
GENERATING FUNCTIONS FOR HERMITE FUNCTIONS 

LOUIS WEISNER 

1. Introduction. Hermite's function Hn(x) is denned for all complex values 
of x and n by 

in*) K-i) 

K1-^) 
where F (a; 7; x) is Kummer's function with the customary indices omitted. 
It satisfies the differential equation 

(1.1) § - 2 x f + 2 „ = 0, 

of which 

hn(x) = e* H-^-iiix) 

is a second solution. Every solution of (1.1) is an entire function. The only 
linearly independent polynomial solutions are the Hermite polynomials 
Hn(x), n = 0, 1,2 

The partial differential operator 

dx dx dy 

annuls^ = ynv{x) if, and only if, v(x) satisfies (1.1). It follows that if u = u(xyy) 
is annulled by L and is expressible as a series of powers of y, the coefficient 
of yn must be a solution of (1.1). It so happens that the equation Lu — 0 
admits a 5-parameter group of continuous transformations. Following the 
methods described in a previous paper (5) we shall use this group to obtain 
solutions of Lu — 0 and thence generating functions for the Hermite functions. 

The results may also be expressed in terms of Weber's function Dn(x) by 
means of the relation 

Hn(x) =2*ne*x2Dn(V2x). 
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142 LOUIS WEISNER 

2. Group of operators. The operators 

(2.D ^ « ^ , * = y- '£,C = y ( - ! + 2,), 
B i -t( a a\ r l J a , a ,\ 

satisfy the commutator relations 

[A,B] = - 5 , [A,C\ = C, [C,B] = - 2 , 
(2.2) M, B2) = - 2£2, [4, C2] = 2C2, [C2, 52] = - A - h 

[B, B2] = 0, [C, C2] = 0, [5, C2] = C, [B2f C] = B 

and therefore generate, with the identity operator, a continuous group P. 
A generates the trivial group %' = x, y' = ty (t ^ 0), which is used for 

purposes of normalization. The extended forms of the transformation groups 
generated by the other operators are described by 

ebBf(x, y) = f(x + by'1, y) 

/B^x'y^Kvé^J]'vly2-p]) 
ecCf(x,y) = e2civ-cVf(x-cy,y) 

where b, fi, c, y are arbitrary constants and f(x, y) an arbitrary function. 
Hence 

(2.3) ecC^CtetB+gB'f(x, y) 

= (1 + yy*)-* e x p { ^ ^ + - ^ 4 / ( , ,), 
_ & + *y + (by - c)y2 J_(l - fiy)y2 - fi\h 

5 {(i + yy2m - My2 - fl}* ' " \ I + T / / " 

The relation of the group Y to the operator L of § 1 is indicated by the 
operator identities 

(2.4) - L = CB - 2Ay - x2L = 4C2£2 - A2 + A, 
4£2 = B2 - y'% 4C2 = C2 - 3^2^, 

from which it follows that L is commutative with A, B, C and x2L is com­
mutative with Ay Bi, C2. Therefore every operator of the group Y converts 
each solution of Lu = 0 into a solution. In particular we note that 

A{Hn(x)yn} = nHn(x)yn, A{hn(x)yn} = nhn(x)yn, 
(2.5) B{Hn(x)yn\ = 2nHn.l{x)yn'\ B{hn(x)yn] = - ihn.1(x)yn-1 ; 

C\Hn{x)yn] = Hn+l(x)yn+\ C{hn(x)yn\ = 2i(n + l)hn+1(x)yn+\ 

3. Conjugate operators of the first order. We shall examine the functions 
annulled by L and 
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R = rxA + riB + r3C + rtB2 + nCt + U, 

where the r's are arbitrary constants, of which the first five do not vanish 
simultaneously. To this end we separate the operators R into conjugate 
classes with respect to the group I\ We find as in (5, p. 1035) that 

e>*A e-iB = A+bB, etBCe*B = C + 2b, ewC*~w = bC + C2 + b2; 

ecCAe~cC =A-cC, ecCBe-cC = B - 2c, ecCB2e~cC = - cB + B2 + c2; 

/ • M e " " ' = A+ 20B2, /B'Ce-0Bl = C + pB, e^C^"2 = pA + p2B, 
+ C2+ i/S; 

eyCtAe-yCi = A - 27C2, e^Be""^ = B - yC, e7C2U2<r7C2 = - yA + Bt 

+ 72C2 - 57-

It follows that I = ri2 — rtrb is an invariant of R with respect to T. 
Setting 5 = e

eC+yc*ebB+i>Bl, we have 

S 4 5 " 1 = (1 - 2fiy)A + (b - 2cP)B + (2c$y - c - by)C + 2$Bt 

+ 27(187 - l)Ct + 2c2p- 2bc - 187, 
SBS~l = B - yC - 2c, 
SCS-1 = 0B + (1 - 07)C + 2(6 - cp), 
SBtS"1 = - yA - cB + cyC + B2 + 7

2C2 + c2 - \y, 
SCS'1 = 0(1 - py)A + p(b - cp)B + (1 - Py)(b - cp)C + p2B, 

+ (1 - pyfC2 + (b - cp)2 + ij8(l - 0y). 

From these formulae it follows that for suitable choices of the constants 
a, b, cy jS, 7, X, Ï>, £, and q, R is a conjugate of 

(a) X4 - v ill * 0; 
(b) £C + qB2 if J = 0, rir2 ^ r3r4; 
(c) X^2 — ^ if JT = 0, rir2 = r3r4, r4 9^ 0 or r5 ^ 0; 
(d) \B - v if / = 0, ri = r4 = r5 = 0, r2 ^ 0 or r3 ^ 0. 

The identities (2.4) show that the last two cases do not require special con­
sideration. 

4. Generating functions for functions annulled by conjugates of 
A — v. Since U\ = yvHv(x), u2 = yvex2H~v-i(ix) are linearly independent 
solutions of Lu = 0, {A — v) u — 0, where v is an arbitrary constant, it 
follows from (2.3) that 

G1(x9y) = (l + 73>2r( '+1)/2{(i - Py)y2 - /*}*' 
J2cxy - c2y2 + yx2y2\ , 

• e x p \ — r + - ^ 7 — / H ^ ^ ) ' 
G2(x,^) = (i + yy2riv+1)/2\a - Py)y2 - fit 

(1 - /3T)*y + (^2 - 2bc + ^27)y2 + 2 ( ^ - ^)xy + b2\ „ ... . e x p | 
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are linearly independent solutions of Lu = 0, {S(A — v)S~1}u = 0. It suffices 
to examine 6\. 

Case l.fi = y = c = 0. Setting b = 1, we obtain, after simplification 

(4.1) H,(x + y) = Ë (jH^n(x)(2y)n, 

a Taylor expansion which may be derived directly from H/(x) = 2vHv-i(x). 

Case 2. ft — y = b = 0. Setting c = 1, we have 
CO 

yve2xy"y2Hv(x ~ y) = J^ \anHv+n(x) + W, + B ( x ) ) / + " . 

Since the left member is annulled by S (A — v)S~i = .1 — C — i>, we obtain 
the recurrence relations 

nan = aw_i, nbn = 2i(w + l)£w-i (n = 1 ,2 , . . .) 

with the aid of (2.5). Cancelling yv and setting 3/ = 0, we have ao = 1, £0 = 0, 
whence a„. = 1/w!, 6re = 0. Hence (4, p. 85) 

CO -I 

(4.2) e*"->'H,(x - y) = Z 3 # * . ( * ) / • 
n-0 » ! 

Case 3. j8 = 7 = 0, c 5̂  0. Setting c = 1, ô = — w/2, we obtain with the 
aid of (4.1) and (4.2) 

(4.3) e^-^HÀx - y - f ) = Ë V ( - ^ + l;w)H,+n(x)y" 
\ Ly/ =̂=0 wi 

+ Ê ( " m )F(n -v;n+l; w)Hv^n(x)wny'n, (y * 0). 

If p is a non-negative integer, this result may be written 

(4.4) £ . — * , ( * - y - | ) = g 1 L ^ W W , 

where Lv
(a)(w) is the generalized Laguerre polynomial of degree v. 

Case 4- M 0 . Setting /3 = — I, b = w, c = z, we obtain 

/ , , N /-, , 2x-(v+l) /2M . n , v 2,*i> J 2X^2 - y V + 7 * y i r r />x 

(4.5) (i + yy) {i + (i + y)y 1 e x p | ï_+~7"7 ( # ' ( £ ) 

= È gnHn{x)y\ \y\ < Min(|7 |"*, |1 + 7 p ' ) , 
n=0 

where 

? 
ge; + xy + (7^ — z)y 

i ( i + 7y2)ti + (i + T y ] j i -

By inspection of the left member it is evident that the coefficient of yn is a 
polynomial in x; hence the second solution does not occur. Replacing x by 
1/x, y by xy, and then setting x = 0, we obtain 
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(4.6) e2MH,(w + y) = £ gn(2y)tt, 
n=»0 

a simple generating function for gn. The explicit form of gn may be found 
with the aid of (4.1) and (4.2): 

(4.7) g, = ±(n- k)
 {^rH{i^} *—<»> « * °) 

gn=iXn-k)hH^+ÀW)zk (T = 0)-
In particular, when y = z = 0 (1, p. 890) 

(4.8) (1 + y2tHv{^f^j = g (^) H^n(w)Hn(x)f (\y\ < 1). 

When 7 = — 1 and z = — w, the value of gn may be obtained by com­
paring (4.6) with (4.2). Thus 

(4.8 ) (1 - ,•)-•«><• exp^-frN-«^_'). fl.(;^1.) 

- £ S - È P , (w<i). 
which reduces to Mehler's formula (3, p. 173) when v = 0 and to Feldheim's 
formula (2, p. 233) when x = w and v is an even number. 

Case 5. (3 = 0, y IA 0. Setting 7 = — 1, b = 2, c = w, we obtain with the 
aid of (4.1) and (4.9) 

(4.10) (1 - , ' r » < ^ e x p ^ ^ - ^ ^ L } 

wi-L — y \ y / n=-oo 
where 

* = S (*) r ( H n + l ) ^ ( g y (» = 0, ± 1, ± 2 . . .). 
Moreover gn has the generating function 

(l + . / j p ) ' * * ^ - Ë & / , ( M > 1*1). 

5. Generating functions annulled by conjugates of 3C — B2. In 
accordance with the analysis of § 3 we examine next the functions annulled 
by L and pC + qB2, pq 9e 0. Only the ratio p/q is essential, and it proves 
convenient to choose p = 3, q — — 1. 

The general solution of (3C — B2) u = 0, or 

f . ^ 3x du du 3 

(* + 6 y ) - - y - = 1 2 * y « 
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is 

u = e-6"3(l+"8)/(f), f = 2ry + 3y\ 

This function is annulled by L if 

f -3 f / = o. 
Two linearly independent solutions are given by 

/ - . F , ( - ; | ; | f ) , / - f .F , ( - ; | ; l r ' ) . 

Therefore, omitting the indices, 

-tvHx+v*) T>( . 2 1 3 J 
Ml 

M2 = fWo+l'lclH 
\ ; 3 ; 3 V 

are linearly independent solutions of Lu = 0, (3C — 52) w = 0. Their ex­
pansions in powers of y are readily obtained. On replacing y by y3, we obtain 

Applying 5 to «i and w2l and setting w = c + 3/3, 2 = 26 + 3^2, we obtain 
the following functions annulled by L and 5(3 C — B?)S~~l = y A + wB 
+ (3 - 7w)C - B2 - 72C2 + Sz - w1 + \y: 

(5.3) (1 + yyY* eYF[~-,^ ; | x 3 ) = g a , ( x ) / 

(5.4) (1 + T?2)-* eyX^(-; I ; | z 3 ) = Ë W W / 

(M < ITT4) 

(|y| < M-*), 

where 

23/(x - wy) , 3y 
* ~ 2 + i + 73>2 + (i + yy2)2' 

_ 2 _ 3y2g + ipc — wy)2 _ 6y*(x — wy) _ 6y6 

V — X i , 2 / i l 2 \ 2 /-, I 2 \ 3 • 

1 + yy (1 + yy ) (1 + 730 
Replacing x by 1/x and y by xy, and then setting x = 0, we obtain the following 
generating functions for an and 6rt: 

e * * m ' ^ _ ; | . 1 ( 2 y + 2 ) a) = g a>((23;)n) 

e^+™2(2;y + Z)F(—, I ; | (2y + z)3) = £ bn(2y)\ 
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