sth order (see § 2). For this
reason, for M € A-mod, we would like to employ the element e; (M) as the multiplicity
of M with respect to I and then we can develop a satisfactory theory for any ideal in A
with no assumptions on the number of generators.

Let us give an outline of the remainder of this paper. In § 2 we shall collect some basic
facts on Grothendieck group, Euler—Poincaré characteristics of Koszul complexes and
functions from Z to an additive group. Section 3 is also devoted to a preparation. We
recall the theories of superficial element and analytic spread, slightly generalizing them.
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In §4 we state the main theorem on Hilbert—-Samuel functions. In §5 we introduce an
extended notion of multiplicity. A lot of properties of ordinary multiplicity for m-primary
ideals shall be generalized here. As an easy application of the theory, we consider when
the multiplicity e;(A) coincides with the class [A/I] in Ky(A/I). Finally, we give an
example of non-equimultiple ideal I such that e;(A) # 0, showing that, for a certain
class of ideals I, the vanishing of e;(A) characterizes the Gorensteinness of A/I.

Throughout this paper A is a Noetherian local ring with the maximal ideal m such
that A/m is infinite. The category of finitely generated A-modules is denoted by A-mod.
For M € A-mod, p4(M) is the number of elements in a minimal system of generators for
M, and Ming M is the set of minimal elements in Supp 4 M. We further set Asshy M =
{Q € Ming M | dim A/Q = dim4 M}. For an ideal I in A, we denote by V(I) the set of
all prime ideals in A containing I.

2. Preliminaries

In this section we first recall some basic facts on Grothendieck groups and subsequently
develop the theory on functions mapping Z to an additive group. We further review the
theory of Euler—Poincaré characteristic of Koszul complexes.

Let M be the isomorphism class of M € A-mod and let F(A) = @ Z - M be the
free abelian group determined by the isomorphism classes of A-mod. The Grothendieck
group Ko(A) is the factor group of F(A) by the subgroup generated by the elements
of the form M — L — N, where L, M and N € A-mod, for which there exists an exact
sequence 0 = L - M — N — 0. The class of M in Ky(A) for M € A-mod is denoted
by [M]. Because any M € A-mod has a filtration M = Mg 2 M; 2 --- O M, = (0),
such that, for all 0 < i < r, M;/M;,1 = A/Q; for some Q; € Spec A, we see that
Ko(A) is generated by {[A4/Q] | @ € Spec A}. If A is Artinian, the group homomorphism
¢+ Z = Kp(A) with ¢(1) = [A/m)] is isomorphic. In fact, when A is Artinian, there
exists ‘the length function’ Ky(A) — Z sending [M] to length, M for M € A-mod,
which is the inverse homomorphism of ¢. Let A — B be a flat homomorphism of rings.
Then there exists a group homomorphism Ko(A) — Ko(B) sending [M] to [M ® 4 B] for
M € A-mod. Let Q € Spec A. For £ € Ky(A), we denote by £g the image of £ by the
surjective homomorphism Ko(A) — Ko(Ag) induced from the canonical homomorphism
A — Ag. Now we notice that the surjective group homomorphism

Ko(4) — @ Ko(4e),
QEMin A

§— (gQ)Q7

always splits since Ko(Ag) = Z for any @ € Min A. Thus we see, letting m be the
number of minimal primes of A,

———

Ko(A)=2Z @ - & ZSKo(A),

m times
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where K(A) is the subgroup of Ky(A) generated by {[A/Q] | Q@ € Spec A \ Min A}.
When we write
M= 3 mo-[4/Q) (mge€ 2),
Q€ESpec A

for M € A-mod, we have mg = length 4 Q Mo for Q@ € Min A. If A is a normal domain, we
have a natural homomorphism Ky(4) — Z @ CI(A) sending [M] to (ranks M, cl(M))
for M € A-mod, where Cl(A) denotes the divisor class group of A and cl(M) is the
divisor class attached to M (cf. [2, ch. VII, §4.7]). Moreover, this is an isomorphism if
A is a two-dimensional normal domain such that [A/m] = 0 in Ko(A) (cf. (17, Lemma
(13.3)]).

Now we look at K(A/I) for an ideal I in A, which is the main tool in our investigation.
Let L € A-mod such that I C v/anny, L. Because I*L/I**'L is an A/I-module, we may
consider its class [I*L/I**1L] € Ko(A/I). We set

(L] = [I'L/I'* L] € Ko(A/T).

i0

Notice that, for Q € V(I), TAg C /anny, Lg and [L]g = [Lg] by definition. We can
prove the following result similarly as the theorem of Jordan—Hélder on the composition
series of groups.

Lemma 2.1. Let L € A-mod such that ] C\/annga L. If L=Ly D> L, 2 ---2D L, =
(0) is a filtration such that IL; C Ly, for all 0 < j < s, then [L] = Z;;(l)[Lj/Ljﬂ] in
Ko(A/I).

Let L be as in Lemma 2.1. If I is m-primary, then the length function Ko(A/I) —
Z sends [L] to length 4 L. Thus we may regard the class [-] defined above for finitely
generated A-modules annihilated by some power of I as a notion generalizing ‘length’.
Unfortunately, unless I is rn-primary, L is not necessarily (0), even if [L] = 0 in K(A/I).
However, we have the following fact, which can be easily seen.

Lemma 2.2. Let 0 - L - M — N — 0 be an exact sequence in A-mod such that
I C Vannyg M. Then [M] = [L} + [N] in Ko(A/I).

Let A — B be a homomorphism of commutative rings such that B is module-finite over
A. Regarding the B-module as the A-module via A — B, we have a group homomorphism
Ko(B) = Kyp(A). The next result plays an important role in § 5.

Lemma 2.3. Let J be an ideal contained in I such that \/J = \/I. Then the homo-
morphism Ko(A/I) - Ko(A/J) induced from the canonical surjection A/J — A/I is an
isomorphism.

Proof. Let M be an A/J-module. Then, as /I = \/J C anns M, we may consider
the class [M] € Ko(A/I), and so we get a homomorphism F(A/J) — Ko(A/I). By
Lemma 2.2 we see that it induces a homomorphism Ko(A/J) — Ko(A/I), which is the
inverse homomorphism of Ko(A/I) — Ko(A/J) stated in the assertion. O
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We shall mainly use Lemma 2.3 in the case where J is a reduction of I.

Now we proceed to the next topic in this section. Let G be an additive group. For
a function f : Z — G, we define its difference, Af : Z — G, by setting Af(n) =
f(n) — f(n—1) for n € Z. The i times iterated A-operator will be denoted by A? and
we further set A°f = f. For functions f,g: Z — G, f + g and —f are functions defined
by setting (f + g)(n) = f(n) + g(n) and (—f)(n) = —f(n) for n € Z. We write f = g if
f(n) = g(n) for all n > 0. Notice that A*(f 4 g) = A*f + AFg and A¥(—f) = —AFf
for all k > 0. Now we define the degree of f as follows

dog f = 4SRRI ASf £ 0}, if £ 20,
) -1 if f=o0,

where we denote by 0 the function sending all n € Z to 0 € G. Obviously, we have
degAf =degf—1if f Z0, deg(—f) = deg f and

deg(fy +--- + fr) < sup{deg fi,...,deg f+}.

Lemma 2.4. The following conditions are equivalent for an integer d > 0 and a
function f : Z — G with f # 0.

(1) deg f =d.
(2) There are elements &p,&1,...,€4 € G such that £; # 0 and

=3 (")

1=0
forn > 0.

When this is the case, the elements &y, €1, ...,£4 are uniquely determined by f.

Proof. This is quite well known in the case where G = Z and the same proof works
in this general situation. The uniqueness of &,&;,...,&, is a direct consequence of [4,
Proposition 2.3]. O

For a function f : Z — G with 0 < deg f = d < o0, we denote by ¢;(f) (¢ =0,1,...,d)
the element &; stated in Lemma 2.4. We further set ¢;(f) = 0 for ¢ > d. In the case where
f=0,weset ¢;(f) =0forall 0 <ie€ Z. It is easily seen that ¢;(Af) = ciy1(f) for all
t 2 0. Therefore we have the following lemma.

Lemma 2.5. For a function f : Z — G with deg f = d, we have cq(f) = A%f(n) for
n> 0.

Let f: Z — G be a function and a an integer. We define a function f[a]: Z — G by
setting fla)(n) = f(n+a) for n € Z. We can show that A*(f[a]) = (A f)[a] for alli > 0.
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Hence we get deg f[a] = deg f. Moreover, we have deg(f — f[a]) < deg Af. In fact, if @ <
0, we have g := f — fla] = Af+ Af[-1]4 - -+ Af[a+1] and so deg g < sup{deg Af[A] |
a < 8 < 0}, from which we get degg < deg Af since deg Af[B] = deg Af for all 8. If
a > 0, then setting h = f[a], we have deg(f— f[a]) = deg(h—h[—a]) < deg Ah =deg Af.
If @ = 0, the required inequality is obvious.

Lemma 2.6. Let f : Z — G be a function with 0 € deg f = d < 0. Let a be an
integer. Then cq4( f[a]) = ca(f).

Proof. Let X be an indeterminate. We set

Pi(X) = (X+g+z‘) — (X+a+i)(X+a+'z'—1)---(X+a+1)

i 4! ’

for 0 < 7 < d. Then P;(X) is a numerical polynomial of degree ¢ (cf. {11, §20]). Hence,
by {11, (20.8)], there are integers aio, a1, .. ., a;; such that

Pi(X)= zi:aij (X;LJ) :

=0
Notice that we may choose agg, @41, - --,adq S0 that agy = 1 since
X+d
Py(X) - ( d )

is a numerical polynomial of degree d — 1. Therefore, for n >> 0, we have

d
fled(n) =Y Pi(n) - ci(f)

=0
d—1
_[(n+d n+j
=("1 e+ ("H)e
j=0
where &; = E;L ; ai;¢i(f). This implies ca(f[a}) = ca(f), which is the required equality.
a

The rest of this section is devoted to reviewing the theory of Euler—Poincaré charac-
teristic of Koszul complexes due to Auslander and Buchsbaum [1] and Fraser [4]. Let
a1,az2,...,0¢ (£ =2 1) be elements in A. We set I = (ay,as,...,ar)A. We denote by
H;(ai,...,as M) the ith homology module of the Koszul complex K (a,,...,a¢; M).
Because I - Hi{(a1,...,ae; M) = (0), the class [H;(a1,...,a¢;M)] € Ko(A/I) can be
considered for any i. We set

xa(ay,...,a5; M) = (-1)'{Hi(ay,...,ae; M)) € Ko(A/I),

i>0

and call it the Euler—Poincaré characteristic.
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Proposition 2.7 (cf. [1, Proposition 3.2]). Let 0 - L - M - N — 0 be an
exact sequence in A-mod. Then we have
xa(a,...,ae; M) = xalai,...,as; L) + xalai,...,ae; N).

By Proposition 2.7 we see that there exists a group homomorphism x4(a1,...,a¢) :
Ko(A) — Ko(A/I) sending [M] to xa(ai,...,ae M) for M € A-mod.

Proposition 2.8 (see [1, Proposition 3.2] and [4, Proposition 1.2]). Let M €
A-mod. If a;"M = (0) for some n > 0, then xa(a1,...,ae; M) =0.

Proposition 2.9 (see [1, Theorem 3.3] and [4, Corollary 1.7]). Let M € A-mod.
If ¢ > 2, we have

xa(a,...,ae; M) = x z(az, ... ,82)(xa(a1; M)),

where A = A/a1A and @; denotes the class of a; in A

Proposition 2.10 (see [4, Corollary 1.7]). Let 0 < k < £. Then the following dia-

gram
KO(A) XA(aly---yak) KO(A)
[ |xa@E. a0
Ko(4) X200, Ko(A/D)
is commutative, where A = A/(ai,...,ax)A and @; denotes the class of a; in A.

3. Superficial element and analytic spread

In this section we recall the notions of superficial element (cf. [11]) and analytic spread
(cf. [12]), generalizing them slightly. Let G be the associated graded ring G(I) =
D50 ["/I"". Let M € A-mod and let X be the associated graded G-module G(I, M) =
@D,.50 ["M/I"*' M. For an element a € I, we set a* = amod I? € G1. All of the results
in this section are well known in the case where M = A. We omit the proofs for them
because they do not require new ideas.

Lemma 3.1. Let a € I. Then the following conditions are equivalent.
(1) There exists ¢ > 0 such that (I"*1M :py a)(I°M = I"M for all n > c.
(2) There exists ¢ > 0 such that a* is a non-zero divisor on X |3 := @,,5, ["M/I"* 1 M.

() If G+ € Q € Assg X, then a* € Q.

nzc

We say that a € I is a superficial element of I with respect to M if one of the conditions
of Lemma 3.1 is satisfied. Because we assume that A/m is infinite, the existence of a
superficial element is always guaranteed by condition (3) of Lemma 3.1.
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Lemma 3.2. Let a be a superficial element of I with respect to M. Then, for n > 0,
we have

(1) aM NI"M = oI~ M;

(2) I""'M :pr a = ((0) :u a) + I™M;
(3) ((0) :pr @)V I™M = (0); and

(4) I™((0) :pr @) = (0).

Lemma 3.3. Let a be a superficial element of I with respect to M. Then the sequence
0= (0):ma— M/I"M % M/T"'M - M/T"'M -0
is exact for n > 0, where M = M/aM.

We denote by £(I, M) the Krull dimension of the G-module X/mX. In particular, we
write £(I) = (I, A), which is called the analytic spread of I (cf. [12]). In general, we
have 0 < ¢(I, M) < £(I). Because we are assuming that A/m is infinite, £(I) = pa(J)
for any minimal reduction J of I. The inequalities ht4 I < £(I) < min{dim A, u4(I)} are
valid for any ideal I in A. Hence, if I is m-primary, ¢(I) = dim A. We note for future
use that if I = (a1,...,a¢)A and £(I) = £, then £((a1,...,ak)A) =k for 0 < k< £ In
fact, setting K = (a1,...,ax)A and L = (ag+1,-..,0¢)A, we have £(I) < 4(K) + £(L)
(cf. [12, §8, Lemma 1)), £(K) < k and ¢(L) < £—k, which imply ¢(K) = k. In particular,
if a1,...,ax is a subsystem of parameters (ssop) for A, then £((a1,...,ax)A) = k. We
further notice that if I = (a1,...,a¢)A and a4,..., ag is a d-sequence on A (cf. [7]), then
£(I) = £ because, by [8, Theorem 3.1], G/mG is isomorphic to a polynomial ring over
A/m with £ variables.

Lemma 3.4. If¢(I,M) =0, then I C \/Janng M.

Lemma 3.5. Suppose £(I, M) > 0. Then there exists an element a € I satisfying the
following conditions.

(1) a is a part of a minimal system of generators for I.

(2) a is a superficial element of I with respect to M.

(3) £(I,M) =¢(I,M) -1, where M = M/aM.

4. Hilbert—Samuel function

For M € A-mod, we define the function xM : Z — Ko(A/I) by setting xM(n) =
[M/I"*1 M| and call it the Hilbert-Samuel function of M with respect to I. We simply
denote x}“ by x1.
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Theorem 4.1. Let M € A-mod. Then
max{dima, Mg | Q € Ming A/I} < deg x}! < ¢(I, M).

In particular, we have
hta I < degxr < €(I).

Here we notice that dimy M = —oc0 if M = (0).

Lemma 4.2. Ifdegx}’ <0, then dima, Mg < deg x} for any Q € Miny A/I.

Proof. Let us first consider the case where deg x* = —1. This means that x =0,
so [M/I"M] = 0 in K¢(A/I) for n > 0. Hence, if Q € Ming A/I, we have, for n > 0,
Mg = I"Mg as [Mg/I"Mg] = 0 in K¢(Ag/IAg) and as Ag/IAg is Artinian, so
Mg = (0) by Nakayama’s Lemma. Suppose next that deg x?/ = 0. Then, as Ax¥ =0,
[M/I" M) = [M/I"M)] in Ko(A/I) for n > 0. Hence, if Q € Ming A/I and n > 0, we
have I"*!' Mg = I"Mg and so I" Mg = (0), which means dims, Mg < 0. Thus we have
proved the required assertion. O

Proof of Theorem 4.1. We prove by induction on (I, M). Let £(I, M) = 0. Then
I"M = (0) for n > 0 by Lemma 3.4, so x}(n) = [M] for n > 0, which implies
deg xM < 0. Hence we get the required mequa.htles by Lemma 4.2. Now let (I, M) > 0.
Again by Lemma 4.2 it is enough to consider the case where deg x¥ > 1. By Lemma 3.5
we can choose an element a € I so that a is a superficial element of I with respect to M
and £(I, M) = £(I, M) — 1, where M = M/aM. Then, by Lemma 3.3, we have an exact
sequence

0= (0):pra— M/I"M S M/I" MM - M/T"'M - 0,

for n > 0. Notice that the class [(0) :» a] can be defined in Ko(A/I) by condition (4)
of Lemma 3.2. Thus x}(n) = Ax}(n) + [(0) :p a] for n>> 0, and so x¥ = AxM + f,
where f : Z — Ko(A/I) is the constant functlon such that f(n) = [(0) :ar a] for any
n € Z. Because deg x} > 1 and deg f < 0, we see

deg M = degx} ~ 1, ifdegxM >2,
—lor0, if degxM = 1.

Let Q@ € Ming A/I. Then, by the hypothesis of induction, we have dim4,, Mg < deg xfa ,
and so

dimAQ Q < dlmAQ MQ +1
< degxf[ +1
< degx?”.
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Moreover, when deg xM > 2, we get

deg x}" = degx}’ +1
<LI,M)+1
= oI, M).

Because we are assuming that ¢(7, M) > 0, the inequality degx? < ¢(I, M) holds,
obviously, if deg x = 1. Thus we have completed the proof. O

Definition 4.3. Let M € A-mod. We set e;(I, M) = c;(x¥) € Ko(A/I) for i > 0.
Then e;(I,M) =0 for i > ¢(I,M) and

n-+1
) = 2 (") et
; i
i20
in Ko(A/I) for n>> 0.
Proposition 4.4. Let M € A-mod. Then we have the following assertions.

(1) Let a be a superficial element of I with respect to M. We set M = M/aM. Then
ei(I, M) =e;+1(I,M) for any i > 1 and eq(I, M) = ey (I, M) 4 [(0) :ps a].

(2) ei(I,M)g =e;(IAg, M) for any Q € V(I).

Proof.
(1) Let n > 0. Then, by Lemma 3.3, there exists an exact sequence

0 (0):pra— M/I"M 2 M/IVHIM — M/I™1M — 0,
from which we see

xF(n) = xM(n) = xM(n - 1) +[(0) :m q

B (G G R

Jjz0

S (S BUS R OP
j=21

v

(™57 connd.00) + (ex(d, ) + [0) i .

1

Y]

Thus we get the required equalities.
(2) Because

M/ =S (“ + ’) e:(I, M),

i
i20
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for n > 0, and the localization Ko(A/I) = Ko(Ag/IAg) is a group homomorphism, we

have
M, n n+1
e o) = /- le = X (M F 1 extr, M,
i>0
for n > 0. Hence, e;(IAg, Mg) = e;(I,M)q for any i > 0. |

Corollary 4.5. Let M € A-mod and let Q € V(I). If e;(I,M)g # 0, then i <
£(TAg, Mg) <hts Q.

Proposition 4.6 (see [4, Proposition 3.1]). Let I be generated by an M -regular
sequence of length m. Then e,,(I,M) = [M/IM] and e;(I, M) = 0 for any i # m.

Proposition 4.7 (see [4, Theorem 2.6]). Let I be minimally generated by a,,az,
... @m. Then, for any M € A-mod, we have A™x¥(n) = xa(ai1,...,am; M).

Corollary 4.8. Let M € A-mod. If I is minimally generated by a1,a2,...,e, and
I, M) <m, Then xa(a1,...,am; M) =0.

5. Multiplicity

In this section we concentrate our attention on the ‘top term’ in the expression of a
Hilbert-Samuel function using binomial coefficients. Throughout this section d = dim A,
£={¢(I) and M € A-mod.

Definition 5.1. We set e;(M) = eq(I, M) and call it the multiplicity of M with
respect to I.

Proposition 5.2. e;(M) = Atx¥(n) for n > 0. Hence e;(M) =0 if ¢(I, M) < L.
Proof. This follows immediately from Lemma 2.5. O

Proposition 5.3. Let m > 1. Then, identifying Ko(A/I) with Ko(A/I™) through the
isomorphism Ko(A/I) = Ko(A/I™) induced from the canonical surjection A/I™ —
AJI, we get eym (M) = mt - e;(M).

Proof. Let us denote by o the isomorphism Ko(A/I) — Ko(A/I™). We notice that

o(xM(mn+m — 1)) = xM.(n) for any n > 1. Let X be an indeterminate. We set

Fi(X) = (mX+n?.—1+i>’

1

for 0 < i < £. Then F;(X) is a numerical polynomial of degree i. Hence, by [11, (20.8)],
there exist integers a;0,a;1,- .-, a; such that

E(X)=jz=i:0aij (X;J)
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In particular, we can choose agg, a1, ..., ae, 0 that age = m? since
X
G(X) := Fo(X) — m? ( ;e)

is a numerical polynomial of degree £ — 1. We send, by o, both sides of the equality

¢
xf"(mn+m—1) =ZFi(n)-ei(I,M)
i=0

in Ko(A/I) for n > 0, and get

[
Xt (n) =Y Fi(n) - o(ei(I, M))

i=0

- % (") ot

0j<ige
-1
= ( ) ) -m -cr(e[(M))+Z< ; )-fj,
3=0
where §; = Zf=ja,~ja(ei(1, M)). Therefore, we get eym(M) = mt - o(er(M)), since
£(I™) = £(I) = £, which is the required assertion. O

Proposition 5.4. Let I = (a1,...,a2)A and ay,...,ap is an M-regular sequence.
Then e;(M) = [M/IM].

Proof. This follows immediately from Proposition 4.6. |
Proposition 5.5. Let Q € V(I). If (I Ag) = m, then eja,(Mg) = em(I, M)q-

Proof. By definition, e;a,(Mqg) = em(IAg, Mq). Hence the assertion follows from
assertion (2) of Proposition 4.4. O

Let us denote by €;(M) the ordinary multiplicity of M with respect to an m-primary
ideal I. Then, as is noticed in the introduction, when I is m-primary, e;(M) is sent to
e (M) by the length function Ko(A/I) — Z. More generally we have the following.

Lemma 5.6. Let Q € Miny A/I withht4 Q = s. Let

e, M) = 3 mp-[A/P] (mp € 2)
Pev(l)

in Ko(A/I). Then mq = €} 4,(Mg).
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Proof. Because {(IAg) = dim Ag = s, era,(Mq) = es(I, M)q by Proposition 5.5. On
the other hand, e,(I, M) =mq-[Ag/QAg) by the assumption. Thus e;4,(Mg) = mq
[Ag/QAg). We send both sides of this equality by the length function Ko(Ag/TAg) —
Z, and get the required assertion. O

Lemma 5.7. Let N be an A-submodule of M such that I C \/anng M/N. If£ > 0,
we have e;(M) = er(N).

Proof. By the lemma of Artin—Rees, there exists an integer 7 > 0 such that
I"M(\N =I"""(I"M[|N),
for any n > r. Choosing r big enough, we may assume I"M C N. Then I"M [N =
I"~"N for any'n > r. Now we consider, for n > r, the exact sequence
0> N/ I"™"N—->M/I"M - M/N — 0,

which implies that x¥ = x¥N[-r] + f, where f: Z — Ko(A/I) is the constant function
such that f(n) = [M/N] for any n € Z. Therefore, we have

er(M) = ce(x7")
=co(x¥[-r]+ f) (by [4, Proposition 2.3])

= ce(x? [-7]) (as £>0)
= co(xV) (by Lemma 2.6)
=er(N),
and the proof is completed. 0

Proposition 5.8. Let J be a reduction of I. Then, via the isomorphism Ko(A/I) =
Ky(A/J) induced from the canonical surjection A/J — A/I, we have ef(M) = e;(M).

Proof. We denote by o the isomorphism Ky(A/I) = Ko(A/J). If £ = 0, we have
oler(M)) = e;(M) = [M]. Let £ > 0 and let » > 0 be an integer with I"t! = JI".
Then, for any n > 0, we have [M/I"*" M| = [M/J"["M) = [M/I" M| + [I"M/J"I" M]
in Ko(A/J), which means coxM[r] = xM + f, where f : Z — Ko(A/J) is the constant
function with f(n) = [M/I"M] for any n € Z. Therefore, we have

o(er(M)) = o(ce(xi"))
a(ce(x[r]))  (by Lemma 2.6)
ce(o o x7'[r])
=co(x’™ + f) (by [4, Proposition 2.3])

= ce(x5™) (as £>0)
=ey(I"M)
=ey(M) (by Lemma 5.7).
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Thus we get the required equality. O

By virtue of Lemma 2.5, Proposition 4.7 and Proposition 5.8, we immediately get the
following.

Theorem 5.9. Let £ > 1 and J = (a1, a2,...,a¢)A be a minimal reduction of I. Then
er(M) = xala1,...,aes; M) via the isomorphism Ko(A/I) = Ko(A/J).

The next proposition is a direct consequence of Proposition 2.7, Proposition 5.8 and
Theorem 5.9.

Proposition 5.10. Let0 - L - M — N — 0 be an exact sequence in A-mod. Then
eI(M) = eI(L) + ej(N).

By virtue of Proposition 5.10, we get the group homomorphism ey : Ko(A) — Ko(A/I)
sending [M] to e; (M) for any M € A-mod. If J = (ay,...,a¢)A is a minimal reduction
of I, the following diagram

Ko(A) ——  Ko(A/I)

| !

K()(A) xa(e1,...,ae) KO(A/J)

is commutative, where the vertical arrow denotes the isomorphism induced from the
canonical surjection A/J — A/I.

Proposition 5.11. Let

M= > mg-[4/Q (mge€ 2)

Q€ESpec A

in Ko(A). Then
aMy= S mo-e(4/Q).
QESpec A
LI+Q/Q)=t

Proof. Notice that 0 < ¢(I + Q/Q) = #I,A/Q) < £ for all prime ideals @ and
er(A/Q) =0if (I, A/Q) < £ by Proposition 5.2. Therefore, we get the required equality
since

er(1) = er (L mo - [4/) )
Q
=Y mq-ei(A/Q).
Q
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When I is m-primary, Proposition 5.11 implies the additive formula:

ef(M)= > lengthy, Mg -€;(4/Q),
Q€Assh A
because mq = length 4, Mg for @ € Min 4, £ =d and ¢(I + Q/Q) = dim A/Q.
Proposition 5.12. Let J = (a1,...,as)A be a minimal reduction of I and 0 < k < £.
We put K = (a1,...,ar)A. If€(I/K) = £ — k, then e;(M) = e;/x(ex(M)).

Proof. As the assertion is obvious when k = 0 or k = £, we consider the case where
0 < k< £ Let A= A/K and @; be the image of a; in A. Notice that ¢(K) = k,
and JA = (aky1,-..,0¢)A is a minimal reduction of TA. Then, by Theorem 5.9 and
Proposition 2.10 we have

er(M)=xalay,...,0n; M)
= Xﬁ(ak-l'-la .. ya_f)(XA(ala ceey Ok M))
= XA(a'k:-i-l: cee ,a_g)(el{(M))
= eri(ex (M)).
Thus we get the required equality. a

Let us notice that even if I = (ay,...,a¢)A, £(I/(a1,...,ax)) < £ — k can happen for
some 0 < k < {. For example, let A = F[[X,Y]] be the formal power series ring over
a field F and I = (X?,XY)A. Then ¢(I) = 2. However, {(I/X%2A) = 0 as I/X%A is
nilpotent. On the other hand, if a1,...,a, is an ssop for A or a d-sequence, then the
equality £(I/(a;,...,ax)A)=£—k holds for all 0 < k < £.

Corollary 5.13. Under the same notations and assumptions as Proposition 5.12, let
ex(M)= Y mq-[4/Q] (mqe€ Z)
QeEV(K)

in Ko(A/K). Then
er(M) = > mo-eyk(A/Q).

QeV(K)
(I+Q/Q)=t-k

Proof. By Proposition 5.12, we have
er(M) = eI/K(eK(M))
= > mq-eyx(A/Q)

QEV(K)
However, e;/x (A/Q) = 0if (I+Q/Q) = £(I/K, A/Q) < £—k. Hence we get the required
equality since £(] + Q/Q) < £ —k for all Q € V(K). (]
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When I is m-primary, by Corollary 5.13 we get the associativity formula (cf. [11,
Theorem (24.7)]). In fact, in that case, £ = d and a4, ...,aq is a sop for A. So ¢(I/K) =
dim A/K = d — k. Furthermore, (I + Q/Q) = dim A/Q for all Q € Spec A. Therefore,
as mg = e’KAQ (Mg) for all Q € Ming A/K by Lemma 5.6, we have

er(M) = Y ekag(Mg)-erk(A/Q).
Q€Asshy A/K

Now, we send both sides of the equality above by the length function Ko(A/I) — Z,
and get the associativity formula.

As is well known, when I is m-primary, we always have inequalities er(M) > 0 and
e;(M) < length, M/JM for any minimal reduction J of A. Now we generalize these
facts. Let Ko(A/I). denotes the subset of Ko(A/I) consisting of the classes of finitely
generated A/I-modules.

Proposition 5.14. We always have the following assertions:
(1) er(M) € Ko(A/I)4; and
(2) (M/JM] —er(M) € Ko(A/I)4 for any minimal reduction J of I.

Proof. By Theorem 5.9, we may assume p4(l) = £ (hence I = J in assertion (2)).
We will prove by induction on £. If £ = 0, then I = (0), so ef(M) = [M] and the
assertions are obviously true. Suppose £ = 1. We write I = aA. Then, by Theorem 5.9,
er(M) = xa(a; M) = [M/aM]—[(0) :p a], from which we get [M/aM]|—e;(M) = [(0) :m
al € KO(A/I) Because (0) :pr a® C (0) :pr a*t! for all ¢, there ex1sts 7> 0 such that
(0) :ar @™ = (0) :pr a™ for any n > r. This implies that a"M/a"t' M 2 e M/ar M
is an 1somorphlsm for n > 7. Then, setting E = a"M/a"*'M and L = M/a"M, we have

X' (n) = [M/a™*' M]
= [M/a"M] + [a"M/a" M| + - - + [a"M/a™! M]
= (n—r+1)[E]+ [L]

= (") 21+ (@1 - #mD),
(")

for n > r. Hence e; (M) = [E] € Ko(A/I);. Now let £ > 2 and assume that assertions (1)
and (2) are true for any ideal whose analytic spread is less than ¢. If £(I, M) < £, then
er(M) = 0 by Proposition 5.2 and the assertions are obvious. So let us consider the case
where £(I, M) = £. We choose an element a € I satisfying the conditions of Lemma 3.5.
We set A = AfaA, I = IA and M = M/aM. Of course, £(I) < pz(I) = £—1. On
the other hand, ¢(I) = £(I,A) > ¢(I,M) = £ — 1. Hence £(I) = £ — 1, and so ef(M) =
ee—1(I, M). Then we get ef(M) = e;(M), since ep—1(I, M) = eo—1(I, M) = es(I, M) by
Proposition 4.4. Therefore, by the hypothesis of induction we easily see that assertions (1)
and (2) are true. d
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Proposition 5.15. Let I = (a1,...,a¢)A and let ny,...,n, be positive integers. We
assume £((a7*,...,ap")A) = £. Then, through the isomorphism

Ko(A/I) = Ko(A/(aT,. .., az")A),

we have
e(a;'l,...,a;‘t)A(M) =nyny---ng-er(M).

Proof. By Theorem 5.9 and [4, Corollary 1.12] we have

e(a;‘l,“,,a;‘l)A(M) = XA(a"l'Ll’ . ,a?‘;M)
=nln2...ne.XA(al,---,ae;M)
=“1"2"'ne-eI(M).

a

The next result is a generalization of the Lemma of Lech. But in order to state it, we
have to fix one more notation. Let m be a positive integer and

f:Zx---xZ—>G
R —

m times

a function, where G is an additive group. For 1 < ¢ < m, we define

Aif:Zx---xZ—>G
N’

m times
by setting A; f(n1,..., iy .-y, m) = f(R1,. oy niy ooy} — f(nn, . oni — 1, Lo 1)

Proposition 5.16. Let I = (a,,...,a;)A. We assume that
L(al, ... a5t )A/(aT, ..., ap*)A) =L —k,
for all positive integers ny,...,np and 0 < k < £. Let

f:Zx---xZ— Ko(A/I)

£ times

be the function such that f(n,,...,n¢) = [M/(a7",...,a;*)M). Then we have
A1y - Def(na, ... ,ne) = e1(M),

forny,...,ng>0.
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Proof. We will prove by induction on £. If { = 1, the assertion is a special case of
Proposition 5.2. Let £ > 2. We fix ny > O for a moment. We set A = A/ay’ A and
M = M/aT'M. 1t is easy to see that

(a3, a3 A (a3, ..., af*)A) = -1 -k,

for all positive integers na,...,n¢ and 1 § k < £ (the denominator is (0) when k& = 1).
Let
1 Z XX Z — Ko(Af(aP? A
g , 0( /(a‘l » A2, aG’E) )

£ —1 times

be the function such that g(ng,...,n¢) = [M/(a}?,...,a;*)M]. Then, by the hypothesis
of induction, we have

Al te Ag_lg(ng, ey ng) = e(az,...,ag)A(M)

in Ko(A/(a},as,...,a¢)A) for na,...,ng > 0. Now we further set A = A/a; A and
M = M/a; M. Then, considering the commutative diagram

Ko(A) —e2e08, p (4/(a%, a, .. ., ap)A)

I I

Ko(A) —carmeof, Ko(A/T),

where the vertical arrows denote the isomorphisms induced from the canonical surjections
A — A and A/(aT*,a2,...,a0)A) = A/I, we get

Doy Def(n,mz, ..., ne) = e, . o A([M/a7* M]),
for ng,...,ne > 0 in Ko(A/I). On the other hand, as ¢(a; 4) =1,
[M/a7*M] =n1 - e,, a(M) + ep(a14, M)
in Ko(A) for n; > 0. Hence, setting £ = e, . a,4(e0(a14, M)), we have

e(ag,...,al)ﬁ([M/a?l M]) = nl ) e(az,...,a[)z‘i(eGIA(M)) +§
=n1 -er(M) +¢,

for n; > 0. In conclusion we get
A1A2"'Aff(n1,n27"' anl) = C[(M),

for ni,ng,...,ne > 0. Thus we have completed the proof. O
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So far we have verified that our multiplicities actually enjoy the same properties as the
ordinary ones. Now it should be required to consider the influence of the value e;(M)
on I and M themselves. As the first step of the study in this aspect, the following two
results are concerned with when e;(A) = [A/]].

Proposition 5.17. Let A be a Cohen-Macaulay ring. Then e;(A) = [A/I] if and only
if I is generated by a regular sequence.

Proof. Suppose ej(A) = [A/I]. Let Q € Ming A/I. Then e;(A)g = [Ag/TAg] # 0
since it is mapped by the length function Ko(Aq/IAqQ) — Z to length,, Ag/IAq # 0.
Because ej(A) = eg(I, A), we get £ < ht4 Q by Corollary 4.5. Hence £ < ht4 I, and so
£="htyI as £ > ht I in general. Let J be a minimal reduction of I. Notice that, as A is
Cohen-Macaulay, J is generated by a regular sequence, from which we get e;(A) = [4/J]
by Proposition 4.6. Consequently, the equality [A/I] = [A/J] follows from e;(A) =
ej(A). Then, for any Q € Ming A/J = Ming A/I, we have [Ag/TAg] = [Ag/JAg),
which implies length,, Aqg/IAq = length,, Aqg/JAqg and so [Aq = JAq. Therefore
I = J. Thus we see that I is generated by a regular sequence. The converse is a direct
consequence of Proposition 4.6. d

R Proposition 5.18. Let A/Q be a regular local ring. Assume Ass A = Assh A, where
A is the completion of A. Then eqg(A) = [A/Q) if and only if A is regular.

Proof. Suppose eg(A) = [A4/Q)]. By the same reasoning as in the proof of Propo-
sition 5.17, we have £(Q) = ht4 Q@ =: s. Let J = (ay,...,a;) be a minimal reduction of
Q. We set A= A/J. Because A is quasi-unmixed by the assumption, it is equidimen-
sional and catenary, so dim A = d —s. Now choose the elements a,41,...,aq4 € m so
that (as41,...,aq4)A is a minimal reduction of mA. Then, as a,,...,aq is a sop for A,
by Propositions 5.8 and 5.12 we see that

CmA(eJ(A)) = e(a,.;.l,...,ad)ﬁ(eJ(A)) = e(a17~~~1ad)A(A)'

On the other hand, we have e,,i(ej(A4)) = e, 5(eq(4)) = €, 4(A/Q) = em/0(A/Q).
Thus the equality e(;,...,04)4(A) = €m/(A/Q) follows. This implies eZal,...,ad)A(A) =
€m/@(A/Q), and so €, .., ,(A) =1 since A/Q is regular. Then e},(A) =1 since
0<e,(4) € €{ay,....aq)a(A)- In conclusion, A is regular by [11, Theorem (40.6)]. Con-
versely, if A is regular, then Q must be generated by a regular sequence since A/Q is
regular. Hence eg(A) = [A/Q] by Proposition 4.6 and the proof is completed. 0

If I is equimultiple, then e;(A) # 0 by Theorem 4.1. The next proposition provides us
with examples of non-equimultiple ideals whose multiplicities do not vanish.

Proposition 5.19. Let A be a Gorenstein ring and () € Spec A such that A/Q is a
Cohen-Macaulay normal domain. We assume that 1 4(Q) = ht4 Q+1 and Ag is regular
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(such a prime ideal is said to be an almost complete intersection (cf. [5, Definition (2.1)])).
Then we have the following assertions.

(1) eq(A) = [A/Q] — [Ka/q], where K 4,¢ denotes the canonical module of A/Q.

(2) If A/Q is not Gorenstein, then eg(A) # 0. The converse is true when dim A/Q = 2
and [A/m] =0 in Ko(A/Q).

Proof. (1) We put s = ht4 Q. Because ht4 Q@ < Q) < pa(Q), we have £(Q) = s
or s + 1. However, since £(Q) = s implies pa(Q) = s (cf. [3, Theorem]), the equality
2(Q) = s + 1 must hold. By [5, Lemma (2.5)], there exist elements a;,...,a,,b of A
satisfying the conditions

(i) Q@ =(a1,...,as,b)A and QAg = (a1,...,a,)Ag;
(i1) ay,...,as is an A-regular sequence; and
(iti) K :4 b= K :4 b%, where K = (a1,...,a;s)A.

Then, by Proposition 4.6 and condition (ii} above, we have ex(A) = [A/K]. Moreover,
(ii) and (iii) imply that a1, ...,as, b is a d-sequence, and so, by Proposition 5.12, setting
A= A/K, we get

eq(A) = epalex(A))
= ebA(A)'

Let n>0and p: A A/ TIA = K + bt A/K + b™F1A. If z € Ker ¢, there exists

y € K such that b*z = b"t'ymod K. Then z — by € K :4 b". Condition (ii) implies

that K 14 " = K:pbforalln > 1. Hencex —by € K :4 Qas K:4 b= K :4 Q,

soz € @+ (K :a Q). Conversely, @ + (K :4 Q) C Keryp is obvious. Thus we get

Kerp = Q + (K :4 Q). This implies 6" A/b" 1A = E, where E = A/Q + (K :4 Q). As a
. consequence, for any n 2 0, we get

Xsa(n) = [A/b"+ 4]

= [4/Q1+ f)[b"é/b"“&

- (n N 1) [E] + ((A/Q] - [E)).

Therefore, €, ;(A) = [E]. Now we look at the exact sequence
00Q+(K:4Q)/Q— A/Q->E—0.

In order to prove Q + (K :4 Q)/Q = K4,q, we first notice the equality (K :4 Q) Q =
K, which is verified as follows.
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Because, obviously, (K :4 @)@ 2 K, it is enough to show (Kp :4, QAp)(QAp =
KAp for all P € Assy A/K. But this is trivial if Q € P. Even if Q C P, we have @ = P
as ht4 P = s, and so the required equality holds by condition (i). Now we get

Q+(K:aQ)/R=EK:4Q/(K:4Q)NQ
=K:A Q/K
=HOII1A/K(A/Q,A/K)

Because A/K is Gorenstein, by (9, Satz 5.9 and Korollar 5.14]
Ka/q = Homy, x(A/Q, A/K).

Thus the exact sequence
0= Ky —+A/Q—=E—-0

is induced. Hence [E] = [A/Q] — [K 4 /o), and so we get assertion (1).

(2) Let us consider the group homomorphism Ko{A/Q) — Z @ Cl{A/Q) stated in § 1.
This homomorphism maps eg(A) to (0, —cl(K,4,q)). Notice that A/Q is Gorenstein if
and only if cl(K4/q) = 0 in C1(A/Q). Therefore, if A/Q is not Gorenstein, then eg(A) #
0. In the case where dimA/@ = 2 and [A/m] = 0 in K((A/Q), the homomorphism
above is isomorphic, which implies A/Q is not Gorenstein if eg(A) # 0. Thus we have
completed the proof. O

The prime ideal in the formal power series ring F[[X,Y, Z,U,V,W]] over a field F
generated by the maximal minors of the matrix

XY Z
v v w
is a typical example of @} in Proposition 5.19 and A/Q is not Gorenstein.
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