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A SHARP LOWER BOUND FOR THE RICCI CURVATURE OF
BOUNDED HYPERSURFACES IN SPACE FORMS

ALAIN R. VEERAVALLI

DEDICATED TO LAMIAE AND LUCAS ZAKARIA WITH GREAT AFFECTION.

We give a sharp lower bound for the Ricci curvature of bounded complete hypersur-
faces of space forms. This leads to several applications.

1. INTRODUCTION AND THE MAIN RESULT.

It is easy to see that if a closed smooth plane curve is included in a disk of radius
r > 0, then there exists a point of the curve for which the curvature is in absolute value
greater than or equal to 1/r. A similar result holds for surfaces: any compact surface
of K3 included in a ball of radius r admits a point for which the Gaussian curvature is
greater than or equal to 1/r2. In 1983, Leung extended these results by showing the
following.

THEOREM. [4] If M is a complete hypersurface of K"+1 (n ^ 2) included in a ball

of radius r > 0 with sectional curvature bounded away from - co , then

lim sup Ric (£, £) ^ —5—

where Ric is the Ricci curvature of M and UM the unit tangent bundle of M.

Note that for the sphere of radius r in E n + 1 the above inequality is in fact an equality.
A natural question is to search for the Ricci curvature lower bound when replacing the
Euclidean space by any space form. In two recent papers, Beltagy [1] and Erdogan [3]
tried to give an answer but infortunately some estimates are false and the others are not
sharp. In a previous paper [8], the author dealt with a close problem whose ideas can be
used to settle the question. The main result of this work is the following:

THEOREM. Let Sn+i(c) be the simply connected space form of constant sectional

curvature c (c € K, n ^ 2), M a complete hypersurface of§n+i{c) with sectional curvature
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bounded away from — oo and included in a closed normal ball of radius r > 0 in Sn+i(c),
with T < n/(2y/c) ifc > 0. Then

(n - l)(c + k2
c(r))

where Ric is the Ricci curvature of M, UM the unit tangent bundle of M and

{ y/ccot(ry/c) if c > 0

1/r if c = 0 .
if c < 0As one can see, this generalises Leung's theorem. Moreover, the function kc is

well-known by Riemannian geometers: the distance sphere of radius r in Sn+i(c), with
r < ir/y/c if c > 0, is an umbilical hypersurface with principal curvatures being precisely
kc(r). It also shows by the Gauss formula that its Ricci curvature is constant and equal
to (n — l)(c 4- kc(r)\ Therefore the inequality given in our theorem is sharp.

Before giving the proof, one can remark that (n - l)(c + k%(r)) is positive for any
constant c and positive r (with r < it/\fc ifc > 0). This leads to criteria of unboundness:

COROLLARY 1. Let M be a complete hypersurface ofSn+i(c) (n ^ 2) with sec-
tional curvature bounded away from —oo and nonpositive Ricci curvature. Ifc ^ 0, then
M is unbounded. Ifc>0, then the diameter of M (for both Riemannian distances on
M and Sn+i(c)) satisBes diam (M) ^ n/(2,/c).

When M is compact, these results can be reformulated in an easier way:

COROLLARY 2 .

(i) Let M be a compact hypersurface ofSn+i(c). Ifc is nonpositive, then there
exists a point q € M and a unit tangent vector u to M at q such that

Ric ( u , u ) > { n - 1)(c + k2
c{r)) (> 0)

where r is the radius of any ball in Sn+i(c) containing M. Therefore, ifc is
nonpositive, there is no compact hypersurfaces in Sn+\(c) with nonpositive
Ricci curvature. In particular, if c is nonpositive, there is no compact
minimal hypersurfaces in 5n+i(c).

(ii) If c is positive, then the diameter of any compact hypersurface M of 5n+i (c)
with nonpositive Ricci curvature satisfies diam (M) ^ n/(2\/c).

2. PRELIMINARY RESULTS.

Let (M, (,)) be a Riemannian manifold, V its Levi-Civita connection and / : M ->

R a smooth function on M. Recall that the gradient of / is a smooth vector field V /
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on M defined by ( V / , X) — Xf and the Hessian of / is the (0,2)-symmetric tensor V 2 /
defined by V2J{X,Y) = ( V * ( v / ) , r ) = X(?f) - (VxY)f, X and Y being smooth
vectors fields on M. If M is a submanifold of M with the induced metric and the induced
connection V, we can also define the gradient V / and the Hessian V 2 / of any smooth
function / on M. For the particular case of smooth functions / on M of the form / = foi
(where i: M —> M is the canonical injection), these operators are related: for any vector
fields X, Y on M, we have

(1) = V2f(X,Y)-(Vf,S(X,Y))

where S is the second fundamental form of M.

The gradient and Hessian are used in the classical Hopf lemma which says that for
a smooth function / : M —> R on a compact Riemannian manifold M, there exists a
point q e M such that Vf(q) = 0 and S72f{q){X,X) ^ 0 for any vector X e TqM. The
proof of our theorem uses a rather technical result due to Omori which can be seen as a
generalisation of the Hopf lemma:

THEOREM [5] Let M be a complete Riemannian manifold with sectional curvature
bounded away from - c o and f : M —>• K a smooth function on M bounded from above.
Then for any q0 € M and any e > 0, there exists a point q£ M such that f(q) ^ /(<Zo)>
1^/(9)1 < £ and ^?2f{q){X, X) < e for any unit tangent vector X at q.

Another trick used in the proof is an algebraic lemma due to Otsuki:

LEMMA [7] Let S : Rn x W -* Rk be a symmetric bilinear form on Rn (n, k > 0). If

Sn~l denotes the unit sphere of Rn, then the function S"'1 - > i R : i ^ \S(x, x)\ achieves

its minimum at a point XQ and we have the following properties

(i) xQ 1 Ker S(x0, •)

(ii) {S(xo,xo),S(x,x)) ^ S(xo,a;o) for any unit vector x € Ker S(x0, •)•

At last, the crucial point in the proof is the following result which uses classical
material of Riemannian geometry:

PROPOSITION. Let (M, (,)) be a Riemannian manifold, p a point of M, d the

Riemannian distance of M and f : M —> K : q •->• dj,(q)/2. Then

(i) / is smooth on M\ Cut(p) where Cut(p) is the cut point of p .

(ii) For any q € M and any tangent vector v to M at q, we have V/(g)

= dp(q)j(dp(q)) andV2f(q)(v,v) = dp(q){VX(dp(q)),X(dp(q))) where

7 : [o,dp(g)| —> M is the unique normal geodesic joining p to q, X the

unique Jacobi field along7 with the boundary condition (X(0),X(dp(q)\}

= (0,v) and VX the covariant derivative of X along').
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(iii) In particular, ifM = Sn+i (c) is a space form of constant sectional curvature
c and p is a point of M, then for any q € Bp(r), with r < TT/(2^/C) ifc > 0,
and any tangent vector v toM atq with v ± Vdp(q), we have V2/(g)(u, v)
= dp(q)-kc(dp(q))-\v\2.

The first two points come from the first and second variation formulae for length and
energy (see, for example, [2] or [6]). For the last point, it suffices to solve the differential
equation satisfied by the Jacobi field.

3. P R O O F OF THE THEOREM.

The manifold M is endowed with the metric (,) induced by Sn+i(c). The Riemannian
distance in 5n+i (c) will be noted d and UM = (J UqM will mean the unit tangent bundle

qeM

of M. We shall also consider the function / = d2,/2 : Sn+i(c) -» R and its restriction
/ = d^/2 : M —¥ K. As M is included in a closed normal ball Bp(r), the manifold
M avoids the cut point of p in Sn+i (c) and therefore the function / is smooth (by the
above proposition) and bounded by r2/2. Choose a point qo in M different from p. By
Omori's theorem, for any positive integer m, there exists a point qm £ M such that
/ ( ? m ) > /(?o), |v/(ffm)| < l / m a n d V2/(gm)(u,u) < 1/m for any u € UqmM. Remark
that 0 < dp(qo) < dp(qm) ^ r. For any integer m > 0, we shall write for convenience im

for dp(qm) and j m for the unique normal geodesic joining p to qm. Fix now a positive
integer m and a vector u € UqmM. By Omori's theorem, equation (1), the previous
proposition and the Cauchy-Schwarz inequality, we have

(2) > V2f(qm)(u,u) - em • \SqJu,u)\.

Our next work will be to estimate the first term of the right-hand side of equation (2).
We remark that u need not to be normal to Vf(qm) (= An7m(An))- In order to apply
the preceding proposition, share u in two parts: u = ul + un where ul (respectively un)
is normal (respectively parallel) to V/(gm). Then

(3) V2f(qm)(u,u) = V2f(qm)(u\ut)+2. V2f(qm)(ul,un)+V2f(qm)(un,un).

Of course, we have by the above proposition

Since un = (u,Vf{qm))-ym(em)/im and since (u ,V/(gm)} = (u,Vf(qm)), we obtain by
Omori's theorem and the Cauchy-Schwarz inequality

(4) \un\ < ~ s$ - i -
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and so

From now, we shall assume that m is choosen sufficiently large to ensure that
1 - {l/mt0) > 0.

Finally, note that the linear map Lqm : TqmSn+i(c) -*• TqmSn+i(c) : w i-> V«,(V/) is
continuous. So ||L,m|| < oo and we can write that for any tangent vectors wx and w2 to
Sn+i(c) at qm,

\v2f{Qm){wi,v)2)\ = K^m^i) , 102)! ̂  \\Lqm\\ • K | • K | -

By using the continuity of the map Bp(r) -> R : q >->• ||L,|| on the compact set Bp(r),
there exists a positive constant a such that on Bp(r),

(6) V f(q)(wi, 102) ^ o • |wi| • |^2|-

Combining inequalities (3), (4), (5), (6), |u'| < 1, |u"| < 1 and since kc is a decreasing
function, we obtain

( 1 >2

>£mWi-4}2-4.
^ TtlCQ J T7M.0

By inequality (2), we conclude that

Since kc is a positive function, one sees that, for sufficiently large m, 5,m(u, u)\ is positive.
Among all vectors of UQmM, let tii be one which makes | 5 , m | minimal on the diagonal

of UqmM. By the last remark, 5,m(ui,U!) > 0 for sufficiently large m and so the kernel of
the linear map S?m (ui, •) :T9mM -> (T,mM)x is (n — l)-dimensional. If {ui,..., un} is an
orthonormal basis of this kernel, the first part of Otsuki's lemma asserts that {u i , . . . , un}
is an orthonormal basis of TqmM. By the above inequality, the Gauss formula and the
second part of Otsuki's lemma, we have

Ric(ui) = ( n - l ) c +

\
•=2

By letting m going to +oo, this leads to the announced inequality. D
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R E M A R K S

1. It was asserted in [3] without proof that for the elliptic space form
Sn+1 = S n + i ( l ) , we have

lim sup Ric (£, f) > (» - 1) ( l + cos4 ( r /2) / sin2 (r /2)) .
(euM v '

An easy computation shows that

(n - l ) ( l + k\{r)) - ( n - l ) ( l + cos4 (r /2)/ sin2 (r/2)) < 0

for any positive r < TT/2. SO, the assertion in [3] cannot be true as was
shown above by taking the hypersphere. For the hyperbolic space form
Wl+l — Sn+i(—1), our result sharpens the inequality given in [3].

2. If M is assumed to be compact, the proof can be shortened of course by
using the Hopf lemma.
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