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Abstract Let (A,m) be a Noetherian local ring such that the residue field A/m is infinite. Let I be
arbitrary ideal in A, and M a finitely generated .A-module. We denote by £(I, M) the Krull dimension of
the graded module ®n^0I

nM/mInM over the associated graded ring of /. Notice that t(I, A) is just
the analytic spread of /. In this paper, we define, for 0 ^ i $J I = 1(1, M), certain elements ej(7, M)
in the Grothendieck group KQ(A/I) that suitably generalize the notion of the coefficients of Hilbert
polynomial for m-primary ideals. In particular, we show that the top term ej (7, M), which is denoted
by e/(M), enjoys the same properties as the ordinary multiplicity of M with respect to an m-primary
ideal.
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1. Introduction

The purpose of this paper is to establish the theory of Hilbert-Samuel functions taking
values in a Grothendieck group and to introduce a generalized notion of multiplicity for
arbitrary ideals in local rings. This attempt was originated by Praser [4] (see also [15])
following the treatment of Auslander and Buchsbaum [1] by the methods of homological
algebra, which is an approach first suggested by Serre. However, the modern theory of
multiplicity was produced originally by Samuel and Nagata applying the theory of Hilbert
functions to local rings, and so one should look at the subject from their point of view.
In this paper we try to follow Nagata's trail [11, ch. Ill] making the theory applicable
to arbitrary ideals in local rings.

Let A be a Noetherian local ring with the maximal ideal m such that A/m is infinite
and let / be a proper ideal. We denote by .A-mod the category of finitely generated
A-modules. Let Ko(A/I) be the Grothendieck group of A/I-mod. For L € -A-mod with
I C ^arm^ L, we can consider the class [L] € Ko(A/I) by setting [L] = J2i>o[IlL/I1+1L]>
where [PL/Ii+1L] denotes the class of ^//-module PL/Ii+1L in K0{A/I). Thus we
derive, for M G yl-mod, the Hilbert-Samuel function x f : Z -> K0{A/I) with Xi*(n) =
[M/In+1M] for n e Z. The main result, Theorem 4.1 of this paper, insists that there
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exist uniquely determined elements eo(/,M),e\(I,M),... ,ee(I,M) in KQ{A/I), where
£ is the analytic spread of / (cf. [12]), such that

(rW (8)
i=o ^ l '

for n > 0 . Let us verify that the equality above corresponds to the well-known result on
the coefficients of the Hilbert polynomial in the case where / is m-primary. In fact, if
I is m-primary, there exists an isomorphism a : KQ{A/I) -̂ -> Z of groups sending [L]
to lengthy L for any L 6 A-xaod with / C ^/ann^ L. Let e'd_i = (—l)d~V(ei(J, M)) for
0 ^ i sS d, where d = dim^l (notice that £ = d as / is m-primary). Then, mapping both
sides of (|j) by a, we get

lengthy M/I^M = ( n + * ) e'o - ( n +/_ ~ ^ e'd_, + ••• + (-1)%,

for n » 0. Thus we may say that the elements ei(I,M) for 0 ^ i < I given above
suitably generalize the notion of the coefficients of the Hilbert polynomial for m-primary
ideals. In particular, we notice that the element ee(I,M) in the 'top term', which is
denoted by ej(M), is mapped to the ordinary multiplicity. Furthermore, we shall show
that, in general, ee{I,M) enjoys the same properties as the ordinary multiplicity of
M with respect to an m-primary ideal. For example, if J is a reduction of / , then
the group homomorphism KQ(A/I) —> KQ{A/J) induced from the canonical surjection
A/J —> A/I is isomorphic, and, through this isomorphism, we have e/(M) = ej(M).
Moreover, if J = (ai, a2 , . . . , ag)A is a minimal reduction of J, then ej(M) is equal to the
Euler—Poincare characteristic XA(GI, • • • ; a-e', M) of the Koszul complex K-{a\,... ,ac M),
which is essentially due to Fraser [4, Theorem 2.6]. This fact immediately implies that if
a short exact sequence 0—> L —> M —> N —>0in A-mod is given, then e/(M) = e/(L) +
ej(N). Consequently, we see that there exists a group homomorphism KQ(A) —> KQ(A/I)

sending [M] to ej{M) for M € A-mod.
Let us recall here Fraser's notion of general multiplicity map KQ{A) —» Ko(A/I), which

is defined as the homomorphism sending [M] to XA(OI, ... ,as; M) for M S A-mod, where
a\,..., as is a system of generators for /. Of course, it is equal to the homomorphism
we saw above when s = i. However, if s > £, we see by the equality ({() that Fraser's
multiplicity map is a zero map since XA(O,\, ... ,as;M) = Asxf(n) for n 3> 0, as is
proved in [4, Theorem 2.6], where As denotes the difference of sth order (see § 2). For this
reason, for M € ^4-mod, we would like to employ the element e/(M) as the multiplicity
of M with respect to / and then we can develop a satisfactory theory for any ideal in A
with no assumptions on the number of generators.

Let us give an outline of the remainder of this paper. In § 2 we shall collect some basic
facts on Grothendieck group, Euler-Poincare characteristics of Koszul complexes and
functions from Z to an additive group. Section 3 is also devoted to a preparation. We
recall the theories of superficial element and analytic spread, slightly generalizing them.
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In § 4 we state the main theorem on Hilbert-Samuel functions. In § 5 we introduce an
extended notion of multiplicity. A lot of properties of ordinary multiplicity for m-primary
ideals shall be generalized here. As an easy application of the theory, we consider when
the multiplicity ej(A) coincides with the class [A/1] in K0(A/I). Finally, we give an
example of non-equimultiple ideal / such that ei(A) =fi 0, showing that, for a certain
class of ideals /, the vanishing of e/ (A) characterizes the Gorensteinness of A/1.

Throughout this paper A is a Noetherian local ring with the maximal ideal m such
that A/m is infinite. The category of finitely generated A-modules is denoted by A-mod.
For M G .4-mod, ^ ( M ) is the number of elements in a minimal system of generators for
M, and Min^ M is the set of minimal elements in SuppA M. We further set Assh^ M =
{Q G Min^ M | dim A/Q = dim^ M}. For an ideal I in A, we denote by V(I) the set of
all prime ideals in A containing I.

2. Preliminaries

In this section we first recall some basic facts on Grothendieck groups and subsequently
develop the theory on functions mapping Z to an additive group. We further review the
theory of Euler-Poincare characteristic of Koszul complexes.

Let M be the isomorphism class of M G A-mod and let F(A) = ® Z • M be the
free abelian group determined by the isomorphism classes of .A-mod. The Grothendieck
group Ko{A) is the factor group of F(A) by the subgroup generated by the elements
of the form M — L — N, where L, M and N G .A-mod, for which there exists an exact
sequence 0 - » L - » M - > . / V - » 0 . The class of M in KO(A) for M e A-mod is denoted
by [M]. Because any M G ^4-mod has a filtration M = Mo D Mi D • • • D Mr = (0),
such that, for all 0 < i < r, Mi/Mi+\ = A/Qi for some Q, G Specj4, we see that
K0(A) is generated by {[A/Q] | Q G Spec A}. If. A is Artinian, the group homomorphism
tp : Z -> KQ(A) with ip{l) = [A/m] is isomorphic. In fact, when A is Artinian, there
exists 'the length function' K0(A) -> Z sending [M] to lengthAM for M G ^4-mod,
which is the inverse homomorphism of ip. Let A —¥ B be a flat homomorphism of rings.
Then there exists a group homomorphism Ko(A) —> KQ(B) sending [M] to [M ®A B] for
M G A-raod. Let Q G Spec A. For £ G KQ(A), we denote by £Q the image of £ by the
surjective homomorphism KQ(A) —¥ KQ(AQ) induced from the canonical homomorphism
A -> AQ . Now we notice that the surjective group homomorphism

Z —> teeth,
always splits since K0(AQ) = Z for any Q G MinA Thus we see, letting m be the
number of minimal primes of A,

K0(A) *£Z
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where KQ(A) is the subgroup of Ko(A) generated by {[/l/Q] | Q S Spec .A
When we write

Q€SpecA

for M £ A-mod, we have JTIQ = lengthy MQ for Q € Min A If A is a normal domain, we
have a natural homomorphism KQ{A) -> Z0Cl(v4) sending [M] to (rank^M^c^M))
for M € A-mod, where C1(.A) denotes the divisor class group of A and cl(M) is the
divisor class attached to M (cf. [2, ch. VII, §4.7]). Moreover, this is an isomorphism if
A is a two-dimensional normal domain such that [A/m] = 0 in KQ{A) (cf. [17, Lemma
(13.3)]).

Now we look at K${A/I) for an ideal / in A, which is the main tool in our investigation.
Let L S A-mod such that I C \/ann^ L. Because PL/P+1L is an A/J-module, we may
consider its class [PL/Ii+1L] € KQ(A/I). We set

[L] = J2[PL/Ii+lL} e K0(A/I).

Notice that, for Q e V(I), IAQ C ^/ann,iQ LQ and [L]Q = [LQ] by definition. We can
prove the following result similarly as the theorem of Jordan-Holder on the composition
series of groups.

Lemma 2.1. Let L 6 A-mod such that I C v^ann^ L. If L = LQ 3 £i 2 • • • 2 Ls =
(0) is a Gltration such that ILj C Lj+i for all 0 ^ j < s, then [L] = ^ = 0 ^ / ^ + 1 ] in

K0(A/I).

Let L be as in Lemma 2.1. If / is m-primary, then the length function KQ(A/I) —*
Z sends [L] to lengthy L. Thus we may regard the class [•] denned above for finitely
generated yl-modules annihilated by some power of / as a notion generalizing 'length'.
Unfortunately, unless / is m-primary, L is not necessarily (0), even if [L] — 0 in KQ(A/I).

However, we have the following fact, which can be easily seen.

Lemma 2.2. Let 0—tL—>M—>N—>Qbean exact sequence in A-mod such that
I C TannTM. Then [M] = [L] + [N] in K0(A/I).

Let A —> B be a homomorphism of commutative rings such that B is module-finite over
A. Regarding the B-module as the ^-module via A —> B, we have a group homomorphism
KQ{B) —¥ K0(A). The next result plays an important role in §5.

Lemma 2.3. Let J be an ideal contained in I such that <JJ = \/I. Then the homo-
morphism KQ{A/I) -> K0(A/J) induced from the canonical surjection A/J —• A/1 is an
isomorphism.

Proof. Let M be an .A/J-module. Then, as y/I = \JJ Q ^/ann^ M, we may consider
the class [M] € K0(A/I), and so we get a homomorphism F{A/J) —¥ KQ(A/I). By
Lemma 2.2 we see that it induces a homomorphism KQ{A/J) -» Ko(A/I), which is the
inverse homomorphism of K0(A/I) —> K0(A/J) stated in the assertion. •
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We shall mainly use Lemma 2.3 in the case where J is a reduction of /.
Now we proceed to the next topic in this section. Let G be an additive group. For

a function / : Z -4 G, we define its difference, A/ : Z -» G, by setting A/(n) =
f(n) — f(n — 1) for n € Z. The i times iterated A-operator will be denoted by A* and
we further set A 0 / = / . For functions f,g : Z -> G, / + g and —/ are functions denned
by setting (/ + g)(n) = f{n) + g(n) and (—f)(n) = —f(n) for n e Z . We write / = g if
/(n) = s(n) for all n » 0. Notice that Afe(/ + j) = A*/ + Afeg and Afc(-/) = - A * /
for all k ^ 0. Now we define the degree of / as follows

J sup{/c | A f c / ^ 0}, if / ^ 0,
deg / = < _

where we denote by 0 the function sending all n s Z to 0 £ G. Obviously, we have
deg A/ = deg / - 1 if / ^ 0, deg(-/) = deg / and

deg(/i H h / r ) < sup{deg / ] . , . . . , deg fr}.

Lemma 2.4. The following conditions are equivalent for an integer d ^ 0 and a
function f : Z -» G with / # 0.

(1) deg/ = rf.

(2) There are elements £oi £i > • • • > £d £ G such that ^ ^ 0 and

n4

for n » 0.

When this is the case, the elements £o>£i> • • • >£d are uniqueiy determined by f.

Proof. This is quite well known in the case where G = Z and the same proof works
in this general situation. The uniqueness of £oj£i) • • • ,£d is a direct consequence of [4,
Proposition 2.3]. D

For a function / : Z -> G with 0 < deg/ = d < oo, we denote by Q ( / ) (i = 0 , 1 , . . . , d)
the element & stated in Lemma 2.4. We further set Cj(/) = 0 for i > d. In the case where
/ = 0, we set d(f) = 0 for all 0 < i € Z. It is easily seen that Cj(A/) = Ci+\{f) for all
i > 0. Therefore we have the following lemma.

Lemma 2.5. For a function f : Z —)• G with deg/ = d, we have Q ( / ) = Adf(n) for
n»0.

Let / : Z -> G be a function and a an integer. We define a function f[a] : Z -¥ G by
setting /[a](n) = f(n+a) for n e Z . W e can show that A^/fa]) = (AV)H for all i ^ 0.
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Hence we get deg f[a] = deg / . Moreover, we have deg(/ — f[a}) ^ deg A/. In fact, if a <
0, we have g := f - f[a] = A / + A/[-l]H hA/[a + l] andsodegp < sup{deg A/[/3] |
a < P ^ 0}, from which we get deg g < deg A / since degA/[/3] = deg A/ for all {3. If
a > 0, then setting h = f[a], we have deg(/—f[a}) = deg(/i—h[—a)) ^ deg Ah = deg A/.
If a = 0, the required inequality is obvious.

Lemma 2.6. Let f : Z -¥ G be a function with 0 ^ deg/ = d < oo. Let a be an
integer. Then cd(f[a\) = cd(f).

Proof. Let X be an indeterminate. We set

Pi(X) =

for 0 < i ^ d. Then Pi(X) is a numerical polynomial of degree i (cf. [11, §20]). Hence,
by [11, (20.8)], there are integers a,io,an,... ,au such that

Notice that we may choose ado, <idi, • • • > o-dd so that add = 1 since

is a numerical polynomial of degree d—1. Therefore, for n >̂ 0, we have

d

i=0

where £j = Yli=j a»ict(/)- This implies cd(f[a)) = cd(f), which is the required equality.

•
The rest of this section is devoted to reviewing the theory of Euler-Poincare charac-

teristic of Koszul complexes due to Auslander and Buchsbaum [1] and Fraser [4]. Let
ai,a2,- •• ,ae (t ^ 1) be elements in A. We set I = (ai,a,2,... ,ae)A. We denote by
Hi(a\,..., ac M) the ith homology module of the Koszul complex K.{a\, • • •, ac M).
Because / • Hi(ai,...,ae;M) = (0), the class [Hi(cn,... ,ac M)} € K0(A/I) can be
considered for any i. We set

and call it the Euler-Poincare characteristic.
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P r o p o s i t i o n 2.7 (cf. [1, P r o p o s i t i o n 3 .2] ) . Let 0 - 4 L - > M - » A T - ^ 0 b e a n
exact sequence in A-mod. Then we have

XA{O.\, ...,ae;M) = XA(O.I, ...,ae;L) + XA(<II, ...,ae; N).

B y P r o p o s i t i o n 2 .7 w e see t h a t t h e r e e x i s t s a g r o u p h o m o m o r p h i s m X A ( « I , • • - , & < ) :
K0(A) -» K0(A/I) sending [M] to XA(GI, • • • ,&e\M) for M E A-mod.

Proposition 2.8 (see [1, Proposition 3.2] and [4, Proposition 1.2]). Let M G
A-mod. IfainM = (0) for some n > 0, then XA(O-I, • • •, ac M) = 0.

Proposition 2.9 (see [1, Theorem 3.3] and [4, Corollary 1.7]). Let Me A-mod.
If I ^ 2, we have

where A = A/a\A and a* denotes the class of di in A.

Proposition 2.10 (see [4, Corollary 1.7]). Let 0 < k < £. Then the following dia-
gram

K0{A) XA(ai'-'afc)) K0(A)

II | . _ ,

K0(A) XA(ai a<)) K0(A/I)

is commutative, where A = A/(a\,... ,ak)A and al denotes the class of en in A.

3. Superficial element and analytic spread

In this section we recall the notions of superficial element (cf. [11]) and analytic spread
(cf. [12]), generalizing them slightly. Let G be the associated graded ring G(I) =
©n^o /" / / "+! . Let M G A-mod and let X be the associated graded C?-module G{I, M) =
© n ^ 0 / " M / / " + 1 M . For an element a G / , we set a* = a mod/2 G G\. All of the results
in this section are well known in the case where M = A. We omit the proofs for them
because they do not require new ideas.

Lemma 3.1. Let a € I. Then the following conditions are equivalent.

(1) There exists c> 0 such that (In+1M :M a) f] ICM = InM for alln> c.

(2) There exists c > 0 such that a* is a non-zero divisor on X\^c := © n > c InM/In+1M.

(3) IfG+£Qe AssG X, then a* g Q.

We say that a G / is a superficial element of / with respect to M if one of the conditions
of Lemma 3.1 is satisfied. Because we assume that A/m is infinite, the existence of a
superficial element is always guaranteed by condition (3) of Lemma 3.1.

https://doi.org/10.1017/S0013091500020708 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020708


80 K. Nishida

Lemma 3.2. Let a be a superficial element of I with respect to M. Then, for n ~S> 0,
we have

(1) aMf]InM = a / n " 1 M;

(2) In+1M :Ma = ((0) :M a) + InM;

(3) ( ( 0 ) : M a ) n / n M = (0);and

(4) J»((0) :M a) = (0).

Lemma 3.3. Let a be a superficial element of I with respect to M. Then the sequence

0 -> (0) :M a -> M/FM A M/F+1M -> M/F+1M -» 0

is exact for n > 0 , where M = M/aM.

We denote by £(/, M) the Krull dimension of the G-module X/mX. In particular, we
write •£(/) = £(/, A), which is called the analytic spread of / (cf. [12]). In general, we
have 0 ^ £(I,M) ^ £(!)• Because we are assuming that A/m is infinite, £(I) = (J,A{J)

for any minimal reduction J of / . The inequalities ht^ / ^ £(I) < min{dimA,/x>i(/)} are
valid for any ideal / in A. Hence, if / is m-primary, t{I) = dim A. We note for future
use that if / = (a i , . . . , ae)A and £{I) = £, then £((oi, . . . , ak)A) = k for 0 < k ^ I. In
fact, setting /C = (ai , . . .,ak)A and L = (a f c + i , . . . ,ae)A, we have t{I) < ^(/f) + £{L)
(cf. [12, § 8, Lemma 1]), t(K) < fc and t{L) ^£-k, which imply 1{K) = k. In particular,
if a i , . . . , a*, is a subsystem of parameters (ssop) for A, then £((ai,..., a,k)A) = fc. We
further notice that if / = (a i , . . . , at)A and o i , . . . , â  is a d-sequence on A (cf. [7]), then
£(I) = £ because, by [8, Theorem 3.1], G/mG is isomorphic to a polynomial ring over
A/m with £ variables.

Lemma 3.4. If £(I, M) = 0, then I C ^/amu M.

Lemma 3.5. Suppose £(I, M) > 0. Then there exists an element a £ I satisfying the
following conditions.

(1) a is a part of a minimal system of generators for I.

(2) a is a superficial element of I with respect to M.

(3) £(I, M) = £{I, M) - 1, where M = M/aM.

4. Hilbert—Samuel function

For M E A-mod, we define the function xY '• z ~* Ko(A/I) by setting x^(n) =
[M/In+1M] and call it the Hilbert-Samuel function of M with respect to / . We simply
denote xf by xi-
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Theorem 4.1. Let M G A-mod. Then

maxldim^ MQ \ Q G Min^ A/I} ^ degxf < £(I, M).

In particular, we have

Here we notice that dim^ M = -oo if M = (0).

Lemma 4.2. If degxf1 < 0, then d i m ^ MQ < degxf for any Q G Min^ A/1.

Proof. Let us first consider the case where degxf = — 1. This means that x f — 0J
so [M/InM] = 0 in K0(A/I) for n » 0. Hence, if Q £ Min^ A/1, we have, for n » 0,
MQ = IUMQ as [MQ//nMQ] = 0 in K0(AQ/IAQ) and as AQ/IAQ is Artinian, so
MQ = (0) by Nakayama's Lemma. Suppose next that deg xY = 0. Then, as &x¥ = 0>
[M/In+1M] = [M/InM] in K0(A/I) for n > 0. Hence, if Q G Min^ A/7 and n » 0, we
have In+l

 MQ = IUMQ and so IUMQ = (0), which means dim,iQ MQ ^ 0. Thus we have
proved the required assertion. D

Proof of Theorem 4.1. We prove by induction on £(I,M). Let t{I,M) = 0. Then
InM = (0) for n » 0 by Lemma 3.4, so xf{n) = [M] for n > 0, which implies
degX/* ^ 0. Hence we get the required inequalities by Lemma 4.2. Now let £(I, M) > 0.
Again by Lemma 4.2 it is enough to consider the case where degxf ^ 1- By Lemma 3.5
we can choose an element o £ / s o that a is a superficial element of I with respect to M
and £(I,M) = £(I,M) - 1, where M = M/aM. Then, by Lemma 3.3, we have an exact
sequence

0 -> (0) :M a -> M/TM A M/In+1M -> M/In+lM -> 0,

for n » 0 . Notice that the class [(0) \M a] can be defined in KQ{A/I) by condition (4)
of Lemma 3.2. Thus x f (n) = A*f (n) + [(0) :M a] for n » 0, and so x f = Axf + / ,
where f : Z -* K0(A/I) is the constant function such that /(n) = [(0) \M a] for any
n € Z. Because degx/* ^ 1 and deg/ < 0, we see

\-lorO,

Let Q G Min,4 A/1. Then, by the hypothesis of induction, we have dimAQ MQ ^ A*«^'M

and so

3 MQ < dim^Q MQ + 1

^ degxf+ 1
^ degxf.
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Moreover, when deg xf ^ 2, we get

degxf =degXf+ 1

Because we are assuming that £(I,M) > 0, the inequality degxf ^ £[I,M) holds,
obviously, if degxf = 1- Thus we have completed the proof. •

Definition 4.3. Let M <E A-mod. We set ei(I,M) = ct{xf) E K0{A/I) for i > 0.
Then e^I, M) = 0 for i > £(I, M) and

in K0(A/I) for n » 0.

Proposition 4.4. Let M € >l-.mod. Then we have the following assertions.

(1) Let a be a superficial element of I with respect to M. We set M = M/aM. Then
ei(I,M) = e i + i ( / , M ) for any i ^ 1 and eo(I,M) = ei(J,M) + [(0) : M a].

(2) e i(J, M ) Q = ei(IAQ, MQ) for any Q € V(I).

Proof.

(1) Let n » 0. Then, by Lemma 3.3, there exists an exact sequence

0 -> (0) : M a -> M/TM A M/In+1M -> M/In+1M -> 0,

from which we see

X?(n) = Xf (n) - x f (n - 1) + [(0) :M a]

Thus we get the required equalities.
(2) Because
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for n » 0, and the localization K0(A/I) -» KQ(AQ/IAQ) is a group homomorphism, we
have

for n » 0. Hence, ei(IAQ, MQ) = ei(I, M)Q for any i ^ 0. •

Corollary 4.5. Let M G 4-inod and iet Q € V(7). If ei(I,M)Q ^ 0, then i <

Proposition 4.6 (see [4, Proposition 3.1]). Let I be generated by an M-regular
sequence of length m. Then em(I, M) = [M/IM] and ei(I, M) = 0 for any i^m.

Proposition 4.7 (see [4, Theorem 2.6]). Let I be minimally generated by a\,a2,
... ,am- Then, for any M 6 A-mod, we have AmXi1(n) = XA(<1I,. .. ,am;M).

Corollary 4.8. Let M € A-mod. If I is minimally generated by ai,a2,..., am and
1(1, M) < m, Then X A ( O I , . . . , am; M) = 0.

5. Multiplicity

In this section we concentrate our attention on the 'top term' in the expression of a
Hilbert-Samuel function using binomial coefficients. Throughout this section d = dim A,
£ = 1(1) and M € A-mod.

Definition 5.1. We set e/(M) = e^(I,M) and call it the multiplicity of M with
respect to / .

Proposition 5.2. e/(M) = A'xf1 (n) for n » 0. Hence e/(M) = 0 if 1(1, M) < I.

Proof. This follows immediately from Lemma 2.5. Q

Proposition 5.3. Letm ^ 1. Then, identifyingK0(A/1) withK0(A/Im) through the
isomorphism K0(A/I) —t K0(A/Im) induced from the canonical surjection A/Im -4
A/1, we get ejm(M) = me • e/(M).

Proof. Let us denote by a the isomorphism K0(A/I) —t K0(A/Im). We notice that
a(xff(mn + m — 1)) = Xrn(n) for any n ^ 1. Let X be an indeterminate. We set

p<X\-Fi(X) -

for 0 < i ^ I. Then Fi(X) is a numerical polynomial of degree i. Hence, by [11, (20.8)],
there exist integers a^,an,...,an such that

Ft(X) =
3=<
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In particular, we can choose ago, ag\,..., age, so that agg = me since

G(X):=Fe(X)-me(X +

is a numerical polynomial of degree £ - 1. We send, by a, both sides of the equality

e
• m — i) =

i=0

in K0(A/I) for n » 0, and get

i = 0

= E ay f";!"7') •*(*(/, M))
\ J /

where ^ = J2i=jaija(ei(I>M)). Therefore, we get ejm(M) = me • a(e/(M)), since
£(Im) = £(I) = £, which is the required assertion. D

P r o p o s i t i o n 5.4. Let I = (ai,.. .,ae)A and a\,...,ae is an M-regular sequence.
Then e / ( M ) = [M/IM].

Proof. This follows immediately from Proposition 4.6. •

Proposition 5.5. Let Q € V{I). If£(IAQ) = m, then eIAQ(MQ) = em{I,M)Q.

Proof. By definition, eiAQ{Mo) = em{IAQ,MQ). Hence the assertion follows from
assertion (2) of Proposition 4.4. D

Let us denote by e\ (M) the ordinary multiplicity of M with respect to an m-primary
ideal / . Then, as is noticed in the introduction, when I is m-primary, e/(M) is sent to
e'j(M) by the length function Ko(A/I) - ^ Z. More generally we have the following.

Lemma 5.6. Let Q S Min^ A/1 with ht^ Q = s. Let

es(I,M)= Yl rnP-[A/P] (mP G Z)

in K0(A/I). Then mQ = e',AQ{MQ).
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Proof. Because £(IAQ) = dim AQ = s, &IAQ(MQ) = es(I, M)Q by Proposition 5.5. On
the other hand, es(I, M)Q=mQ-[AQ/QAo\ by the assumption. Thus eiAQ{MQ) = m.Q •
[AQ/QAQ]. We send both sides of this equality by the length function KQ{AQ/IAQ) —I

Z, and get the required assertion. D

Lemma 5.7. Let N be an A-submodule of M such that I C y^arni^ M/N. If£>0,
we have ej(M) = ei(N).

Proof. By the lemma of Artin-Rees, there exists an integer r > 0 such that

InM f]N = r~r{IrM P| N),

for any n > r. Choosing r big enough, we may assume FM C iV. Then InM f]N =
In~rN for anyn > r. Now we consider, for n > r, the exact sequence

0 -> N/r~rN - j . M/TM -+ M/N -»• 0,

which implies that xf = XT'!"7"] + /> where / : Z —> K0(A/I) is the constant function
such that f(n) = [M/N] for any n £ Z. Therefore, we have

e/(M) = ceixf1)
= ct(x"[-r] + f) (by [4, Proposition 2.3])

= Q(xf) (by Lemma 2.6)

and the proof is completed. D

Proposition 5.8. Let J be a reduction of I. Then, via the isomorphism KQ(A/I) —t
KQ(A/J) induced from the canonical surjection A/J —> A/I, we have e/(M) = ej(M).

Proof. We denote by a the isomorphism K0(A/I) -̂ -> KQ{A/J). If £ = 0, we have
a(e/(M)) = ej(M) = [M]. Let £ > 0 and let r > 0 be an integer with Ir+1 = JF.
Then, for any n » 0, we have [M/F+rM] = [M/JnFM] = [M/FM] + [FM/JnFM\
in K0(A/J), which means aoxf [r] = xljM + / i where / : Z —> K0(A/J) is the constant
function with f(n) = [M/FM] for any n € Z. Therefore, we have

= <r(ce(xft[r})) (by Lemma 2.6)

= Q(<7oXf[r])

= ce(xjrM + f) (by [4, Proposition 2.3])
M) (as£>0)

ej(FM)

ej(M) (by Lemma 5.7).
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Thus we get the required equality. •

By virtue of Lemma 2.5, Proposition 4.7 and Proposition 5.8, we immediately get the
following.

Theorem 5.9. Let £ ^ 1 and J = (a\,a2,..., at)A be a minimal reduction of I. Then
e/(M) = XA(«I, •••;««; M) via the isomorphism K0{A/I) -^-> K0(A/J).

The next proposition is a direct consequence of Proposition 2.7, Proposition 5.8 and
Theorem 5.9.

Proposition 5.10. Let 0—>L—>M—>N—iQbean exact sequence in A-rnod. Then

By virtue of Proposition 5.10, we get the group homomorphism e/ : KQ(A) —t KQ(A/I)

sending [M] to e/(M) for any M € >l-mod. If J = (oi , . . . , ae)A is a minimal reduction
of I, the following diagram

KQ(A) -5 i -> K0(A/I)

II i
KQ(A) XA(ai'-'°^) K0{A/J)

is commutative, where the vertical arrow denotes the isomorphism induced from the
canonical surjection A/ J —> A/I.

Proposition 5.11. Let

QeSpecA

in KQ(A). Then
e/(M) =

QeSpec A
e(i+Q/Q)=e

Proof. Notice that 0 ^ £{I + Q/Q) = £{I, A/Q) < £ for all prime ideals Q and
ei(A/Q) = 0 if £(I, A/Q) < £ by Proposition 5.2. Therefore, we get the required equality
since

a
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When / is m-primary, Proposition 5.11 implies the additive formula:

e'j(M) = Yl lengthy MQ '
QeAssh A

because TUQ = lengthy MQ for Q 6 Min A, £ = d and £(I + Q/Q) = dim A/Q.

Proposition 5.12. Let J = (ai,..., ae)A be a minimal reduction of I and 0 ^ k ^ L
We put K = (oi,. . . ,ak)A. If£(I/K) = I - k, then e/(M) = eI/K(eK(M)).

Proof. As the assertion is obvious when k = 0 or k = £, we consider the case where
0 < k < £. Let A = A/K and a7 be the image of a, in A Notice that £{K) = k,
and JA = (a/t+i,... ,ae)A is a minimal reduction of I A. Then, by Theorem 5.9 and
Proposition 2.10 we have

e/(M) =

i , • • • ,al)(XA(ai,. ..,ak; M))

, • • • ,ae)(eK(M))

= elA(eK(M)).

Thus we get the required equality. •

Let us notice that even if I = (a\,..., ag)A, £{I/{a\,..., afc)) < £ — k can happen for
some 0 < k < £. For example, let A = F[[X,Y]\ be the formal power series ring over
a field F and / = (X2,XY)A. Then £{I) = 2. However, £{I/X2A) = 0 as I/X2A is
nilpotent. On the other hand, if a\,..., ae is an ssop for A or a d-sequence, then the
equality £(I/(ai,..., ak)A) =£-k holds for all 0 ^ k ^ t.

Corollary 5.13. Under the same notations and assumptions as Proposition 5.12, let

eK(M)= J2 rnQ-[A/Q] (mQ € Z)
Q€V(K)

in K0{A/K). Then

ej(M) = J2 mQ • eI/K(A/Q).
Qev(K)

e(i+Q/Q)=e-k

Proof. By Proposition 5.12, we have

e/(M) = e]/K(eK(M))

= ^2 mQ •

However, eI/K(A/Q) = 0 if £{I+Q/Q) = £(I/K, A/Q) < £-k. Hence we get the required
equality since £{I + Q/Q) ^ £ - k for all Q 6 V(K). D
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When / is m-primary, by Corollary 5.13 we get the associativity formula (cf. [11,
Theorem (24.7)]). In fact, in that case, £ = d and a i , . . . , a<* is a sop for A. So £{I/K) =
dim A/K = d-k. Furthermore, £(I + Q/Q) = A\mA/Q for all Q € Spec A. Therefore,
as m,Q = e'KA (MQ) for all Q € Min^ A/K by Lemma 5.6, we have

e/(M)= Y. e'KAQ{MQ)-eI/K{A/Q).
QeAsshA A/K

Now, we send both sides of the equality above by the length function Ko(A/I) -—> Z,
and get the associativity formula.

As is well known, when / is m-primary, we always have inequalities e.'j{M) ^ 0 and
e'j(M) ^ lengthy M/JM for any minimal reduction J of A. Now we generalize these
facts. Let K0(A/I)+ denotes the subset of K0(A/I) consisting of the classes of finitely
generated ^//-modules.

Proposition 5.14. We always have the following assertions:

(1) e/(M) € K0(A/I)+; and

(2) [M/JM] - e/(M) e K0(A/I)+ for any minimal reduction J of I.

Proof. By Theorem 5.9, we may assume HA(I) = £ (hence I = J in assertion (2)).
We will prove by induction on £. If t = 0, then / = (0), so e/(M) = [M] and the
assertions are obviously true. Suppose £ = 1. We write / = aA. Then, by Theorem 5.9,
e/(M) = \A(a;M) = [M/oM]-[(0) :M a], from which we get [M/aM]-ei{M) = [(0) : M

a] € K0(A/I)+. Because (0) :M a1 C (0) :M «t + 1 for all i, there exists_r > 0 such that
(0) : M ar = (0) : M an for any n > r. This implies that arM/ar+1M - ^ - 4 anM/an+1M
is an isomorphism for n ^ r. Then, setting i? = arM/ar+xM and L = M/arM, we have

(n) =

= [M/arM] + [aTM/ar+1M] + ••• + [anM/an+lM]

n +
1

for n ^ r. Hence e/(M) = [E] € KQ{A/I)+. NOW let £ ̂  2 and assume that assertions (1)
and (2) are true for any ideal whose analytic spread is less than £. If £(I, M) < £, then
e/(M) = 0 by Proposition 5.2 and the assertions are obvious. So let us consider the case
where £(I, M) = £. We choose an element a & I satisfying the conditions of Lemma 3.5.
We set A = A/aA, I = IA and M = M/aM. Of course, £{I) ^ nA{I) = £ - 1. On
the other hand, £{I) = £(I, A) ^ £(I, M) = £ - 1. Hence ^(7) = £ - 1, and so e/(M) =
ef_i(7,M). Then we get ej{M) = e/(M), since e«_i(7,M) = ee-i(I,M) = ee(I,M) by
Proposition 4.4. Therefore, by the hypothesis of induction we easily see that assertions (1)
and (2) are true. •
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Proposition 5.15. Let I = {a\,...,ae)A and let n\,...,ne be positive integers. We
assume ̂ ((a™1, • • •, o,"e)A) = L Then, through the isomorphism

K0(A/I)-HC0{A/{a?\...,a?)A),

we have
( \ , ^ ) • nt • e/(M).

Proof. By Theorem 5.9 and [4, Corollary 1.12] we have

D

The next result is a generalization of the Lemma of Lech. But in order to state it, we
have to fix one more notation. Let m be a positive integer and

/ : Z x • •• x Z -> G

a function, where G is an additive group. For 1 < i ^ m, we define

AJ : Z x • • • x Z -> G
m times

by setting Ai/(ni , . . . ,m,... ,nm) = / ( n i , . . . ,rii,... ,nm) - / ( m , . . . ,ni - 1,... , n m ) .

Proposition 5.16. Let I = (a\,..., a^)j4. We assume that

for all positive integers n\,..., ne and 0 < fc ^ £. Let

f : Zx---xZ£-> K0(A/I)

t times

be the function such that f(ni,... ,ne) = [M/ia™1,... ,a%e)M]. Then we have

A1A2---Aef(n1,...,ne) =

for ni, • • •, ne > 0.
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Proof. We will prove by induction on £. If I = 1, the assertion is a special case of
Proposition 5.2. Let £ ^ 2. We fix ni > 0 for a moment. We set A = A/a™1 A and
M = M/a^M. It is easy to see that

t{{<%\.. .,a?)A/{a?,..., an
k")A) = £ - 1 - k,

for all positive integers ra2, • • • ,ne and 1 ^ k ^ t (the denominator is (0) when k — 1).
Let

g : Z x - - - x Z -> ̂ ( ^ / ( a ^ 1 , a2,. . . , a«)4)

£ - 1 times

be the function such that g(ri2,..., n^) = [M"/(a22,..., a"')M]. Then, by the hypothesis
of induction, we have

Ai • • • A«_iff(n2, • • •, nt) = e(a2> ^ ^ ( M )

in A"o(A/(o"1,a2,... ,ae)A) for ri2,---,ne ^> 0. Now we further set A = A/aiA and
M = M/a\M. Then, considering the commutative diagram

) K0(A/(aa
1\a2,...,ai)A)

i # i
K0(A) e ( a 2 '-°< M) K0(A/I),

where the vertical arrows denote the isomorphisms induced from the canonical surjections
A —> A and A/(a™1, a2 , . . . , ai)A) —>• ^4//, we get

A2 • • • A/ / (m, n 2 , . . . , n<) = e^^.

for n 2 , . . . , n^ > 0 in KQ{A/I). On the other hand, as ^(aiA) = 1,

[Af/a^M] = ri! • eOlX(M) + eo(oi^, M)

in î o(^4) for ni » 0. Hence, setting ^ = e^a2i ae^(e0(aiA, M)), we have

for ni ^> 0. In conclusion we get

A1A2---Aef(n1,n2,...,ne) =e/(M),

for 7ii, n 2 , . . . , ne » 0. Thus we have completed the proof. •
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So far we have verified that our multiplicities actually enjoy the same properties as the
ordinary ones. Now it should be required to consider the influence of the value e/(M)
on / and M themselves. As the first step of the study in this aspect, the following two
results are concerned with when ej(A) = [A/1].

Proposition 5.17. Let A be a Cohen-Macaulay ring. Then ej(A) = [A/1] if and only
if I is generated by a regular sequence.

Proof. Suppose e/(A) = [A/1). Let Q £ MinAA/I. Then eI{A)Q = [AQ/IAQ] ^ 0
since it is mapped by the length function KQ{AQ /1 AQ) —> Z to lengthy AQ/IAQ ^ 0.
Because e/(A) = et(I, A), we get £ < ht^ Q by Corollary 4.5. Hence I < ht^ / , and so
£ — Y&A I as £ ^ htA I in general. Let J be a minimal reduction of / . Notice that, as A is
Cohen-Macaulay, J is generated by a regular sequence, from which we get ej(A) = [A/J]
by Proposition 4.6. Consequently, the equality [A/1] = [A/J] follows from ej(A) =
ej(A). Then, for any Q 6 MinA A/J = Min^ A/I, we have [AQ/IAQ] = [AQ/JAQ],

which implies lengthy AQ/IAQ = lengthy AQ/JAQ and so IAQ = JAQ. Therefore
I = J. Thus we see that / is generated by a regular sequence. The converse is a direct
consequence of Proposition 4.6. D

Proposition 5.18. Let A/Q be a regular local ring. Assume ASSJ4 = Assh^4, where
A is the completion of A. Then eQ(A) = [A/Q] if and only if A is regular.

Proof. Suppose eQ(A) = [A/Q]. By the same reasoning as in the proof of Propo-
sition 5.17, we have £(Q) = ht>i Q =: s. Let J = ( a i , . . . , as) be a minimal reduction of
Q. We set A = A/J. Because A is quasi-unmixed by the assumption, it is equidimen-
sional and catenary, so dim A = d — s. Now choose the elements a s + i , . . . ,a<j 6 m so
that ( a s + i , . . . , ad)A is a minimal reduction of mA. Then, as a i , . . . , o^ is a sop for A,

by Propositions 5.8 and 5.12 we see that

On the other hand, we have emA(ej(A)) = emA(eQ(A)) = emA(A/Q) = em/Q(A/Q).
Thus the equality e(aii...iad)A(yl) = em/Q(A/Q) follows. This implies e'(ai ad)A{A) =
e'm/Q(A/Q)> a n d s o e'(Ol ad)A(A) = l s i n c e AIQ i s regular. Then e'm(A) = 1 since
0 < e'm(A) ^ e'(ai ad)A(A). In conclusion, A is regular by [11, Theorem (40.6)]. Con-
versely, if A is regular, then Q must be generated by a regular sequence since A/Q is
regular. Hence CQ{A) = [A/Q] by Proposition 4.6 and the proof is completed. D

If / is equimultiple, then ei(A) ^ 0 by Theorem 4.1. The next proposition provides us
with examples of non-equimultiple ideals whose multiplicities do not vanish.

Proposition 5.19. Let A be a Gorenstein ring and Q G Spec>l such that A/Q is a
Cohen-Macaulay normal domain. We assume that /J.A{Q) = ht,4 Q +1 and AQ is regular

https://doi.org/10.1017/S0013091500020708 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020708


92 K. Nishida

(such a prime ideal is said to be an almost complete intersection (cf. [5, Definition (2.1)])).
Then we have the following assertions.

(1) eQ(A) = [A/Q] — [KA/Q], where KA/Q denotes the canonical module of A/Q.

(2) If A/Q is not Gorenstein, then eQ(A) ^ 0. The converse is true when dim A/Q = 2
and [A/m] = 0 in K0{A/Q).

Proof. (1) We put s = htAQ. Because htAQ ^ £{Q) < /M(<2)>
 we have £{Q) = s

or s + 1. However, since £(Q) = s implies HA{Q) = s (cf. [3, Theorem]), the equality
£(Q) = s + 1 must hold. By [5, Lemma (2.5)], there exist elements a\,...,as,b of A
satisfying the conditions

(i) Q = (ai,...,as,b)A and QAQ = {au... ,as)AQ;

(ii) ai,... ,as is an yl-regular sequence; and

(iii) K :A b = K :A b2, where K = (oi , . . . , as)A.

Then, by Proposition 4.6 and condition (ii) above, we have ex (A) = [A/K]. Moreover,
(ii) and (iii) imply that a i , . . . , as, b is a d-sequence, and so, by Proposition 5.12, setting
A = A/K, we get

Let n > 0 and y : A A bnA/bn+1A = K + bnA/K + bn+1A. If x e Kercp, there exists
y e K such that bnx = bn+1y mod K. Then x - by E K :A bn. Condition (ii) implies
that K :A bn = K :A b for all n ^ 1. Hence x - by e K :A Q as K :A b = K :A Q,
so a; € Q + (K \A Q)- Conversely, Q + (K :A Q) C Ker<£ is obvious. Thus we get
Ker v = Q + {K :A Q). This implies bnA/bn+1A S E, where E = A/Q + (K :A Q). As a
consequence, for any n ^ 0, we get

XbA(n) = [A/bn+lA)

Therefore, ebA{A) = [E]. Now we look at the exact sequence

0 -> Q + (K :A Q)/Q

In order to prove Q + (K :A Q)/Q = KA/Q, we first notice the equality (K :A Q) f]Q =
K, which is verified as follows.
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Because, obviously, (K :A Q) H Q 2 K, it is enough to show (Kp :Ap QAp) f] QAp =
KAp for all P € Ass,t A/K. But this is trivial if Q g P. Even if Q C P, we have Q = P
as ht,4 P = s, and so the required equality holds by condition (i). Now we get

Q + (K:A Q)/Q ̂ K:A Q/(K :AQ)nQ

= K:A Q/K

= KomA/K(A/Q,A/K).

Because A/K is Gorenstein, by [9, Satz 5.9 and Korollar 5.14]

KA/Q^RomA/K(A/Q,A/K).

Thus the exact sequence
0 -»• KA/Q -> A/Q -> E -» 0

is induced. Hence [E] = [A/Q] - [KA/Q], and so we get assertion (1).
(2) Let us consider the group homomorphism Ko(A/Q) - > Z 0 Cl(A/Q) stated in § 1.

This homomorphism maps eQ(A) to (0, — C\(KA/Q)). Notice that A/Q is Gorenstein if
and only if C\{KA/Q) = 0 in C\{A/Q). Therefore, if A/Q is not Gorenstein, then CQ(A) ^
0. In the case where dimj4/<2 = 2 and [A/m] = 0 in K0(A/Q), the homomorphism
above is isomorphic, which implies A/Q is not Gorenstein if eg (A) ^ 0. Thus we have
completed the proof. •

The prime ideal in the formal power series ring F[[X, Y, Z, U, V, W}} over a field F
generated by the maximal minors of the matrix

fX Y Z\
\u v w)

is a typical example of Q in Proposition 5.19 and A/Q is not Gorenstein.
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