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Groups of automorphisms of

linearly ordered sets

J.L. Hickman

I show that a group of order-automorphisms of a linearly ordered

set can be expressed as an unrestricted direct product in which

each factor is either the infinite cyclic group or else a group

of order-automorphisms of a densely ordered set. From this a

couple of simple group embedding theorems can be derived. The

technique used to obtain the main result of this paper was

motivated by the Erdos-Hajnal inductive classification of

scattered sets.

Unless the contrary is either obvious or stated explicitly, throughout

this paper we shall take "set" to mean "linearly ordered set". The

ordering will always be denoted by "<" , any ambiguity being resolved by

context.

Sets and elements of sets will be denoted by upper and lower case

Latin letters respectively, with the exception that "f, "g", "h" will

denote functions and "i", "j", "k", "m", "n" integers. Lower case Greek

letters will denote order-types, with "UJ" always being reserved for the

first transfinite ordinal, and the order-type of a set S will sometimes

be denoted by "o(5)" .

Given a set S , we can define a new ordering <* on S by setting

s <* t whenever t < s . The resulting ordered set is called the

"converse" of S , and is denoted by "S*" . If n = o(S) , then we denote

o(S*) by "n*" •

Given two sets R, S , we can form their ordered union as follows. By
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14 J.L.Hi ckman

replacing R with R x {R} and 5 with 5 x {S} if necessary, we can

assume that R n S = 0 . Now put T = R u S , and order T by setting

x < y if either x £ R and y t S or else x, y Z R or x,j/65 and

x < y . If n = o(i?) and X = o(5) , then n + X is defined to be

o(T) , and we write "T = R u 5" . More generally, if we have an indexed

set \S } _ of pairwise disjoint sets with the index set R also

ordered, then we can form the ordered union S = U\S ; r € R] by setting

s < s' if s d Sr , s' € S , , and either r < r' or else r = r' and

s < a ' .

We can order the cartesian product T = R x 5 of two sets i?, S , by

setting (r, s) < (r1, s1) if either s < s' or else s = s' and

r < r' . We write "21 = R * S" , and if n = o{R) and X = o(S) , then we

define nX to be o(T) .

Given two sets 5, T , an order-preserving map f : S -*• T will be

called an "embedding". Clearly an embedding is injective; if f : S -*• T

is a surjective embedding, then / is called an "isomorphism" and S, T

are said to be similar ("S ~ 2"') . Finally, an isomorphism / : S ~ S is

called an "automorphism". We denote the set of all automorphisms of S by

"A{S)" : under the operation of composition, A{S) becomes the carrier of

a group, which we denote by "A(S)" . Furthermore, we can partially order

A(S) by setting f £ g if f(s) 5 g{s) for all s € S ; under this

partial ordering, A(5) is a lattice-ordered group. Hoi land has shown in

[3] that if G is any lattice-ordered group, then for some set S we have

a group monomorphism G -*• A(5) . Thus in particular any ordered group can

be regarded as a subgroup of A(5) for some set 5 .

A set S is said to be dense if S + 0 and for all x, y € S with

x < y there exists a € 5 such that x < z < y . The obvious example of

a dense set is that of the set Q of rational numbers (under the usual

ordering), and it is well-known that if S is dense, then there exists an

embedding Q -*• S . A set is said to be scattered if it contains no subset

that is a dense set: thus we have that S is scattered if and only if

there is no embedding Q -*• S .

Let 5 be any nonempty set. Erdos and Hajnal have shown in [2] that

there exists an indexed set {S } of pairwise disjoint sets such that
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Groups of automorphisms 15

(a) S = U{Sp, r € if} ;

(b) for each r € R , S is nonempty and scattered;

(c) either \R\ = 1 or else R is dense.

In (c) of course we are using "| |" to denote cardinality. The proof of

this result that is given in [2] assumes that 5 is countable; as the

authors observe, however, very little extra effort is required for the

proof of the general result.

As was indicated in a previous paragraph, we shall denote groups by

upper case script letters and - where possible - their carriers by the

corresponding upper case Latin letters. Since we shall need to speak of

group embeddings and group isomorphisms, we shall attach a subscript "G"

to distinguish these from the embeddings and isomorphisms introduced above.

•^ {^ } CY is a n indexed set of groups (with the index set X not

necessarily ordered), then we shall denote the unrestricted direct product

of the 6 by "x{G ; x € x}" . We shall nisn denote the infinite cyclic

group by "Z" , and the trivial group by "0" .

Our main result states that for any set S and any subgroup H of

A(S) , there is an indexed set {H } of groups such that

(a) H *ff xffy x € X] ;

(b) for each x d X , either H = Z or H 5 A(i?) for some
a; x

dense set R .

A subset R of a set S i s called a "segment" i f for a l l

x, y, z € 5 such that x £ y S z , we have x, z € R =* y € R . Let T be

any subset of S ; we define the convex hull Ch(T) of T to be

fl{if; r e s 1 if a segment of S) . Obviously Ch(T) i s a segment of 5 ,

and Ch(if) = i? for each segment if of 5 .

We find i t convenient to define a binary relat ion V between subsets

of a given set S as follows. For if, T c 5 we put if V T i f ei ther

R = T or R n T = 0 .

Let S and H 5 A(5) be given. A segment if of 5 i s called an

"H-block" i f for every f € H we have if V f'R , where of course
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16 J.L. Hickman

f'R = (/(r); r € i?} . Clearly if H 5 K 5 A(S) , then every K-block is an

H-block. We refer to A(S)-blocks simply as "blocks".

Let L be a set of pairwise disjoint segments of S . We can define

an ordering on L as follows. For B, C € L , we set B < C if we have

s < t for some s £ B and some t € C . It is readily seen that this

ordering is well-defined.

One final piece of notation is required. Let 5 be given, and take

H 5 A(5) . For each x € S we put H(x) = {f{x); f (. B) ,

fl+(x) = {y € H{x); y > x} , and H~(x) = {y € ff(a:); j/ < x) . If

H = A(S) , then we write "A(x)" , "A*(x)" , "A~(x)" for H(x), H+(x) ,

and H (x) respectively.

We use the same notation for blocks. Thus if D is an H-block, then

H{D) = {f'D; f f H} , and so on.

THEOREM 1. Let S be a set, and take x e 5 and H s A(5) .

(1) fl (x) ftas a first element x if and only if H~(x) has

a last element x

(2) If H (x) is nonempty and has no first element, then H(x)

is a dense set.

(3) If H (x) has a first element x , then the segment

R = {z € S; x S z < x } of S is an H-bloak.

Proof. Suppose that H (x) has a first element x , choose f i. H

such that x = f{x) , and put x~ = f (x) : we claim that x~ is the

last element of H~(x) .

Clearly x~ € B~{x) ; suppose that y > x~ for some y € H~{x) , and

let g 6 H be such that y = g{x) . Put h = fg € H ; since

x~ < y < x , we must have x < f(y) < x , and since h(x) = /(#) , this is

a contradiction.

In an exactly similar manner we can show that if H~(x) has a last

element, then H (x) has a first element.

(2) Suppose that H (x) is nonempty and has no first element; we

shall show firstly that H (x) is a dense set.

Take u, V € H (x) with u < v , and choose / , fv^H such that
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u = / (x) and v = fy(x) • Put y = f (v) ; it is easily shown that

y € H (x) , and so there exists z € H (x) such that z < y . Put

W = f (z) ; then w € #+(x) , and u < W < v . Therefore H {x) is

dense.

By (l), H (x) has no last element, and in similar vein we can show

that H~{x) is dense. But H(x) = H~(x) u {x} u H (x) , whence it follows

easily that #(x) is dense.

(3) Suppose that H (x) has a first element x , and let R be the

segment {2 E S; i 5 s < i } . Suppose that for some f € E we do not

have R V f'R ; by replacing / with its inverse if necessary, we may

assume that R < {y} for some y Z f'R . Since R n f'R ? 0 , it follows

that x+ Z f'R ; put u = /~1(x+) . Then u Z R ; that is, x £ u < x + .

But x < u ** u € H (x) , which contradicts the definition of x .

Therefore we must have x = u , from which it follows that R < {y} for

every y € f'R , contradicting our assumption that ~ (R V f'R) .

Thus R is an H-block of 5 .

COROLLARY. Let S be a scattered set, and take H < A(S) . Then for

each x € S , either H(x) = {x} or else every element of H(x) is an

immediate •predecessor and an immediate successor in H .

Proof. Since S is scattered, there is no x € S such that H(x)

is dense. Therefore for each x € S , either H(x) = {x} or x has both

an immediate predecessor and an immediate successor in H .

Take x € S such that H(x) # {x} , and let y be an element of

H(x) with y + x . Since there exists g t H with g'(x) = y , we have

x 6 #(j/) , from which we conclude easily that H(y) = ff(x) .

The corollary now follows.

We retain the convention introduced in the preceding theorem of

denoting the first element of H (x) - when it exists - by "x " and the

last element of H~{x) by "x~" . We also extend this notation to blocks,

with the following justification.

LEMMA 1. Let S be a set, and let B be an H-block of S , where

H 2 A(S) is given. Then the elements of H(B) are pairwise disjoint.
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18 J . L . H i ckman

Proof. Take C, D € H(B) , with of course C # D . There exist

f,g£H such that f'B = C and g"B = fl . Suppose that C n D t 0 .

Put h = f~Xg € # : then B n 7j"B t 0 , and since B is an H-block we

must have B = h"B . But then C = f'B = g"B = D , a contradiction.

We are going to partition a given set into blocks of a certain type,

and then express the automorphisms of the set as products of the auto-

morphisms of these blocks. The key to this procedure is the definition of

a certain operation I on the collection of blocks of the given set. This

definition we shall present shortly, but first of al l we need a result

justifying the definition.

LEMMA 2. Let S be a set, let H 5 A(5) be given, and let B be

an H-bloak of S . Assume that B exists, let f, g be any two

elements of H such that f'B = g"B = B , and define the subsets RQ, i?,

of S by

RQ = {/*(*)
 e S; x € S & n € Z) 3 R1= {gn(x) £ S x € B & n 6 z} ,

where Z is the set of integers. Then Ch(i?Q) = C h ^ ) .

Proof. We shall show that R c Ch(i?_) , whence we obtain

Ch(#-i) £• Ch(/?n) • Since the argument will be symmetric, we shall also be

able to infer Ch(i?Q) c C h ^ ) , and so obtain Ch(j?Q) = C h ^ ) .

Suppose that for some x € B and some n (. Z we have

gn(x) $ Ch(f?0) . Then we have either {̂ "(a:)} < Ch(i?Q) or

Ch(i? ) < {g (x)} , and without loss of generality we may assume the latter.

Since for each y €'5 we have g%{y) < g3{y) for all i, j £ Z with

i < 3 , it follows that Ch(ff ) < {gn{x)\ for some x t B and some

n > 0 . However, g"B = f'B , and so gX{y) € ch[RQ) for all y (. B .

Hence there is a least positive integer n° for which chfoj < {g (#)}

for some x € B , and so gH ~ (y) 6 Ch(i? ) for every y 6 B . It follows

that gn "1|IB < f"B for some m > 0 , and since either /"S = g" "1|I5 or
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n°—1f'B < g ~ "B , we may assume that m is the least positive integer with

this property.

We claim that in fact gn ~X"B = f~lnB . For if not, then by Lemma

1, f-^B < 9n°-X"B < f"B . Put h = f1"7"/0"1 € * . Then

B < h"B < f'B = B , which is a contradiction. Hence we have

gn°-'L"B = /""1|IB . However, Cn(i?Q) < {?"°(i)} for some x € B , and by
o

Lemma 1 this certainly implies j"B < g "B . We now put

h = gX~n f € H and obtain B < h'^B < g"B = B+ , another contradiction.

Thus our lemma is proved.

DEFINITION 1. Let S be a set, let H £ A(s) be given, and let B

be an f/-block of S . Define a segment J(B) of 5 as follows.

(1) If H(B) = {B) , put I(B) = B .

(2) If H (B) i s nonempty and has no f i rs t element, put

I{B) = Ch({/(x) € S; x € B & f € H}) .

(3) If H+{B) has a f i rs t element, take any f t. H with f'B = B+ ,

and put I(B) = Ch({/"(x) € 5; x € S & n € z}) .

Lemma 2 shows that in the case of clause (3), I(B) i s independent of

the particular choice of f € H ; hence our definition of the operator

is valid.

LEMMA 3 . Let S be a set, let H £ A(5) be given, let B be an

H-blook of S , and assume that B exists. For each n i 0 define

BM by B ( 0 ) = B and B ( M + 1 ) = B ( w ) + , and similarly for each » < 0

define BM by B ( 0 ) = B and B ^ " 1 5 = B ( w ) " . Then for every m (. Z

and every f € H such, that f'B = B* , we have f"B = B^m' .

Proof. We prove the result for m > 0 by induction on m , the proo:

for m £ 0 being exactly similar. By assumption f~"B = B .

Assume that f"B = B( m ) and put / ^ " B = D . Then D = f'BM ,

and since i t is clear that B < D , we must have either D = B or
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D > B^m'+ . But if the latter holds, then we have

B < f-m"B
{m)+ < f'B = B+ ,

a contradiction. Therefore we must have D = B^m' + =

Again we retain the notation introduced in the preceding result, and

note that if B exists, then I{B) is the smallest segment of S that

contains B for each m € Z .

THEOREM 2. Let S be a set, let H s A(5) be given, and let B be

an H-bloak of S .

(1) f'I(B) = I(f'B) for every f € H .

(2) I{B) is an H-bloek, and B c,l(B) .

Proof. (1) Take / € H . If J(B) = B , then f'B = B and the

result is trivial. If H (B) is nonempty but has no first element, then

I(B) = Ch(U{£; D € ff(B)}) , and once again the result is clear. Thus we

are left with the case in which B exists.

We claim first of all that /"B+ = (/"B)+ . For if this is not so,

then there exists g € H such that f'B < g"(f'B) < f'B+ , whence we

obtain the contradiction B < [f1gf]"B < B+ .

Thus f'B = (.f'B) , and by induction we can show that

f»B(
m) = (/"S)(

m) f o r each m € Z . Therefore /"B(m) cI(f'B) for each

such m , from which it follows that f'I(B) c I(f'B) . On the other hand,

{f'By"1' = f"B^m' c f'I(B) for each m € Z , and by the remark above we

see that I(f'B) c f'I(B) .

Hence f'l(B) = i(f'B) .

(2) Obviously B c J(B) , and so it suffices to show that l{B) is

an H-block. This is clear if l{B) is defined by clauses (1) or (2) of

Definition 1, for in the former case we have I(B) = B , whilst in the

latter case f'I(B) = I(B) for every / € H . Thus we are left with the

case in which J(B) is defined by clause (3).

Take f (. H and suppose that J(B) n f'l(B) t 0 • By part (l) we

have J(B) n l(f"B) jt 0 . Put C = f'B ; we are assuming that B+
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Cexists, and so we know from the proof of part (1) that C exists;

furthermore, we can show as in the proof of Lemma 2 that C = B ^ for

some i, o € Z , since it follows from our assumption J(B) n I{C) t 0

(k)that C cj(B) for some k € Z . It is clear, however, that

l{c^) = I{C) and j ( B ^ ) = I(B) . Thus I(S) = J(C) = f'l(,B) , and so

I(B) is an H-block.

THEOREM 3. Let S be a set, let H s A(S) be yiuew., and let B, C

be ti-bloeks of S such that B<£C . Then I{B) <=_l(O , or

c J(B) .

Proof. We consider three cases.

(1) Suppose that I(B) = B . Then I(B) c C c l{C) .

(2) Suppose that B+ exists, and let f i U be such that

f"B = B+ . If B^"1' c C for each m € Z , then I(B) c C c I(C) , and so

we may without loss of generality assume that C < B for some n > 0 .

(0) (n°)
Since B = B c C , there is a least n° > 0 for which Bv ; > C , and
we claim that C exists and that g"C = C , where g = f1 € /? .

Certainly B ' c ^"C , and thus C < ̂ ''C . Suppose that we have

C < h"C < g"C for some h € H . Then B < h"B , and so h"B = B^' for

some i with 0 < i < n° . However, B " c C for every j with

0 < j < n°-X , and certainly B " ' n C / |i . Thus we have a

contradiction, and hence C exists and g"C = C .

A routine induction argument now shows that for each m > 0 there

exists n > 0 such that C > B^m' . Similarly we can show that for

each m < 0 there exists n < 0 such that C < B . Thus

J(B)

(3) Suppose that H (B) is nonempty tut has no first element. Thus

fl(B) is dense and J(B) = Ch(ll{Z>; D € tf(B)}) . Now if I(C) = C , then

obviously D e c for every D € fl(B) , whence we obtain I(B) c C = I(C) .

Hence we may assume that I(C) t C , and it follows from Definition 1 that

for each E € H(C) with E <^ I(C) , there exist E , E € H{C) such that
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E , E <=_I{C) and E < E < E . But clearly for each E € H{C) there

exis t s Z? € H(B) with Z? c £ . Therefore we have

I(C) = Ch [U{D Z H(B); 3E € B(C)[D C. E C I(C)) }) ,

whence i t follows at once that J{C) c I(B) .

With reference to the above theorem; a slightly deeper examination of

Case (3) shows that I(C) c J(B) and I(C) 4 J(B) only if C+ exists and

H(B) is dense.

LEMMA 4. Let S be a set, let H 5 A(5) be given, and let B be

an H-bloak of S . Suppose that B exists, and let D be such that

B u D u B is a segment. Then D is an H-bloak, and if D f 0 then

= J(B) .

Proof. Take f € H and suppose that D n f'D i- (9 . Obviously we

cannot have B n f'D 4- 0 , since this would lead to D n f~ "B 4 0 .

Similarly we cannot have B n f'D t 0 • Thus f'D c D . But if

f'D t D , then either B n f'^'D t 0 or B+ n f"1"!? * 0 . Therefore

f'D = D , and so Z? is an H-block.

The remainder of the lemma now follows easily.

THEOREM 4. Let S be a set, let H < A(5) be given, and let B, C

be H-blocks of S such that B n C = 0 . Assume that I(B) n I(C) * 0 .

Then I(B) c I{C) or I{C) c I(B) .

Proof. Since J(S) n J(C) ̂  0 , it is obvious that we cannot have

both I(B) = B and J(C) = C . Hence we may assume without loss of

generality that I{B) t B and that B < C .

From J(B) n J(C) * 0 it follows that J(B) n E 4 0 for some

£• € ff(C) with E c J(C) . Since I{E) = J(C) , we may as well assume that

I{B) n C t 0 . But I(B) t B , and so for each D (. H{B) with D <= I(B) ,

there exists D° € tf(B) such that D° c J(B) and D < D° . But then,

since C > B and J(B) n C # 0 , it follows that there are two

possibilities.

(l) D c C for some D € fl(B) with D c J(B) . From Theorem 3 we

have either I(D) c J(C) or I(C) c J(D) . Since I(Z?) = J(B) , the

result follows.
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(2) C c J(B) and C n D t 0 for at most one 0 € S+(B) with

D c J(B) . Let us deal firstly with the case in which there is no such

D . Then if H(B) is dense, we must have Z? < I(C) < £>, for some

D , D € H*(B) , and so I(C) c I(B) . On the other hand, if B exists,

then we must have B < C < B for some m — 0 , and the result

follows by Theorem 3 and Lemma 1*.

This leaves us with the case in which C n D # 0 for exactly one

D € fl+(B) with D c J(B) . Again if H(B) is dense it is easy to show

that E c J(B) for each £ € ff(C) , and hence that I(C) c J(B) .

Thus assume that B exists, let f (. H be such that f'B = B , and

let m be the unique positive integer such that C n B ^ 0 . Then

f"C n B ?S 0 , and it is easy to see that f'C = C+ . By induction we

obtain B( M + /""1 ) < CM < B
{n+ml) for each n € Z , whence it follows

that I{C) 5 /(B) .

This proves our theorem.

DEFINITION 2. Let S be a set, let H £ A(S) be given, let B be

an H-block of S , and let a be a nonzero ordinal. Define a segment

la{B) of S as follows.

(1) f-(fl) = I(B) .

(2) / + 1 ( B) [

(3) If a is a limit ordinal, then /"(B) = U{lY(B); y < a} .

THEOREM . 5. Let S be a set, let H < A(5) be given, let B be an

H-bloak of S , and let a. be a nonzero ordinal.

(1) For every f € E 3 f-flB) = ^(f'B) .

(2) A s ) ie aw H-bloek of S .

Proof, (l) In view of Theorem 2, it suffices to prove this when a

is a limit ordinal. We have f'J^(B) = U{/"/l(B); n < u} , and so

= U{/l(f'B); n < (o} = f^if'B) . Now take a > w , and assume that
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f"ly(B) = I*{f'B) for each y < a . Then

/"/'(B) = U{/"IY(B); Y < «} = U{JY(/"S); y < a} =

(2) Again it suffices to prove this when a is a limit ordinal, and

we assume that JY(B) is an H-block for each y < a . Take / € H and

suppose that ^(B) n f'fi{B) t 0 . Then for some 3, y < a we have

JB(B) n f"l<{B) * 0 .

Put 6 = max{3, Y ) ; then 6 < a and I&{B) n f'l6(B) # 0 , by part

(1). But by assumption, I&(B) is an H-block, and so J6(B) = f'l&(B) .

Using part (l) again, we see that J^(B) = f'l^{B) for every £ with

6 £ 5 < a , from which it follows that J^iB) = f'^B) . Thus Ja(B) is

an H-block.

THEOREM 6. Let S be a set, let H £ A(5) fee ̂ iuew, and let B, C

be H-blooks of S such that B n C = 0 . Let a be a nonzero ordinal,

and assume that J^B) n Ja(C) t 0 . 27zen Ja(B) c ja(c) or

Ja(C) cla(B) .

Proof. Once more, in view of previous results, it suffices to

consider the case in which a is a nonzero limit ordinal.

Since J^iB) n J^iC) + 0 , there must exist 3, y < a such that

n IY(C) t 0 ; putting 6 = max{3, y} < ct , we see that

J6(B) n I6(C) t 0 , whence it follows that I^(B) n I^{C) ± 0 for every C

with 6 £ 5 * a • By induction therefore, we may assume that for each such

£ , either J?(B) c I?(C) or fi{C) c ^(B) .

Suppose that it is not the case that /"(B) c /"(C) . Then for some

x € 5 , we must have x € ̂ (B) - Ia(C) , whence x € J (B) for some

p < a , but x € JT(C) for no T < a . Let 6 be the least ordinal p

for which x € JP(B) ; then for each % with 6 £ C < a , it cannot be

the case that JS(B) c I^(C) , and so for each £ with
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max{6, 6} 5 5 < a , we must have I^(O <£I**(B) .

Put a = max{9, 6} ; then the sequence (j*(C)),< i s nondecreasing,

and so U{l^(C); 4> < o} <£la(B) . Thus we have J^iC) <£

LEMMA 5. Let S be a set, and let H 5 A(5) be given. For any

H-blook B , there is an ordinal a > 0 such that j^iB) = Ja + 1(B) .

Proof. For any H-block B and any ordinals 3 , y with 0 < g < y ,

we have J (B) c JY(B) . Thus i f a i s any ordinal such that |a | = |S| ,

then we must have ^ ( B ) = Ia + 1(B) .

DEFINITION 3. Let S be a se t , and l e t H S A(5) be given. For

each ordinal a define a set L of H-blocks of 5 as follows.

(1) LQ = {{x}; x € S} .

(2) For a > 0 , I>a = | j a ( B ) ;

The elements of L wi l l be called the "ot-lines" of S (with

respect to H ).

LEMMA 6. Let S be a set, and let H 5 A(5) be given. There is an

ordinal a such that L = L .

Proof. By Lemma 5> for each x € S there exists an ordinal 6 = B

such that I^({x}) = I^+1({x}) . Put a = supfg^; x d S} . Then

for each x Z S , and so L = L , .

DEFINITION 4. Let S be a se t , and l e t H < A(S) be given. The

order ord,,(S) (with respect to H ) of S i s defined to be the leas tn

ordinal a such that L = L . .

THEOREM 7. Let S be a set, let H 2 A(S) fee given, and le t a be

a fixed ordinal. There exists a unique set K of pairuri.se disjoint

H-blocks of S having the following properties.

(1) S = U{B; B Z K] , where the ordering on K is that induced
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by the ordering on S .

(2) For each B £ K , either

(i) B £ La , and for any C € La , C 3 B =» C = B ; or

(ii) B = L){(7g; 3 < y} for some increasing sequence

°f u-Hnes, and there is no C (. L with

Proof. Take any C (. L . Either there exists a maximal C° € L

with C° 2 C , or else there is an increasing sequence (̂ g)g<Y
 o f

a-lines with C = CQ and such that D 3 U{C&; 3 < y} for no 0 € LQ. In

u
the first case we put C = C° , and in the second case we put

C§ = U{Cgj 3 < Y} • We now define K hy K = lc§; C € I 1 .

We must show first of all that each B € K is an H-block. If B is

of the first type given above, then this is otvious. Therefore we assume

that B is of the second type, and put B = U{Cg; 3 < Y} f°r some

increasing sequence ipp) o< °f a-lines. Take f € H and suppose that

B n /"B # 0 . Then we have C& n f'CQ t 0 for some 6, 6 < y , and hence

C n /"C # 0 for all £ with max{6, Q) < E, < y . Therefore C = f"C

for all such £ , from which it follows very easily that B = f'B . Thus

B is an H-block.

Now take B, D € K , and suppose that B n D £ $ . We must show that

B =• D . If S, 5 are both of the first type, then we have

B = ^{{x}) and D = Ia({y}) for some x, y (. S , and so by Theorem 6 we

have either B c 0 or D c_B . However, S, Z) are both maximal, and so

B = D . Wow suppose that S is of the first and D of the second type,

and put D = U{Z?g; 3 < Y} • Then B n £L + 0 for some 3 < Y > and so

S n £). f 0 for every 6 with 3 £ 6 < y , whence either B c_ D? or

£>,. c s for every such 6 . But there is no E (. L with E 3 £>„ for all
o — a — p

3 < Y , from which it follows that B c D . Since B is maximal, this

gives B = D .
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Finally, suppose that B, D are both of the second type, and put

B = U{B, ; \\) < 6} with D as before. Then B n D& t 0 for some T < 6

and some 6 < y , and so S n D. jS 0 for every 3 with 6 £ 3 < y >

which tells us that either B c Do or Do c B for every such 3 . As

T — p p — T

above we can show from this that B c D , and in a similar manner we

obtain B. c 0 for every i|) with T 5 i|> < 9 . Thus we conclude that

B c £) . By symmetry, D c B . Hence B = D .

0 Therefore the elements of K are pairwise disjoint, and as for each

x € S we have x € ia({a;}) c ^({x})* a , it is clear that K satisfies

the conditions. It remains to prove uniqueness.

Suppose that K' is another set of pairwise disjoint H-blocks of S

satisfying the two conditions. Take B € K , B' (. K' , and suppose that

B n B' # </) . Then exactly the same arguments as above show that either

B <^B' or B ' c S , whence maximality tells us that B = B' . Thus

K = K' and our theorem is proved.

DEFINITION 5. Let H be a group. H is called an "4-group" if

there exists an indexed set {H } cv of groups such that

(1) H ̂  *{Hx; a * *} ;

y

(2) For each x € X , either H - 1 for some set I , or else

H S A(i?) for some dense set R .

THEOREM 8. A group H is an A-gvoup If and only if H £ A(5) for

some set S .

Proof. We assume firstly that H £ A(5) for some set S , and show

by induction on ord,,(S) that H is an 4-group.

Now if ordu(S) = 0 , then we have fix) = x for every x € S and

f € H . Thus H ~ 0 , and obviously 0 is an A-group.

Let a be a fixed positive ordinal. We nake the following induction

assumption: that for every set R and every K £ A(f?) , if ord^(i?) < a

then K is an A-group. Now let S be a set, let H £ A(5) be given,
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and assume that ord,,(S) = a .
n

With respect to a , let K be the set of H-blocks of S whose

existence was proved in Theorem 7- Since a = ord,,(S) , we have f'B = B

for every f € H and B d L , whence it follows easily that f'B = B for

every f 6 H and B € K . Thus we have H ~ x{^n> ^ t î } , where for

each B € K , H_ is the subgroup of H whose carrier #g is defined by

HB = {/ € S; Vx € S-B(/(a;) = a)} . Since it is clear that the unrestricted

direct product of a set of j4-groups is again an /4-group, it suffices to

show that each H_ is an A -group.
D

Take B € K and suppose that B t L . Then B = U{ca; B < Y } f°r

a p

some increasing sequence l̂ gJft<Y °^ o^-lines, and there is no D € L

with D 3 S . Thus Y is a limit ordinal. How take f f L and
5, 5 < Y with E, < Z . Then either C£ = /"C£ or C n /"C = 0 , and we

conclude via Theorem 6 that either C £ f'C or C n f"c = 0 . It

follows that H ~ x{H ; g < y} , where H is defined in the obvious

We have therefore reduced the problem of showing H to be an .4-group

to that of showing each H. , D i L , to be an i4-group. Thus we may

assume without loss of generality that S = I ({a;}) for some x € S ; for

typographical convenience we put D, = I ({a;}) for each ty < a .

Suppose firstly that a is a limit ordinal. Then we have

5 = U{Oj ; ij; < a} , and the same argument as above shows that

H ~ x{^n i ̂  < al • In v i e w o f our induction assumption therefore, the

result in this case will follow once we have shown that ordjv(D.J < a ,

where for convenience we are setting K. = H

Now ord^(i5,) is defined by means of an operator 1° , and this

operator 1° is in turn defined using the group K , whereas the operator
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J is defined in terms of the group H . But K is the restriction of the

group H to the H-block P. • It follows that if B c p is a K-bloek,

then B is also an H-block, and I°(B) c 1(5) . Therefore if 6 is any

ordinal such that D. n I (B) = D. n I {B) , then we also have

6 (5+1 ib IJJ+1

1° (B) = 1 ° (B) . Hence I o r ( { # } ) = I°v (iyi) f o r any y d D, , and so

; if; < a .

Therefore our result is proved for the case in which a is a limit

ordinal.

We now assume that a = 6 + 1 for some 6 , and put B = Or •
o

Thus

5 = J ( B ) > and H c^ H x K where K is the factor group H/H . In the
G B B

same way as above we can show that H is an 4-group, and so it suffices
B

to show that K is an A-group.

Suppose that B exists. Then we know that for each f £ H we have

f"B = B^"1' for some m € Z . Let f° € H be such that f°"B = B+ , and

put g = f°HB € K . Then g has infinite order and generates K ; thus

K ~ 1 , and so K is an /4-group.

Now assume that B does not exist. Then H(B) is dense, and

C c I(B) for every C t H(B) . It follows that we have an embedding

K -»• A(#(B)) , and so once more K is an 4-group.

We have therefore shown that if H 5A(S) for some set S , then

is an /4-group. We must now prove the converse.

Let {H } , be some indexed set of groups such that for each

y

x £ X , either H = 1 for some set Y , or else H = A(f?) for some

dense set R . Put H = x{H ; x € x] ; clearly it suffices to show that

H = A(5) for some set 5 .

By "gathering terms", we may assume that there is exactly one x 6 X

such that H = 1 for some set Y . Let K be the smallest ordinal for

which |K| = |y| , and let S be any set of order-type (U)*+W)K . Then
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we have A(£ J —n 1 • Now let (a; JT< be some well-ordered enumeration

y
of X such that H = Z , and for each T with 0 < T < n , let W be

x0 T

a set of order-type T + 1 and let S be a dense set such that

Hx ĉ , A(S T ) . Put S = SQ u U{5 T ii I?T; 0 < T < n} • Then it is routine

to show that H <±n A(5) .

Our theorem is thus proved.

THEOREM 9. Let S be a scattered set. Then A(S) = ZY for some

set

Proof. By examining the proof of Theorem 8, we see that A(S)

contains as a factor a group K S A(i?) for some dense set R only if

A(B) is dense for some block B of S . But obviously there is an

embedding A{B) -»• S , and so 5 cannot be scattered.

Taking the contrapositive, we see that if S is scattered, then A(5)

contains no such group K as a factor, and thus by Theorem 8 we must have

A(S) = 2Y for some set Y .

COROLLARY. If S is a scattered set, then k{S) is an ordered

group.

Proof. By our theorem we know that A(S) is abelian. Cohn in [7]

has shown, however, that for any set S , A(S) is an ordered group if and

only if it is abelian.

Hoi land has shown in [3] that if H is a lattice-ordered group, then

H 5 A(5) for some set S . Since every ordered group is lattice-ordered,

the same result holds for ordered groups, and hence from Theorem 8 we can

conclude that every ordered group is an yl-group.

We follow current custom in calling a group "torsion-free" if every

nontrivial element of it has infinite order.

THEOREM 10. Every torsion-free abelian group is an A-group.

Proof. Levi has shown in [4] that every torsion-free abelian group is

an ordered group. The result now follows from Hoi land's result and Theorem

8.
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THEOREM 11. Let ¥ be a free group of rank greater than 1 . Then

F S A(S) for some dense set S .

Proof. Neumann has shown in [5] that every free group is an ordered

group. Hence by Holland's result and Theorem 8, F is an A-group. Let

F = x{Pa;;
 x € X] be the "A-group representation" of F given by Theorem

8. We claim firstly that \x\ = 1 .

For suppose that \x\ > 2 . Then there exist A-groups F , F ,

neither of which is the trivial group, such that F o= F x F ; for

u u J.

convenience we assume that F = F x F , and represent the elements of F

as ordered pairs. The identity element of F. will be denoted by "e." ,

i = 0, 1 . Take f. € F — {e.} , i = 0, 1 , and consider the elements
IS IS 1r

[f0, ex), {eQ, fx) of F . We then have

and since F is free, it follows that for some positive integer n we

must have either (fQ, e j " = [eQ, f±) or else (/Q, e j = (eQ, ^ j " .

Since this implies /"„• = e. for some i = 0, 1 , we have a contradiction.

y
Therefore |x| = 1 ; put X = {x} . If F = Z for some set I ,

then F would be abelian, contradicting the fact that F is free with

rank greater than 1 . Therefore we must have F < A(S) for some dense

set S .

This proves our theorem.
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