GENERATING FUNCTIONS FOR HERMITE FUNCTIONS

LOUIS WEISNER

1. Introduction. Hermite's function $H_{n}(x)$ is defined for all complex values of x and n by

$$
\begin{aligned}
H_{n}(x) & =\frac{2^{n} \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1-n}{2}\right)} F\left(-\frac{n}{2} ; \frac{1}{2} ; x^{2}\right)+\frac{2^{n} \Gamma\left(-\frac{1}{2}\right)}{\Gamma\left(-\frac{n}{2}\right)} x F\left(\frac{1-n}{2} ; \frac{3}{2} ; x^{2}\right) \\
& =2^{n} \sum_{k=0}^{\infty} \frac{\binom{n}{k} \Gamma\left(\frac{1}{2}\right) x^{k}}{\Gamma\left(\frac{1-n+k}{2}\right)}
\end{aligned}
$$

where $F(\alpha ; \gamma ; x)$ is Kummer's function with the customary indices omitted. It satisfies the differential equation

$$
\begin{equation*}
\frac{d^{2} v}{d x^{2}}-2 x \frac{d v}{d x}+2 n v=0 \tag{1.1}
\end{equation*}
$$

of which

$$
h_{n}(x)=e^{x^{2}} H_{-n-1}(i x)
$$

is a second solution. Every solution of (1.1) is an entire function. The only linearly independent polynomial solutions are the Hermite polynomials $H_{n}(x), n=0,1,2 \ldots$

The partial differential operator

$$
L=\frac{\partial^{2}}{\partial x^{2}}-2 x \frac{\partial}{\partial x}+2 y \frac{\partial}{\partial y}
$$

annuls $u=y^{n} v(x)$ if, and only if, $v(x)$ satisfies (1.1). It follows that if $u=u(x, y)$ is annulled by L and is expressible as a series of powers of y, the coefficient of y^{n} must be a solution of (1.1). It so happens that the equation $L u=0$ admits a 5 -parameter group of continuous transformations. Following the methods described in a previous paper (5) we shall use this group to obtain solutions of $L u=0$ and thence generating functions for the Hermite functions.

The results may also be expressed in terms of Weber's function $D_{n}(x)$ by means of the relation

$$
H_{n}(x)=2^{\frac{t n}{} e^{\frac{3}{x} x^{2}}} D_{n}(\sqrt{2} x) .
$$

[^0]2. Group of operators. The operators
\[

$$
\begin{align*}
& A=y \frac{\partial}{\partial y}, B=y^{-1} \frac{\partial}{\partial x}, C=y\left(-\frac{\partial}{\partial x}+2 x\right) \tag{2.1}\\
& B_{2}=\frac{1}{2} y^{-2}\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right), C_{2}=-\frac{1}{2} y^{2}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+1-2 x^{2}\right)
\end{align*}
$$
\]

satisfy the commutator relations

$$
\begin{align*}
& {[A, B]=-B, \quad[A, C]=C, \quad[C, B]=-2,} \\
& {\left[A, B_{2}\right]=-2 B_{2}, \quad\left[A, C_{2}\right]=2 C_{2}, \quad\left[C_{2}, B_{2}\right]=-A-\frac{1}{2},} \tag{2.2}\\
& {\left[B, B_{2}\right]=0, \quad\left[C, C_{2}\right]=0, \quad\left[B, C_{2}\right]=C, \quad\left[B_{2}, C\right]=B}
\end{align*}
$$

and therefore generate, with the identity operator, a continuous group Γ.
A generates the trivial group $x^{\prime}=x, y^{\prime}=t y(t \neq 0)$, which is used for purposes of normalization. The extended forms of the transformation groups generated by the other operators are described by

$$
\begin{aligned}
e^{b B_{1}} f(x, y) & =f\left(x+b y^{-1}, y\right) \\
e^{B_{B_{2}}} f(x, y) & =f\left(\frac{x y}{\sqrt{ }\left[y^{2}-\beta\right]}, \sqrt{ }\left[y^{2}-\beta\right]\right) \\
e^{c C} f(x, y) & =e^{2 c x y-c^{2} y^{2}} f(x-c y, y) \\
e^{\gamma C_{2}} f(x, y) & =\left(1+\gamma y^{2}\right)^{-\frac{1}{2}} \exp \left\{\frac{\gamma x^{2} y^{2}}{1+\gamma y^{2}}\right\} f\left(\frac{x}{\sqrt{ }\left[1+\gamma y^{2}\right]}, \frac{y}{\sqrt{ }\left[1+\gamma y^{2}\right]}\right),
\end{aligned}
$$

where b, β, c, γ are arbitrary constants and $f(x, y)$ an arbitrary function. Hence

$$
\begin{align*}
& e^{c C+\gamma C 2} e^{b B+\beta B_{2}} f(x, y) \tag{2.3}\\
&=\left(1+\gamma y^{2}\right)^{-\frac{1}{2}} \exp \left\{\frac{2 c x y-c^{2} y^{2}+\gamma x^{2} y^{2}}{1+\gamma y^{2}}\right\} f(\xi, \eta) \\
& \xi=\frac{b+x y+(b \gamma-c) y^{2}}{\left\{\left(1+\gamma y^{2}\right)\left[(1-\beta \gamma) y^{2}-\beta\right]\right\}^{1}}, \eta=\left\{\frac{\left.(1-\beta \gamma) y^{2}-\beta\right)^{\frac{1}{2}}}{1+\gamma y^{2}}\right\}^{2} .
\end{align*}
$$

The relation of the group Γ to the operator L of $\S 1$ is indicated by the operator identities

$$
\begin{align*}
-L & =C B-2 A, & -x^{2} L & =4 C_{2} B_{2}-A^{2}+A, \tag{2.4}\\
4 B_{2} & =B^{2}-y^{-2} L, & 4 C_{2} & =C^{2}-y^{2} L,
\end{align*}
$$

from which it follows that L is commutative with A, B, C and $x^{2} L$ is commutative with A, B_{2}, C_{2}. Therefore every operator of the group Γ converts each solution of $L u=0$ into a solution. In particular we note that

$$
\begin{array}{ll}
A\left\{H_{n}(x) y^{n}\right\}=n H_{n}(x) y^{n}, & A\left\{h_{n}(x) y^{n}\right\}=n h_{n}(x) y^{n} ; \\
B\left\{H_{n}(x) y^{n}\right\}=2 n H_{n-1}(x) y^{n-1}, & B\left\{h_{n}(x) y^{n}\right\}=-i h_{n-1}(x) y^{n-1} ; \tag{2.5}\\
C\left\{H_{n}(x) y^{n}\right\}=H_{n+1}(x) y^{n+1}, & C\left\{h_{n}(x) y^{n}\right\}=2 i(n+1) h_{n+1}(x) y^{n+1}
\end{array}
$$

3. Conjugate operators of the first order. We shall examine the functions annulled by L and

$$
R=r_{1} A+r_{2} B+r_{3} C+r_{4} B_{2}+r_{5} C_{2}+r_{6},
$$

where the r 's are arbitrary constants, of which the first five do not vanish simultaneously. To this end we separate the operators R into conjugate classes with respect to the group Γ. We find as in (5, p. 1035) that

$$
\begin{gathered}
e^{a A} B e^{-a A}=e^{-a} B, e^{a A} C e^{-a A}=e^{a} C, e^{a A} B_{2} e^{-a A}=e^{-2 a} B_{2}, e^{a A} C_{2} e^{-a A}=e^{2 a} C_{2} ; \\
e^{b B} A e^{-b B}=A+b B, e^{b B} C e^{-b B}=C+2 b, e^{b B} C_{2} e^{-b B}=b C+C_{2}+b^{2} ; \\
e^{c C} A e^{-c C}=A-c C, e^{c C} B e^{-c C}=B-2 c, e^{c C} B_{2} e^{-c C}=-c B+B_{2}+c^{2} ; \\
e^{\beta B_{2}} A e^{-\beta B_{2}}=A+2 \beta B_{2}, e^{\beta B_{2}} C e^{-\beta B_{2}}=C+\beta B, e^{\beta B_{2}} C_{2} e^{-\beta B_{2}}=\beta A+\beta^{2} B_{2} \\
+C_{2}+\frac{1}{2} \beta ; \\
e^{\gamma C_{2}} A e^{-\gamma C_{2}}=A e^{\gamma C_{2}} B e^{-\gamma C_{2}}=B-\gamma C, e^{\gamma C_{2}} B_{2} e^{-\gamma C_{2}}=-\gamma A+B_{2} \\
+\gamma^{2} C_{2}-\frac{1}{2} \gamma .
\end{gathered}
$$

It follows that $I=r_{1}{ }^{2}-r_{4} r_{5}$ is an invariant of R with respect to Γ.
Setting $S=e^{c C+\gamma C_{2}} e^{b B+\beta B_{2}}$, we have

$$
\begin{aligned}
S A S^{-1}=(1-2 \beta \gamma) A & +(b-2 c \beta) B+(2 c \beta \gamma-c-b \gamma) C+2 \beta B_{2} \\
& +2 \gamma(\beta \gamma-1) C_{2}+2 c^{2} \beta-2 b c-\beta \gamma,
\end{aligned}
$$

$S B S^{-1}=B-\gamma C-2 c$,
$S C S^{-1}=\beta B+(1-\beta \gamma) C+2(b-c \beta)$,
$S B_{2} S^{-1}=-\gamma A-c B+c \gamma C+B_{2}+\gamma^{2} C_{2}+c^{2}-\frac{1}{2} \gamma$,
$S C_{2} S^{-1}=\beta(1-\beta \gamma) A+\beta(b-c \beta) B+(1-\beta \gamma)(b-c \beta) C+\beta^{2} B_{2}$ $+(1-\beta \gamma)^{2} C_{2}+(b-c \beta)^{2}+\frac{1}{2} \beta(1-\beta \gamma)$.
From these formulae it follows that for suitable choices of the constants $a, b, c, \beta, \gamma, \lambda, \nu, p$, and q, R is a conjugate of
(a) $\lambda A-\nu \quad$ if $I \neq 0$;
(b) $p C+q B_{2}$ if $I=0, r_{1} r_{2} \neq r_{3} r_{4}$;
(c) $\quad \lambda B_{2}-\nu \quad$ if $I=0, r_{1} r_{2}=r_{3} r_{4}, r_{4} \neq 0$ or $r_{5} \neq 0$;
(d) $\quad \lambda B-\nu \quad$ if $I=0, r_{1}=r_{4}=r_{5}=0, r_{2} \neq 0$ or $r_{3} \neq 0$.

The identities (2.4) show that the last two cases do not require special consideration.
4. Generating functions for functions annulled by conjugates of $A-\nu$. Since $u_{1}=y^{\nu} H_{\nu}(x), u_{2}=y^{\nu} e^{x^{2}} H_{-\nu-1}(i x)$ are linearly independent solutions of $L u=0,(A-\nu) u=0$, where ν is an arbitrary constant, it follows from (2.3) that

$$
\begin{aligned}
& G_{1}(x, y)=\left(1+\gamma y^{2}\right)^{-(\nu+1) / 2}\left\{(1-\beta \gamma) y^{2}-\beta\right\}^{\frac{1}{\nu} \nu} \\
& \cdot \exp \left\{\frac{2 c x y-c^{2} y^{2}+\gamma x^{2} y^{2}}{1+\gamma y^{2}}\right\} H_{\nu}(\xi), \\
& G_{2}(x, y)=\left(1+\gamma y^{2}\right)^{-(\nu+1) / 2}\left\{(1-\beta \gamma) y^{2}-\beta\right)^{\frac{1}{\nu} \nu} \\
& \quad \cdot \exp \left\{\frac{\left.(1-\beta \gamma) x^{2} y^{2}+\left(\beta c^{2}-2 b c+b^{2} \gamma\right) y^{2}+2(b-\beta c) x y+b^{2}\right\} H_{-\nu-1}(i \xi)}{(1-\beta \gamma y)^{2}-\beta}\right)
\end{aligned}
$$

are linearly independent solutions of $L u=0,\left\{S(A-\nu) S^{-1}\right\} u=0$. It suffices to examine G_{1}.

Case 1. $\beta=\gamma=c=0$. Setting $b=1$, we obtain, after simplification

$$
\begin{equation*}
H_{\nu}(x+y)=\sum_{n=0}^{\infty}\binom{\nu}{n} H_{\nu-n}(x)(2 y)^{n} \tag{4.1}
\end{equation*}
$$

a Taylor expansion which may be derived directly from $H_{\nu}{ }^{\prime}(x)=2 \nu H_{\nu-1}(x)$.
Case 2. $\beta=\gamma=b=0$. Setting $c=1$, we have

$$
y^{\nu} e^{2 x y-\nu^{2}} H_{\nu}(x-y)=\sum_{n=0}^{\infty}\left\{a_{n} H_{\nu+n}(x)+b_{n} h_{\nu+n}(x)\right\} y^{\nu+n} .
$$

Since the left member is annulled by $S(A-\nu) S^{-1}=A-C-\nu$, we obtain the recurrence relations

$$
n a_{n}=a_{n-1}, n b_{n}=2 i(n+1) b_{n-1} \quad(n=1,2, \ldots)
$$

with the aid of (2.5). Cancelling y^{ν} and setting $y=0$, we have $a_{0}=1, b_{0}=0$, whence $a_{n}=1 / n!, b_{n}=0$. Hence (4, p. 85)

$$
\begin{equation*}
e^{2 x y-\nu^{2}} H_{\nu}(x-y)=\sum_{n=0}^{\infty} \frac{1}{n!} H_{\nu+n}(x) y^{n} \tag{4.2}
\end{equation*}
$$

Case 3. $\beta=\gamma=0, c \neq 0$. Setting $c=1, b=-w / 2$, we obtain with the aid of (4.1) and (4.2)

$$
\begin{align*}
& e^{2 x y-\nu^{2}} H_{\nu}\left(x-y-\frac{w}{2 y}\right)=\sum_{n=0}^{\infty} \frac{1}{n!} F(-\nu ; n+1 ; w) H_{\nu+n}(x) y^{n} \tag{4.3}\\
& \quad+\sum_{n=1}^{\infty}(-1)^{n}\binom{\nu}{n} F(n-\nu ; n+1 ; w) H_{\nu-n}(x) w^{n} y^{-n}, \quad(y \neq 0)
\end{align*}
$$

If ν is a non-negative integer, this result may be written

$$
\begin{equation*}
\frac{y^{\nu}}{\nu!} e^{2 x y-\nu^{2}} H_{\nu}\left(x-y-\frac{w}{2 y}\right)=\sum_{n=0}^{\infty} \frac{1}{n!} L_{\nu}^{(n-\nu)}(w) H_{n}(x) y^{n}, \tag{4.4}
\end{equation*}
$$

where $L_{\nu}{ }^{(\alpha)}(w)$ is the generalized Laguerre polynomial of degree ν.
Case 4. $\beta \neq 0$. Setting $\beta=-1, b=w, c=z$, we obtain

$$
\begin{align*}
& \left(1+\gamma y^{2}\right)^{-(\nu+1) / 2}\left\{1+(1+\gamma) y^{2}\right\}^{\frac{1}{2} \nu} \exp \left\{\frac{2 x y z-y^{2} z^{2}+\gamma x^{2} y^{2}}{1+\gamma y^{2}}\right\} H_{\nu}(\xi) \tag{4.5}\\
& =\sum_{n=0}^{\infty} g_{n} H_{n}(x) y^{n},
\end{align*}\left||y|<\operatorname{Min}\left(|\gamma|^{-\frac{1}{2}},|1+\gamma|^{-\frac{1}{2}}\right), ~ l i\right.
$$

where

$$
\xi=\frac{w+x y+(\gamma w-z) y^{2}}{\left\{\left(1+\gamma y^{2}\right)\left[1+(1+\gamma) v^{2}\right]\right\}^{\frac{3}{2}}} .
$$

By inspection of the left member it is evident that the coefficient of y^{n} is a polynomial in x; hence the second solution does not occur. Replacing x by $1 / x, y$ by $x y$, and then setting $x=0$, we obtain

$$
\begin{equation*}
e^{2 y z+\gamma v^{2}} H_{\nu}(w+y)=\sum_{n=0}^{\infty} g_{n}(2 y)^{n}, \tag{4.6}
\end{equation*}
$$

a simple generating function for g_{n}. The explicit form of g_{n} may be found with the aid of (4.1) and (4.2):

$$
\begin{array}{ll}
g_{n}=\sum_{k=0}^{n}\binom{\nu}{n-k} \frac{(-\gamma)^{k / 2}}{2^{k} k!} H_{k}\left(\frac{z}{(-\gamma)^{\frac{3}{3}}}\right) H_{\nu-n+k}(w) & (\gamma \neq 0) \tag{4.7}\\
g_{n}=\sum_{k=0}^{n}\binom{\nu}{n-k} \frac{1}{k!} H_{\nu-n+k}(w) z^{k} & (\gamma=0) .
\end{array}
$$

In particular, when $\gamma=z=0$ (1, p. 890)

$$
\begin{equation*}
\left(1+y^{2}\right)^{\frac{1}{2} \nu} H_{\nu}\left(\frac{w+x y}{\sqrt{ }\left[1+y^{2}\right]}\right)=\sum_{n=0}^{\infty}\binom{\nu}{n} H_{\nu-n}(w) H_{n}(x) y^{n} \quad(|y|<1) . \tag{4.8}
\end{equation*}
$$

When $\gamma=-1$ and $z=-w$, the value of g_{n} may be obtained by comparing (4.6) with (4.2). Thus

$$
\begin{gather*}
\left(1-y^{2}\right)^{-(\nu+1) / 2} \exp \left\{\frac{2 w x y-\left(x^{2}+w^{2}\right) y^{2}}{1-y^{2}}\right\} H_{\nu}\left(\frac{w-x y}{\sqrt{ }\left[1-y^{2}\right]}\right) \tag{4.9}\\
=\sum_{n=0}^{\infty} \frac{H_{v+n}(w) H_{n}(x) y^{n}}{2^{n} n!}, \quad(|y|<1)
\end{gather*}
$$

which reduces to Mehler's formula (3, p. 173) when $\nu=0$ and to Feldheim's formula (2, p. 233) when $x=w$ and ν is an even number.

Case 5. $\beta=0, \gamma \neq 0$. Setting $\gamma=-1, b=z, c=w$, we obtain with the aid of (4.1) and (4.9)

$$
\begin{align*}
\left(1-y^{2}\right)^{-\frac{1}{2}(\nu+1)} & \exp \left\{\frac{2 w x y-\left(x^{2}+w^{2}\right) y^{2}}{1-y^{2}}\right\} \tag{4.10}\\
& . H_{\nu}\left(\frac{x-w y}{\sqrt{ }\left[1-y^{2}\right]}+\frac{z \sqrt{ }\left[1-y^{2}\right]}{y}\right)=\sum_{n=-\infty}^{\infty} g_{n} H_{\nu+n}(x)(y / 2)^{n}
\end{align*}
$$

where

$$
g_{n}=\sum_{k=0}^{\infty}\binom{\nu}{k} \frac{1}{\Gamma(k+n+1)} H_{k+n}(w) z^{k} \quad(n=0, \pm 1, \pm 2 \ldots)
$$

Moreover g_{n} has the generating function

$$
(1+z / y)^{\nu} e^{2 v y-y^{2}}=\sum_{n=-\infty}^{\infty} g_{n} y^{n}, \quad(|y|>|z|)
$$

5. Generating functions annulled by conjugates of $\mathbf{3 C}-\mathbf{B}_{2}$. In accordance with the analysis of $\S 3$ we examine next the functions annulled by L and $p C+q B_{2}, p q \neq 0$. Only the ratio p / q is essential, and it proves convenient to choose $p=3, q=-1$.

The general solution of $\left(3 C-B_{2}\right) u=0$, or

$$
\left(x+6 y^{3}\right) \frac{\partial u}{\partial x}-y \frac{\partial u}{\partial y}=12 x y^{3} u
$$

is

$$
u=e^{-6 y^{3}\left(x+y^{3}\right)} f(\zeta), \quad \zeta=2 x y+3 y^{4}
$$

This function is annulled by L if

$$
\frac{d^{2} f}{d \zeta^{2}}-3 \zeta f=0
$$

Two linearly independent solutions are given by

$$
f={ }_{0} F_{1}\left(-; \frac{2}{3} ; \frac{1}{3} \zeta^{3}\right), \quad f=\zeta_{0} F_{1}\left(-; \frac{4}{3} ; \frac{1}{3} \zeta^{3}\right) .
$$

Therefore, omitting the indices,

$$
\begin{aligned}
& u_{1}=e^{-6 y^{3}\left(x+y^{3}\right)} F\left(-; \frac{2}{3} ; \frac{1}{3} \zeta^{3}\right) . \\
& u_{2}=e^{-6 y^{3}\left(x+y^{3}\right)} \zeta F\left(-; \frac{4}{3} ; \frac{1}{3} \zeta^{3}\right)
\end{aligned}
$$

are linearly independent solutions of $L u=0,\left(3 C-B_{2}\right) u=0$. Their expansions in powers of y are readily obtained. On replacing y by $y^{\frac{1}{3}}$, we obtain

$$
\begin{align*}
& e^{-6 \nu(x+v)} F\left(-; \frac{2}{3} ; \frac{y}{3}(2 x+3 y)^{3}\right)=\sum_{n=0}^{\infty} \frac{\Gamma(2 / 3) H_{3 n}(x)}{n!\Gamma(n+2 / 3)}\left(\frac{y}{3}\right)^{n}, \tag{5.1}\\
& e^{-6 \nu(x+y)}(2 x+3 y) F\left(-; \frac{4}{3} ; \frac{y}{3}(2 x+3 y)^{3}\right)=\sum_{n=0}^{\infty} \frac{\Gamma(4 / 3) H_{3 n+1}(x)}{n!\Gamma(n+4 / 3)}\left(\frac{y}{3}\right)^{n} . \tag{5.2}
\end{align*}
$$

Applying S to u_{1} and u_{2}, and setting $w=c+3 \beta, z=2 b+3 \beta^{2}$, we obtain the following functions annulled by L and $S\left(3 C-B_{2}\right) S^{-1}=\gamma A+w B$ $+(3-\gamma w) C-B_{2}-\gamma^{2} C_{2}+3 z-w^{2}+\frac{1}{2} \gamma$:

$$
\begin{array}{ll}
\left(1+\gamma y^{2}\right)^{-\frac{1}{2}} e^{Y} F\left(-; \frac{2}{3} ; \frac{1}{3} X^{3}\right)=\sum_{n=0}^{\infty} a_{n} H_{n}(x) y^{n} & \left(|y|<|\gamma|^{-\frac{1}{2}}\right) \tag{5.3}\\
\left(1+\gamma y^{2}\right)^{-\frac{1}{2}} e^{Y} X F\left(-; \frac{4}{3} ; \frac{1}{3} X^{3}\right)=\sum_{n=0}^{\infty} b_{n} H_{n}(x) y^{n} & \left(|y|<|\gamma|^{-\frac{1}{2}}\right)
\end{array}
$$

where

$$
\begin{aligned}
& X=z+\frac{2 y(x-w y)}{1+\gamma y^{2}}+\frac{3 y^{4}}{\left(1+\gamma y^{2}\right)^{2}}, \\
& Y=x^{2}-\frac{3 y^{2} z+(x-w y)^{2}}{1+\gamma y^{2}}-\frac{6 y^{3}(x-w y)}{\left(1+\gamma y^{2}\right)^{2}}-\frac{6 y^{6}}{\left(1+\gamma y^{2}\right)^{3}} .
\end{aligned}
$$

Replacing x by $1 / x$ and y by $x y$, and then setting $x=0$, we obtain the following generating functions for a_{n} and b_{n} :

$$
\begin{aligned}
& e^{2 w v+\gamma y^{2}} F\left(-; \frac{2}{3} ; \frac{1}{3}(2 y+z)^{3}\right)=\sum_{n=0}^{\infty} a_{n}(2 y)^{n}, \\
& e^{2 w v+\gamma y^{2}}(2 y+z) F\left(-; \frac{4}{3} ; \frac{1}{3}(2 y+z)^{3}\right)=\sum_{n=0}^{\infty} b_{n}(2 y)^{n} .
\end{aligned}
$$

References

1. H. Bateman, A partial differential equation connected with the functions of the parabolic cylinder, Bull. Amer. Math. Soc., 41 (1935), 884-93.
2. E. Feldheim, Développements en série de polynomes d'Hermite et de Laguerre à l'aide des transformations de Gauss et de Hankel; Neder. Akad. Wetensch. 43 (1940), 224-48, 37889.
3. F. G. Mehler, Ueber die Entwicklung einer Funktion von beliebig vielen Variablen nach Laplaceschen Functionen höherer Ordnung, J. Reine Angew. Math., 66 (1866), 161-76.
4. C. Truesdell, An essay toward a unified theory of special functions, Ann. Math. Studies, no. 18 (Princeton, 1948).
5. L. Weisner, Group-theoretic origin of certain generating functions, Pacific J. Math. 5 (1955), 1033-9.

University of New Brunswick

[^0]: Received October 2, 1956.

