THE MINIMAL PRIMAL IDEAL SPACE OF A *C**-ALGEBRA AND LOCAL COMPACTNESS

Dedicated to my teacher Prof. G. Maltese on the occasion of his 60th birthday

FERDINAND BECKHOFF

ABSTRACT. This paper is concerned with local compactness of the minimal primal ideal space of a C^* -algebra, a sufficient condition is given. The property in question has bad hereditary properties as is shown by examples.

1. Introduction. In [1] R. G. Archibold started the investigation of the minimal primal ideal space of a C^* -algebra \mathcal{A} (definitions in the next chapter) and studied representation theory on Min-Primal(\mathcal{A}) under the assumption that this space is closed. Local compactness is enforced by this condition.

In general Min-Primal(\mathcal{A}) is not locally compact, there is an example where \mathcal{A} is unital limital separable and dim(π) ≤ 2 for all irreducible representations of \mathcal{A} (see §4).

If $Prim(\mathcal{A})$ is Hausdorff, then $Prim(\mathcal{A}) = Min-Primal(\mathcal{A})$ is clearly locally compact. It will be proved here that $Min-Primal(\mathcal{A})$ is locally compact provided $Prim(\mathcal{A})$ is nearly Hausdorff, i.e. $Prim(\mathcal{A})$ is a T_1 -space such that all limit sets are finite and each limit set L possesses a neighbourhood U so that $(U \setminus L) \cup \{P\}$ is Hausdorff for all points P in L.

Local compactness of Min-Primal(\mathcal{A}) has very bad hereditary properties. Let *I* be a closed two-sided ideal in \mathcal{A} .

If Min-Primal(\mathcal{A}) is locally compact, Min-Primal(I) or Min-Primal(\mathcal{A}/I) are not in general.

If Min-Primal(I) and Min-Primal(A/I) are locally compact, Min-Primal(A) is not in general.

2. **Preliminaries.** For any C^* -algebra \mathcal{A} let $Prim(\mathcal{A})$ be the primitive ideal space equipped with the Jacobson topology. $Id(\mathcal{A})$ is the set of all closed two-sided ideals of \mathcal{A} . $I \in Id(\mathcal{A})$ is said to be primal iff the following holds true: if $I_1, \ldots, I_n \in Id(\mathcal{A})$ and $I_1 \cap \cdots \cap I_n = 0$ then I contains at least one of the I_j . These ideals have been introduced in [2]. Another description is the following: I is primal iff $Prim(\mathcal{A}/I) \subset Prim(\mathcal{A})$ is a Lié set in the sense of [3]. Define $Primal(\mathcal{A})$ to be the space of these ideals. By Zorn's lemma each primal ideal contains a minimal primal ideal, and the set of the latter is denoted by Min-Primal(\mathcal{A}).

440

Received by the editors June 19, 1990.

[©] Canadian Mathematical Society 1991.

 $Id(\mathcal{A})$ carries at least two important topologies.

- (i) The Fell topology or strong topology τ . An open base is given by the sets $U(C : I_1, \ldots, I_n) := \{I \in \mathrm{Id}(\mathcal{A}) \mid I^c \cap C = \emptyset \text{ and } I_1 \not\subset I, \ldots, I_n \not\subset I\}$, where I^c is the set of ideals containing I, C is a quasi-compact set in $\mathrm{Prim}(\mathcal{A}), n \in \mathbb{N}$, and I_1, \ldots, I_n are ideals in \mathcal{A} . A net I_α is τ -convergent to I iff $||x + I_\alpha|| \to ||x + I||$ for all x in \mathcal{A} . (Id $(\mathcal{A}), \tau$) is a compact Hausdorff space (see [5] and [6] for this).
- (ii) The weak topology ω . An open base is given by the sets $U(I_1, \ldots, I_n) = \{I \in Id(\mathcal{A}) \mid I_1 \not\subset I, \ldots, I_n \not\subset I\}$, where $n \in \mathbb{N}, I_1, \ldots, I_n \in Id(\mathcal{A})$. ω restricted to Prim(\mathcal{A}) coincides with the Jacobson topology.

Obviously ω is weaker than τ . The ω -closure of Prim(\mathcal{A}) is Primal(\mathcal{A}), Min-Primal(\mathcal{A}) is always contained in the τ -closure of Prim(\mathcal{A}), τ and ω coincide on Min-Primal(\mathcal{A}). All this can be found in [1].

3. C^* -algebras with a nearly Hausdorff primitive ideal space. The aim of this section is the following theorem:

THEOREM 3.1. Let \mathcal{A} be a unital C^* -algebra having a nearly Hausdorff primitive ideal space. Then Min-Primal(\mathcal{A}) is locally compact.

Let $X = \text{Min-Primal}(\mathcal{A}), \mathcal{A}^{\nu} = \text{Prim}(\mathcal{A})$. The first step is

LEMMA 3.2. Let \mathcal{A}^{ν} be T_1 and $K \in X$. Assume that $L = \{P \in \mathcal{A}^{\nu} \mid K \subset P\}$ is finite and has a closed neighbourhood F, such that $(F \setminus L) \cup \{P\}$ is Hausdorff for all $P \in L$. Then K has a compact neighbourhood in X.

PROOF. Say $L = \{P_1, \ldots, P_n\}$. Since F is a neighbourhood of each P_i there is an ideal J_i such that $P_i \subset \{P \in \mathcal{A}^v \mid J_i \notin P\} \subset F$. Now \mathcal{A}^v is a T_1 -space and so $P_j \notin P_i$ for $j \neq i$. Since \mathcal{A}^v is locally compact, there are compact neighbourhoods V_i of P_i satisfying $P_i \in V_i \subset \{P \in \mathcal{A}^v \mid J_i \cap \bigcap_{j=1, j \neq i}^n P_j \notin P\} \subset F$. In fact V_i is a compact Hausdorff space, since $V_i \cap L$ is the singleton P_i . It will be shown that $W := \bigcap_{i=1}^n (V_i \setminus L) \cup \{K\}$ is the required neighbourhood.

- If (P_α) is a net in F, such that its limit set L₀ contains elements of L, then it is already contained in L. In order to prove this let P ∈ L ∩ L₀ and Q ∈ L₀\L. Since F is closed, we have Q ∈ F\L and so P_α is in F\L for large α, w.l.o.g. for all α. Since P and Q are in the Hausdorff space (F\L) ∪ {P} we arrive at the contradiction P = Q.
- 2.) $V_i \setminus L \subset X$. If $P \in V_i \setminus L$ and $J \in X$ with $J \subset P$, there is a net (P_α) in \mathcal{A}^{\vee} converging to J with respect to ω . By ([1], 3.2), $P_\alpha \to P$ which is in int(F). So w.l.o.g. all P_α are in F, and by 1.) we conclude that the limit set is contained in $F \setminus L$. But this space is Hausdorff, and so the limit set must be a singleton, which in turn must be $\{P\}$. This shows J = P, and so P is in X.
- 3.) W is a neighbourhood of K in X. By 2.) we have $W \subset X$. There are ideals I_i satisfying $P_i \in U(I_i) \subset int(V_i)$. Obviously, $K \in U(I_1, \ldots, I_n) \cap X$ so let us show, that this set is contained in W. Let $J \in U(I_1, \ldots, I_n) \cap X$. Then there are primitive

ideals Q_i satisfying $J \subset Q_i$ and $I_i \not\subset Q_i$. If $Q_i = P_i$ for all *i*, then clearly *J* is in *K* and then J = K by minimality. So assume $Q_j \neq P_j$ for one *j*. Since Q_j is in $U(I_j) \setminus L \subset V_j \setminus L$, we conclude by 2.) $Q_j = J \subset Q_i$ for all *I*, and so $Q_j = Q_i$ for all *i*, because \mathcal{A}^{ν} is T_1 . But then *J* is in $V_1 \setminus L$ for all *I*, and so in *W*.

4.) W is compact. To this end let (P_α) be a net in W, and let us show that there is a convergent subnet. Clearly we may assume P_α ∈ ∩_{i=1}ⁿ V_i for all α. By successive choice of convergent subnets in V_i we can produce a subnet (P_β) such that P_β → Q_i ∈ V_i for all i = 1,...,n. If Q_i = P_i for all i then clearly P_β → ∩_{i=1}ⁿ P_i = K, so we may assume Q_j ≠ P_j for one j, and like in 3.) we conclude Q₁ = ··· = Q_n, and so P_β → Q₁ ∈ W.

This finishes the proof.

COROLLARY 3.3. If \mathcal{A}^{ν} is a T_1 -space and if each maximal limit set is finite and possesses a closed neighbourhood F such that $(F \setminus L) \cup \{P\}$ is Hausdorff for all $P \in L$, then X = Min-Primal(\mathcal{A}) is locally compact.

PROOF. By Lemma 2 each minimal primal ideal (which corresponds to a maximal limit set) has a compact neighbourhood. As X is Hausdorff, this proves the claim.

EXAMPLE 3.4. Let M_2 be the 2 × 2 matrices, and let D_2 be the diagonal matrices in M_2 . Define

 $\mathcal{A} = \left\{ x: [0,2] \to M_2 \mid x \text{ is continuous and } x(t) \in D_2 \text{ for all } t \ge 1 \right\}.$

Then \mathcal{A}^{ν} is homeomorphic to the quotient space of $[0, 2] \times \{0, 1\}$ which one gets by identifying (t, 0) and (t, 1) for all $t \in [0, 1)$. It is easily seen, that \mathcal{A} satisfies the conditions of the above corollary, indeed Min-Primal(\mathcal{A}) is homeomorphic to $[0, 1] \cup ((1, 2] \times \{-1, 1\}) \subset \mathbb{R}^2$. In this example each $P \in \mathcal{A}^{\nu}$ contains a unique minimal primal ideal I_p , and in view of [1], 5.1 one might ask whether the map $P \to I_p$ is open continuous or whether the topology on Min-Primal(\mathcal{A}) is given by the hull-kernel-process. Such maps are always open by the proof of [1], 5.1. Here $P \to I_p$ is obviously discontinuous at (1, 0) and (1, 1). The last property also fails to hold.

In order to prove Theorem 1, i.e., to delete the closedness condition in Corollary 3.3, a few lemmas will be helpful.

LEMMA 3.5. Let \mathcal{A} be an arbitrary C^* -algebra, $I \in Id(\mathcal{A})$.

- (*i*) If $J \in Primal(\mathcal{A})$ then $I \cap J \in Primal(I)$.
- (ii) For each $J \in Primal(I)$ there is a $\tilde{J} \in Primal(\mathcal{A})$ with $J = \tilde{J} \cap I$.
- (iii) For each $K \in Min$ -Primal(I) there is a $\tilde{K} \in Min$ -Primal(\mathcal{A}) with $K = \tilde{K} \cap I$.

PROOF. (i) is trivial since $Id(I) \subset Id(\mathcal{A})$.

- (ii) $\tilde{J} := \{ x \in \mathcal{A} \mid xI \subset J \}$ does the job.
- (iii) By (ii) there exists $L \in Primal(\mathcal{A})$ such that $L \cap I = K$. If $\tilde{K} \in Min-Primal(\mathcal{A})$ is contained in L we know by (i) that $\tilde{K} \cap I$ is primal in I and hence $\tilde{K} \cap I = K$ by minimality.

The following lemma is the key step in the proof of Theorem 1.

LEMMA 3.6. Let \mathcal{A}^v be a compact space, $I \in Id(\mathcal{A})$, $K \in X = Min-Primal(\mathcal{A})$ such that $K + I = \mathcal{A}$. Then there is an open neighbourhood U of K in X such that $\varphi_1: U \rightarrow Min-Primal(I)$. $\varphi_1(I) = I \cap L$, is a homeomorphism onto an open set in Min-Primal(I).

PROOF.

- 1.) There is an open neighbourhood U of K such that for all $L \in U$ we have $I \not\subset Q$ whenever $L \subset Q \in \mathcal{A}^{\nu}$. To see this let $C := I^c \cap \mathcal{A}^{\nu}$. Then C is a closed and therefore compact subset of \mathcal{A}^{ν} . By assumption $K \in U := \{L \in X \mid L^c \cap C = \emptyset\}$, and U is such a neighbourhood. Note that $U = \{L \in X \mid L + I = \mathcal{A}\}$.
- 2.) $L \cap I$ is in Min-Primal(I) for all $L \in U$. To see this let $L \in U$ and $J \in Primal(I)$ such that $J \subset L \cap I$ (by 3.5(i) $L \cap I$ is primal in I), and let us prove that $J = L \cap I$. By 3.5(ii) there is a $\tilde{J} \in Primal(\mathcal{A})$ with $J = I \cap \tilde{J}$. Suppose that $P \in \mathcal{A}^{\vee}$ and $L \subset P$. Then $I \not\subset P$ and $I \cap \tilde{J} = I \cap L \subset P$. Since P is prime we have $\tilde{J} \subset P$. This proves that \tilde{J} is contained in L and hence $\tilde{J} = L$ by minimality. From this we see that φ_I is a well defined map $U \to Min-Primal(I)$.
- 3.) φ_I is injective. Let $L_1, L_2 \in U$ and suppose $\varphi_I(L_1) = \varphi_I(L_2)$. If *P* is a primitive ideal containing L_1 , then $I \notin P$ and $L_2 \cap I = L_1 \cap I \subset P$ and so $L_2 \subset P$ since *P* is prime. This shows $L_2 \subset L_1$ and therefore $L_1 = L_2$ by minimality or symmetry.
- 4.) If U(I₁,...,I_q) ∩ X ⊂ U then φ_I(U(I₁,...,I_q) ∩ X) = U(I₁ ∩ I,...,I_q ∩ I) ∩ Min-Primal(I). In particular φ_I is open and φ₁(U) is contained in Min-Primal(I). To show this let L ∈ U(I₁,...,I_q) ∩ X and assume I_j ∩ I ⊂ L ∩ I. Then I_j ∩ I ⊂ P for all P ∈ A^v such that L ⊂ P. Since I ⊄ P we conclude I_j ⊂ P. Thus we arrive at the contradiction I_j ⊂ L. This gives φ₁(L) ∈ U(I₁ ∩ I,...,I_q ∩ I). If conversely J ∈ U(I₁ ∩ I,...,I_q ∩ I) ∩ Min-Primal(I), then by 3.5(iii) there is an L ∈ Min-Primal(A) with φ_I(L) = J. This proves 4.).
- 5.) Let *J* be an ideal in *I*, and let $U_I(J) := \{L \in Id(I) \mid J \notin L\}$. Then we can check easily that $\varphi_I^{-1}(U_I(J) \cap \varphi_I(U)) = U(J) \cap U$, especially φ_I is continuous.

This finishes the proof of the lemma.

COROLLARY 3.7. Let \mathcal{A}^{ν} be a compact space and assume that each maximal limit set has an open neighbourhood V such that the ideal corresponding to $V \subset \mathcal{A}^{\nu}$ has a locally compact minimal primal ideal space. Then Min-Primal(\mathcal{A}) is locally compact.

PROOF. Let $K \in X$ = Min-Primal(\mathcal{A}). Then $K^c = \{Q \in \mathcal{A}^v \mid K \subset Q\}$ is a maximal limit set. Let V be a neighbourhood of the kind guaranteed in the assumptions, and let I be the corresponding ideal. Then by Lemma 3.6 K has a neighbourhood U in X, which is homeomorphic to an open subset of Min-Primal(I). Since this space is locally compact we are done.

Now let us attack the proof of the theorem. Let *L* be a maximal limit set in \mathcal{A}^{ν} . By assumption there is an open neighbourhood *U* of *L* such that $(U \setminus L) \cup \{P\}$ is relatively Hausdorff for all $P \in L$. Let *I* be the ideal corresponding to *U*. By 3.7 it is enough to show that Min-Primal(*I*) is locally compact, and this will be an application of 3.3.

Since $Prim(I) \cong U$, Prim(I) is a T_1 -space and all limit sets are finite. Let L_0 be a maximal limit set in U, say $L_0 = \lim P_{\alpha}$ where $P_{\alpha} \in U$, in the relative topology on U.

Assume first $L_0 \cap L = \emptyset$. Then $P_\alpha \in U \setminus L$ finally and so L_0 is a singleton $\{Q\}$ since $U \setminus L$ is Hausdorff. As $Q \not\subset L$, there is a relatively closed neighbourhood V of Q disjoint from L, so $V = (V \setminus L_0) \cup \{Q\}$ is Hausdorff.

Assume next, that $L \cap L_0 \neq \emptyset$, say $P_\alpha \to P \in L \cap L_0$. If we had $Q \in L_0 \setminus L$, then $P_\alpha \in (U \setminus L) \cup \{P\}$ finally, and since this is a Hausdorff space, we conclude Q = P, which is impossible. So we have $L_0 = L$, and clearly V := U is a relatively closed neighbourhood of L_0 such that $(V \setminus L_0) \cup \{P\}$ is Hausdorff for all $P \in L_0$.

By Corollary 3.3 Min-Primal(I) is locally compact, and we are done.

EXAMPLE 3.8. Consider Example 4.12 of [1], and the notation used there. A neighbourhood base of Q_1 , Q_2 and Q_3 is given by $\{Q_1\} \cup M_1 \cup M_3$, $\{Q_2\} \cup M_1 \cup M_2$ and $\{Q_3\} \cup M_2 \cup M_3$ respectively, where M_i runs through the cofinal subsets of $\{P_{3n+i-1} \mid n \in \mathbb{N}\}$. So a closed neighbourhood F of the maximal limit set $L = \{Q_1, Q_2\}$ also contains Q_3 , and so $(F \setminus L) \cup \{Q_i\}$ contains two elements of $\{Q_1, Q_2, Q_3\}$, i.e., it isn't Hausdorff. In this example Corollary 3.3 is not applicable, but Theorem 3.1 obviously is.

4. Negative examples.

EXAMPLE 4.1. Let M_2 and D_2 like in 3.4. Define $B = \bigcup_{n \in \mathbb{N}} \left[\frac{1}{2n+1}, \frac{1}{2n} \right]$ and $\mathcal{A} := \mathcal{C}([0, 1], M_2) = \mathcal{C}[0, 1] \otimes M_2,$ $\mathcal{A}_1 := \{ x \in \mathcal{A} \mid x(t) \in D_2 \text{ for all } t \text{ in } B \},$ $\mathcal{A}_2 := \{ x \in \mathcal{A}_1 \mid x(0)_{1,1} = x(0)_{2,2} \},$ $\mathcal{A}_3 := \{ x \in \mathcal{A}_1 \mid x(0)_{2,2} = 0 \}.$

Let $X_i := \text{Min-Primal}(\mathcal{A}_i)$. \mathcal{A}_1 , \mathcal{A}_2 and \mathcal{A}_3 are limital separable C^* -algebras which are continuous fields of finite dimensional C^* -algebras. \mathcal{A}_1 and \mathcal{A}_2 are unital, \mathcal{A}_3 is an ideal of \mathcal{A}_1 . The following will be shown.

- (i) X₂ and X₃ are not locally compact. So A₂ is a liminal separable unital C*-algebra with dim(π) ≤ 2 for all irreducible representations π of A₂, and Min-Primal(A₂) is not locally compact.
- (ii) X_1 is locally compact, and by (i) the ideal \mathcal{A}_3 of \mathcal{A}_1 doesn't share this property.

a) First of all let us describe the spectra \mathcal{A}_{t}^{v} . We will identify irreducible representations and primitive ideals. For t in $(0,1] \setminus B$ define $\pi_{t}(x) = x(t)$, for $t \in B \cup \{0\}$ let $\lambda_{t}(x) := x(t)_{1,1}$ and $\mu_{t}(x) := x(t)_{2,2}$. Let P be the set of all the π_{t}, λ_{t} and μ_{t} where $0 < t \leq 1$. An application of [4], 10.4.3 tells us $\mathcal{A}_{2}^{v} = \mathcal{A}_{3}^{v} = P \cup \{\lambda_{0}\}$ (equality as sets, not as topological spaces) and $\mathcal{A}_{1}^{v} = P \cup \{\lambda_{0}, \mu_{0}\}$. The Jacobson topology on $\{\pi_{t} \mid t \in (\frac{1}{2n}, \frac{1}{2n-1})\}$ coincides with the Euclidean topology on the interval, the same holds true for $\{\lambda_{t} \mid t \in [\frac{1}{2n+1}, \frac{1}{2n}]\}$ and $\{\mu_{t} \mid t \in [\frac{1}{2n+1}, \frac{1}{2n}]\}$. A neighbourhood base of $\lambda_{s}, s = \frac{1}{2n+1}$, is given by the sets $\{\pi_{t} \mid t \in (s - \varepsilon, s)\} \cup \{\lambda_{t} \mid t \in [s, s + \varepsilon)\}$ where $\varepsilon > 0$. There are similar neighbourhood bases for μ_{s} and for $s = \frac{1}{2n}$. From this we can conclude that $(\pi_{t})_{t}$ converges for $t \to s = \frac{1}{2n}$ from above.

b) LEMMA. Let $((A_t)_{t \in T}, \mathcal{A})$ be a continuous field of C^* -algebras on a locally compact Hausdorff space T. For an ideal $I \subset \mathcal{A}$ let $I(t) := \{x(t) \mid x \in I\}$. For each primal ideal I there is a unique $t \in T$ such that $I(t) \neq \mathcal{A}(t)$. In this situation we say that I belongs to t.

(The proof of [4], 10.4.3. applies here).

c) By [1], 3.1 and 3.2 for each primal ideal *I* of \mathcal{A}_i there is a limit set in \mathcal{A}_i^{ν} containing all primitive ideals in I^c . This fact together with a) and b) gives us the following list of minimal primal ideals: $\pi_t, t \in (\frac{1}{2n}, \frac{1}{2n-1}); \lambda_t$ and $\mu_t, t \in (\frac{1}{2n+1}, \frac{1}{2n});$ and $J(s) := \lambda_s \cap \mu_s$, $s = \frac{1}{n}$. By a) we conclude that $K_n := \{J(\frac{1}{2n}), J(\frac{1}{2n-1})\} \cup \{\pi_t \mid t \in (\frac{1}{2n}, \frac{1}{2n-1})\},$ $L_n := \{\lambda_t \mid t \in (\frac{1}{2n+1}, \frac{1}{2n})\}$ and $M_n := \{\mu_t \mid t \in (\frac{1}{2n+1}, \frac{1}{2n})\}$ are clopen, and K_n is compact. A minimal primal ideal which is not in $X = \bigcup_n (K_n \cup L_n \cup M_n)$ must belong to 0.

d) Now let $i \in \{2,3\}$. By b) we know $X_i = X \cup \{\lambda_0\}$. It is routine to verify that a closed neighbourhood base for λ_0 is given by the sets

$$W_N := \{\lambda_0\} \cup \bigcup_{N \le n} (K_n \cup L_n \cup M_n) \quad \text{if } i = 2$$
$$W_N := \{\lambda_0\} \cup \bigcup_{N \le n} (K_n \cup L_n) \quad \text{if } i = 3.$$

So each neighbourhood U of λ_0 contains L_n as a closed subset for large n, and so no neighbourhood of λ_0 can be compact.

e) In the case i = 1 we have $X_1 = X \cup \{\lambda_0 \cap \mu_0\}$, and a neigbourhood base of $\lambda_0 \cap \mu_0$ is given by the sets $W_N = \{\lambda_0 \cap \mu_0\} \cup \bigcup_{N \le n} K_n$. These sets are clearly compact, and we are done.

f) It can be shown, that \mathcal{A}_3^{ν} is nearly Hausdorff. This shows that in Theorem 3.1 you cannot remove the assumption, that the C^{*}-algebra is unital.

EXAMPLE 4.2. There is a C^* -algebra \mathcal{A} with an ideal I such that Prim(I) and $Prim(\mathcal{A}/I)$ are Hausdorff, but Min-Primal(\mathcal{A}) is not locally compact. Let \mathbb{N}_{∞} be the one point compactification of \mathbb{N} , and let \mathcal{K} be the compact operators on a separable Hilbert space with a given orthonormal basis.

$$\mathcal{A} := \left\{ x \in \mathcal{C}(\mathbb{N}_{\infty}^2, \mathcal{K}) \mid x(\infty, n) = x(n, \infty) = \operatorname{diag}(\lambda_1(x), \dots, \lambda_n(x), 0, \dots) \right\}$$

 \mathcal{A} is a separable liminal C^* -algebra which is a continuous field of C^* -algebras on the base space \mathbb{N}^2_{∞} . We have $\mathcal{A}_{(n,m)} = \mathcal{K}$ for $n, m \in \mathbb{N}$, $\mathcal{A}_{(n,\infty)} = \mathcal{A}_{(\infty,n)} = \mathbb{C}^n \subset \mathcal{K}$ and $\mathcal{A}_{(\infty,\infty)} = \mathcal{D} \cap \mathcal{K}$ (diagonal operators in \mathcal{K}). From [4], 10.4.3 we conclude that the following list of irreducible representations is complete.

 $\pi_{(n,m)}(x) := x(n,m)$ for $n, m \in \mathbb{N}$ and $\lambda_1, \lambda_2, \lambda_3, \ldots$

Let $\rho_n : \mathcal{A} \to \mathbb{C}^n$ be the *-homomorphism $\rho_n(x) = (\lambda_1(x), \dots, \lambda_n(x))$. Define $I_n = \ker \rho_n$. Then for any x in \mathcal{A} we have $||x + \ker \pi_{n,m}|| = ||x(n,m)|| \to \max\{|\lambda_1(x)|, \dots, \|x(n)|\}$

 $|\lambda_n(x)|$ = $\|\rho_n(x)\| = \|x + I_n\|$. It is easy to see that all the ker $\pi_{n,m}$ are minimal primal, and so I_n is in the τ -closure of Min-Primal(\mathcal{A}). Now let $I_{\infty} := \bigcap_{n \in \mathbb{N}} I_n$. Then I_{∞} is primal as all the I_n are primal. Since any proper ideal of I_{∞} must be a proper ideal of some ker $\pi_{(n,m)}$, we may conclude by that I_{∞} in fact is minimal primal.

Now if *U* were a compact neighbourhood of I_{∞} in *X* then *U* would be compact in the Hausdorff space $(Id(\mathcal{A}), \tau)$ and hence closed. Since there is $N \in \mathbb{N}$ such that ker $\pi_{n,m} \in U$ for all $n, m \geq N$, we arrive at the contradiction $I_N \in U$, since I_N is not in *X*.

(Another possible argument is: by the above we have shown that X is not open in its τ -closure which is a locally compact space, and so it cannot be locally compact by ([7], 18.4).

We have $Prim(\mathcal{A}/I_{\infty}) = \{\lambda_n \mid n \in \mathbb{N}\}\$ and $Prim(I_{\infty}) \cong \mathbb{N}^2$ equipped with the discrete topology. This establishes the promised example.

EXAMPLE 4.3. There is a C^* -algebra \mathcal{B} such that Min-Primal(\mathcal{B}) is locally compact and a quotient of \mathcal{B} which does not have this property. Let \mathcal{A}_2 be the C^* -algebra of Example 4.1 and define

$$\mathcal{B} := \left\{ x \in \mathcal{C}([0,1] \times \mathbb{N}_{\infty}, M_2) \mid x(\cdot, \infty) \in \mathcal{A}_2 \right\}.$$

The irreducible representations of \mathcal{B} are $\pi_{(t,n)}(x) = x(t,n)$ where $(t,n) \in [0,1] \times \mathbb{N}$, $\pi_t(x) = x(t,\infty), \lambda_t(x) = x(t,\infty)_{1,1}$ and $\mu_t(x) = x(t,\infty)_{2,2}$ like in Example 4.1. Let $I := \{x \in \mathcal{B} \mid x(\cdot,\infty) = 0\}$, then $\mathcal{B}/I \cong \mathcal{A}_2$ and so by 4.1 Min-Primal(\mathcal{B}/I) is not locally compact, let us show that Min-Primal(\mathcal{B}) is. Obviously we have $\pi_{(t,n)} \xrightarrow[n]{} \lambda_t \cap \mu_t$ which shows that $\lambda_t \cap \mu_t$ is primal hence minimal primal. This yields Min-Primal(\mathcal{B}) \cong $[0, 1] \times \mathbb{N}_{\infty}$ which clearly is locally compact.

REFERENCES

- 1. R. J. Archbold, Topologies for primal ideals, J. London Math. Soc. (2)36(1987), 524–542.
- **2.** R. J. Archbold and C. J. K. Batty, *On factorial states of operator algebras III*, J. Operator Theory **15**(1986), 33–81.
- 3. J. Dixmier, Sur les espaces localement quasi-compact, Canad. J. Math. 20(1968), 1093-1100.
- 4. _____, C*-algebras. North Holland Publishing Company, 1977.
- 5. J. M. G. Fell, The structure of algebras of operator fields, Acta Math. 106(1961), 233-280.
- **6.** _____, A Hausdorff-topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc. **13**(1962), 472–476.

7. S. Willard, General topology. Addison Wesley Publishing Company, 1970.

Mathematisches Institut de Westfälischen Wilhelms-Universität Münster Einsteinstr. 62 4400 Münster, FRG