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Abstract

This paper gives easy proofs of conditional limit laws for the population size Zt of a
critical Markov branching process whose offspring law is attracted to a stable law with
index 1 + α, where 0 ≤ α ≤ 1. Conditioning events subsume the usual ones, and more
general initial laws are considered. The case α = 0 is related to extreme value theory for
the Gumbel law.
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1. Introduction

Let f (s) = ∑
j≥0 pj s

j denote the probability generating function (PGF) of the offspring
law of the simple (Bienaymé–Galton–Watson) branching process. Assume that p0 > 0 and
that the mean per-capita number of offspring is m = ∑

jpj = 1, i.e. the process is critical.
Except for the last two sections, we also suppose that

f (s) = s + (1 − s)1+αL
(

1

1 − s

)
, 0 ≤ s < 1, (1.1)

where 0 ≤ α ≤ 1 and L(x) is slowly varying at infinity. This and related notions are described
at the end of Section 2. Let Zn denote the population size of the nth generation, and let
Pi (·) = Pi (· | Z0 = i), and similarly for the expectation.

Slack (1968) proved that if 0 < α ≤ 1 then there are norming constants Qn → 0 such
that P1(QnZn ≤ x | Zn > 0) converges weakly to a nondegenerate limit. An admissible
choice of norming constant isQn = P1(Zn > 0). Later, Slack (1972) proved that if such weak
convergence holds with this particular norming, then (1.1) holds for some α ∈ (0, 1] and slowly
varying L.

Recently, Nagaev and Wachtel (2007) proved that if (1.1) holds with α = 0 then

P1(L(Q
−1
n )V (Zn) ≤ z | Zn > 0) → 1 − e−z, z > 0,

where

V (x) =
∫ 1−1/x

0

ds

f (s)− s
, x ≥ 1. (1.2)
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Critical Markov branching processes 461

Let (Zt : t ≥ 0) denote the Markov branching process (MBP) with split rate ρ > 0 and
offspring law {pj } as above, but with the conventionally added condition p1 = 0. The MBP
analogue of the above results can be obtained by applying them to discrete skeletons of the
MBP, in the manner of Conner (1967). However, the aim of this paper is to exploit the smooth
structure of the MBP to give simple direct proofs of more general conditional limit theorems.
See Section 8 for remarks about what is meant by ‘smooth structure’.

The case α > 0 is treated in Section 3 where three conditioning regimes are considered.
Let T = inf{t : Zt = 0} denote the extinction time of the MBP, and let τ ≥ 0 be such that
τ/t → c ∈ [0,∞] as t → ∞. The three conditioning regimes are:

(a) T > t + τ ;

(b) t < T ≤ t + τ ; and

(c) T > t + τ , where τ → ∞ and then t → ∞.

The fundamental conditioning T > t can be interpreted as t < T ≤ t + τ with the limits
taken as in (c). The fundamental conditioning was treated in Zolotarev (1957) using a direct
manipulation of the integrated backward Kolmogorov equation. We shall reprise his proof
in Section 3 in a more direct manner (Theorem 3.1). Results for regimes (a) and (b) then
follow easily, excepting some boundary cases which need additional consideration. Regime
(c) is simply the MBP version of what, in the context of Galton–Watson processes, is called
in Athreya and Ney (1972, pp. 56–60) the Q-process. It is also the conditioning defining the
‘doubly limiting conditional’ theorem from the quasistationary theory of Markov processes (see
Anderson (1991, p. 181)).

Representations of the limit laws are investigated in Section 4. These include integral repre-
sentations for their densities (with respect to the Lebesgue measure), and some representations
in terms of algebraic combinations of independent random variables.

If R(y) denotes the inverse of the function V (x) in (1.2) then G(y) = 1 − 1/R(y) is
a distribution function with support [0,∞), and differentiable in (0,∞). In the case that
(1.1) holds with α > 0, we will see that G(y) = 1 − G(y) is regularly varying with index
−1/α, i.e. it lies in the maximal domain of attraction of a Fréchet law. This observation is
interesting, but not crucial for the proofs in Section 3. However, if α = 0 then G is a von
Mises distribution function, and, hence, attracted to the Gumbel law. This fact is crucial for our
treatment in Section 5 of the fundamental conditioning in the case α = 0 (Theorem 5.1). Since
P(T ≤ t) = G(ρt), it follows that the cases α > 0 and α = 0 correspond to the extinction
time law being attracted to the Fréchet or the Gumbel law, respectively. We expand on these
connections in Section 8. Alterations to our proof yields results for regimes (a) and (b) under
a quite specific prescription for the dependence of τ on t . A kind of inversion of our approach
for the fundamental conditioning yields a limit theorem for regime (c), but with norming which
is qualitatively different to that for the fundamental conditioning.

In Sections 3 and 5, we examine the effect of different initial laws for the MBP. In Section 6
we give converse results showing that (1.1) is a consequence of a basic limit assertion. Finally,
in Section 7 we obtain a conditional limit theorem which requires no moment assumption
beyond finitude of m. This result is analogous to that obtained in Pakes (1999, Theorem 2.5)
for the Galton–Watson process, which in turn stemmed from Seneta (1967).

In Section 2 we collect some representation formulae which will be used throughout, and
also some notation and basic facts about regular and rapid variation.

https://doi.org/10.1239/aap/1275055238 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1275055238


462 A. G. PAKES

2. Preliminary facts

Recall that ρ is the splitting rate of the MBP, i.e. individual lifetimes are independent with
an exponential law having mean ρ−1. Individual members of the population reproduce at the
end of their lives according to the offspring law {pj }. We follow the convention that p1 = 0,
so that splits correspond to observable changes in the population size. This, together with
the assumption that m = 1, ensures that the offspring law is nondegenerate. In particular,
0 < p0 < 1. Defining pij (t) = Pi (Zt = j) and F(s, t) = ∑

j≥0 p1j (t)s
j , it follows from the

branching property that ∑
j≥0

pij (t)s
j = (F (s, t))i , i = 1, 2, . . . .

The backward Kolmogorov equation can be expressed as∫ F(s,t)

s

du

f (u)− u
= ρt. (2.1)

The MBP has an invariant measure {µj ; j = 1, 2, . . . }, i.e.
∑
i≥1 µipij (t) = µj for t ≥ 0

and j ≥ 1, and it is unique up to constant factors (see Harris (1963, p. 110)). Adopting the
normalization µ1 = 1/p0, the generating function of the invariant measure is

M(s) =
∫ s

0

du

f (u)− u
. (2.2)

It follows that (2.1) takes the form M(F (s, t)) = ρt + M(s). But (1.2) implies that V (x) =
M(1 − 1/x), and recalling that R(y) is the inverse of V (x), we obtain the following basic
representations:

1

1 − F(s, t)
= R

(
ρt + V

(
1

1 − s

))
(2.3)

and, defining F(t) = P1(T ≤ t) = F(0, t),

1

1 − F(t)
= R(ρt). (2.4)

Lemma 2.1. Assuming only that m = 1, the function V is concave increasing to ∞ and R is
convex increasing to ∞.

Proof. It follows from (1.2), with s = 1 − x−1, that V ′(x) = (1 − s)2/(f (s) − s). The
right-hand side can be written as (1 − s)/(1 − g(s)), where g(s) = (1 − f (s))/(1 − s) is a
PGF. The convexity of g implies that, as a function of s, V ′(x) decreases to 1/g′(1) as s ↑ 1.
Since ds/dx = x−2 > 0, it follows that V ′′(x) < 0.

Eliminating the time derivative term in the generating function forms of the backward and
forward Kolmogorov equations (see Athreya and Ney (1972, p. 106)) gives the following useful
identity:

∂

∂s
F (s, t) = a(F (s, t))

a(s)
, (2.5)

where a(s) = ρ(f (s)− s).
Results about regular and slow variation are frequently used, and the salient facts are collected

here. We refer the reader to Bingham et al. (1987) for more information. The class of functions
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which are slowly varying at ∞ is denoted by S. Thus, L ∈ S if it is defined on (0,∞) and,
for each λ > 0, limx→∞ L(λx)/L(x) = 1. The uniform convergence theorem asserts that
this convergence holds uniformly with respect to λ in compact subsets of (0,∞). There is a
representation theorem asserting that if L ∈ S then L(x) = c(x) exp(

∫ x
1 (ε(x)/x) dx), where

c(x) → c > 0 and ε(x) → 0 as x → ∞. Call ε(x) the index function of L. If c(x) ≡ c

then L is said to be normalized slowly varying, and S0 denotes the set of normalized members
of S. A function R(x) defined on (0,∞) is called regularly varying (at ∞) with index δ if
limx→∞ R(λx)/R(x) = λδ for all λ > 0. Such a function can be expressed as R(x) = xδL(x)

for some L ∈ S. A theorem of Lamperti (see Bingham et al. (1987, p. 59)) implies that if the
derivativeR′(x) exists and it is ultimately monotone, then xR′(x)/R(x) = δ+o(1) as x → ∞.
Integrating this relation shows that the slowly varying factor L ∈ S0.

Finally, we say that R is rapidly varying (see Bingham et al. (1987, p. 83)) if

lim
x→∞

R(λx)

R(x)
=

{
0 if 0 < λ < 1,

∞ if λ > 1.

Assuming that (1.1) holds, (1.2) becomes

V (x) =
∫ x

1

vα−1 dv

L(v)
, x ≥ 1.

It follows from Karamata’s theorem (see Bingham et al. (1987, p. 26)) that V ∈ Rα , and it
follows from Lamperti’s theorem that the slowly varying factor of V is normalized.

We shall often use the convention that if a quantity q ∈ [0, 1], then q = 1 − q. Thus,
F(s, t) = 1 − F(s, t) and F(t) = 1 − F(t).

3. The case 0 < α ≤ 1

We begin by stating and proving the fundamental conditional limit theorem, i.e. the essence
of Theorem 7 of Zolotarev (1957).

Theorem 3.1. If (1.1) with 0 < α ≤ 1 holds then

lim
t→∞ P1(F (t)Zt ≤ x | T > t) = Dα(x),

where

ψα(θ) =
∫ ∞

0
e−θx dDα(x) = 1 − (1 + θ−α)−1/α. (3.1)

Proof. Since R increases (convexly) to ∞, it follows that F(t) → 0. We will let s = st =
e−θF (t) in (2.3). So 1 − st ∼ θF (t), and it follows from the uniform convergence theorem and
(2.4) that

V

(
1

1 − st

)
∼ θ−αV

(
1

F(t)

)
= θ−αV (R(ρt)) = ρtθ−α.

Since V ∈ Rα , its inverse R ∈ R1/α (see Bingham et al. (1987, p. 29)), so, from (2.3) and the
uniform convergence theorem,

1

F(st , t)
∼ R((1 + θ−α)ρt) ∼ (1 + θ−α)−1/αR(ρt).
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It follows from (2.4) that

lim
t→∞

F(st , t)

F (t)
= (1 + θ−α)−1/α, (3.2)

i.e.

E1(e
−θF (t)Zt | T > t) = 1 − F(s, t)

F (t)
→ ψα(θ).

The assertion follows from the continuity theorem for Laplace–Stieltjes transforms, andDα(x)
is nondefective because ψ(0+) = 1.

Remark 3.1. It follows from the proof that F ∈ R−1/α with α > 0 is equivalent to (1.1).

Zolotarev (1957) began the proof of his Theorem 7 using the integrated backward equation
essentially as above, but he reached (3.2) in a somewhat indirect way using a proof by contra-
diction. Expression (3.1) forψα(θ) is a minor algebraic rearrangement of the form he obtained.
However, his expression for Dα is not correct, though comparing it with the expression near
the top of page 250 suggests that his error is an inadvertent omission of an algebraic factor. We
derive his (corrected) integral representation in the next section.

Suppose now that Z0 has a law whose PGF is

π(s) = 1 − (1 − s)δL

(
1

1 − s

)
and π(0) = 0, (3.3)

where 0 ≤ δ ≤ 1 and L ∈ S. The case δ = 1 includes any initial law having a finite first
moment. It follows from (3.2) and the uniform convergence theorem applied to 1−π(1−1/x) ∈
R−δ that

lim
t→∞

1 − π(F (st , t))

1 − π(F (t))
= (1 + θ−α)−δ/α. (3.4)

Let Eπ (·) and Pπ (·) denote the conditional expectation and probability given the initial
law π . Since

Eπ (s
Zt | T > t) = π(F (s, t))− π(F (t))

1 − π(F (t))
,

the next result follows from (3.4).

Theorem 3.2. Suppose that (1.1) holds with 0 < α ≤ 1 and that (3.3) holds. If 0 < δ ≤ 1 then

lim
t→∞ Pπ (F (t)Zt ≤ x | T > t) = Dα,δ(x),

where

ψα,δ(θ) =
∫ ∞

0
e−θx dDα,δ(x) = 1 − (1 + θ−α)−δ/α. (3.5)

If δ = 0 then, given that T > t , F(t)Zt
p−→ ∞.

Remark 3.2. Since Dα,1(x) = Dα(x), the case α = 1 of Theorem 3.2 is a real generalization
of Theorem 3.1.

The next results deal with the conditioning regimes (a) and (b), for which we need the
following lemma.
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Lemma 3.1. Suppose that the conditions of Theorem 3.1 hold, and that τ > 0 is a function of
t satisfying limt→∞ τ/t = c ∈ [0,∞]. Then

lim
t→∞

F(t + τ)

F (t)
= (1 + c)−1/α, (3.6)

lim
t→∞

F(τ)

F (t)
= c−1/α ≤ ∞, (3.7)

and, recalling that st = exp(−θF (t)),

lim
t→∞

F(stF (τ), t)

F (t)
= [1 + (θ + c−1/α)−α]−1/α ≤ 1. (3.8)

Proof. If 0 < c < ∞ then limits (3.6) and (3.7) follow from Remark 3.1 and the uniform
convergence theorem. For the same reasons, (3.6) is valid if c = 0. Both are valid if c = ∞
because, since F is decreasing, the uniform convergence theorem extends to uniformity in any
semi-infinite interval [λ′,∞), where λ′ > 0. See Bingham et al. (1987, p. 22). If c = 0 then,
given ε > 0, there exists t ′ such that τ/t ≤ ε if t ≥ t ′. Hence,

lim inf
t→∞

F(τ)

F (t)
≥ lim
t→∞

F(εt)

F (t)
= ε−1/α.

Letting ε → 0 gives (3.7). Thus, the values of limits (3.6) and (3.7) are 1 and ∞, respectively,
if c = 0, and both are 0 if c = ∞.

For (3.8), observe that

1 − stF (τ ) = 1 − st + F(τ)− (1 − st )F (τ) = θF (t)(1 + o(1))+ F(τ)+O(F(t)F (τ)).

If 0 < c ≤ ∞ then the right-hand side is asymptotically equal to (θ + c−1/α)F (t) and (3.8)
follows from (3.2) and its local uniform convergence with respect to θ .

If c = 0 then (3.7) implies that (1 − stF (τ ))/F (t) → ∞. Hence, given a (large) positive
constant M , there exists t ′ > 0 such that stF (τ ) < 1 −MF(t) ∈ (0, 1) if t > t ′. So

1 >
F(t + τ)

F (t)
>
F(stF (τ), t)

F (t)
>
F(1 −MF(t), t)

F (t)
→ ψα(M).

The right-hand side converges to unity as M → ∞, and (3.8) follows.

Since Pπ (Zt = j, T > t + τ) = Pπ (Zt = j)(1 − Fj (τ)), it follows that

Eπ (s
Zt | T > t + τ) = π(F (s, t))− π(F (sF (τ), t))

1 − π(F (t + τ))
. (3.9)

It follows from (3.2), (3.6), (3.8), and (3.3) that if 0 ≤ c < ∞ then

Âα,c,δ(θ) := lim
t→∞ Eπ (s

Zt
t | T > t + τ) = [1 + (θ + c−1/α)−α]−δ/α − [1 + θ−α]−δ/α

(1 + c)−δ/α
.

Here and below, we use the convention that Â(θ) denotes the Laplace–Stieltjes transform of a
distribution function A(x). If c = ∞, it follows from (3.6) that these limit operations result in
an indeterminate form. Theorem 3.4, below, addresses this case. Observing that, for c < ∞,

Âα,c,δ(θ) = ψα,δ(θ)− ψα,δ(θ + c−α)
ψα,δ(c

−1/α)
, (3.10)

we have the following result for regime (a).
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Theorem 3.3. Suppose that the conditions of Theorem 3.2 hold with 0 < δ ≤ 1, and that τ > 0
is a function of t satisfying limt→∞ τ/t = c ∈ [0,∞). Then

lim
t→∞ Pπ (F (t)Zt ≤ x | T > t + τ) = Aα,c,δ(x) =

∫ x
0 (1 − e−vc−1/α

) dDα,δ(v)∫ ∞
0 (1 − e−vc−1/α

) dDα,δ(v)
. (3.11)

It follows from (3.11), and the evaluation of (3.8) as unity if c = 0, that

lim
c→0

Aα,c,δ(x) → Aα,0,δ(x) = Dα,δ(x).

We begin discussion of the case c = ∞ by noting that a binomial expansion yields the
following corollary.

Corollary 3.1. We have

Âα,∞,δ(θ) := lim
c→∞ Âα,c,δ(θ) =

{
ψ

′
α(θ) = (1 + θα)−1−1/α if δ = 1,

0 if δ < 1.

The following preliminary result for the case c = ∞ starts from (3.9) and does not require
the regular variation assumptions in (1.1) and (3.3). Recall that a(s) = ρ(f (s)− s).

Lemma 3.2. If m = 1 but f (s) is otherwise arbitrary, then

E1(s
Zt | Z∞ > 0) := lim

τ→∞ E1(s
Zt | T > t + τ) = s

a(F (s, t))

a(s)
. (3.12)

If, in addition, π is an arbitrary initial law supported on the positive integers and with first
moment mπ , then

lim
τ→∞ Eπ (s

Zt | T > t + τ) =
⎧⎨⎩E1(s

Zt | Z∞ > 0)
π ′(F (s, t))

mπ
if mπ < ∞,

0 if mπ = ∞.

Proof. Let π(s) = s in (3.9), and observe that, by virtue of the mean value theorem and
F(τ) → 1, the numerator is asymptotically proportional to

sF (τ)
∂

∂s
F (s, t) = sF (τ)

a(F (s, t))

a(s)
, 0 ≤ s < 1,

where the equality follows from (2.5). It follows from E1(Zt ) = 1 for all t that

F(t + τ) = F(F(τ), t) ∼ F(τ), τ → ∞,

and (3.12) follows from these estimates. In addition, (2.5) implies that the right-hand side of
(3.12) tends to unity as s → 1, i.e. the discrete limit law inherent in (3.12) is honest.

For general π , the mean value theorem yields

Eπ (s
Zt | T > t + τ) = E1(s

Zt | T > t + τ)
π ′(ζ1(τ ))

π ′(ζ2(τ ))
,

where
F(sF (τ), t) < ζ1(τ ) < F(s, t) and F(t + τ) < ζ2(τ ) < 1.

So ζ1(τ ) → F(s, t) and ζ2(τ ) → 1 as τ → ∞, and the second assertion follows from (3.12).
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The quotient on the right-hand side of (3.12) can be expressed as

exp

(
−ρ

∫ t

0
(1 − f ′(F (s, v)) dv)

)
,

and this is the PGF of an MBP subject to an external source of immigration. Immigration occurs
as a compound Poisson process whose jump rate is ρ, and whose jump law has the PGF f ′(s).
Athreya and Ney (1972) used the term Q-process in the corresponding discrete-time context.
The factor π ′(F (s, t))/mπ is the generating function of an independent MBP whose initial law
has the PGF π ′(s)/mπ . It follows from Lemma 3.2 that regime (c) can yield a meaningful limit
theorem only if mπ < ∞. In this case, any limit operation involving F(st , t) → 1 will give a
limit which is independent of π . So it suffices to consider only (3.12).

The next result covers regime (a) with c = ∞ and regime (c). Let F ′(s, t) denote the
derivative on the left-hand side of (2.5).

Theorem 3.4. If (1.1) holds with 0 < α ≤ 1 and mπ < ∞,

(i) then
lim
t→∞ Pπ (F (t)Zt ≤ x | Z∞ > 0) = Aα,∞(x),

where
Âα,∞(θ) = (1 + θα)−1−1/α;

(ii) and if, in addition, τ/t → ∞, then

lim
t→∞ Pπ (F (t)Zt ≤ x | T > t + τ) = Aα,∞(x).

Proof. We prove (ii) only, since (i) is very similar. Let s = st = e−θF (t) in (3.9). The
arguments of π there all tend to unity, and since mπ is finite, it follows from the mean value
theorem that the limit of the right-hand side is the same as for the case where π(s) = s.
Assuming this form, the numerator is asymptotically equal to F(τ)F ′(ζt , t), where stF (τ ) <
ζt < st . It follows from (3.7) with c = ∞ that 1 − st ∼ θF (t), implying that 1 − ζt ∼ θF (t).
So (3.2) and (1.1) yield

F ′(ζt , t) = a(F (ζt , t))

a(ζt )
= (F (ζt , t))

1+αL(1/F (ζt , t))
(θF (t))1+αL(1/F (t))

→ (1 + θα)−1−1/α.

Finally, (3.6) and (3.7) imply that F(τ)/F (t + τ) → 1, so we conclude that

E1(e
−θF (t)Zt | T > t + τ) → Âα,∞(θ),

and the theorem follows since Âα,∞(0+) = 1.

LetAα,c(x) := Aα,c,1(x), and similarly for the corresponding Laplace–Stieltjes transforms.
It follows from Theorems 3.3 and 3.4, and Corollary 3.1, that {Aα,c : 0 ≤ c ≤ ∞} comprises
a family of nondegenerate distribution functions. This remark is related to a functional limit
theorem which is essentially a corollary of Theorem 3.1. Following Durrett (1978), with some
altered notation, let 0 < ζ ≤ 1 and define the ‘conditioned’ process

V +
t (ζ ) = (F (t)Zζ t | Zt > 0, Z0 = i).
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Durrett’s setting is the weak convergence of a sequence of continuous-time processes obtained
by linear interpolation of discrete-time processes. His general setting and assumptions can be
adapted to our setting with the result that (V +

t (ζ ) : 0 < ζ ≤ 1) converges weakly in the space
D[0, 1] to an inhomogeneous Markov process w(ζ ). The one-dimensional law of this limit
process has the Laplace–Stieltjes transform ηα(θ, ζ ) = Âα,c(ζ

1/αθ), where c = ζ−1 − 1. The
limit ζ → 0+ corresponds to c → ∞, but the norming factor ζ 1/α has the effect of ensuring
that ηα(θ, 0+) = 1, i.e.w(ζ )

p−→ 0, and, hence, that {0} is an unattainable entrance state for the
limit process. In addition, it follows from (3.10) that ζ−1/αw(ζ ) converges in law (as ζ → 0+)
to the same limit as in Corollary 3.1. Details of the application of Durett’s theorem are given
in Vatutin et al. (2008) for the Galton–Watson process satisfying (1.1).

Turning now to regime (b), it turns out, for reasons explained in the next section, that
neither F(t) or F(τ) are entirely satisfactory as norming functions. The following result uses
a composite norming which is satisfactory.

Theorem 3.5. Suppose that (1.1) and (3.3) hold with 0 < α, δ ≤ 1, and that τ > 0 is a function
of t satisfying limt→∞ τ/t = c ∈ (0,∞]. Then the limit

lim
t→∞ Pπ ((F (t)+ F(τ))Zt ≤ x | t < T ≤ t + τ) = Bα,c,δ(x)

exists, where

B̂α,c,δ(θ) = ψα,δ((1 + c−1/α)θ + c−1/α)

ψα,δ(c−1/α)
.

Proof. Similarly to (3.9),

Eπ (s
Zt | t < T ≤ t + τ) = π(F (sF (τ), t))− π(F (t))

π(F (t + τ))− π(F (t))
. (3.13)

Choosing s = s′ = e−(F (t)+F(τ))θ we have, from (3.7),

1 − s′F(τ) = 1 − s′ + F(τ)(1 + o(1)) ∼ [(1 + c−1/α)θ + c−1/α]F(t).
So (3.2) implies that

F(s′F(τ), t)
F (t)

→ ψα((1 + c−1/α)θ + c−1/α).

Next, (3.6) implies that

F(t + τ)− F(t) ∼ [1 − (1 + c)−1/α]F(t) = ψα(c
−1/α)F (t).

The assertion for δ = 1 follows from these estimates. The outcome for δ < 1 follows from the
same estimates since, for example, using (3.3) and (3.6), the denominator in (3.13) is

(F (t))δL

(
1

F(t)

)
− (F (t + τ))δL

(
1

F(t + τ)

)
∼ ψα,δ(c

−1/α)(F (t))δ.

The assertion follows from these estimates.

Note that if c = ∞ then the norming function is equivalent to F(t), and that B̂α,∞,δ(θ) =
ψα,δ(θ). The first part of the following corollary is immediately evident from Theorem 3.5,
and the second part follows from the relation 1 − ψα,δ(c

−1/α) = 1 − (1 + c)−δ/α , implying
that ψα,δ(θ) ∼ δθ−α/α as θ → ∞. Here and below, the standard gamma law with (shape)
parameter � is defined by the density function g�(x) = x�−1e−x/�(�), and G�(x) denotes its
distribution function.
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Corollary 3.2. We have

Bα,c,δ(x) →
{
Dα,δ(x) as c → ∞,

Gα(x) as c → 0.

Note that the second limit is independent of δ. The next result shows that this gamma law
occurs as the limit law when c = 0, even if δ = 0.

Theorem 3.6. Suppose that (1.1) holds with 0 < α ≤ 1, that (3.3) holds with 0 ≤ δ ≤ 1, and
that τ → ∞ with c = 0. Then

lim
t→∞ Pπ (F (τ)Zt ≤ x | t < T ≤ t + τ) = Gα(x).

Proof. Note that (3.7) with c = 0 implies that the norming in the assertion effectively
coincides with that used for Theorem 3.5. The condition τ → ∞ ensures that F(τ) → 0, and,
hence, that 1 − sτ ∼ θF (τ). It follows from (2.3) and (2.4) that

1

F(sτF (τ), t)
− 1

F(t)
= R

(
ρt + V

(
1

1 − sτF (τ)

))
− R(ρt). (3.14)

Since V ∈ Rα ,

V

(
1

1 − sτF (τ)

)
∼ (1 + θ)−αV

(
1

F(τ)

)
= (1 + θ)−αρτ.

Since c = 0 and R ∈ R1/α , the mean value theorem and the uniform convergence theorem
imply that the right-hand side of (3.14) is asymptotically proportional to (1 + θ)−αρτR′(ρt).
Lamperti’s theorem implies that R′(ρt) ∼ R(ρt)/αρt . Combining these estimates and rear-
ranging (3.14) leads to the estimate

F(sτF (τ), t)− F(t) ∼ (1 + θ)−α τF (t)
αt

, t → ∞. (3.15)

Next, F(t + τ)− F(t) ∼ τF ′(ζt ), where, since c = 0, ζt ∼ t . It follows from (2.3) that

F ′(t) = ρR′(ρt)
(R(ρt))2

= ρF(t)
R′(ρt)
R(ρt)

∼ F(t)

αt
,

where Lamperti’s theorem was used for the last step. In particular, F ′(t) is regularly varying,
and, hence, we obtain the estimate

F(t + τ)− F(t) ∼ τF (t)

αt
.

Combining this with (3.15) yields

E1(e
−θF (τ)Zt | t < T ≤ t + τ) → (1 + θ)−α,

giving the assertion for the case π(s) = s.
It follows from the above estimates that if F(t) < ut < max(F (t + τ), F (sτF (τ), t)), then

1 − ut ∼ F(t). However,

Eπ (s
Zt
τ | t < T ≤ t + τ) = E1(s

Zt
τ | t < T ≤ t + τ)

π ′(u1t )

π ′(u2t )
,

where 1 − uit ∼ F(t), i = 1, 2. It follows, from (3.3) and the uniform convergence theorem,
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that the quotient on the right-hand side tends to unity independently of the value of δ. Thus,
the assertion follows in general.

Conditional limit theorems for the time to extinction are easily obtained from the identity

Pπ

(
T − t

t
≤ z

∣∣∣∣ T > t

)
= 1 − π(F (t + tz))

π(F (t))
,

and expressing (3.6) as

lim
t→∞

F(t + tz)

F (t)
= (1 + z)−1/α.

Theorem 3.7. If the assumptions of Theorem 3.2 hold with 0 < δ ≤ 1, and if z ≥ 0, then

(i) lim
t→∞ Pπ

(
T − t

t
≤ z

∣∣∣∣ T > t

)
= 1 − (1 + z)−δ/α;

and

(ii) lim
i→∞ Pi

(
ρT

V (i)
≤ z

)
= exp(−z−1/α).

4. Representations of the limit laws

We begin by defining the notation used below. Let Sα denote a random variable having the
positive stable law with index α, i.e. E(exp(−θSα)) = exp(−θα), and σα(x) denotes its density.
Thus, P(S1 = 1) = 1, and σ1 is interpreted as a Dirac delta located at unity. Next, γ (�) denotes
a random variable having the standard gamma(�) law. Denote by β(a, b) a random variable
which has a beta law with parameters a, b > 0. This notation is extended so that β(a, 1 − a) is
defined if 0 < a ≤ 1 with the understanding that β(1, 0) = 1. The terms in sums and products
of random variables will be understood to be independent. We write X

l= Y to denote equality
in law of the random variables X and Y .

On occasion we will use the known moment formula

E(S−t
α ) = �(1 + t/α)

�(1 + t)
, t > −α.

The simplest proof of this formula involves taking the expectation of the identity

S−t
α = 1

�(t)

∫ ∞

0
e−θSα dθ

and integrating. Shanbhag and Sreehari (1977) derived this moment formula from their mixture
representation (γ (1)/Sα)α

l= γ (1).
Let Y be a nonnegative random variable with distribution function K not degenerate at 0

and with finite first moment µK . The stationary-excess operation on K is defined by

K̃(x) = µ−1
K

∫ x

0
K(v) dv,

and we write Ỹ to denote a random variable whose distribution function is K̃ . Thus, Ỹ represents
times to the next renewal event in a stationary renewal process with generic interevent time Y .
The length-biased version of K is the distribution function µ−1

K

∫ x
0 v dK(v), and Ŷ denotes
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a random variable having this distribution function. The relation between length biasing and
the stationary-excess operation is Ỹ

l= UŶ , where U has the standard uniform law. See Pakes
(1997) and the references therein for these concepts and relations.

Let Xα denote a random variable having the limit law in Theorem 3.1, i.e. its Laplace–
Stieltjes transform is ψα(θ).

Theorem 4.1. The law ofXα is infinitely divisible and it has the random variable representation

X̃α = Yα, where Yα = Sα(γ (1/α))
1/α, (4.1)

and its distribution function is

Dα(x) = 1 − 1

�(1 + 1/α)

∫ ∞

0
y−1e−(x/y)ασα(y) dy. (4.2)

The moment function of Xα is

E(Xrα) = α�(1 + α−1 − r/α)

�(2 − r)

�(1 + r/α)

�(1/α)
, −α < r < min(1 + α, 2).

Proof. The infinite divisibility assertion will emerge from the proof of Theorem 4.2, below.
As observed in Zolotarev (1957),∫ ∞

0
e−θxDα(x) dx = (1 + θα)−1/α. (4.3)

Setting θ = 0 shows that the first moment of Dα is unity, thus preserving in the limit the
evident fact that E1(ZtF (t) | T > t) = 1 for all t ≥ 0. Thus, the left-hand side of (4.3) is the
Laplace–Stieltjes transform of X̃α . A simple conditioning calculation shows that the right-hand
side of (4.3) is the Laplace–Stieltjes transform of Yα , whose law is often called a generalized
positive Linnik law. This establishes (4.1).

In addition, Dα(x) is the density function of Yα , so∫ x

0
Dα(z) dz = P

(
Sααγ

(
1

α

)
≤ xα

)
= E

(
P

(
γ

(
1

α

)
≤

(
x

Sα

)α ∣∣∣∣ Sα))
.

Differentiation gives

Dα(x) = αxα−1 E

(
S−α
α g1/α

((
x

Sα

)α))
,

and (4.2) follows after some further algebra.
Since Yα = X̃α = UX̂α and E(X̂rα) = E(Xr+1

α ) (because E(Xα) = 1), it follows that

E(Xr+1
α ) = E(Y rα)

E(Ur)
= (1 + r)E(Srα)E

((
γ

(
1

α

))r/α)
.

The asserted moment formula follows since E(Srα) = �(1 − r/α)/�(1 − r) if r < α, and
E((γ (�))r ) = �(�+ r)/�(�) if r > −�.
Remark 4.1. The generalized Linnik law mentioned in the proof extends the standard Linnik
law. We note for later reference that this latter law is the law of Lα := Sα(γ (1))1/α and its
Laplace–Stieltjes transform is (1 + θα)−1; see Kotz et al. (2001, Section 4.3).

https://doi.org/10.1239/aap/1275055238 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1275055238


472 A. G. PAKES

Note that (3.1) implies that Dα(0+) = ψα(∞) = 0, so the known moment formula

E(S−1
α ) = �(1/α)

α
= �

(
1 + 1

α

)
follows from (4.2). The case α = 1 in (4.3) gives the well-known standard exponential limit
law in the circumstance where the offspring law has finite variance.

Theorem 3.1 can be expressed as a limit law which is a mixture of exponential laws, and,
hence, infinitely divisible (see Steutel and van Harn (2004, p. 331)). Simply observe that, since
V ∈ Rα ,

V

(
x

F(t)

)
∼ xαV

(
1

F(t)

)
= xαρt.

Consequently, Theorem 3.1, with (4.2), is equivalent to

lim
t→∞ P1

(
V (Zt )

ρt
≤ z

∣∣∣∣ T > t

)
= 1

�(1 + 1/α)

∫ ∞

0
(1 − e−zy−α

)yα−1σα(y) dy.

The substitution v = y−α gives the asserted exponential mixture form. The existence of the
limit as a nondefective distribution function was observed for the discrete-time case in Nagaev
and Wachtel (2007, p. 757).

Let Xα,δ denote a random variable having the Laplace–Stieltjes transform ψα,δ specified
in (3.5) and distribution function Dα,δ . The function ψα,δ with arbitrary positive values of α
and δ has been postulated in Porcu et al. (2007) as a candidate variogram for spatio-temporal
modelling. For this application, it is necessary to determine for which parameter values ψα,δ
is completely monotone. This property trivially follows from Theorem 3.2 if 0 < α ≤ 1 and
δ > 0. Porcu et al. (2007) showed complete monotonicity for other parameter configurations,
and their results were extended in Berg et al. (2008).

Details in the proof of Theorem 4.1 can be altered to obtain the following representation of
the distribution function Dα,δ .

Theorem 4.2. If 0 < α ≤ 1 and 0 < δ < 1, then

Dα,δ(x) = 1 − α

�(1 − δ)�(δ/α)

∫ ∞

0

(∫ 1

0
uδ−1(1 − u)−δe−(ux/y)α du

)
y−δσα(y) dy, (4.4)

and this distribution function is infinitely divisible.

Proof. Observe first from (3.5) that (1 − ψα,δ(θ))/θ = θδ−1(1 + θα)−δ/α . The left-hand
side is the Laplace transform of Dα,δ(x) and θδ−1 is the Laplace transform of ω(x) =
x−δ/�(1 − δ). The factor (1 + θα)−δ/α is the Laplace–Stieltjes transform of Sα(γ (δ/α))

1/α ,
and performing similar calculations as in the proof of Theorem 4.1 shows that its density is

pα,δ(x) = αxδ−1

�(δ/α)

∫ ∞

0
y−δe−(x/y)ασα(y) dy.

Hence, Dα,δ(x) equals the convolution of ω(x) and pα,δ(x), and some algebraic manipulation
will produce (4.4).

The infinite divisibility follows by expressing Dα,δ as a mixture of exponential laws, as
follows. Observe that

e−(ux/y)α = E(e−(ux/y)S′
α ),

where S′
α is an independent copy of Sα . Since E(S−δ

α ) = �(δ/α)/α�(δ), it follows from (4.4)
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that

Dα,δ(x) = α�(δ)

�(δ/α)
E

(
S−δ
α

(
1 − exp

{
−xβ(δ, 1 − δ)S′

α

Sα

}))
= E(1 − e−Rα,δx),

where S′
α , Sα , and β(δ, 1 − δ) are independent, and

P(Rα,δ ≤ x) = E(S−δ
α ;β(δ, 1 − δ)S′

α/Sα ≤ x)

E(S−δ
α )

.

This mixture representation forDα,δ is well defined if δ = 1, thus giving the infinite divisibility
assertion in Theorem 4.1.

A direct random variable representation exists forXα,δ in the case that 0 < δ ≤ α ≤ 1. This
is based on the hypergeometric identity

F

(
δ

α
, 1; 1; −θ−α

)
= ψα,δ(θ) = (1 + θ−α)−δ/α.

The left-hand side equals

F

(
1,
δ

α
; 1; −θ−α

)
= 1

B(δ/α, 1 − δ/α)

∫ 1

0
u(δ/α)−1(1 − u)−δ/α(1 + uθ−α)−1 du.

These identities can be expressed as

ψα,δ(θ) = 1 − 1

B(δ/α, 1 − δ/α)

∫ 1

0
u(δ/α)−1(1 − u)−δ/α(1 + uθ−α)−1 du

= E

(
β(δ/α, 1 − δ/α)

β(δ/α, 1 − δ/α)+ θα

)
.

The quotient inside the brackets is the Laplace–Stieltjes transform of a (randomly) scaled
positive Linnik law, and it follows that

Xα,δ
l= Sα

(
γ (1)

β(δ/α, 1 − δ/α)

)1/α

.

This leads to the integral representation

Dα,δ(x) = 1 − 1

B(δ/α, 1 − δ/α)

∫ ∞

0

(∫ 1

0
u(δ/α)−1(1 − u)−δ/αe−u(x/y)α du

)
σα(y) dy

= E

(
1 − exp

(
−x

(
β

(
δ

α
, 1 − δ

α

))1/α(
S′
α

Sα

)))
,

an exponential mixture representation differing from that derived above. If α = 1 then X1,δ =
γ (1)/β(δ, 1 − δ), which obviously is an exponential mixture, and the distribution function
simplifies as

D1,δ(x) = 1 − 1

B(δ, 1 − δ)

∫ 1

0
uδ−1(1 − u)−δe−ux du.

If δ = α then the limit law is the Linnik law, Xα,α = Sα(γ (1))1/α .
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The limit laws of Theorems 3.3 and 3.5 for 0 < c < ∞ are related to exponential tilts. If
K(x) is a distribution function supported in [0,∞) and ν > 0, the exponential tilt ofK by ν is
the distribution function

TνK(x) =
∫ x

0 e−νy dK(y)

K̂(ν)
.

Thus,

Aα,c,δ(x) = Dα,δ(x)− ψα,δ(c
−1/α)Tc−1/αDα,δ(x)

1 − ψα,δ(c−1/α)
.

The structure of this limit law takes a more intuitive form if δ = α. If a random variable Y has
the distribution functionK then TνY denotes a random variable having the distribution function
TνK . LetXα,c,δ denote a random variable having the distribution functionAα,c,δ , let δ0 denote
the point mass located at 0, and recall the notation from Remark 4.1.

Theorem 4.3. (i) If 0 ≤ c < ∞ and δ = α, then

Xα,c,α
l= Lα + Tc−1/αL′

α + c1/αVα,

where the summands are independent, L′
α

l= Lα , T∞L′
α := 0, and

P(Vα ≤ x) =
⎧⎨⎩(�(1 − α))−1

∫ x

0
y−α−1(1 − e−y) dy if 0 < α < 1,

δ0(x) if α = 1.

(ii) If δ = α = 1 and 0 ≤ c ≤ ∞, then

X1,c,1
l= ε + c

1 + c
ε′, (4.5)

where ε and ε′ are independent and they have the standard exponential law.

Proof. Algebraic manipulation yields

Âα,c,α(θ) =
[

(θ + c−1/α)α

1 + (θ + c−1/α)α
− θα

1 + θα

]
(1 + c)

= (θ + c−1/α)α − θα

1 + θα

1 + c

1 + (θ + c−1/α)α

= 1

1 + θα

1 + 1/c

1 + (θ + c−1/α)α
[(1 + c1/αθ)α − (c1/αθ)α].

Referring to Theorem 3.1, the first two factors account for Lα and Tc−1/αL′
α , respectively. Next,

E(e−θVα ) = (1 + θ)α − θα,

which can be seen by inverting two Laplace transforms obtained by differentiating the right-
hand side.

If δ = α = 1 then P(V1 = 0) = 1, and the Laplace–Stieltjes transform of T1/cL1 is
[1 + cθ/(1 + c)]−1, defined as (1 + θ)−1 if c = ∞.
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Representation (4.5) has long been known in the Galton–Watson context. See Athreya
and Ney (1972, p. 61) and Pakes (1999, p. 970) for some commentary. Theorem 3.4 shows
that the case c = ∞ requires the restriction δ = 1. Let Wα denote Xα,∞,1. The limiting
Laplace–Stieltjes transform in Theorem 3.4 satisfies Âα,∞(θ) = −ψ ′

α(θ), the Laplace–Stieltjes
transform of the length-biased distribution function D̂α . Hence,Wα = X̂α . On the other hand,

Âα,∞(θ) = 1

1 + θα

ψα(θ)

θ
.

The first factor is the Laplace–Stieltjes transform of Lα and the second factor is the Laplace–
Stieltjes transform of X̃α . Hence,

Wα
l= X̂α

l= Lα + X̃α.

It follows from Theorem 3.4 and (4.1) that this identity can be expressed as the decomposition

Sα[γ (1 + α−1)]1/α l= Lα + S′
α[γ ′(α−1)]1/α,

where the prime notation denotes independent copies.
If the norming in Theorem 3.5 is replaced withF(t) then the limiting Laplace–Stieltjes trans-

form is ψα,δ(θ + c−1/α)/ψα,δ(c
−1/α), i.e. the limiting distribution function is Tc−1/αDα,δ(x).

This outcome is not entirely satisfactory because this limit converges to δ0 as c → ∞. In other
words, norming with F(t) in Theorem 3.6 would overcompensate the growth of Zt under the
conditioning t < T ≤ t+o(t). On the other hand, norming withF(τ) in Theorem 3.5 in the case
0 < c < ∞ gives the limiting Laplace–Stieltjes transform ψα,δ((1 + θ)c−1/α)/ψα,δ(c

−1/α),
and this tends to 1 as c → ∞. The norming we have adopted yields limit laws which are
nondegenerate throughout the range 0 ≤ c ≤ ∞.

The limiting Laplace–Stieltjes transform for any of these normings has the general form
λα(θ) = ψα,δ(aθ + b)/ψα,δ(b), where b = c−1/α and a = 1, a = c−1/α , or a = 1 + c−1/α ,
according to whether the norming function isF(t), F (τ), orF(t+τ), respectively. Theorem 4.2
implies that λα(θ) is an infinitely divisible Laplace–Stieltjes transform. If α = 1 then

λ1(θ) =
(

1 + aθ

1 + b

)−δ
(1 + b + aθ)δ − (b + aθ)δ

(1 + b)δ − bδ
.

Hence, the limit law is represented as

Yc,δ
l= a

1 + b
γ (δ)+ aVc,δ,

where

E(e−θVc,δ ) = (1 + c−1/α + θ)δ − (c−1/α + θ)δ

(1 + c−1/α)δ − c−δ/α
,

and the corresponding density function is

(Nx1+δ)−1(1 − e−x) exp(−c−1/αx), where N = �(1 − δ)((1 + c−1/α)δ − c−δ/α).

Note that a = 1+b for all δ with the norming used in Theorem 3.5. This is especially propitious
in the case α = δ = 1.

Theorem 4.4. If α = δ = 1 then the limit law of Theorem 3.5 is the standard exponential for
all c ∈ [0,∞].
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5. The case α = 0

If (1.1) holds with α = 0 then

V (x) =
∫ x

1

dv

vL(v)
, x ≥ 1, (5.1)

implying that V ∈ S. In fact, since f ′′(1−) = ∞, it follows from (1.1) that xL(x) is
unboundedly increasing, implying that V ∈ S0. Recall that V (∞) = ∞. These facts imply
that

V (x) = C exp

(∫ x

e

ε(v)

v
dv

)
, (5.2)

where C > 0 is a constant. It follows that the index function

ε(x) = xV ′(x)
V (x)

= 1

L(x)V (x)
(5.3)

is slowly varying and that L(x)V (x) → ∞. In addition, ε(1+) = ∞, and since V (1) = 0, we
have

∫ e
1 (ε(v)/v) dv = ∞.

The slow variation ofV implies that in representations (2.3) and (2.4), the functionR belongs
to the class of Karamata rapidly varying functions, KR∞. There is an integral representation
for members of KR∞ (see Bingham et al. (1987, Section 2.4)), but in our case this simplifies
because V is differentiable in (1,∞). We will state and prove this in greater generality than
we need.

Lemma 5.1. Suppose that V is given by (5.2) with ε positive and continuous in (1,∞), and
that V (1) = 0.

(i) Then its rapidly varying inverse R has the representation

R(y) = exp

(∫ y

0

δ(v)

v
dv

)
, y ≥ 0, (5.4)

where δ(y) = 1/ε(R(y)) → ∞ as y → ∞.

(ii) If (5.1) also holds with L ∈ S and continuous in (1,∞), then

δ(y) = yL(R(y)). (5.5)

Proof. The index function assumptions ensure thatV is differentiable and strictly increasing,
and its inverse has these properties. Differentiating the identity V (R(y)) = y yields

1 = R′(y)V ′(R(y)) = R′(y)V (R(y))ε(R(y))
R(y)

= R′(y)yε(R(y))
R(y)

.

Hence, yR′(y)/R(y) = δ(y), as defined in the statement. Then (5.4) follows since R(0) = 1,
and (5.5) follows from (5.3).

Remark 5.1. If no assumption is made about V (1) then (5.4) holds after including the multi-
plicative constant R(0).

The next result establishes a link with von Mises distribution functions.
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Lemma 5.2. If the conditions of Lemma 5.1(ii) hold then, as y → ∞,

I (z, y) =
∫ y+zy/δ(y)

y

δ(v)

v
dv → z,

locally uniformly with respect to z ∈ (−∞,∞).

Proof. The function a(y) = y/δ(y) = 1/L(R(y)) is differentiable and

−a′(y) = R′(y)L′(R(y))
(L(R(y)))2

= δ(y)

yL(R(y))

R(y)L′(R(y))
L(R(y))

= R(y)L′(R(y))
L(R(y))

→ 0,

using (5.5) and L ∈ S0. Rewriting

I (z, y) =
∫ y+za(y)

y

dv

a(v)
,

the assertion follows from the proof of Proposition 3.3.25 of Embrechts et al. (1997).

Remark 5.2. Observe that in terms of the notation used in the proof of Lemma 5.2,

G(y) = 1 − exp

(
−

∫ y

0

dv

a(v)

)
.

Hence, the proof of Lemma 5.2 amounts to showing that (1.1) with α = 0 implies thatG is a von
Mises distribution function (see Embrechts et al. (1997, p. 138)), and, hence, the distribution
function F of the time to extinction is a von Mises distribution function too. In particular, F
andG lie in the maximal domain of attraction of the Gumbel law (denoted by, e.g. F ∈ D(�)).
Combining details of the last proof and general results about attraction to the Gumbel law
shows, under the conditions of Lemma 5.2, that

lim
y→∞

G(y + z/L(R(y)))

G(y)
= e−z, (5.6)

locally uniformly with respect to real valued z. See Embrechts et al. (1997, p. 143). If 0 < α ≤ 1
then, as we have seen, R ∈ R1/α . In this case G lies in the maximal domain of attraction of a
Fréchet law. This highlights the difference between the cases α = 0 and α > 0.

The next result is our analogue of Theorem 3.1 for α = 0.

Theorem 5.1. Suppose that (1.1) with α = 0 and (3.3) with 0 < δ ≤ 1 both hold. Then

lim
t→∞ Pπ (L(R(ρt))V (Zt ) ≤ z | Zt > 0) = 1 − e−δz, z > 0.

Proof. Let θ, z > 0 and

st = exp

( −θ
R(z/L(R(ρt)))

)
. (5.7)

Substituting into (2.3) gives an expression in which ρ and t occur only as the product ρt . Hence
we can, and shall, set ρ = 1 to simplify notation. With reference to (5.4), it follows that

(1 − st )
−1 ∼ θ−1R

(
zt

δ(t)

)
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and, since V ∈ S,

V ((1 − st )
−1) ∼ V

(
R

(
zt

δ(t)

))
= zt

δ(t)
.

Hence, (2.3), (2.4), and (5.3) yield

F(t)

F (st , t)
= R(t + (t/δ(t))(z+ o(1)))

R(t)
= exp(I (z+ o(1), t)) → ez, (5.8)

where we have used Lemma 5.2 for the final step. Consequently,

lim
t→∞

π(F (st , t))− π(F (t))

1 − π(F (t))
= 1 − e−δz.

The limit is the Laplace–Stieltjes transform of the defective law which assigns mass 1−e−δz
at the origin and no mass in (0,∞). It follows from the continuity theorem for Laplace–Stieltjes
transforms (see Feller (1971, p. 431)) that (restoring ρ)

lim
t→∞ Pπ

(
Zt ≤ R

(
x

L(R(ρt))

) ∣∣∣∣ Zt > 0

)
= 1 − e−δz,

and the assertion follows.

Remark 5.3. The argument in the last paragraph serves to prove Lemma 1 of Nagaev and
Wachtel (2007).

The following result is implied by (5.8). Let (Zt (i) : t ≥ 0) denote the MBP obtained as the
superposition of i independent copies of (Zt : t ≥ 0) initiated by a single ancestor, Z0 = 1.

Corollary 5.1. Suppose that (1.1) holds with α = 0, and let (i(t) : t ≥ 0) be positive integers
satisfying i(t) ∼ c/F (t), where c > 0. Then

lim
t→∞ P(L(R(ρt))V (Zt [i(t)]) ≤ z) = exp(−ce−z).

The situation with conditioning events such as T > t + τ is more delicate in nature than
for the case α > 0. In particular, we have not found a means of interpolating the extreme
conditioning events Zt > 0 and Z∞ > 0. However, the following result holds.

Theorem 5.2. Assume that the conditions of Theorem 5.1 hold, and let 0 < � < ∞. If

τ ∼ �

ρL(R(ρt))
, (5.9)

then

(i) lim
t→∞ Pπ (L(R(ρt))V (Zt ) ≤ z | T > t + τ) = 1 − e−δ(z−�)+;

and

(ii) lim
t→∞ Pπ (L(R(ρt))V (Zt ) ≤ z | t < T ≤ t + τ) = 1 − e−δ(z∧�)

1 − e−δ� .
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Proof. Observe first that τ → ∞ and τ/t → 0. Just as in the proof of Theorem 5.1, we can
and shall set ρ = 1 without loss of generality.

Noting that the right-hand side of (5.9) equals �t/δ(t), it follows from (2.4), (5.4), and
Lemma 5.2 that

F(t + τ)

F (t)
= exp(−I (t, �+ o(1))) → e−�.

In addition, (5.9) and Lemma 5.2 imply that

F(τ) = 1

R(τ)
= 1

/
R

(
�+ o(1)

L(R(t))

)
∼ 1

/
R

(
�

L(R(t))

)
Consequently, if s = st is defined as in the proof of Theorem 5.1 then

1 − stF (τ ) = θ + o(1)

R(zt/δ(t))
+ 1

R((�+ o(1))t/δ(t))
∼

⎧⎪⎪⎨⎪⎪⎩
θ

R(zt/δ(t))
if z < �,

1

R(�t/δ(t))
if z > �,

where the asymptotic equivalences arise from the rapid variation of R. Since V ∈ S, we infer
that

V

(
1

1 − stF (τ )

)
∼

{
ztδ(t) if z < �,

�t/δ(t) if z > �.

It follows from (5.8) that if z �= � then

lim
t→∞

F(stF (τ), t)

F (t)
= exp(−(z ∧ �)).

Since each side is monotone in z, this must hold for z = � too. This implies that

Eπ (s
Zt
t | T > t + τ) → 1 − e−δ(z−�)+ ,

and assertion (i) follows from the argument ending the proof of Theorem 5.1. Assertion (ii)
follows in a similar manner.

Remark 5.4. The limit distribution function in Theorem 5.2(i) is that of � + γ (1)/δ; equiva-
lently, from the lack of memory property, it is the conditional distribution function of γ (1)/δ
given that γ (1)/δ > �. Dually, the limit distribution function in Theorem 5.2(ii) is the
conditional distribution function of γ (1)/δ given that γ (1)/δ ≤ �.

Clearly, the limit law in Theorem 5.2(i) tends to the point mass at infinity as � → ∞,
suggesting that the norming used for Theorem 5.2 is not appropriate for the conditioning
Z∞ > 0. Our next result verifies this intuition.

Theorem 5.3. Suppose that (1.1) holds with α = 0, and that π is an initial law with finite first
moment. Then

lim
t→∞ Pπ (ρtL(Zt ) ≤ z | Z∞ > 0) = 1 − e−z, z > 0.
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Proof. We will again set ρ = 1 for this proof. Defining w = V ((1 − s)−1), it follows from
(2.4) and the definition ofG in Remark 5.2 that 1 − s = G(w). It then follows from (2.3) that

1 − F(s, t)

1 − s
= G(w + t)

G(w)
. (5.10)

The assumptions m = 1 and α = 0 imply that L(x) decreases from L(1) = f (0) > 0 to
L(∞−) = 0. Consequently, the function λ(x) := 1/L(x) is strictly increasing to ∞ in [1,∞)

and slowly varying. Its inverse function, denoted by r(y), increases from unity to infinity on
the interval [1/f (0),∞). For arbitrary θ, z > 0, set

st = G(w) = exp

(
− θ

r(t/z)

)
.

Solving this relation for t as a function of w, we obtain

t = zλ

( −θ
logG(w)

)
∼ zλ

(
1

G(w)

)
= zλ(R(w)) = z

L(R(w))
.

It follows from (5.6) and (5.10) that

lim
t→∞

1 − F(st , t)

1 − st
= e−z,

independently of θ .
Since a(s) = (1 − s)L((1 − s)−1), we conclude from (3.12) that

lim
t→∞ Eπ (s

Zt
t | Z∞ > 0) = e−z.

So, after restoring the presence of ρ, then, again as in the proof of Theorem 5.1, we find that

lim
t→∞ Pπ

(
Zt ≤ r

(
ρt

z

) ∣∣∣∣ Z∞ > 0

)
= e−z.

The assertion follows since Zt ≤ r(ρt/z) if and only if ρtL(Zt ) ≥ z.

6. Converse assertions

We begin with a converse to Theorem 3.1. The proof takes advantage of the additional
structure of the MBP. The notation ‘

w−→’ denotes weak (or vague) convergence of distribution
functions.

Theorem 6.1. Let m = 1, and assume that

H(x, t) := P1(F (t)Zt ≤ x | Zt > 0)
w−→ H(x), (6.1)

a nondegenerate distribution function. Then (1.1) holds with 0 < α ≤ 1 and L ∈ S.

Proof. Assumption (6.1) is equivalent to

lim
t→∞

∫ ∞

0
g(x) dH(x, t) =

∫ ∞

0
g(x) dH(x)

for continuous functions g satisfying limx→∞ g(x) = 0. Taking g(x) = e−θx and st = e−θF (t)
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yields

lim
t→∞

F(st , t)

F (t)
= ψ(θ), (6.2)

whereψ is the Laplace–Stieltjes transform of the distribution functionH . Takingg(x) = xe−θx
yields

lim
t→∞F

′(st , t) = ψ
′
(θ). (6.3)

Referring to (2.5) and setting b(u) = a(1 − u), it follows from (6.3) that

lim
t→∞

b(F (st , t))

b(1 − st )
= ψ

′
(θ). (6.4)

Observe that λ(θ) = ψ(θ)/θ = ∫ ∞
0 e−θxH(x) dx is decreasing. Since 1 − st ∼ θF (t),

then setting u = 1− st and expressing (6.2) as F(st , t) = uλ(θ)(1+o(1)), (6.4) takes the form

lim
u→0

b(λ(θ)u(1 + o(1)))

b(u)
= ψ

′
(θ) = ξ(λ(θ))

for some function ξ . Standard arguments using the continuity and monotonicity of b(u) imply
that limu→0 b(λu)/b(u) = ξ(λ) for all 0 < λ < λ(0+), and, hence, that b(u) is regularly
varying at 0, i.e. b(u) = urL(1/u), where r ≥ 0 and L ∈ S. This conclusion is equivalent to
(1.1) with α = r − 1. Since (f (s)− s)/(1 − s) = (1 − s)αL(1/s), it follows that 0 ≤ a ≤ 1.

In addition, ξ(λ) = λ1+α , so (
ψ(θ)

θ

)1+α
= ψ

′
(θ).

If α = 0, this has the solution ψ(θ) = 1 −Kθ for some constant K . But this is the Laplace–
Stieltjes transform of a distribution function only if K = 0, in which case H is the point mass
at 0. Hence, α > 0, thus proving the assertion.

Remark 6.1. As its discrete-time counterpart (see Slack (1972)), Theorem 6.1 leaves open
the question of whether (1.1) is implied by the more general conditional limit P1(ν(t)Zt ≤
x | Zt > 0)

w−→H(x), where ν(t) > 0 and ν(t) → 0. If st = exp(−θν(t)) then the initial steps
of the above proof lead to the generalized form of (6.4) as

lim
t→∞

ν(t)

F (t)

b(F (st , t))

b(1 − st )
= ψ

′
(θ).

It follows immediately that ν(t)/F (t)must be bounded away from 0, for otherwise the limit is
identically 0. Similarly, the convergence of types theorem (see Feller (1971, p. 253)) implies that
if (1.1) does hold then ν(t)/F (t) has a positive and finite limit. So, conversely, if ν(tn)/F (tn) →
∞ as tn → ∞ then (1.1) cannot hold.

Theorem 6.1 extends to a converse for initial laws, as follows. Let DI denote initial laws π
such that

lim
t→∞ Pπ (F (t)Zt ≤ x | Zt > 0) = Hπ(x), (6.5)

where the limit is a nondegenerate distribution function. Recall that mπ is the first moment
of π .
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Theorem 6.2. If DI contains an initial law withmπ < ∞ then the conclusion of Theorem 6.1
holds and (3.3) holds with 0 < δ ≤ 1 and L ∈ S.

Proof. If p(u) = 1 − π(1 − s) and st is as defined in the previous proof, then (6.5) is
equivalent to

lim
t→∞

p(F(st , t))

p(F (t))
= Ĥπ (θ). (6.6)

Ifmπ < ∞, the argument of the limit operation is asymptotically proportional toF(st , t)/F (t),
and, hence, the conditions of Theorem 6.1 are satisfied, and its conclusion holds. It follows
that DI contains all initial laws with finite first moment, and for these, the limit distribution
function is independent of π , i.e. Ĥπ (θ) = ψα(θ).

If π ∈ DI and mπ = ∞, then arguing as in the proof of Theorem 6.1, now with u = F(t),
it follows from (6.2) and (6.6) that

lim
u→0

p(ψα(θ)u(1 + o(1)))

p(u)
= Ĥπ (θ) = ξ(ψα).

This implies that (3.3) holds, and δ must be positive since Hπ is nondegenerate.

Remark 6.2. The proof still holds if the hypotheses are broadened a little by assuming that
DI contains at least one initial law having the form (3.3) with L ∈ S. This would imply that
all the limit points of F(st , t)/F (t) as t → ∞ equal Ĥπ (θ). Theorem 6.1 is then applicable,
and the rest follows.

Assume now that α = 0 in (1.1), and that L decreases to 0. Differentiating (1.1) expressed
as

L

(
1

u

)
= f (1 − u)

u
− 1

u
+ 1

shows that L′′(1/u) = u3f ′′(1 − u), and, hence, that L is convex decreasing. Part (i) of the
next result is only a partial converse to Theorem 5.1, though it is not obvious how to improve it.
Part (ii) is a complete converse to the domain of attraction outcome discussed in Remark 5.2.

Theorem 6.3. Let L(x) > 0 (x > 0) satisfy L(∞) = 0, and let st (θ) be defined by (5.7).

(i) Suppose for 0 < ε < 1 that

lim
t→∞

F(st (θ), t)

F (t)
= B(z) (6.7)

exists for all z ≥ 0 and θ ∈ (1−ε, 1+ε), whereB is independent of θ and nondegenerate.
Then (1.1) holds with α = 0 and L ∈ S0, and B(z) = e−z.

(ii) If F ∈ D(�) then L ∈ S0, and, hence, F is a von Mises distribution function.

Proof. (i) Set ρ = 1, as we have previously done. The assumption L(∞) = 0 implies that
1 − st (θ) ∼ θ/R(z/L(R(t))), and, hence, we can choose 1 − ε < θ1 < 1 < θ2 < 1 + ε such
that

1

1 − st (θ1)
< R

(
z

L(R(t))

)
<

1

1 − st (θ2)
.
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It follows from (2.3), (2.4), and (6.7) that the distribution functionG(t) = 1 − 1/R(t) satisfies
(cf. (5.6))

lim
t→∞

G(t + z/L(R(t)))

G(t)
= B(z). (6.8)

Setting t = V (x), this outcome is equivalent to

lim
x→∞ xG

(
V (x)+ z

L(x)

)
= B(z).

This condition is necessary and sufficient for G to be in the maximal domain of attraction of
an extreme value law, which is either a Fréchet law or the Gumbel law. In the Fréchet case,
B(z) ∝ z−κ for some κ > 0. It follows from extreme value theory (see Embrechts et al. (1997,
p. 131)) that R ∈ Rκ . It can be argued from (2.4) that this outcome implies that (1.1) holds
with α = 1/κ and L slowly varying, and, hence, that B(z) is not independent of θ .

So it follows thatG is attracted to a Gumbel law, and, in particular, that B(z) = e−µz, where
µ > 0 is a scale constant. There is a possible translation parameter, but its value is 0 because
B(0) = 1. So condition (6.8) is equivalent to

lim
t→∞

R(t + z/µL(R(t)))

R(t)
= ez.

This defines membership of a class of functions, denoted by � in Bingham et al. (1987, p. 175),
and there is an associated auxiliary function, g(y) = 1/µL(R(y)). Membership in � has
several consequences of which the most relevant is that g(V (x)) = 1/µL(x) ∈ S, i.e. L ∈ S;
see Bingham et al. (1987, Theorem 3.10.4). It follows from (1.1) thatL ∈ S0, and Theorem 5.1
implies that µ = 1.

(ii) The necessary and sufficient condition for F ∈ D(�) (see Embrechts et al. (1997,
p. 143)) can be expressed in terms of R(y) as the existence of a function g(y) → ∞ such that

lim
y→∞

R(y + zg(y))

R(y)
= ez, −∞ < z < ∞.

As above, this is equivalent to R ∈ � and �(x) := g(V (x)) ∈ S, implying that k(x) :=
x/�(x) ∈ R1. In addition, we may choose (see Embrechts et al. (1997, Equation (3.34)))

g(y) = R(y)

∫ ∞

y

dv

R(v)
,

so

�(x) = x

∫ ∞

x

dw

w2L(w)
,

using the substitution w = R(v).
Since k′(x) exists, we have xk′(x)/k(x) → 1. Computation shows this is equivalent to

x�′(x)/�(x) → 0, and since

�′(x) = �(x)

x
− 1

�(x)L(x)
,

we conclude that �(x)L(x) → 1, i.e. L ∈ S. Finally, since L is convex, it follows from
Lamperti’s theorem that L ∈ S0.
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Identifying the centring and norming sequences for T from the general expressions in
Theorem 3.3.26 of Embrechts et al. (1997) and using (2.4) leads to the following companion
of Theorem 3.7.

Theorem 6.4. Suppose that (1.1) with α = 0 and (3.3) with 0 < δ ≤ 1 both hold. Then

(i) lim
t→∞ Pπ

(
L

(
1

F(t)

)
(T − t) ≤ z

∣∣∣∣ T > t

)
= 1 − e−δz, z ≥ 0;

and

(ii) lim
i→∞ Pi (L(i)(ρT − V (i)) ≤ z) = exp(−e−z), −∞ < z < ∞.

7. Discrete limit laws

We begin by discussing the asymptotic behaviour of the invariant measure {µj : j ≥ 1}
(recall (2.2)) in relation to (1.1). If gj = ∑

i>j pi then

g(s) =
∞∑
j=0

gj s
j = 1 − f (s)

1 − s

is a PGF. It follows from (2.2) that M′(s) = U(s)/(1 − s), where

U(s) =
∞∑
j=0

uj s
j := 1

1 − g(s)
.

Thus, {uj : j ≥ 0} is a renewal sequence. Its generating law {gj } is nonincreasing in j and,
hence, has a unit maximal span. These relations imply that the invariant measure has the
representation

µj = j−1
j−1∑
i=0

ui, j ≥ 1. (7.1)

Theorem 7.1. (i) If m = 1 then the sequence {jµj } is nondecreasing and µj+1 ∼ µj .

(ii) Suppose that 0 ≤ α ≤ 1 and L ∈ S. Then (1.1) is equivalent to

µj ∼ 1

�(1 + α)j1−αL(j)
. (7.2)

Proof. Assertion (i) follows from (7.1). For (ii), just observe that the generating function of
{jµj } is 1/(f (s)−s), and that a Tauberian theorem for power series (see Bingham et al. (1987,
p. 40)) asserts that, since jµj is monotone, (1.1) is equivalent to jµj ∼ jα/�(1+α)L(j): with
ρ as denoted in Corollary 1.7.3 of Bingham et al. (1987), set ρ = 1 + α. The last asymptotic
relation is the same as (7.2).

Remark 7.1. (i) If σ 2 = f ′′(1−) < ∞ then α = 1 and L(∞) = 1
2σ

2, so µj → 2/σ 2. This
one-way implication was first shown in Yang (1973). The converse is new.

(ii) Slack (1968, Theorem 2) proved a global version of the local asymptotic equivalence (7.2) for
the Galton–Watson process in the case 0 < α ≤ 1. To the author’s knowledge, no corresponding
local version is known, except in the case where f ′′(1) is finite. See Pommerenke (1981) for
this result.
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In what follows we assume only that m = 1. It follows from (2.5) that, since the right-hand
side is monotone in t ,

lim
s→1

a(F (s, t))

a(s)
= 1,

locally uniformly with respect to t . This, together with F(F(t), τ ) = F(t + τ), implies that

lim
t→∞

a(F (t + τ))

a(F (t))
= 1, (7.3)

locally uniformly with respect to τ .

Lemma 7.1. If m = 1 and u, v > 0, then

lim
t→∞

F(t + u)− F(t)

F (t + v)− F(t)
= u

v
.

Proof. It follows from the mean value theorem, (2.5), and (7.3) that, for some ζt ∈ (t, t+u),
F(t + u)− F(t)

a(F (t))
= u

a(F (t + ζt ))

a(F (t))
→ u,

and the assertion follows.

Let B be a Borel subset of the positive reals and denote its Lebesgue measure by |B|.
Recalling that F(t) is a distribution function, let F(B) denote the probability mass assigned to
B by F , and let BF = {u = F(t) : t ∈ B} denote the image of B under F . In the case that B is
a bounded interval, the next result is the MBP analogue of the principal result in Seneta (1967).
Seneta’s proof is based on the functional iteration theory associated with the Abel functional
equation. The MBP setting permits a direct and self-contained approach. Recall that T denotes
the extinction time.

Theorem 7.2. If m = 1 and mπ < ∞, then

lim
t→∞ Pπ (Zt = j | T ∈ t + B) =

⎧⎨⎩µj
∫
BF

duj/ρ|B| if |B| < ∞,

0 if |B| = ∞.

Proof. Since

Pj (T ∈ B) =
∫
B

dFj (v) = j

∫
B

F j−1(v)a(F (v)) dv,

it follows that

Eπ (s
Zt ; T ∈ t + B) =

∑
j≥1

pπ,j (t)s
j Pj (T ∈ B)

= s

∫
B

∂

∂u
π(F (u, t))

∣∣∣∣
u=sF (v)

a(F (v)) dv

= s

∫
B

π ′(F (sF (v), t))a(F (sF (v), t))
a(sF (v))

a(F (v)) dv.
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However, since a is decreasing,

a(F (t + v))

a(F (t))
≤ a(F (sF (v), t))

a(F (t))
≤ 1,

so it follows from (7.3) and the dominated convergence theorem that

lim
t→∞

Eπ (sZt ; T ∈ t + B)

a(F (t))
= mπs

∫
B

a(F (v))

a(sF (v))
dv,

provided that the integral (denoted by I (s, B)) is finite. Note first that I (1, B) = |B|. If s < 1
then the change of variable u = F(v), implying that du = a(F (v)) dv, yields the bound

I (s, B) <
1

a(s)

∫
B

a(F (v)) dv = 1

a(s)

∫
BF

du = |BF |
a(s)

< ∞

for any admissible B. In fact, since duM(su) = sM′(su) du = ρs du/a(su), we obtain the
evaluation

sI (s, B) = ρ−1
∫
BF

duM(su) = ρ−1
∑
j≥0

sjµj

∫
BF

duj ,

and the assertion follows if |B| < ∞. If |B| = ∞ then Fatou’s lemma implies that

lim inf
t→∞

Pπ (T ∈ t + B)

a(F (t))
≥ mπ

∫
B

dv = ∞.

Since I (s, B) is finite, this outcome implies that Eπ (sZt | T ∈ t + B) → 0, and the assertion
follows in this case.

In the particular case that B is a union of disjoint intervals, B = ⋃
n(an, bn], and |B| < ∞,

then the assertion takes the form

lim
t→∞ Pπ (Zt = j | T ∈ t + B) = µj

∑
n(F

j (bn)− Fj (an))

ρ|B| .

8. Further remarks

The term ‘smooth structure’ used in the introduction refers to the basic integral representa-
tions in Section 2, and the ease with which they lead to the fundamental results in Sections 3
and 5. We have only to contrast the proofs there with the longer and more intricate proofs
used in Slack (1968), (1972) and Nagaev and Wachtel (2007) for the simple branching process
(SBP). Although a representation analogous to (2.3) exists in this case, it is not accompanied by
a representation such as (1.2) for what in essence is the generating function (2.2) of the invariant
measure of the MBP transition semigroup. On the other hand, Borovkov (1989) described a
methodology which is applicable to both continuous- and discrete-time (nonhomogeneous)
Markov processes. He showed how the results of Slack (1968), (1972) can more easily be
derived.

Suppose that (Zt ) denotes either the MBP (t ≥ 0) or SBP (t = 0, 1, . . . ), let F(t) denote
the extinction time distribution function of either process, and suppose that m ≤ 1. Borovkov
assumed that

lim
t→∞

F(t − 0)

F (t)
= 1.
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This is satisfied by the MBP ifm ≤ 1, and by the SBP only ifm = 1. Indeed (in this paragraph
only), let TS denote the extinction time of the SBP, and suppose that ρ = 1 for the MBP. If
m = 1 and (1.1) holds, then it follows from results of Slack/Borovkov in the case α > 0, and
by piecing together results in Nagaev and Wachtel (2007) in the case α = 0, that TS and T are
tail equivalent, i.e. P(TS > t)/P(T > t) → 1 as t → ∞. This implies that both extinction
time laws are attracted to the same extreme value law. This is not the case if m < 1, for then
F(t) is attracted to the Gumbel law, but P(TS ≤ t) is not attracted to any extreme value law;
see Pakes (1989).

Continuing our discussion of Borovkov’s methodology, for 0 < s < 1, let U(s) =
inf{t : F(t) ≤ s} and

q(t, θ) = F(t + U(θA(t)))

F (t)
,

where A(t) is positive valued and A(t) → 0. Then Theorem 1 of Borovkov (1989) states that

ψ(θ) := lim
t→∞ E(e−θA(t)Zt | Zt > 0)

exists if and only if
lim
t→∞ q(t, θ) = 1 − ψ(θ). (8.1)

This makes clear the relation between limit theorems for the critical branching process and
maximal domain of attraction properties of F(t).

Note that the condition A(t) → 0 removes the subcritical MBP from the ambit of the
strict statement of Borovkov’s theorem. However, as he indicated (see the bottom of page 106
in Borovkov (1989) for the SBP), a step in his proof encompasses this case. In fact, since
F(U(s)) = s, his proof in essence is that

E((1 − s)Zt | Zt > 0) = 1 − F(t + U(s))

F (t)
→ 1 − exp

[
−(1 −m)V

(
1

1 − s

)]
.

It is worth reporting how Borovkov’s (1989) approach to the converse result in Slack (1972)
applies with little change to the MBP. In a nutshell, (6.1) is equivalent to the altered form of
(6.2),

lim
t→∞

F(1 − θF (t))

F (t)
= ψ(θ), θ > 0,

i.e. (cf. (8.1))

q(θ, t) = R(ρt)

R[ρt + V (θ−1R(ρt))] → ψ(θ). (8.2)

Let λj (t) = F(jt)/F (t). Setting θ = 1 in (8.2) yields q(1, t) = λ2(t) → ψ(1) ∈ (0, 1). If
λj (t) → λj ∈ (0, 1) then the local uniform convergence with respect to θ in (8.2) implies that

λj+1(t) = q(λj (t), t) → λj+1 = ψ(λj ).

It follows by induction that limt→∞ F(λt)/F (t) ∈ (0, 1] exists if λ is a positive integer. This
extends to rational valued λ, and since F is monotone, it follows from a theorem of Karamata
(see Bingham et al. (1987, p. 54)) that F is regularly varying. The conclusion of Theorem 6.1
follows from Remark 3.1. This route to (1.1) is not quite as direct as the proof of Theorem 6.1.
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