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WAVELET MULTIPLIERS AND SIGNALS
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Abstract

The Schatten-von Neumann property of a pseudo-differential operator is established by
showing that the pseudo-differential operator is a multiplier defined by means of an ad-
missible wavelet associated to a unitary representation of the additive group R" on the
C*-algebra of all bounded linear operators from L2(R") into L2(K"). A bounded linear
operator on L2(IR) arising in the Landau, Pollak and Slepian model in signal analysis is
shown to be a wavelet multiplier studied in this paper.

1. Introduction

Let a 6 L°°(IR"). Then we define the linear operator Ta : L
2(K") -> L2(R") by

Tau = &-xo&u, u e L2(K"),

where & and &~x are the Fourier transformation and inverse Fourier transformation
respectively. Throughout the paper, the Fourier transform &u, sometimes denoted by
w, of a function u in L2(R"), is defined by

= lim (
R-KX3

where XR IS m e characteristic function of the ball with centre at the origin and radius

n/2 f e-u*= (2nyn/2 f e-u*X*(xMx)dx,
J

and the convergence of (XRU^TIO &U is understood to be in L2(R"). It is well-known
that Ta : L^K") ->• L2(Kn) is abounded linear operator.
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Let <f> be any function in L2(R") n L°°(W) such that \\<t>\\2 = 1, where ||||2 is
the norm in L2(R"). The aim of this paper is to make precise the definition of the
pseudo-differential operator <j>Ta<i> : L2(l") -*• L2(R"), where a is a function in
LP(W), 1 < p < oo, and to prove that the resulting bounded linear operator is
in the Schatten-von Neumann class Sp. To this end, we first prove in Section 2 that
if a e L°°(IR"), then the pseudo-differential operator <pTa<j> : L2(K") - • L2(W)
can be realized as a wavelet multiplier associated to a unitary representation n :
OK" - • B(L2(R")) of the additive group R" on the C*-algebra of all bounded linear
operators from L2(ffiL") into L2(K"). This connection explains the impetus for the
study of the pseudo-differential operator <pTa4> : L2(K") ->• L2(W) and also reveals
that the technique in the paper [3] by He and Wong can be exploited in this paper.
We show how this can be done in Sections 3 and 4. In Section 5, we show that,
by choosing the admissible wavelet 0 and the symbol a appropriately, the wavelet
multiplier <t>Ta<j) : L2(K) —>• L2(R) is unitarily equivalent to a scalar multiple of a
very basic bounded linear operator on L2(l) arising in the Landau, Pollak and Slepian
model in signal analysis.

2. The wavelet connection

Let n : W -> B(L2(Rn)) be the unitary representation of the additive group 1" on
the C*-algebra B(L2(R")) of all bounded linear operators from L2(Rn) into L2(K")
defined by

x, f € R", (2.1)

for all functions u in L2(R").

PROPOSITION 2.1. Let 0 be any function in L2(W) n L°°(Kn) JMC/I r/*ar H0H2 = 1.
Then, for all functions u and v in the Schwartz space 5?,

(27T)-" f («, nG)4>XnQ)4>, v) d% = (0M, 0v), (2.2)

where (,) is f/ie inner product in L2(R").

PROOF. Using the Plancherel theorem and the fact that (7r(£)$)^= T_?0, where

for any measurable function/ on K", we get

= («*£)($), (2.3)
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and

, W) = (0 * tfr)($), (2-4)

for all £ in OS", where

rj/(x)=(j>(x), * e R", (2.5)

and

= f /(£ -

for any function/ in L2(R"). Thus, by (2.3), (2.4), (2.5), the Plancherel theorem and
the fact that

if * §r= (2nT/2fg, f,gef, (2-6)

where

f(x) =f(-x), xeR", fey, (2.7)

we get

I («, n{l;)<l>)(n{t-)<l>, v) d$ = (2n)"{4>u, 4>v)

and hence (2.2).

The following proposition gives us more information about the constant (2n)~" in
formula (2.2).

PROPOSITION 2.2. Let <p be any function in L2(K") D L°°(W) such that \\<f>\\2 = 1
and let c$ be the constant defined by

Then

c* = (2n)nUC (2-8)

where ||||4 is the norm in L4(Kn).
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PROOF. Using the Plancherel theorem, (2.3), (2.5), (2.6) and (2.7), we obtain

= (2ny f \4>(x)jr(x)\2dx

REMARK 2.3. In view of Proposition 2.2, we can rewrite (2.2) as

(M, 7r(£)</>)(7r(£)0, V) dl; =
c<t, J R . ii0iir

This reformulation allows us to give an interesting and fruitful comparison of
Proposition 2.1 with the resolution of the identity formula used in the paper [3] by
He and Wong. To wit, let G be a locally compact and Hausdorff group with a left
Haar measure \x. Let X be a separable and complex Hilbert space, the dimension
of which is infinite. We denote the inner product and norm in X by (, )x and ||||x
respectively. Let B(X) be the C*-algebra of all bounded linear operators from X
into X. An irreducible unitary representation n : G —> B(X) is said to be square
integrable if there exists a non-zero element <p in X such that

c*= [ \{(p,n{g)(j>)x\
2d^{g) < oo. (2.9)

Jc
We call any non-zero element <p in X for which (2.9) is valid an admissible wavelet
for the representation n : G -» B(X). Using the theory of square integrable repre-
sentations studied in Grossmann, Morlet and Paul [1,2] and Holschneider [4], among
others, it can be proved that the resolution of the identity formula, that is,

( x , y ) x = — (x,n(g)<p)x(n(g)<t>,y)xdn(g), x , y e X ,
CQ JG

is valid. Thus, for the particular unitary representation n : W ->• B{L2{W)) studied
in this paper, formula (2.2) can be considered as an analogue of the resolution of the
identity formula.

The main result in this section is the following theorem.

THEOREM 2.4. Let a e LOO(K") and let (p be any function in L2(W) n Loo(Kn)
such that II0H2 = 1. If for any function u in 5?, we define Pau by

= (2n)-n f or
JR»

(Pau, v) = (2n)-n f or(?)(M,jr(?)0)(jr(§)0,w)d?t veJ?, (2.10)

then

)u,v), u,vey. (2.11)
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PROOF. Using (2.3), (2.4), (2.5) and the fact that

(fgr= (2ny/2(f *g), f,gey,

we obtain

(Pau, v) = f aG)WufX$)WvrWdS, u,vey. (2.12)

Thus, by (2.12) and the definition of Ta given in Section 1, we get

(Pau, v) = (Ta(fu), xjfv) = ((fTair)u, v) = «<pTa$)u, v), u,ve^,

and the proof is complete.

REMARK 2.5. Had the "admissible wavelet" <j> in (2.10) been replaced by the func-
tion </>o on W given by

<t>o(x) = 1, x € W,

we would have obtained

(Pau,v) = (Tau,v), u,vey,

that is, Pa would have been a "constant coefficient" pseudo-differential operator, or a
Fourier multiplier studied in the book [13] or the papers [14, 15] by Wong. In view
of the fact that the function <f> in the linear operator <j)Ta<i> is the admissible wavelet
in the linear operator Pa, it is appropriate to call the pseudo-differential operator
4>T4>: L2(0S") -> L2(K") a wavelet multiplier.

3. Boundedness

PROPOSITION 3.1. Let a e Ll(Rn) and let 4> be any function in L2(DS") D LOO(K")
such that ||01|2 = 1. If, for any function u in 5?, we define Pau by

p / < 3 1 )

where Pau is given by (2.10) for all functions v in y, then Pa can be extended
uniquely to a bounded linear operator from L2(K") into L2(K"), again denotedby Pa,
and

II^IU<-lklli, (3.2)
c#

where ||||, is the norm in the C-algebra fi(L2(K")), and ||||i is the norm in L'(K").
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REMARK 3.2. The proof of Proposition 2.1 in the paper [3] by He and Wong can
be used to prove Proposition 3.1. Because of Proposition 3.1 and (2.11), it is natural
to define <j>Ta<t> : L2(l") -+ L2(IR"), for any function o in V (Rn), to be the bounded
linear operator \\4>\\\Pa : L2(R") -» L2(Rn). Thus <f>Ta<j) is a scalar multiple of a
variant of a localization operator studied in the paper [3] by He and Wong.

We can now define </>Ta4> : L2(Rn) ->• L2(K"), for any function a in LP(R"),
1 < p < oo. To do this, we use the following theorem which is an analogue of
Theorem 3.1 in the paper [3] by He and Wong.

THEOREM 3.3. Let a e Z/(R"), 1 < p < oo, and let 4> be any function in
L2(R") n L°°(R") such that ||0||2 = 1. Then there exists a unique bounded linear
operator Pa : L2(K") - • L2(K") such that

and

ml

where Pau is given by {2.\X) for all functions u and v in J7, and all simple functions
a on K" satisfying

where /x{- • •} is the Lebesgue measure <?/{•••}, || ||p is the norm in Lp (K"), || ||oo is the
norm in L°°(Rn) and p' is the conjugate index of p.

PROOF. By (2.2), (2.10) and the Schwarz inequality, Pa can be extended uniquely
to a bounded linear operator, again denoted by Pa, from L2(l") into L2(K") and

\\Po\U<\\4>\\2J°\\oo, a€L°°(R"). (3.3)

Thus, by (2.8), (3.1), (3.2), (3.3) and the Riesz-Thorin theorem in, say, Section IX.4
of the book [7] by Reed and Simon, the proof of Theorem 3.3 is complete.

REMARK 3.4. Theorem 3.3 allows us to define <t>Ta^> : L2(R") ->• L2(K"), for any
function a in Lp(IRn), 1 < p < oo, to be the bounded linear operator
L2(IR") -f L2(flS").
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4. The Schatten-von Neumann property

Let X be a separable and complex Hilbert space, the dimension of which is infinite.
Let A : X —> X be a compact operator, and let A* : X -> X be the adjoint of
A : X -*• X. Then the linear operator (A*A)s : X -> X is positive and compact.
Let [ifrk : k = 1, 2 , . . .} be an orthonormal basis for X consisting of eigenvectors of
(A*A)5 : X -> X, and let sk(A) be the eigenvalue corresponding to the eigenvector
irk, k = 1,2 Then the compact operator A : X ->• X is said to be in the
Schatten-von Neumann class Sp, 1 < p < oo, if

<oo.

It can be shown that Sp, 1 < p < oo, is a Banach space in which the norm ||||s is
given by

The Schatten-von Neumann class Soo, by convention, is the C*- algebra B(X) of all
bounded linear operators from X into X.

A detailed study of the properties of the Schatten-von Neumann class Sp, 1 < p <
oo, can be found in Reed and Simon [8], Simon [9] and Zhu [16].

The following proposition is an analogue of Proposition 5.1 in the paper [3] by He
and Wong.

PROPOSITION 4.1. Let <T e V (K") and let <p be any function in L2(K") n L0C(Kn)
such that ||01|2 = 1. Then the pseudo-differential operator <pTa4> : L2(K") -> L2(QT)
defined in Section 3 is in S\ and

REMARK 4.2. The proof of Proposition 4.1 is exactly the same as the proof of
Proposition 5.1 in He and Wong [3] and hence is omitted.

The main result in this section is the following theorem. It is an immediate
consequence of (3.2), (4.1) and the theory of complex interpolation given in Section
2.2 of the book [16] by Zhu.

THEOREM 4.3. Let a e LP(R"), 1 < p < oo, and let 0 be any function in
L2(K") D L°°(W) such that ||0||2 = 1. Then the pseudo-differential operator 0TCT0 :
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L2(K")

Z. He and M. W. Wong

L2(R"), defined in Sections 2 and 3, is in Sp and

41/p \\d>\\2/p'

[8]

5. The Landau, Pollak and Slepian opearator

Let £2 and T be positive numbers. Then we define the linear operators Pn

and QT : L2(R) -» L2(K) by

and

(5.2,

for all functions / in L2(K). Then we can see easily that Pn : L2(K) -> L2(K) and
Qr : L2(K) -»• L2(K) are self-adjoint projections. In signal analysis, a signal is a
function/ in L2(K). Thus, for any function/ in L2(K), the function QTPnf can be
considered to be a time and band-limited signal. Therefore it is of interest to compare
the energy || QrPaf \\\ of the time and band-limited signal QTPnf with the energy
||/ || 2 of the original signal / . Using the fact that Pn and QT are self-adjoint, and the
fact that QT is a projection, we get

= sup

= sup

(QTPaf,QTPnf)
11/ II2

(PaQrPaf,/)
(5.3)

II/II2
: / 6 L2(l) ,

: / eL2(K), | |/ | |2 = l } .

Since PnQrPn • L2(R)

sup QrPnf II2

L2(K) is self-adjoint, it follows from (5.3) that

* 0 J = ||J»oGrPnlL.
iLfiii '

The bounded linear operator PnQrPn • L2(\&) - • L2(K) arising in the study of
time and band-limited signals is called the Landau, Pollak and Slepian operator. See
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the fundamental papers [5, 6] by Landau and Pollak, [10, 11] by Slepian and [12] by
Slepian and Pollak in this connection.

Let <p be the function on K defined by

• ( , ) . { * • W-"- (5.4,
[0, |;t| > fi.

Then 0 e L2(l) fl L°°(K) and \\4>\\2 = 1. Let a be the characteristic function on
[-T, T], that is,

Then, by Theorem 2.4,

{{<t>Tact>)u, v) = (27T)-1 /" a(£)(«,7r($)0)(jr($)0,iOd£, II, w € .5". (5.6)
i /— OO

By (5.1), (5.4) and the Fourier inversion formula,

(II,

for almost all £ in K, where M is the inverse Fourier transform of u. Hence, by (5.5),
(5.6), (5.7) and the Plancherel theorem, we get

«<pTa<P)u, v) = - i - f

(PnQrPciU, v)

Zdfa

So the wavelet multiplier <p Ta<p is unitarily equivalent to a scalar multiple of the
Landau, Pollak and Slepian operator, that is, Pn QTPn/2Q.
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