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Nonlinear fractional programming

B. Mond and B.D. Craven

If an optimal solution exists for a nonlinear fractional

programming problem, then this solution is shown to be

obtainable by solving two associated programming problems whose

objective functions are no longer fractional. A certain

restriction is assumed on the constraint sets of the latter

problems. This result includes various known theorems as special

cases.

Consider the fractional programming problem

PI Maximize f{x)/g(x)

(1) subject to fc(a:) < 0 ,

where f and g are mappings from R into R , and h is a mapping

from R into R^ . It is assumed that / and g do not simultaneously

become zero. There has been a great deal of interest in various special

cases of the above problem. In particular, if f,g, and h are linear,

Charnes and Cooper [I] showed that optimal solutions can be determined from

optimal solutions of two associated linear programming problems. Charnes

and Cooper's result was extended to the ratio of two quadratic functions

subject to linear constraints by Swarup [5]. He considered PI with f and

g quadratic, and h linear, and showed that an optimal solution, if it

exists, can be obtained from the solutions of two associated quadratic

programming problems, each with linear constraints and one quadratic

constraint. Sharma [4] considered PI with / and g polynomials, and h
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l inear. He showed that an optimal solution, if i t exists, can be obtained

from the solutions of two associated programming problems where the

objective function is a polynomial and the constraints are al l linear

except for one polynomial constraint, tend and Craven [3] considered PI

with a larger class of functions f and g , with h linear. They showed

hov a solution, if i t exists, can be obtained from the solution of two

associated problems where the objective function is no longer fractional

and a l l but one of the constraints are linear.

Here we consider the more general problem PI where h , as well as f

and g , may be nonlinear, and obtain a theorem that includes, as special

cases, the corresponding results of [ / ] , [3], [4], and [5].

Notat ion and d e f i n i t i o n s

Let <j>- : R •*• R denote a monotone s t r i c t l y increasing function, with

<t>At) > 0 for t > 0 . For i = 1, 2, . . . , m l e t <J>. : R •*• R denote a

pos i t ive function; that i s , t 2 0 implies $.(*) > 0 . Define the
if

functions F, G , and H. , i = 1, 2 , , m , for t (. R+ and y € R ,

by

(2) F(y, t) = f(y/t)4>0(t) ,

G(y, t) = g(y/t)<t>0(t) ,

HAy, t) = hAy/tH.(t) , i = 1, 2, . . . , m .

Define

(3) F(y,

G(y,

0) = lim

0) = lim

Hy,

G{y,

t) ,

t) ,

BAy, 0) = lim H.(y, t) , i = 1, 2, . . . , m ,

whenever these limits exist. Assume that G(0, 0) = 0 whenever i t exists.

Let B(y, t) denote the m-dimensional vector whose i-th component is

BAy, t) .
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Results

Let us introduce the transformation y = tx , where for specified

function ()>0 and non-zero constant A € R , we require

(U) G(y, t) = A .

On multiplying / and g by <|> , h. by <J>. , i = 1, , m , and

using (2) we obtain the associated problem

P2 Maximize F(y, t)

(5) subject to G(y, t) = A

(6) H(y, t) 5 0

(7) t i O .

THEOREM 1 . If

(i) the point (y, 0) is not feasible for P2,

f£•£,) 0 < sgn A = sgn g(x*) for an optimal solution x* of

PI, and

(iii) (y*, t*) is an optimal solution of P2.,

then y*/t* is an optimal solution of PI.

Proof. Assume that the theorem is false, that is, that there exists

an optimal x* such that

(8) f(x*)/g(x*) > f(y*/t*)/g(y*/t*) .

By Condition (ii), <?(x*) = 6A for some 9 > 0 .

Consider t = 4>0~
1(l/6) and y = <J>0"

1(l/e)x* . Then

4>Q(t)g(.x*) = G{y, t) = A ,

BAy, t) = h.{ylt)i>At) = hAx*)i,At) 5 0 , i = l, ..., m .

Thus (y, t) is a feasible solution for P2. Now

(9) f{x*)/g{x*) = $At)f{x*)l[$At)g(x*)]

= F(y, t)/G(y, t) = F(y,

Also
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(10) f ( y * / t * ) / g ( y * / t * ) = 4 Q ( Q

= F(y*, t * ) / G ( y * , t * )

Hence , for f e a s i b l e (y, t) , ( 8 ) , ( 9 ) , and (10) show t h a t

F(y, t) > F(y*, t*) ,

contradicting the assumption that (y*, t*) i s optimal for P2.

If sgn g{x*) < 0 , for x* an optimal solution of PI , then

replacing f by -f and g by -g the objective function i s unaltered

and for the new denominator we have -g(x*) > 0 .

Thus, i f PI has a solut ion, i t can be obtained by solving, for

sui tably selected functions $.(£) , i = 0, 1, . . . , m , the two

programming problems

P3 Maximize F{y, t)

subject to G(y, t) = 1

H(y, t) 5 0

t > 0

and

Pi* Maximize -F(y, t)

subject to -G{y, t) = 1

If, in addition to ( l ) , PI has constraints of the form x 2 0 , then

[for example, by taking the corresponding (j).(i) = t ~] one obtains in P2,

P3, and Pit the addit ional constraints y > 0 .

Special cases

If f, g , and h are l inear and a l l $.{t) = t , then our theorem

gives the r e s u l t s of Charnes and Cooper [ / ] . If / and g are quadratic,

h i s l i nea r , tyAt) = t , and al l other <(>.(*) = t , then the resu l t s of

Swarup [5] are obtained. If f and g are polynomials of degree k , h
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is l inear, <J>,.(*) = t , and a l l other (|>.(t) = t , then we obtain the
0 t*

result of Sharma [4] . If h is l inear, / and g unrestricted, and

<$>.{t) = t , i t 0 , the results of Mond and Craven [3] are obtained.

Remark 1

The assumption (i) of Theorem 1 is always satisfied if the constraint

set of PI is non-empty and bounded, h i s l inear, and <j> ,{t) = t ,

i = 1, . . . , m ( [ ) ] or [3]).

An example of nonlinear constraints where (i.) of Theorem 1 is

satisfied is the following:

Assume that the constraint set of PI is non-empty and bounded and that

(I) consists of constraints of the form

(II) fr.(x) = x t C x + a < 0 , i = 1 , . . . , m ,
If

where C is a positive semi-definite symmetric matrix, a € R and

<J>.(t) = t , i = 1, ..., m . Thus

(12) HJ,y, t) = ytCy + at2 £ 0 , £ = 1, ..., m .

If now (y, 0) satisfies (12), y Cy S 0 implies, for C positive semi-

definite, that y Cy = 0 , and hence Cy = 0 (by [2] , Appendix (g)).

From G{y, t) = A * 0 and G(0, 0) = 0 i t follows that {y, 0)

feasible implies y f 0 .

Hence if x satisfies ( l l ) , for any scalar k ,

hAx+ky) i (x+ky^C^x+ky) + a

= x Cx + k y Cy + 2kx Cy + a

= x C x + 0 + 0 + a

< 0 .

Thus, for any scalar k , x + ky (y t 0) is feasible for Pi,

contradicting the assumption of boundedness.
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If ( l ) i s non-empty and bounded, and (l) consists of linear constraints

and constraints of the form ( l l ) , then by a combination of the arguments

here and in [7] i t follows that (i) of Theorem 1 is alvays satisfied.

Remark 2

As noted in [3], even if f{x) is concave with respect to x ,

F{y, t) need not be concave with respect to the vector variable (y, t) .

Even if G and H are convex with respect to (y, t) , the constraint set

of P3 is not necessarily convex. Instead of P3, therefore, it is sometimes

more convenient to deal with the following

(13) P31 Maximize F(y, t)

subject to G(y, t ) < l

H(y, t) 5 0

t 2 0 .

If (y*, t*) is optimal for P3' , t* > 0 , and G(y*, t*) = 0 , then

x* = y*/t* is feasible for PI but g(x*) = 0 . In this case PI need not

possess a maximum. If G(y*, t*) = A , where 0 < A < °° , then (y*, t*)

i s also optimal for P2 with A = A , so Theorem 1 holds.

Note that (i) of Theorem 1 may no longer be satisfied under the

conditions given in Remark 1, since y = 0 , t = 0 might now be feasible.

In [3] , an example is given of P31, with linear constraints and non-empty

bounded constraint set, such that the optimum occurs at (0, 0) . In such

a case, nothing can be deduced from P3' concerning the optimum of PI.

Observe that if F(y, t) is concave, and G and H convex with

respect to the vector variable (j/, t) , then P3' is a concave programming

problem with a convex constraint set, and may be solved by any standard

technique for concave programming.
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