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Admissibility of Local Systems for some
Classes of Line Arrangements
Dedicated to the memory of Dinh Thi Anh Thu.

Nguyen Tat Thang

Abstract. Let A be a line arrangement in the complex projective plane P2 and let M be its comple-
ment. A rank one local system L on M is admissible if, roughly speaking, the cohomology groups
Hm(M,L) can be computed directly from the cohomology algebra H∗(M,C). In this work, we give
a sufficient condition for the admissibility of all rank one local systems on M. As a result, we obtain
some properties of the characteristic variety V1(M) and the Resonance variety R1(M).

1 Introduction

When M is a hyperplane arrangement complement in some projective space Pn, one
defines the notion of an admissible local system L on M in terms of some conditions
on the residues of an associated logarithmic connection ∇(α) on a good compacti-
fication of M; see for instance [5, 10, 11, 16, 18]. This notion plays a key role in the
theory, since for such an admissible local system L on M, one has

Hi(M,L) ∼= Hi(H∗(M,C), α∧)(1.1)

for all i ∈ N (see [10]). In other words, the cohomology Hi(M,L) is combinatorially
computable. For the case of line arrangement complements, a good compactification
is obtained just by blowing up the points of multiplicity at least 3 in the arrangement.
This explains the simple version of the admissibility definition given in Definition 2.1.

A more general notion of admissible local systems was investigated in [4], where
the author obtained some properties of local systems on irreducible components of
the first characteristic variety V1(M). In particular, it was proved that if all local
systems on M are admissible, then there are no translated components in the charac-
teristic variety V1(M) ([4]).

Now, let A be a line arrangement in P2 and M = P2 \ A be its complement.
Denote by M the set of points in A with multiplicity larger than 2. In [13], where
the author studied the fundamental group of M, a combinatorial condition on A and
M was proposed, which implied that the fundamental group of M decomposes as a
product of free groups. For more detail, we need to recall the following notion of an
M-graph.
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Let D be the set of double points of A. For each line H ∈ A, let tH denote the
number of points of MH := H ∩ M and let MH = {aH

1 , a
H
2 , . . . , a

H
tH
}. For j =

1, . . . , tH − 1, choose a simple arc (i.e., arc without self-intersection) AH
j ⊂ H \ D

connecting aH
j and aH

j+1 such that the interiors of AH
l and AH

s have empty intersection

for l 6= s. One sees that AH := AH
1 ∪ AH

2 · · · ∪ AH
tH−1 is also a simple arc, and AH ⊂ H

goes through all points of MH and avoids double points on H. In case tH = 1 we let
AH = ∅. Then one defines a graph Γ whose vertices are all points in M and edges are
AH

j ,H ∈ A, j = 1, . . . , tH − 1. The graph Γ is called an M-graph (see [13]). Though
there are different choices for AH and ordering on MH , it was proved in [13] that all
M-graphs are homotopy equivalent. Therefore we can define β(A) as the first Betti
number of any M-graph Γ:

β(A) := b1(Γ) = dim H1(Γ).

In other words, β(A) is the number of cycles in Γ. The following theorem is proved
in [13].

Theorem 1.1 ([13]) If A is a line arrangement in P2 satisfying β(A) = 0, then
π1(M) can be decomposed as sum of free groups.

In a recent paper [17], another class of line arrangements A was introduced for
which all rank one local systems on the complements are admissible. Namely, for
non-negative integer k, the line arrangement A is said to be of type Ck if k is the
minimal number of lines in A containing all the points of multiplicity at least 3. The
following theorem was proved in [17].

Theorem 1.2 Let A be a line arrangement in P2. If A belongs to the class Ck for some
k ≤ 2, then any rank one local system L on M is admissible.

If all points of multiplicity ≥ 3 are situated on a line, the arrangement is a nodal
affine arrangement; see [3, 8]. Theorem 1.2 above shows that for such arrangements,
which are said to be of type C1, all rank one local systems on their complements are
admissible.

Two points x, y ∈ M are called adjacent if they belong to a line H ∈ A (see [7]).
In this paper we assume that the arrangement A satisfies the following condition:

(C) For each point x ∈M, there exist at most two lines in A containing x and all points
in M that are adjacent to x.

The purpose of this paper is to give a combinatorial condition on a line arrange-
ment A ensuring the admissibility of rank one local systems on its complement M.
More precisely, we improve the following theorem.

Theorem 1.3 (see [7]) Let A be a line arrangement in P2 satisfying condition (C).
Assume that β(A) is equal to 0 or 1 and on each line H ∈ A, there exist at most two
points in M adjacent to points in M \H. Then all local systems on complement M of A
are admissible.

Our first main result is the following theorem.
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Theorem 1.4 Let A be a line arrangement in P2 satisfying condition (C) such that
β(A) is equal to 0 or 1. Then all rank one local systems on the complement M of A are
admissible.

In particular, the characteristic variety V1(M) does not contain translated compo-
nents, and V1(M) is determined by the poset L(A).

The paper is organized as follows. In Section 2 we first make explicit the definition
of admissibility in the case of line arrangements and recall the definition of charac-
teristic varieties. We then prove Theorem 1.4. At the end of Section 2 we give an
example of a line arrangement where the results in [7] and [17] cannot be applied,
while Theorem 1.4 is useful (Example 2.5).

In Section 3 we concentrate on arrangements having more than one cycle (i.e.,
β(A) > 1). The mains results in this section are Theorems 3.1 and 3.4, where we
show that, under some additional assumptions, one still has the admissibility of all
local systems. As an evidence, we give in Example 3.7 an arrangement and a non-
admissible local system on its complement. Accordingly, Theorem 1.4 does not hold
if there are more than one cycle. Also, Theorem 3.4 is not true without condition (i).
This means that our results are best possible.

In the last section, we will study the multinets and resonance varieties. We prove
that if the line arrangement A satisfies condition (C), then it does not support any
non-trivial multinets; equivalently, there is no global resonance component unless all
lines in A are concurrent.

2 Admissible Rank One Local Systems

Let A = {H0,H1, . . . ,Hn} be a line arrangement in P2 and set M = P2 \ (H0 ∪
· · · ∪ Hn). Let T(M) = Hom(π1(M),C∗) be the character variety of M. This is an
algebraic torus T(M) ' (C∗)n. Consider the exponential mapping

exp : H1(M,C) −→ H1(M,C∗) = T(M)

induced by the usual exponential function exp(2πi−) : C→ C∗.
Clearly one has exp(H1(M,C)) = T(M) and exp(H1(M,Z)) = {1}. More pre-

cisely, a rank one local system L ∈ T(M) corresponds to the choice of some mon-
odromy complex numbers λ j ∈ C∗ for 0 ≤ j ≤ n such that λ0 · · ·λn = 1. A
cohomology class α ∈ H1(M,C) is given by

α =
∑

j=0,n
a j

d f j

f j

where the residues a j ∈ C satisfy
∑

j=0,n a j = 0, and f j = 0, which is a linear
equation for the line H j . With this notation, one has exp(α) = L if and only if
λ j = exp(2πia j) for any j = 0, . . . , n.

Definition 2.1 A local system L ∈ T(M) as above is admissible if there is a coho-
mology class α ∈ H1(M,C) such that exp(α) = L, a j /∈ Z>0 for any j and for any
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point p ∈ H0 ∪ · · · ∪Hn of multiplicity at least 3 one has

a(p) =
∑

j
a j /∈ Z>0,

here the sum is over all j’s such that p ∈ H j .

For an admissible local system the isomorphisms in (1.1) were shown in [10],
[18].

Definition 2.2 The characteristic varieties of M are the jumping loci for the first
cohomology of M, with coefficients in rank one local systems

Vi
k(M) = {ρ ∈ T(M) : dim Hi(M,Lρ) ≥ k}.

When i = 1, we use the simpler notation Vk(M) = V1
k(M). For line arrangement A,

its poset L(A) is defined as the set of all intersections of lines in A.

Foundational results on the structure of the cohomology support loci for local
systems on quasi-projective algebraic varieties were obtained by Beauville [2], Green
and Lazarsfeld [14], Simpson [19] (for the proper case), and Arapura [1] (for the
quasi-projective case and first characteristic varieties V1(M)).

Let Γ be an M-graph. A connected subgraph G of Γ is called a connected compo-
nent of Γ if there does not exist any edge E of Γ that is not an edge of G such that
G ∪ E is a connected graph, or equivalently, E contains some vertex of G. One eas-
ily sees that Γ can be decomposed into a disjoint union of finitely many connected
components. Let G be a subgraph of Γ. We define zone Z(G) associated with G as the
set of all lines in A going through vertices of G and denote by L(G) the set of all lines
containing edges of G. It is obvious that L(G) ⊂ Z(G).

Lemma 2.3 Let A be a line arrangement in P2. Then the set of zones associated with
all connected components of Γ makes a partition of A.

Proof It is obvious that
A =

⋃
G

Z(G),

where G runs over all connected components of Γ. Now, let consider zones associated
with two connected components G1 and G2. Assume that there exists H ∈ Z(G1) ∩
Z(G2). That means H contains one vertice x1 of G1 and one vertex x2 of G2.

If x1 6= x2, then x1 and x2 are connected in the graph Γ, hence G1 ≡ G2. Otherwise
G1 and G2 have one vertex in common, which also implies that G1 ≡ G2. The proof
is complete.

Proof of Theorem 1.4 Let L be a local system on M. In order to find a good coho-
mology class α for L, we will shape the positive integer residues a(p), p ∈M.

Let Γ be an M-graph. The hypothesis implies that the first Betti number b1(Γ)
is either 0 or 1, which means there exists at most one cycle in the graph. We fix H0,
which is one line ofA containing some edge of the cycle of Γ, if it exists and any line of
A containing at least two points ofM, otherwise. We observe from Definition 2.1 that
the admissibility conditions are based on the real parts of the residues aH ,H ∈ A.
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So, instead of those complex residues, it is enough to consider their real parts. Hence,
we can assume that all residues aH ,H ∈ A are real. Without loss of generality, we
can assume that aH ∈ [0, 1) for all H ∈ A \ {H0} (note that aH0 = −

∑
H 6=H0

aH).
Recall that for each x ∈ M we denote a(x) =

∑
H∈A,x∈H aH . Let G be a connected

component of Γ.

Case 1: H0 /∈ L(G). We will correct aH ,H ∈ Z(G) such that a(x) /∈ Z>0 for all
x ∈M which is vertex of G. We do this in several steps.

Step 1: Start with a line H1 ∈ L(G) for which there is only one line H2 ∈ L(G)
satisfying H1 ∩H2 ∈M. Such a line exists since there is no cycle in G. Let

a1 := max{0, a(p) : p ∈ H1 ∩M \H2, a(p) ∈ Z>0}.
Here and below, if the maximum is positive and attains at several points, we will take
a1 as the sum a(p) at a point p that is not a vertex of G.

In this step, we replace aH1 by aH1 − a1 and aH0 by aH0 + a1. This obviously ensures
that ∑

H∈A
aH = 0 and a(x) /∈ Z>0

for all x ∈ H1 ∩M \ H2. Since a1 is either 0 or the sum of residues of some distinct
lines H ∈ Z(G) with H 6= H0, one still has aH0 ≤ 0.

Step 2: We continue with the line H2 defined in Step 1. Let

a2 := max
{

0, a(p) : p ∈ H2 ∩M \
( ⋃

H∈L(G)\{H1,H2}

H
)
, a(p) ∈ Z>0

}
.

Denote by H j
2 , j ∈ J, lines in L(G) \ {H1} satisfying the conditions

p j
2 := H j

2 ∩H2 ∈M, a(p j
2) ∈ Z>0 and a2 < a(p j

2), ∀ j ∈ J.

We consider the following three possibilities.
(a) # J ≥ 2 and aH = 0 for all H ∈ Z(G)\L(G) going through some p j

2: Observe
that

a(p j
2) = aH2 + aH j

2
∈ [0, 2).

This implies that a(p j
2) = 1 and hence a(p1) /∈ Z>0 where p1 = H1 ∩ H2. Then we

repeat the process from Step 1 using the same method as in Step 1 for the connected
component of the graph G\{AH1} that contains edges on H2 (in this case, it is exactly
G \ {AH1}), where by G \ {AH1} we mean the graph obtained from G after removing
edges on H1.

(b) # J ≥ 2 and there exist H′2 ∈ Z(G) \ L(G), j0 ∈ J such that p j0

2 ∈ H′2 and
aH′2
6= 0 : Let

a′2 := max{a(p) : p ∈ H2 ∩M, a(p) ∈ Z>0}.

We replace aH2 by aH2−a′2 and aH′2
by aH′2

+ a′2.Note that this does not change a(p j0

2 ),
but we have a(p) /∈ Z>0 for all p ∈ H2 ∩M \ H j0

2 . Since aH′2
∈ (0, 1) one still has

aH /∈ Z>0 for all H ∈ A.
In the next step, we continue with H j

2 , j ∈ J simultaneously. For each H j
2 we use

the same method as we do with H2.
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(c) # J ≤ 1: In this case, we correct residues as follows:

aH2 := aH2 − a2 and aH0 := aH0 + a2.

It is easy to verify that a(p) /∈ Z>0 for all p ∈ H2
⋂
M \ (∪i∈ JH

j
2). Similarly, in the

next step we repeat Step 2 with H j
2 , j ∈ J.

We continue the process as above. Since G is a finite graph, the process will terminate
after finite steps. For each line H we keep the notation aH as the new residue of H and
denote by bH the origin residue of H (i.e., before replacements). For x ∈ M denote
by b(x) the sum

∑
x∈H bH . By the method of replacing residues, one can easily see

the following claims.

Claim 1: a(p) /∈ Z>0 for all p ∈
⋃

H∈L(G) H ∩M;

Claim 2:
∑

H∈A aH = 0.

In each step, we add to aH0 integer numbers which are either 0 or positive. In
case of positive numbers, each of them has the form a(p) =

∑
H∈A,p∈H aH for some

p ∈M. We shall prove the following claim.

Claim 3: The sum A(G) we added to aH0 after performing all the steps to correct the
residue of lines is

A(G) =
∑
H

bH ,

where H runs over some distinct lines in Z(G). Consequently, one has aH0 ≤ 0.

Before proving Claim 3, let us consider what we added to aH0 after the first two
steps, namely

A2 := a1 + a2.

If a1 = 0, then A2 = a2 is either 0 or

A2 =
∑

H∈Z(G),
x∈H

bH ,

for some x ∈M. Otherwise, if a2 = a(p1), where p1 = H1 ∩H2, then

a2 = (bH1 − a1) +
∑

H∈Z(G),
H 6=H1,p1∈H

bH .

Therefore,
A2 =

∑
H∈Z(G),

p∈H

bH .

If a2 = a(q) for some q ∈M \H1, it is easy to see the similar property for A2.
In order to prove Claim 3 we write A(G) as

A(G) =

m∑
i=1

si∑
j=1

ai, j ,

where ai, j ≥ 0, j = 1, . . . , si , are the integer numbers we added to aH0 in Step 1 when

we corrected residues of H j
i (we rename lines whose residues were corrected in Step

1 by H j
i ) and m is the number of steps we perfomed.
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Recall that

ai, j = max
{

0, a(x) : x ∈ H j
i ∩M \

( ⋃
H∈L(G)\(

⋃
k Hk

i−1)∪H j
i

H
)
, a(x) ∈ Z>0

}
,

which means that ai, j is either 0 or

ai, j =
∑

H∈Z(G),
x∈H

bH = b(y)

with some y ∈ H j
i ∩M \ (

⋃
H∈L(G)\{H j

i }
H) or

ai, j = (bHl
i−1
− ai−1,l) +

∑
H∈Z(G),

H 6=Hl
i−1,y∈H

bH

where Hl
i−1 ∈ L(G) intersects in M in H j

i and y = Hl
i−1 ∩ H j

i ∈ M. In the last case,
we see that ai, j + ai−1,l = b(y). Note that once we have ai, j in the last form, we also
have the associated ai−1,l as a term of A(G). The correspondence between those terms
is one-to-one due to the method of correcting residues.

Now, we pair terms in A(G) as follows. Start with am, j , j = 1, . . . ,m. If am, j is in
the last form, we pair it with the associated am−1,l, otherwise we leave it alone. In the
same way, we continue with am−1, j , which is not in a pair. We repeat the process until
each of ai, j ’s is either in a pair or has one of the first two forms as above. Finally, one
obtains that

A(G) =
∑

b(y),

where the sum is over some distinct points y of
⋃

H∈L(G)(H ∩M). It is easy to check
that there do not exist two points in y’s belonging to the same line of L(G). Claim 3
is proved.

Our last claim follows.

Claim 4: B(G) :=
∑

H∈Z(G) aH ≥ 0.

This is the consequence of Claim 3 and the fact that B(G) =
∑

H∈Z(G) bH − A(G).
Note that bH ≥ 0 for all H ∈ L(G).

Case 2: H0 ∈ L(G). We repeat the process as in Case 1 for the graph G \ AH0 , where
again, AH0 is the set of arcs of the graph Γ lying on H0, and by G \ AH0 we mean
the graph obtained from G after removing edges on H0 (one may choose H0 such
that G \ AH0 is a connected graph). By the same argument as above, we also receive
properties as in Claims 1–4.

If x ∈M is an isolated vertex of Γ and a(x) ∈ Z>0, then we replace aH by aH−a(x)
and aH0 by aH0 + a(x), where H is any line containing x.

To complete the proof, we need to check that a(x) /∈ Z>0 for all x ∈ H0 ∩M.
Indeed, if H0 ∩M = x, according to Lemma 2.3, we have

a(x) = −
∑

x /∈H

aH = −
(∑

I

∑
H

aH +
∑

aH′ +
∑

aH′′

)
,

where I runs over all connected components of Γ which H0 /∈ L(I), and for each I,
H runs over all lines in its zone Z(I); in the second term, H′ runs over all lines in the
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zone of the graph G \AH0 , for which H0 ∈ L(G), and the last sum is over all lines that
do not contain any point of M or contain only one point of M and have intersection
in M with H0. Each sum is non-negative according to Claim 4. Thus a(x) /∈ Z>0.

If there exists y ∈M∩H0 \ {x}, let H′1 6= H0 be a line satisfying y ∈ H′1. We have

a(x) = −
∑

x /∈H

aH = aH′1
−
(∑

I

∑
H

aH +
∑

aH′ +
∑

aH′′

)
.

Because aH′1
< 1 and the sums are non-negative, we obtain a(x) < 1.

Finally, we obtain residues of all lines in A for L satisfying all conditions in Def-
inition 2.1. In other words, the local system L is admissible. Combining this with
results in [4] we get the properties of the characteristic varieties as shown in the the-
orem.

Remark 2.4 (i) Concerning the topic of fundamental group of the comple-
ments, a family of real line arrangements was given in [9] whose fundamental group
of the complement has a nice property. Roughly, if the graph of the arrangement is
a union of disjoint cycles and any line of the arrangement has at most two multiple
points, then the fundamental group of the complement has a so-called conjugation-
free geometric presentation. The condition supposed there is stronger than our as-
sumption in Theorem 1.4.

(ii) Jiang and Yau [15] defined the class of nice arrangements in P2 and proved
that for nice arrangements, the diffeomorphic type of the complements is defined by
the combinatoric of the arrangement. In general, condition (C) is neither stronger
nor weaker than the condition of the nice arrangements. But if the arrangement has
at most one cycle then condition (C) implies the nice condition.

(iii) In the setting of local systems, our result is a generalization of the preceding.
We introduce below an example of an arrangement in C3 for which both Theorem 1.2
and Theorem 1.3 cannot be applied, yet our new Theorem 1.4 shows that all local
systems are admissible.

Example 2.5 Let A be the arrangement in P2 defined by 13 lines:

L0 : z = 0, L1 : x = 0, L2 : y = 0, L3 : x + 3y = 3z,

L4 : 3y − x = 3z, L5 : x + 4y = 2z, L6 : x − 2y = 2z, L7 : x + y = 4z,

L8 : 5y − 3x = 12z, L9 : 2x = z, L10 : y = 9z, L11 : y − x = 7z,

L12 : y − x = 2z.

See Figure 1, in which no lines are parallel.
There are six points of multiplicity 3; these are p1 = [1 :3 :1] = L12∩L7∩L8, p2 =

[0 :1 :1] = L1∩L4∩L3, p3 = [2 :0 :1] = L6∩L2∩L5, p4 = [0 :1 :0] = L0∩L1∩L9, p5 =
[1 :0 :0] = L0 ∩ L2 ∩ L10, p6 = [1 :1 :0] = L0 ∩ L11 ∩ L12.

Since there are 3 points p4, p5, p6 on L0 that are adjacent to other points in M \
L0, the assumptions in Theorem 1.3 are not all satisfied. Also, since A is of type
C3, Theorem 1.2 cannot be applied. However, one can easily check that condition
(C) defined in the Introduction is fulfilled and β(A) = 0. Therefore, according to
Theorem 1.4, all rank one local systems on the complement of A are admissible.
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3 Admissibility for Other Classes of Line Arrangements

In this section, we discuss the case where the arrangement has more than one cycle
(i.e., β(A) > 1). One still has the admissibility of local systems provided some certain
assumptions.

Theorem 3.1 Let A be a line arrangement in P2 and let Γ be an M-graph. Assume
that condition (C) is satisfied and there exists a line H containing at least one edge of all
cycles of Γ. Then all rank one local systems on the complement M of A are admissible.

Proof We repeat the algorithm in the proof of Theorem 1.4 by first choosing H0 to
be the line that contains at least one edge of all cycles of the graph Γ. The proof is
then straightforward.

Remark 3.2 The assumption in Theorem 3.1 does not depend on the M-graph Γ.

Let A be a line arrangement in P2 and let M be the set of points of A of multiple
at least 3 such that condition (C) is satisfied. Let Γ be an M-graph. Denote by A1 the
set of all lines H ∈ A such that H contains only one point of M. Note that if M 6= ∅
then A1 6= ∅ (unless there exists x ∈M and at least three lines passing through x that
contain points adjacent to x, this contradicts (C)). A subset C = {H1, . . . ,Hs}(s ≥ 3)
of A is called a cycle of lines if p j := H j ∩ H j+1 ∈ M for j = 1, . . . , s − 1 and
ps := Hs ∩ H1 ∈ M, or equivalently, the subgraph of Γ lying on C is a cycle. In that
case we denote PC := {p1, . . . , ps}, which is also called the set of vertices of the cycle
C. Observe that the number of such cycles C is exactly the number of cycles of the
graph Γ.

Let L ∈ T(M) be a rank one local system and let aH ,H ∈ A be the corresponding
residues. We have the following proposition.
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Proposition 3.3 Let A be a line arrangement satisfying condition (C) and fix a line
H0 in A. Assume that for any cycle C in A not involving the line H0 there exists H ∈ A1

with H ∩ PC 6= ∅ such that aH /∈ Z. Then the local system L is admissible.

Proof By the same argument as in the beginning of the proof of Theorem 1.4, we
can assume that aH ∈ [0, 1) for all H ∈ A \ {H0}. Then the condition aH /∈ Z means
that aH 6= 0. The idea of the proof is the same as in proof of Theorem 1.4, but first
we open cycles in A.

Let G be a connected component of Γ. Note that edges of any cycle in G are located
on lines of some cycle of lines. Let C ⊂ A be such a cycle that does not contain H0.
According to the hypothesis, we can choose a line HC ∈ A1 such that aHC

∈ (0, 1)
and HC passes through some vertex pC = H1

C ∩ H2
C ∈ PC of C, where H1

C,H
2
C ∈ C.

Let
a := max{0, a(x) : x ∈ H1

C ∩M, a(x) ∈ Z>0},
where a(x) =

∑
H∈A,x∈H aH . In the first step, we replace residues as follows:

aH1
C

:= aH1
C
− a, aHC

:= aHC
+ a.

Then we have aHC
/∈ Z>0 and a(x) /∈ Z>0 for all x ∈ H1

C ∩M \ {pC}. However
a(pC) and aH with H /∈ {H1

C,HC} do not change.
Now we repeat the process as in the proof of Theorem 1.4 for each connected

component of the subgraph

G′ := G \ (∪C{AH1
C
} ∪ AH0 ),

where AH is the set of edges of Γ lying on H. During the process, we regard pC as a
vertex of G′ so that the corresponding residue a(pC) is corrected when we shape the
residue of H2

C.
Finally, we obtain new residues satisfying all conditions in Definition 2.1.

Theorem 3.4 Let A be a line arrangement satisfying condition (C) and fix a line H0

in A. Assume that for any cycle C in A not involving the line H0 the following hold.

(i) The number of lines in C is even.
(ii) On each line H ∈ C, there exist at most two points in M adjacent to other points

in M \H.

Then all rank one local systems on the complement M of A are admissible.

Proof Let L be any rank one local system on M with residues aH ,H ∈ A. Similarly,
we may assume that aH ∈ [0, 1) for all H ∈ A,H 6= H0. Let Γ be an M-graph.

Let G be a connected component of Γ. If H0 contains some edge of G or G does
not contain any cycle, we repeat the algorithm in the proof of Theorem 1.4 for each
connected component of the graph G \ {AH0}. Since there is no cycle in G \ {AH0},
all claims and argument in the proof hold in this situation. Otherwise, according to
the hypothesis, the graph G is itself a cycle located on a cycle of lines C that satisfies
conditions (i) and (ii) above, namely C = {H1, . . . ,H2k}. We consider the following
possibilities:

(i) There exists a vertex p ∈ PC of C such that a(p) =
∑

H∈A,p∈H aH /∈ Z>0.
Without loss generality, we can assume that p = H1 ∩ H2k. Then we repeat the
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algorithm as in the proof of Theorem 1.4 for G by first correcting the residue of H1.
Put

a1 = max{0, a(x) : x ∈ H1 ∩M \H2, a(x) ∈ Z>0}.
In the first step, replace aH1 by aH1 − a1 and aH0 by aH0 + a1. In the next step, we
proceed with H2 until residues of all multiple points are corrected.

(ii) There exists H ∈ A1,H ∩ PC 6= ∅ such that aH 6= 0. Using same method as
in proof of Proposition 3.3.

(iii) For all p ∈ PC, we have a(p) ∈ Z>0, and for all H ∈ A1 with H ∩ PC 6= ∅
we have aH = 0. In this case, due to aH ∈ [0, 1),H ∈ C. Then for p ∈ PC we obtain
a(p) ∈ [0, 2), hence a(p) = 1. We replace residues as follows:

aH2i := aH2i − a(p2i−1), aH0 := aH0 + a(p2i−1), i = 1, . . . , k,

where p2i−1 = H2i−1 ∩ H2i ∈ PC. It is easy to see that after those replacements all
claims as in proof of Theorem 1.4 remain true.

Thus we get new residues for L with all conditions as in Definition 2.1 satisfied.
In other words L is admissible.

Let L be a rank one local system on the complement M of a line arrangement A
and let λH ∈ C∗,H ∈ A be the corresponding monodromy numbers. By the same
argument as in the proof of Theorem 3.4 above, one can show the following corollary.

Corollary 3.5 Let A be a line arrangement satisfying condition (C) and fix a line H0

in A. Assume that for any cycle of lines C in A not involving the line H0, on each line
H ∈ C, there exist at most two points in M adjacent to other points in M \H.

Then either L is admissible or there exists a cycle C such that λH = −1 for all H ∈ C

and λH = 1 for all H /∈ C having intersection in M with some line of C.

Remark 3.6 In the following example, we will see that among arrangements sat-
isfying condition (C) one can not remove the assumption in Theorem 1.4 as well as
Theorem 3.4(i).

Example 3.7 Let us consider that the arrangement A in P2 consists of 12 lines:

L1 : x = 0, L2 : y = 0, L3 : x + y − z = 0,

L4 : x + 3y = 0, L5 : x − 3y − z = 0, L6 : 3x − y + z = 0,

L7 : x − y + 2z = 0, L8 : 4x + y − 12z = 0, L9 : x + 2y − 10z = 0,

L10 : x − y + 8z = 0, L11 : 4x + y + 12z = 0, L0 : z = 0;

this last one is the line at infinity. There are 6 points of multiplicity at least 3: p1 =
[0 :0 :1] = L1∩L2∩L4, p2 = [1 :0 :1] = L2∩L3∩L5, p3 = [0 :1 :1] = L1∩L3∩L6, p4 =
[2 :4 :1] = L7∩L8∩L9, p5 = [1 :1 :0] = L0∩L7∩L10, p6 = [1 : −4 : 0] = L0∩L8∩L11.
Figure 2 shows that there are two disjoint cycles consisting of 3 lines, without any line
in common.

We consider the rank one local system L = exp(α), where the cohomology class
α ∈ H1(M,C) is given by residues ai := aLi = 1/2 for i ∈ {1, 2, 3, 7, 8}, a j := aL j =
0 for j ∈ {4, 5, 6, 9, 10, 11}, and a0 := aL0 = −5/2. We will prove that this local
system L is not admissible.
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Indeed, assume by contradiction that L is admissible. This means that there exists
a cohomology class α′ ∈ H1(M,C) defined by residues bi := bLi ∈ C, i = 0, . . . , 11
such that exp(α′) = L,

∑11
i=0 bi = 0, bi /∈ Z>0 for any i and b(p j) /∈ Z>0 for any

j = 1, . . . , 6, where
b(p j) =

∑
p j∈Lk

bk.

It is easy to see that bi = ki + 1/2 for i ∈ {0, 1, 2, 3, 7, 8} and b j = k j for j ∈
{4, 5, 6, 9, 10, 11} with ki ∈ Z for all i ∈ {0, 1, . . . , 11}. Since bi /∈ Z>0, we get
k j ≤ 0 for j ∈ {4, 5, 6, 9, 10, 11}.

We have the following equalities:

6∑
i=1

b(pi) = 2
( ∑

i∈{0,1,2,3,7,8}

bi

)
+

∑
j∈{4,5,6,9,10,11}

b j

= −
∑

j∈{4,5,6,9,10,11}

k j ≥ 0.

In other words,
∑6

i=1 b(pi) ∈ Z≥0. Moreover, observe that b(pi) is an integer for
each i = 1, . . . , 6. Therefore b(pi) = 0 for all i (since b(pi) /∈ Z>0) and hence k j = 0
for all j ∈ {4, 5, 6, 9, 10, 11}. In particular, b1 + b2 = b2 + b3 = b1 + b3 = 0, so
b1 = b2 = b3 = 0, which is impossible.
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Thus L is not admissible.

4 Multinets and Resonance Varieties

In this section, we will work on the resonance varieties concerning our line arrange-
ments and discuss how these resonance varieties behave. We use the notion of multi-
nets that is defined in [12], where the authors gave the correspondence between the
global components of the resonance varieties and the multinets.

Definition 4.1 ([12]) A (k, d)-multinet on a line arrangement A is a partition
A = ∪k

i=1Ai of A into k ≥ 3 subsets, together with an assignment of multiplicities,
m : A → Z≥0, and a subset X ⊂ M of multiple points, called the base locus, such
that:

(i)
∑

H∈Ai
mH = d, independent of i;

(ii) for each H ∈ Ai and H′ ∈ A j with i 6= j, the point H ∩H′ belongs to X;
(iii) for each X ∈ X, the sum nX :=

∑
H∈Ai : H≤X mH is independent of i;

(iv) for each 1 ≤ i ≤ k and H,H′ ∈ Ai , there is a sequence H = H0,H1, . . . ,Hr =
H′ such that H j−1 ∩H j 6∈ X for 1 ≤ j ≤ r.

Lemma 4.2 Let A be a line arrangements in P2 such that condition (C) is satisfied.
Then either all lines in A are concurrent or A does not support any multinet.

Proof Suppose that A supports a multinet A = ∪k
i=1Ai , k ≥ 3 with multiplicities

m : A→ Z≥0 and lines in A are not all concurrent. We denote by X the base locus.
Let H1 ∈ A1 and H2 ∈ A2 be arbitrary. According to Definition 4.1(ii), the point

p := H1 ∩ H2 ∈ X. If p ∈ H for all H ∈ Ai , i > 2, there exists H′ ∈ A1 ∪ A2 such
that p /∈ H′. Unless, there is at least one line H ∈ Ai for some i > 2 where p /∈ H.
Anyway, there always exist at least 3 lines belonging to different sets of Ai ’s that are
not concurrent. Without any loss, we call them by H1 ∈ A1,H2 ∈ A2,H3 ∈ A3.
According to Definition 4.1(iii), the number of lines in each Ai passing through each
point of X are the same. Therefore, there exist H′3 ∈ A that passes through the point
q3 := H1 ∩H2 ∈ X and H′2 ∈ A2 passing through q2 := H1 ∩H3 ∈ X. But it implies
from (ii) that H′2 ∩H′3 ∈ X. Hence condition (C) fails.

The (first) resonance varieties of A are the jumping loci for the first cohomology
of the complex H∗(H∗(M,C), α∧), namely:

Rk(A) = {α ∈ H1(M,C) | dim H1(H∗(M,C), α∧) ≥ k}.

It was proved in [6] that the irreducible components of resonance varieties are
linear subspaces in H1(M,C). A component R of R1(A) is called a global component
if R is not contained in any coordinate hyperplane (see [12]).

Theorem 4.3 Let A be a line arrangements in P2 such that the condition C is satis-
fied. Then R1(A) does not contain any global component except that all lines in A are
concurrent.
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Proof This theorem is a corollary of Lemma 4.2 and the following fact.

Theorem 4.4 ([12]) Suppose that the line arrangement A in P2 supports a global
resonance component of dimension k−1. Then A supports a (k, d)-multinet for some d.
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