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THE DUALITY OF DISTRIBUTIVE CONTINUOUS 
LATTICES 

B. BANASCHEWSKI 

Various aspects of the prime spectrum of a distributive continuous 
lattice have been discussed extensively in Hofmann-Lawson [7]. This 
note presents a perhaps optimally direct and self-contained proof of one 
of the central results in [7] (Theorem 9.6), the duali ty between distribu­
tive continuous lattices and locally compact sober spaces, and then shows 
how the familiar dualities of complete atomic Boolean algebras and 
bounded distr ibutive lattices derive from it, as well as a new dual i ty for 
all continuous lattices. As a biproduct, we also obtain a characterization 
of the topologies of compact Hausdorff spaces. 

Our approach, somewhat differently from [7], takes the open prime 
filters ra ther than the prime elements as the points of the dual space. This 
appears to have conceptual advantages since filters enter the discussion 
naturally, besides being a well-established tool in many similar si tuations. 
Moreover, it helps to emphasize the strong analogy between the present 
setting and the representation of (ordinary) distributive lattices by rings 
of sets. 

We recall the relevant basic concepts, using s tandard lattice and partial 
order terminology as in |_3]. For the categorical notions appearing later 
on, see [10]. 

A continuous lattice ([11]) is a complete partially ordered set L in which 

(*) x = V A U(x f U, Ud-open end) (all x £ L) 

where (i) an end is a subset E of L such tha t x (z E whenever x ^ y for 
some y (z E, and (ii) W Ç L is called d-open if, and only if, for any 
up-directed D Ç L, V D (z W implies D C\ W ^ 0. The d-open ends of 
any complete lattice L consti tute a 7Ytopology D L on L ([11]), and 
continuity of L means C L is sufficiently sizeable to ensure (*). In the 
following, for any continuous lattice L, topological notions always refer 
to DL, and C ( x ) will be the collection of all open neighbourhoods of 
x (z L. 

A filter P Ç L is an end such tha t x A y Ç P for any x, y £ P. P is 
called prime if and only if \JF Ç P implies F C\ P ^ 0 for any finite 
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F Ç L. Note that any such P is proper, i.e., P ^ L (the case F = id). 
An open prime filter P is completely prime in the sense that \JA (E P 
implies A C\ P j£ 0 for any i Ç I : y ,4 £ P implies V ^ £ P for some 
finite F Q. A since P is open, and then F C\ P ^ 0 by primeness. Con­
versely, of course, any completely prime filter in L is open and prime; 
we shall use the two terms interchangibly. The prime spectrum 2P of L 
is the space whose points are the open prime filters P Ç: L, and whose 
open sets are the sets 2„ = {P\a £ P G 2P} (a £ P) (which clearly 
form a topology). 

Of particular interest here are the distributive continuous lattices; 
since a continuous lattice always satisfies the distribution law 

a A V P = V(a A 6) (b G P) 

for up-directed sets P ([4]), distributivity implies this law for arbitrary 
P , and thus distributive continuous lattices are, in particular, complete 
Hey ting algebras, or what are called frames ([5]) or local lattices ([2], [8]). 
For the present purposes, the relevant maps between these are the 
VA-homomorphisms, preserving arbitrary joins and finite meets; 
ContF will be the category of continuous frames ( = distributive con­
tinuous lattices) with these maps. Our motivation for this terminology 
lies in the fact that the V A-homomorphisms are exactly the significant 
maps for frames ([5]), whereas continuous lattices also have to be con­
sidered with various other classes of maps (e.g. [4], [7], [11]). 

A topological space X is called sober if and only if it is F0 and any 
U-irreducible closed subset of X is the closure of a singleton. It is easy 
to see the second part of the latter is equivalent to the condition that 
every completely prime filter in the lattice OX of open sets of X is the 
neighbourhood filter O(x) = { U\x Ç U G OX} of some point x Ç X, and 
it is in this form that we shall use the notion of sobriety. Further, a space 
X is called locally compact (we omit the Bourbakian prefix "quasi") if and 
only if each point of X has arbitrarily small compact neighbourhoods 
("compact" intended without separation assumption). SobLc will be 
the category of locally compact sober spaces and continuous maps. Note 
that, in any topological space X, the set of all open neighbourhoods of a 
compact set K is a d-open end in OX for which the interior \K of K is 
a lower bound in OX. Since local compactness of X means U = \J \K (K Ç 
U compact) for each U G OX, it follows that OX is a continuous lattice 
for any locally compact X ([7]). Obviously, the correspondence X —> OX 
is the object part of a contravariant functor O : SobLc —> ContF whose 
effect on maps is given by taking inverse images; this is the functor which 
has to be shown to provide a dual equivalence. 

An important aspect of a continuous lattice L is its "wray below" 
relation <<C, x <<C y defined to mean that, for any up-direct set D Ç L , 
V P ^ y implies d ^ x for some d G D. Obviously, for any P C O(x), 
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A U <$C x; moreover, for any U G £)L, if x G U then also A W G U for 
some VT G £)(x) by (*), and hence for any x G U there exists a 3/ « x 
in £/. Actually, this is the only property of « needed here, in particular 
for our proof of the following familiar fact: 

LEMMA 1. In any continuous lattice L, any open set is the union of open 
alters. 

Proof. If x G U and U G £)L then, by the preceding remark, there 
exists a sequence x = Xi ̂ >> x2 >̂> . . . in U, and 

W = {z\z G L, z ^ x* for some &} 

is then obviously on open filter such that x G W Q U. 

The next lemma describes the compact subsets of the prime spectrum 
of a continuous lattice by what might be viewed as a size restriction on 
their intersections: intuitively, open means large whereas compact means 
small. 

LEMMA 2. For any continuous lattice L, a subset A of SL is compact if 
and only if the filter F = f~) P(P G A) is open. 

Proof. If A is compact and V ^ £ F f° r some up-directed set D then 
A Q 2<z (d G D), hence A Ç 2rf for some d G D, and thus d £ F. Con­
versely, if i7 is open and A C U 2 a (a G 4 ) = 2vA then VU G F, hence 
ai V . . . V aw G T7for some a2- G ^4, and therefore A Q 2fll U . . . W 2 a r 

We now turn to the particular properties of distributive continuous 
lattices. 

LEMMA 3. In any distributive continuous lattice L, every open filter is an 
intersection of open prime filters. 

Proof. If F Ç L is an open filter and a G F in L, let G Ç Z, be an open 
filter maximal such that G ^D F and a Q G. Then, for any b, c G G such 
that b V c £ G, H = {x\ x G £, fr V x G G} is an open filter (the latter 
by distributivity) such that G Ç, H and c G # , hence a £ H so that 
a V b £ G and therefore, applying this conclusion over again, 
a = a \/ a (z G, a contradiction. This shows G is prime, and the lemma 
follows. 

Remark. The above proof remains valid for any distributive lattice 
with a topology for which all maps x -~» b V x are continuous. In par­
ticular, it proves the analogous lemma for (discrete) distributive lattices, 
a familiar step in the proof of the representation of distributive lattices 
by rings of sets. 

In view of Lemma 1, an immediate consequence of Lemma 3 is: 
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COROLLARY 1. In any distributive continuous lattice, the open prime 

filters separate the points. 

Another consequence of Lemma 3, in this case resulting from Lemmas 
1 and 2, is: 

COROLLARY 2. For any distributive continuous lattice L, XL is locally 
compact. 

Proof. If a G P £ SL, let U Ç P be an open filter such tha t a £ f /and 
c = A U 6 P , by (*) and Lemma 1. Then , A = {Q\U Q Q £ XL} is 
compact by Lemmas 3 and 2, and since P C 2C Ç A C 2„ this proves 
the assertion. 

The prime spectrum SL of a continuous lattice L is always sober since 
any completely prime filter F in D S L is of the form F = { Xa\a t P } , 
where P = {ft|Sa 6 P} is an open prime filter in L and hence F its filter 
of open neighbourhoods. Fur ther , the correspondence L *~» SL is clearly 
contravar iant ly functorial, the continuous map Xh : S M —* SL deter­
mined by a V A-homomorphism h : L —* M being P -~» h~l(P); thus 
one also has a cont ravar iant functor S : C o n t F —> SobLc. Moreover, 
for the two composites of S and C there are the maps 

eL : L -> D S L , eL(x) = S , (L G C o n t F ) 
and 

Vx : X -> SOX, Vx(x) = D(x) (X e SobLc) 

which are easily seen to be natural in L and X, respectively, and such 
tha t the composites 

SL - ^ > S D S L i ^ > SL 

P ~ » {S, |a £ P}~>P 

and 

ox -!£*> osox —% ox 

are identities. Finally, the eL are isomorphisms exactly because the open 
prime filters in any L G C o n t F separate the points, and the rjx are 
homeomorphisms by the familiar fact t ha t x -~» C ( x ) is an embedding 
into the space of all filters in £)X for any space X ([1]), and the given 
hypothesis t ha t X is sober. 

In all this has shown: 

PROPOSITION. The contravariant functors S and O form an adjoint dual 
equivalence between the categories C o n t F and SobLc. 
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The following observations establish connections between this dual i ty 
and certain others. 

Remark 1. The Boolean L Ç C o n t F are, up to isomorphism, exactly 
the power set lattices tyE: For a Boolean continuous lattice L, the open 
sets of SL are the same as the closed sets, and any TYspace of this type 
is easily seen to be discrete so tha t £)^L is a power set lat t ice; conversely, 
any of the lat ter is obviously a Boolean continuous lattice. Moreover, 
L G C o n t F is Boolean if and only if SL is discrete, and for such L the 
open prime filters are exactly the principal prime filters, i.e., the prime 
filters determined by the atoms. Since the subcategory of SobLc of dis­
crete spaces is essentially the same as the category of sets this shows tha t 
the duali ty between ContF and SobLc extends the familiar duali ty of 
the category of complete atomic Boolean algebras and complete Boolean 
homomorphisms with the category of sets. 

Remark 2. The full subcategory of C o n t F given by the finite 
L £ C o n t F is just the category F i n D of finite distributive lattices; on 
the other hand, the corresponding subcategory of SobLc is the category 
F inTo of finite JYspaces. Also, L Ç C o n t F is finite if and only if SL is 
finite. Moreover, the category F i n T 0 is well-known to be equivalent to 
the category F i n P o E n s of finite partially ordered sets and order pre­
serving maps. Hence, the duali ty between ContF and SobLc extends the 
familiar dual i ty between F i n D and F inPoEns . 

Remark 3. The full dual i ty of the category D of bounded distr ibutive 
lattices ([12]) which extends the duali ty of F i n D jus t discussed can also 
be located in the present setting. Recall t ha t a distr ibutive continuous 
lattice L is called arithmetical if and only if it is algebraic and A F is 
compact for any finite set F of compact elements. If ArF is the sub­
category of C o n t F consisting of the arithmetical L £ ContF and the 
V A-homomorphisms between them which preserve compact elements 
then the covariant ideal lattice functor 3 is an equivalence between D 
and ArF. Here, ^D is the ideal lattice of D for any D Ç D (known to 
be distr ibutive again ([3], p. 114) and clearly algebraic) and for any 
homomorphism h : D —> E in D the map $h : 3>Z) —» 3 E associates with 
each ideal in D the ideal generated by its image in E. I t is clear t ha t $h 
is a V A-homomorphism; moreover, it obviously preserves principal 
ideals, and these are exactly the compact elements of $D. This defines, 
then, a functor 5 •' D —> ArF, and tha t this is indeed an equivalence easily 
results from familiar facts about algebraic lattices. Now, the objects in 
the image of ArF with respect to 2 : ContL—> SobLc are, up to isomor­
phism, the X Ç SobLc for which the compact-open subsets are closed 
under finite intersection and consti tute a basis of X, which are exactly 
the spaces appearing in Stone's representation theorem for bounded 
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distr ibutive lattices ([12]), otherwise known as the spectral spaces ([6]); 
moreover, the maps between spectral spaces corresponding to maps in 
ArF by 2 are precisely the continuous maps for which the inverse images 
of compact-open sets are compact . Hence, 2 induces a dual equivalence 
between ArF and the category Spec of spectral spaces and the maps jus t 
described. An additional simple consideration shows t ha t the contra-
var ian t functor S 3 : D—» Spec is natural ly equivalent to the contra-
var ian t functor II : D —> Spec where ILD is the space of prime filters of D 
with the usual filter space topology (with each completely prime filter 
5 in 3 J D , associate the prime filter of all x Ç D such t ha t the principal 
ideal [0, x] belongs to 5 ) as well as to the cont ravar ian t functor P : D —> 
S p e c for which VD is the space of prime ideals of D with the Zariski 
( = hull-kernel) topology. Hence the result, essentially due to Stone [12]: 
T h e category D is dually equivalent to the category S p e c via the con­
t ravar ian t functor P ~ 2 $ — n . 

Remark 4. Somewhat similar to the questions deal t with in the pre­
ceding remarks is t ha t of identifying the subcategory of C o n t F corre­
sponding to the locally compact Hausdorff spaces, which might be of 
interest since the notion of Hausdorffness for frames in general seems to 
present some problems. In the following, let x* be the pseudocomplement , 
for any x Ç L, i.e., the largest y 6 L such t ha t x A y = 0. Wi th this, 
we have: 

For any L G ContF , SL is Hausdorff if and only if 
x = \/z(x V 2* = e) for each x G L. 

Let L satisfy this condition and consider any dist inct P and Q in SL. Then 
there exists, say, an x G P not in Q, and therefore a z £ P such tha t 
x V 2* = e\ now x V £* (z Q, and since x (? Q one has 2* G Q, so t h a t 
S z and 22* are disjoint neighbourhoods of P and Q, respectively, in 2L , 
i.e., 2L is Hausdorff. Conversely, any locally compact Hausdorff space 
X is regular, and therefore any U G DX is the union of all open sets V 
with closure TV Ç U; however, for any open set V, V* is the comple­
ment of TV, and thus TV Ç U if and only if U U V* = X. I t follows 
tha t any L Ç C o n t F with Hausdorff SL indeed satisfies the s ta ted con­
dition. As a further use of this condition, we add a characterizat ion of the 
compact Hausdorff topologies which natural ly arises here: 

A frame L is isomorphic to the topology of a compact Hausdorff space 
if and only if 

(i) e is compact , and (ii) x = V z(x V 2* = e) for each x G L. 

By what has been said already, one direction of this is obvious, and for 
the converse it is enough to show t h a t (i) and (ii) imply L is continuous. 
For this, consider Az = {y\ y £ L, y V s* = e}. Clearly this is an end, 
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and if ( V D) V z* = e for some updirected D C L then d V s* = e for 
some d Ç Z> by (i), i.e., ^42 is d-open. Moreover, e = y V s* implies 
2 = ^ 2 ^ and therefore s ^ A Az. Now, (ii) shows L is continuous. 
Finally, we have an analogous result concerning locally compact Haus-
dorff spaces. For any frame L let K C L be the set of all c £ L such t h a t 
the set ^4C is d-open. A combination of the above arguments then readily 
proves : 

A frame L is isomorphic to the topology of a locally compact Hausdorff 
space if and only if 

x = V ziz V z* = e, z £ K) for each x £ L. 

In addition to the above observations regarding dualities contained in 
the duali ty between C o n t F and SobLc, it should be noted tha t the latter, 
in turn, is par t of the contravar iant adjointness between the category F 
of all frames and V A-homomorphisms and the category TOP of all 
spaces and continuous maps of Dowker and Paper t [5] given by taking 
the lattices of open sets (TOP —>F) and, in our approach, the spaces of 
completely prime filters (F —>TOP), respectively. 

We now turn to the dual i ty of all continuous lattices, or, more pre­
cisely, of the category C o n t L of continuous lattices and ^-continuous 
( = up-directed join preserving) maps. T h a t this appears in the present 
sett ing derives from the basic fact ([11]) tha t ContL is isomorphic to the 
category In jT 0 of infective 7>spaces and their continuous maps. Indeed, 
In jTo is a full sucategory of S o b L c since any injective 7Yspace, having 
no proper essential extension ([1]), is evidently sober, and any con­
tinuous lattice L is locally compact in its topology £)L since any 
U G 0(x) contains a V G O(x) such tha t V Q [a, ->] C U(a = AV) 
where [a, —»] is clearly compact . Hence the contravar iant functor 
£) : SobLc —» C o n t F induces a dual i ty for ContL. In order to make this 
more explicit, the image of In jTo relative to O has to be determined, or, 
dually, the L £ C o n t F with injective prime spectrum have to be charac­
terized, independently of £). 

Definition. A continuous lattice L will be called primal if, and only if, 
it is sufficiently rich in open prime filters in the sense tha t 

(P I ) The filter join P V Q of any open prime filters P and Q in L is an 
open prime filter, and 

(P2) for any a G L, a = V A P (a Ç P G SL) . 

Note tha t (P2) implies distr ibutivi ty since it ensures tha t the open 
prime filters separate the points; thus, we have the (full) subcategory 
P r i m F of C o n t F given by the primal continuous lattices. 
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LEMMA 4. L G ContF is primal if and only if 2L is infective. 

Proof. (=>) For any continuous lattice L, an up-directed union of open 
prime niters is again an open prime filter. Hence, if L is primal then SL is 
closed under arb i t rary filter joins by ( P I ) , and therefore (i) the join of 
any neighbourhood filters of 2 L is a neighbourhood filter of SL. More­
over, if a G P G 2 L then A <2 G P for some (? such t ha t a G <2 G 2L , 
by (P2) . Thus , (ii) for any neighbourhood Sfl of P in SL there exists a 
neighbourhood S& of P such tha t , for some Q G 2rt, every neighbourhood 
of Q contains S& ( take b = A Q). Now, (i) and (ii) are precisely the con­
ditions characterizing injectivity of TVspaces given in [1] ; hence 2 L is 
injective. 

(<=) Let X be any injective TYspace, so t ha t X is a cont inuous lattice 
in the partial order S for which x ^ y if and only if O(x ) Ç O(y ) ([11]). 
Then 

D(x ) V O(y ) = { C / n F | Î7 G D M and F t O(y)} 

is the neighbourhood filter oî x V y since x Ç U and 3; d I r implies 
x V y t UC\ F, and by the cont inui ty of V ([11]) this proves ( P I ) 
for D X since X is sober. Fur ther , in OX, A D(x ) = I[x, —>], the interior 
of the end [x, —>] generated by x, and U = U [#> ~^] (^ ê ^0 f ° r any 
[ / G D I by [11], which together show £X satisfies (P2) . Thus , OX is 
primal for any injective 7'0-space, and therefore any L Ç C o n t F is primal 
whenever SL is injective. 

The discussion preceding Lemma 4 now leads to the following con­
clusion: 

PROPOSITION. The contravariant functors C and S induce a dual equiva­

lence between the categories C o n t L and P r i m F . 

Remark. For any Hausdorff X G SobLc, (P I ) clearly fails for OX, and 
(P2) holds if and only if X is discrete since U A C ( x ) (x G U) is exactly 
the set of isolated points in U. In part icular, this shows t ha t (P2) does 
not imply ( P I ) . On the other hand, if D is any infinite distr ibutive lattice 
with a smallest non-zero element a such t ha t the sublatt ice of all x ^ a 
is Boolean then L = $D satisfies (P I ) bu t not (P2) : (P I ) for L means for 
D t h a t the filter join of any two prime filters in D is again a prime filter, 
and since the prime filters of D are the principal end generated by a and 
its maximal proper subfilters this is indeed the case. Concerning (P2) , 
one notes t ha t the space SL consists of an infinite Boolean space X with a 
new point * adjoined such t ha t the non-void open sets are exactly the 
sets U U {*}, Uopen in X; since X is not discrete (P2) fails. Incidentally, 
for the finite L G C o n t F , (P2) always holds because every element of 
L is a join of join-irreducibles, and ( P I ) means t ha t any meet of join-
irreducibles is again join-irreducible. 
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We conclude with an outline of an al ternat ive proof of the (=>) par t of 
Lemma 4 which does not use [1], and some features of which may be of 
independent interest. 

The underlying set functor | • | : C o n t F —» E n s has a left adjoint: For 
any set X , let S X be the set of all ends in the lattice of finite subsets of X , 
partially ordered by inclusion. Then, arbi t rary joins and finite meets in 
S X are given by set union and intersection, and any 31 £ S X is the 
union of principal ends which are clearly compact ; hence (SX is a dis­
tr ibutive algebraic lattice and thus belongs to ContF . Moreover, (SX is 
evidently generated, with respect to arbi t rary joins and finite meets, by 
the principal ends 21 ̂  determined by the singletons {x} in X. Now, 
if u : X —> \L\ is any map for some L £ C o n t F then 

A (a) = V A u(x) 

is easily checked to be a V A-homomorphism; thus (SX is free with 
{ %x\x G X} as basis, and the correspondence X -~> S X is the object pa r t 
of a left adjoint (S : E n s -> C o n t F to | • |. 

Now, for any primal L £ ContF , let h : L —> S | S L | be the map for 
which h (a) is the set of all {Pi, . . . , Pn) such tha t a £ Px V . . . V P n . 
I t is easily checked tha t h is a VA-homomorph i sm, and tha t its com­
posite with the adjunction (S|SL| —» L, which maps any end a of finite 
sets 21 of prime filters in L to V A (U 21) (21 Ç a), is the identi ty map 
on L. This makes L a retract of (S| 2L | and hence SL a retract of a space 
of the type S (SX, by duali ty. Now, for any set X , S X is the coproduct 
of the S jx} , x £ X , and SS{x} ^ S , the Sierpinski space, so tha t 
S S X ^ S x ; this shows any S S X is injective, and thus 2Z is injective, 
as a re t ract of an injective space. 

I t should be added tha t the S X are actually free in the category F of all 
frames: the computat ion involved in showing their freeness in C o n t F 
only uses the identities between \ / and A and not the cont inui ty of the 
frame involved. The existence of free frames is already implicit in [2], and 
tha t they are, up to isomorphism, the topologies of the Sierpinski cubes 
occurs in [8] ; so the main point here is t ha t they are continuous. Since 
the underlying set functor of F is obviously monadic, i.e., F is a varietal 
category ([9]), this is not so for ContF; on the other hand, this may well 
be the case for the smaller category given by the maps in C o n t F which 
preserve all meets, in analogy with [4] where the category of continuous 
lattices and ^-continuous A -homomorphisms is shown to be monadic. 
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