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The well-known algebraic concept of tensor product exists for any variety
of algebras. The tensor product of groups and of rings have been studied
extensively. For other varieties, such as the variety of semigroups, the tensor
product has been investigated more recently (5). In this paper we investigate
the tensor product of distributive lattices.

We study the tensor product A(£>B of distributive lattices A and B in the
category of distributive lattices. In the first section we give preliminaries on
notation. In the second section we prove the existence of the tensor product.
We analyse the set of prime filters in A®B and then use Stone's representation
theorem for distributive lattices to obtain a method of constructing the tensor
product explicitly. In the third section we study the word problem for A®B.
We show that in general the word problem for A<g>B is not solvable but we
obtain a characterisation for the general case that is the best possible under
the circumstances. In the fourth section we restrict our attention to chains.
We prove that in this case the word problem has a simple solution and we show
that if A1 is a sublattice of A and Bx a sublattice of B then Al®B1 can be
embedded as a sublattice of A®B. An example is given to show that this
assertion is false for arbitrary distributive lattices.

The author would like to thank Alfred Horn for his interest and advice on
this work.

1. Preliminaries
For terminology and basic results of lattice theory and universal algebra,

consult Birkhoff (3) and Gratzer (4) respectively. Let A be a lattice. If a, b e A,
the join and meet of a and b are written as a+b and ab respectively. If a{ e A
for iel, where / is any non-empty set, then the join and meet of {a,-: iel},
if they exist, are denoted by £ af and JJ a-, respectively. The smallest and

iel iel

largest elements of A, if they exist, are denoted by 0 and 1 respectively. We
denote by 2 the two element lattice consisting of 0 and 1. The category of
distributive lattices is denoted by @i.

2. Existence and construction of the tensor product
Definition 2.1. Let A, B and C be distributive lattices. A function

f:AxB-*C
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is a bihomomorphism if the functions ga: B->C defined by ga{b) = f(a, b) and
hb: A -* C defined by hb(a) = f(a, b) are homomorphisms for each a e A and
be£.

Definition 2.2. Let A and B be distributive lattices. A distributive lattice
C is a tensor product of A and 5 (in the category 3i) if there exists a canonical
bihomomorphism / : AxB-*C such that C is generated by f(AxB) and for
any distributive lattice D and any bihomomorphism g: AxB-*D there is a
homomorphism A: C-^Z) satisfying g = /?/.

Note that since f(A x 5) generates C, the homomorphism A is necessarily
unique.

Theorem 2.3. Let A and B be distributive lattices. Then a tensor product
of A and B in the category 3) exists and is unique up to isomorphism.

Proof. Let K be the free distributive lattice on A x B and let w be the
canonical inclusion map of AxB into K. Let p be the set of all ordered
pairs of the form

(w(a, b), w(au b1)*w(a2, b2)),

where a,al,a2eA;b,b1,b2eB;* denotes either the join or the meet operation;
and either a = at*a2 and b = bt = b2, or a = at = a2 and b = bl*b2. Let
a be the smallest congruence relation in K containing p. Let C = K/a, u
be the canonical homomorphism from K onto C, and / = uw.

By the choice of a, it is clear that/ is a bihomomorphism. Let D be any
distributive lattice and let g: AxB-+D be any bihomomorphism. There is a
unique homomorphism s: K-*D such that g = sw. Since g is a bihomo-
morphism, the kernel relation of s, ker s, contains a. Therefore

ker u = a £ ker s,

so that s = hu for some unique homomorphism /*: C-> Z>. Then A is such that
g = sw = huw = hf. Finally, since w(A x B) generates K, uw(A x B) generates
K/a, so that f(A x B) generates C. This shows that the distributive lattice C
and the canonical bihomomorphism / satisfy the conditions of the definition
of a tensor product.

The uniqueness of a tensor product is clear from its definition as a solution
of a universal problem.

The tensor product of A and B is denoted by A®B and the image of (a, b)
under the canonical bihomomorphism / : AxB-*A<g)B is written as a®b.
In this notation the proof of Theorem 2.3 shows that A®B is the distributive
lattice generated by the elements a®b (ae A, beB), subject to the bihomo-
morphic conditions

(a1a2)®b = (a1®b)(a2<S>b),
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and
2) = (a®bl)(a®b2)

for all a, au a2e A and b, bu b2 e B. Every element of A®B can be written
n k

in the form £ \\ (ay®fey) for some ai}eA and b^eB, i= 1, ..., «,

. /= 1, ...,*.
We obtain a method of explicitly constructing the tensor product by analysing

the set of prime filters in A<g)B.
For a distributive lattice L, let S(L) be the set of prime filters in L, and let

S'(L) = S(L)u{0, Z,}. It is well-known that there is a one-to-one correspond-
ence between P e S'(L) and homomorphisms h: L->2.

It is immediate that there is a one-to-one correspondence between homo-
morphisms h: A®B-+C and bihomomorphisms g: AxB^C. Thus there is
a one-to-one correspondence between PeS'(A®B) and bihomomorphisms
g: AY.B^I, such that a®beP if and only if g(a, b) = 1. Let # be the set
of all bihomomorphisms g: AxB->2. We order <§ by setting gt ^ g2 if and
only if g^a, b) = 1 implies g2(

a> 6) = 1 for &\l a e A, b e B. Let

and let <?p, #e be the corresponding bihomomorphisms. Then

QpikQQO9p{a, b) = l implies gQ(a, b) = 1

for all a e X, b e 5

<=> a®6 e P implies a®b e Q

for all a e A, b e B

Thus S'{A®B) is order isomorphic to <S.
Now let ^ € ^ and for each x e A, let F(x) = {yeB: g(x, y) = 1}. Then

it follows from the bihomomorphic properties of g that F(x) e S'(B) and that
for all xu x2 e A,

F(Xlx2) = F(x,)nF(x2) and F(xt + x2) = F(x1)uF(x2).

The last equality shows that the union of two members of the range of F is
in S\B). But if the union of two filters is a filter, then one must be contained
in the other. So the range of F is a chain, and F is a homomorphism from A
into a subchain of S'{B).

Conversely, if F is such a homomorphism, define g: A x 2?-»2 by setting
Q(x> y) — 1 if and only if y e F(x). It is a straightforward verification that #
is a bihomomorphism.

It is also clear from the definitions that if gt and g2 are distinct bihomo-
morphisms, the corresponding homomorphisms Fx and F2 are also distinct.

Let «?f be the set of all homomorphisms from A into a subchain of S'{B).
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We order tf by setting F ^ G if and only if F(x) £ G(x) for all x e A. Let
gY and g2 be bihomomorphisms and let / \ and F2 be the corresponding
homomorphisms. Then

F^F2o F^x) s F2(x)
for allxe A

o y e Ft(x) implies y e F2(x)
for all x e A, y e B

•«*• di(x, y) = 1 implies g2{x, y) = 1
for all x e A, y e B

Thus 34? is order isomorphic to 'S.
We have now proved the following theorem.

Theorem 2.4. Let A and B be distributive lattices. Then S'(A®B) is order
isomorphic to the set Jf of homomorphisms from A into a subchain ofS'(B).

Let ^f0 be the set of all Fetf? except the homomorphism F denned by
F(x) = B for all xeA.

Corollary 2.5. Let A andB be distributive lattices. Then A®B is isomorphic
to the ring of sets generated by the collection {(a®b)*: aeA, beB}, where
(a®b)* = {Fe J^o: b e F(a)}.

Proof. According to Stone's representation theorem (6), for every distri-
butive lattice L, the map x->x* = {P e SQL): x e P} determines an isomorphism
between L and a ring of subsets of S(L). In the case of A®B, it suffices to
consider the restriction of this map to the generators a®b and to determine
the ring of sets generated by the sets (a®b)*. Now

(a®b)* = {PeS(A®B): a®beP}.

From the proof of Theorem 2.4 we have

a®b e P o g(a, b) = 1 <=> b e F(a),

where Pe S(A®B), g is the bihomomorphism corresponding to P, and F is
the homomorphism corresponding to g. In view of the isomorphism between
S'(A®B) and 2te we may write (a®b)* as {Fe 2V0: beF(a)}.

3. The word problem
We next study the word problem for the tensor product of distributive

lattices. It is enough to consider when a product is less than or equal to a
sum. We recall that if L is a distributive lattice and x, yeL, then x ±£ y if
and only if for every homomorphism/: L-+2,f(x) = 1 implies f(y) = 1.
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Lemma 3.1. Let A and B be distributive lattices, and let ah Cj e A and
n k

bt, djeBfor i = 1, .... n and j = 1, ..., k. Then [ ] (a,®*),) g E (c&dj)
t = I j = I

if and only if for every bihomomorphism g: AxB-*2, g(ah bt) = 1 for all i

implies g(cj, dj) = 1 for some j .

Proof. ft E
i = 1 j = 1

for every homomorphism h:A®B-*2,

1

o for every homomorphism h: A®B-*2,
/i(af®b,) = 1 for all i implies h(cj®dj) = 1 for some J

o for every bihomomorphism g: A x B-+2,
g(ah bt) = 1 for all i implies g(c}, dj) = 1 for some j .

Let A and B be distributive lattices and let a1,a2eA and bu b2 e B. Suppose
g b2. Then the order preserving properties of the canonical

bihomomorphism imply that al®bl ^ a2®bv ^ a2®b2. Thus if av S a2 and
bi ^ b2, then a1®bl ^ a2®b2.

For any positive integer n, let n be the set {1, ..., «}.

Theorem 3.2. Let A andB be distributive lattices and let a, a^Aandb, b^Bfor
?n n n

i = 1, ..., n. Then a®b g E(fl«®^i) '̂ " a/w^ o n^; ' / a = E ai> ^ = E ^»
i = 1 i = 1 i = 1

and for all S £ «, a ^ E a ; o r ^ ^ E >̂-
ieS i^S

n

Proof. Assume a®b ^ E (ai®^;) an(l suppose that there is a subset S
i = 1

of » such that a $ E a> an(^ ^ ^ E /̂- Then there are homomorphisms
ieS itS

fi'. A->2 and/2: B->2 such that/j^) = 1, /^E ad — Q,fz(b) = 1, and
ieS

/ 2 ( E f»,) = o.
So for each /e S, /i(a,) = 0 and for each i$ S, f2(bi) = 0. Let g: Ax2?->2
be denned by g(x, y) = fx(x)f2(y). Then g is a bihomomorphism, g(a, b) = 1

and for all i e it, g(a,-, tj) = 0. If we suppose that a ^ E ai> t^11 there is a
i

homomorphism/: A->2 such that/(a) = 1 and/(a,) = 0 for all / e n, and we
defineg: Ax B->2 by g(x, y) = f(x). Againg is a bihomomorphism, #(a, 6) = 1

n

and g(ah bt) = 0 for all ien. Similarly, if b ^ E ^i>tnere is a bihomomorphism
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with these properties. In each case Lemma 3.1 implies that a®b

and we have a contradiction.
n n

Conversely, suppose that a ̂  £ a;, b g £ bt and for all S £ n, a g £ a,
1 1

or i g V i,. Let ^ = {S c n: 5 # 0 and a g V aj and
MS iS

i e S

ieS

g- = {r c n: T ̂  n and b ̂  £ &,}.

Then 5^ and ^ are non-empty since n e y and 0 e J . Let ^ = {S^ ..., SP}
and ^" = {r1; ..., Tq). Then

S e y ieS i k e S k , l ZkZ p

and

Hence

= u'lceSfc, 1 § k S p

z z
i i e S k , I S i S p jmtTm,l Zmgq

Let z"t e S1!, ..., fp 6 5,,, j \ $ Tu ..., 7, $ Tq, and let / = {ju ..., 7,}. Since
J £ n, we have J e Sf or J & 2T. If J e ST, say J = Tr, r ^ q, then 7, e 71,.
Butyr ^ Tr. Hence we must have J tSP. SoJ—Su for some u ^ p, and /„ e / ,
so iu = j0 for some v ^ q. It follows that

Summing over all terms we obtain

Z Z
i S l £ k £ j t T l £

and hence a®6 ^

By dualising Theorem 3.2 we obtain a characterisation of an inequality
n

of the form I7(fli®&<) ^ a®fc. However, it is not possible to characterise a

more general inequality solely in terms of the relations among the elements of
A and B involved in the inequality. Specifically, an inequality of the form

n k

FT (a{®bd ^ V (Cj<g>dj) cannot be so characterised,
i = i j = i

As an example, let A = 2, B^ = 3 (the three-element chain {0, a, 1} satisfying
0 < a < l ) , and B2 = the diamond (the four-element lattice {0, a, b, 1} with a
and b incomparable). Then the inequality (0®l)(l®a) ^ (0®a) + (l®0) fails
in A®Bt and holds in A®B2. This can be shown using Lemma 3.1. To
prove the first assertion, we must construct a bihomomorphism g:
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such that 0(0; 1) = 0(1, a) = 1 and 0(0, a) = g(l, 0) = 0. We define g as
above and we set g(0, 0) = 0 and g(l, 1) = I; then it is clear that the function
g is a bihomomorphism. To prove the second assertion, we must show that
there is no bihomomorphism g: AxB2->2 such that 0(0, 1) = 0(1, a) = 1
and 0(0, a) = g(l, 0) = 0. Suppose g is such a bihomomorphism. Then

1 = 0(0, 1) = 0(0, a)+0(0, b) = 0(0, b) < 0(1, 6)
= 0(1, % ( 1 , a) = 0(1, 0) = 0

and we have a contradiction.
This example shows that, in general, an inequality in a tensor product

A®B depends not only on the relations among the elements of A and B
involved in the inequality, but also on the lattices A and B themselves.

Let Ay be a sublattice of A and Bt a sublattice of B. We consider the
problem of whether Ay®By can be embedded as a sublattice of A®B. Let
§ ! be the canonical bihomomorphism from AyxBy into Ay®By and let ®
be the restriction to AyXBy of the canonical bihomomorphism from AxB
into A®B. It follows from the definition of the tensor product that there is a
canonical homomorphism h from Ay®By into A®B such that for all aeAy
and b e By, h{a®yb) = a®6. If h is one-to-one, ^jfgji?! can be canonically
embedded as a sublattice of A®B and we say that Ay®By is canonically
isomorphic to a sublattice of A®B.

The example given above can be used to settle this problem in the negative.
In the example, A is a sublattice of itself and By is a sublattice of B2. If A®By
is canonically isomorphic to a sublattice of A®B2, then an inequality holds
in A®By if and only if its image under the canonical homomorphism holds
in A®B2. But the inequality given in the example fails in A® By and holds
in A®B2.

We shall show in Section 4 that this problem has an affirmative solution
when A and B are chains.

The following result characterises the join-irreducible generators of the
tensor product.

Theorem 3.3. Let A and B be distributive lattices and let ae A and beB.
Then a®b is join-irreducible in A®B if and only if a is join-irreducible in A
and b is join-irreducible in B.

n

Proof. Let a®b be join-irreducible and suppose a ^ ^ at. Then

Hence a®b ^ at®b for some / and so a g ar Thus a is join-irreducible.
Similarly b is join-irreducible.

Now suppose a and b are join-irreducible; we may assume
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and we use Theorem 3.2. Let S = {ye n: b g bj). If S = n then a g £ a,.

If 5 ^ owe again have a ^ V a,-, for otherwise fe ̂  £ &/ an(* hence b ^ 6 •
; e S JtS

n

for some y^ S. Now S ¥= 0, since 6 ^ £ b} and so 2> ^ b} for some ye «.

Hence a g £ a,- implies that a g a} for some 7 e S, and since Z> ^ i , - we have
j e S

a(g)b ̂  aj®bj. Thus a®6 is join-irreducible.
n

The generalisation of Theorem 3.3, that J ] (a,® ft;) is join-irreducible if
i = 1

and only if au ..., an and bu ..., bn are join-irreducible, is false for arbitrary
distributive lattices A and B. For example, if A and B are the diamond
{0, a, b, 1}, then a and 6 are join-irreducible, but (a<g>a)(b®b) is not join-
irreducible in A ®B. In fact, (a®a)(b®b) = (a®0)(0®6) + (0®tf)(6®0). This
equality can be established with the aid of Lemma 3.1. To see that the right-
hand side is less than or equal to the left-hand side, note that if g: AxB-^2
is any bihomomorphism such that either

g(a, 0) = 5(0, b) = 1 or g(0, a) = g(b, 0) = 1,
then g(a, a) = g(b, b) = 1. The reverse inequality holds because there is no
bihomomorphism g: Ax B->2 such that g(a, a) = g(b, b) = 1, g(a, 0)g(0, b) = 0,
and g(0, a)g(b, 0) = 0. (If there were such a bihomomorphism g, say

gift, 0) = g(b, 0) = 0,
then

0 = g{ft, 0) + g(b, 0) = 0(1, 0) = g{l, a)g{l, b) ^ g(a, a)g(b, b) = 1.

The other cases are similar.)
In the next section an extension of Theorem 3.3 gives a characterisation of

the join-irreducible elements of A®B, when A and B are chains.

4. The tensor product of chains
We now study A®B when A and B are chains. We obtain a simple

description of the join-irreducible elements of A®B and we show that the
word problem for A®B has an elementary solution.

We first obtain a sharpened version of Theorem 3.2 when A and B are chains.

Theorem 4.1. Let A and B be chains and let a, a{ s A and b, bt e B for
n

i = 1, ..., n. Then a®b ^ £ (a,®&,) if and only if a ^ at and b g btfor
i = 1

some i.
n

Proof. If a ^ at and b ^ bt for some i, then a®b ;£ at®bi ^ £ (flj®^).
1

n

Conversely, suppose a®fe S £ (fl-®^i)- ^ v Theorem 3.3, a®b is join-
1

irreducible in A®B, so a®b g a,®6,- for some i, and hence a ^ at and
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Using Theorem 4.1 we characterise the join-irreducible elements in the tensor
product of chains.

Theorem 4.2. Let A and B be chains. The join-irreducible elements of A®B

are all the products of generators Y\ (a,®^,), where at e A and b( e B for

i = 1, ...,«.

Proof. Clearly any join-irreducible element of A®B must be of the form
n n

I I (.ai®bj). Now suppose n(fl<®^i) *s a n v Pr°duct of generators of A®B.
i i

It is enough to show that for any cu ..., cke A and du ..., dk e B,

n (a,®6,) ̂  t (o®^)
i = 1 j = 1

n

implies that Y[ (a^bi) ^ Cj®dj for some j . So assume that

n

and suppose Y\(a,®b,) •£ Cj®dj for ally. It follows from the dual version
of Theorem 4.1 that for each j , a{ % c} or bt $ dj for all i. Let g: Ax B-+2
be defined by g(x, y) = 1 if and only if x ^ a, and y ^ bt for some /. It is a
straightforward verification that ^ is a bihomomorphism and it is clear that
g(ah b{) = 1 for all /. Also for all j and j , Cj<ai or dj<bi, so g(cj, dj) = 0

n k

for all /. Then it follows from Lemma 3.1 that f ] (a;®fc,) $ X icj®dj) a n d

we have a contradiction.
Theorem 4.3. Let A and B be chains and let at, Cj e A and bu dj e B for

n k

i= 1, ..., n and j = 1, ..., k. Then FT (aMb,) < Y (c,®rf.) if and only
i= I j = i

j/fli g Cj- afltf* 6,- ^ ^j/or wwe J andj.

Proof. We first note that the dual version of Theorem 3.3 implies that
every generator of A®B is meet-irreducible. Then it follows from Theorem
4.2 and this remark that

n k n

I I (fli®&;)= S (cj®dj)o fj (Oi®fej) g Cj®dj for some j
i = i j = i i = i

<*• aj®bf ^ Cj®dj for some i and J
•o- af ^ cy and b-, ^ d; for some j and j .

Theorem 4.3 shows that the word problem for the tensor product of chains
has a simple solution.

Theorem 4.4. Let A and B be chains and let Ai be a sublattice of A and Bx

be a sublattice of B. Then <4,®i?1 is canonically isomorphic to a sublattice of
A®B.

E.M.S.—20/2—I
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Proof. We recall from the discussion of this problem in Section 3 that the
canonical homomorphism h: AX(&B^A®B is defined by /?(a<8>i#) = a®b,
where aeAlt bsBx and ®t and ® are the canonical bihomomorphisms
from A1x£l to A1®Bl and from AxB to A®B respectively. We need to
show that h is one-to-one. Let £ fl (aij® i&y) a nd E I I (c«»® i^mJ be distinct
elements of j4t ®5X, say

1 n (fl«®i*u) * E n ov*.®i«u-
i j m n

Then by Theorem 4.3,

E IT («u® &y) £ E I! (c™®O in ^®B-
i j m n

Hence
/'(E n o»«,®i&y)) i *(i n (c«.®irf*-»

i y m n

and so the canonical homomorphism h is an isomorphism.

We conclude by showing that the tensor product of ^-projective chains is
^-projective.

Theorem 4.5. Let A and B be Si-projective chains. Then A0B is 3)-
projective.

Proof. Suppose A and B are ^-projective chains. By (1, Theorem 8.2),
a chain is ^-projective if and only if it is countable. Hence A and B are
countable, so A®B is also countable. By (2, Theorem 9), a countable dis-
tributive lattice is ^-projective if and only if every element is a finite sum of
join-irreducible elements, every element is a finite product of meet-irreducible
elements, and the product of any two join-irreducible elements is join-
irreducible.

Now Theorem 4.2 asserts that the join-irreducible elements of A®B are of

the form Y[(ai®^i)' anc^ t n e ^ua" v e r s i ° n °f Theorem 4.2 shows that the
1

meet-irreducible elements are of the form E( C 7®^J ) - Since every element
1

p 9

of the tensor product can be written as E FT (xi7® J7.;) anc^ a ' s o a s

i = 1 j = 1

n E («™®o,
m = 1 n = 1

it is clear that every element is a finite sum of join-irreducible elements and a
finite product of meet-irreducible elements. The product of two join-irreducible

elements is again of the form f\ (fl;®&.-)> a nd s o is join-irreducible. Hence
I

A ®B satisfies the above conditions and so is ^-projective.
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The tensor product of ©-projective distributive lattices is not necessarily
©-projective. For example, let A and B be the diamond {0, a, b, 1}. Then
A and B are ©-projective. By Theorem 3.3, a®a and b®b are join-irreducible
in A®B, and we saw at the end of Section 3 that (a®a)(b<g>b) is not join-
irreducible in A®B. But by (1, Theorem 7.1), a finite distributive lattice is
©-projective if and only if the product of any two join-irreducible elements is
join-irreducible. Hence A®B is not ©-projective.
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